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In this paper, we investigate the exit dynamics of a sphere launched underneath a liquid
bath surface at a prescribed impact velocity. Spheres with radii approximate or smaller
than the capillary length are considered. Following our previous work of a ligament drawn
of a liquid bath [J. Fluid Mech. 922, A14 (2021)], a two-dimensional model is applied
to describe the liquid dynamics, and the whole exit dynamics up to the descent or the
pinch-off moments is considered. The process can be sequenced into a partial exit stage
that forms a coated layer and a full exit stage with an attached ligament. A bouncing-off
regime, a lower pinch-off penetration regime, and an upper pinch-off penetration regime
are identified, separating by a penetration Weber number and a switching Weber number.
The phase diagram is revealed, where the two critical Weber numbers are functions of
the Bond number. By considering the energy evolutions, we show that the impact energy
is mainly converted into the surface energy and the gravitational potential energy for the
low- and large-gravity cases, respectively. The coated layer is mainly formed in the partial
exit stage, whose maximum volume increases with the impact velocity but decreases
with gravity effect. Stretching motion is shown to have negligible influence on the local
pinch-off behavior, while it determines the appearance and the location of pinch-off. Our
results can help to understand the exit behaviors of aquatic animals, and the design of
microamphibious aircraft or energy collection devices.

DOI: 10.1103/PhysRevFluids.9.054003

I. INTRODUCTION

The exit of an object from liquid into air is a common phenomenon in everyday life experience,
e.g., animals jumping out of water [1–3], the water exit of a ping-pong ball [4], and bubble rising
and burst in a bottle [5–7]. Various industrial applications can be found associated with the exit
motion, such as the liquid film processing [8], the stereolithographic printing [9], food processing
[10], the water exit of an amphibious aircraft [11], and the energy collection of wave energy devices
[12]. In process of films pulled out of a pure liquid bath using a horizontal fiber [8], understanding
the exit dynamics could help to predict the coating thickness and consequently the thickness of the
entrained film.

The process can be modelled by a sphere launched below a liquid bath surface at a certain
initial velocity whose dynamics mainly depends on the radius and the impact velocity. The flow
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is mainly turbulent for large objects in a water bath, such as frogs and fishes with sizes much
larger than the capillary length, where inertial and gravitational forces dominate the dynamics.
Takamure and Uchiyama [13–15] studied the influence of the launch depth by controlling the
impact velocity onto the air-water interface; they found that the maximum exit height decreases with
larger launch depth due to the energy loss caused by the asymmetry of the interface, while results
converge when the launch depth is deep enough. This independent depth has also been investigated
for spheres, cylinders, and axisymmetric bodies either launched with constant velocities or with
constant accelerations [16–18], the values of which are in the range of 3 to 10 times the radius.
Truscott et al. [4] studied the water exit of buoyant spheres. They found that increasing the release
depth does not always increase the pop-up height, and the dynamics is related to the submerged
trajectory, which depends on the sphere density and the Reynolds number. Ni and Wu [19] showed
that a more slender shape could foster the exit dynamics. On the other hand, the exit dynamics
of small objects with sizes below the capillary length has received less attention [1,8]. Gravity is
negligible in these cases with large Froude numbers, and the flow mainly turns to be laminar. Two
regimes have been identified [1], namely the bouncing-off regime and the penetration regime, and
the critical impact velocity is found to increase with the object size. However, due to the complexity
of the interface motion, the exit dynamics remains unclear heretofore. We therefore focus on the
exit dynamics of small objects, and the first objective of this work is to determine the critical impact
velocity for penetration.

Before the sphere reaches the interface, it first deforms the interface. By considering the inviscid
liquid and neglecting the surface tension, the analytical solution of free-surface elevation has been
studied for more than a century [20–22]. The interface deformation is determined by the impact
velocity. Telste [18] reported that the flow for the slow approach behaves essentially the same as
the approach to a rigid wall, while the interface deforms like an interior boundary in an infinite
fluid for the fast approach, and wave oscillation is evident for intermediate approach velocities.
The interface deformation is found to play a key role on drainage dynamics during the approaching
of a bubble towards the interface [6]. Liju et al. [16] reported experiments of axisymmetric objects
approaching a free surface at a constant velocity, and they showed that for small or slow approaching
objects, viscous forces significantly modify the liquid drainage above the dome and hence the free
surface profile. The interface above the object later develops into a coated layer, which is related
to the classical drag-out problem [23–25]. The coating thickness on a fiber obeys the well-known
Landau-Levich-Derjaguin theory for slow pulling with negligible inertia effects, and hence increases
with the velocity, whereas it is associated to the presence of a boundary layer for fast pulling with
significant inertia effects, and hence decreases with the velocity [24]. The second objective then is
to investigate the evolution of the coating layer and determine the corresponding entrained coated
volume.

After the sphere rises above the bath, a ligament is formed between the sphere and the liquid
bath, which obstructs the upward motion of the object. The ligament contracts radially during the
rising phase and breaks when the impact velocity is large enough. The breakup is intrinsically due
to Rayleigh-Plateau instability, leading to a characteristic timescale that mainly depends on the
ligament radius for low-viscosity liquids [26]. It has been reported that the breakup time decreases
with the increasing of axial stretching velocities or accelerations [27–30]. We have recently showed
that the breakup of stretched ligaments are determined by the competition between contractions
sequentially dominated by ductility and capillarity [31]. For ligament under fast stretching, the
attached ligament could be quite long and could break into many droplets [32,33]. The breakup of
ligament ends up with pinch-off when the local dynamics dominates. Another phenomenon that can
be observed is the switch of the pinch-off location. Various works show that slow stretching induces
the lower pinch-off, while fast stretching induces the upper pinch-off due to the strong upward
suction effect [29,34,35]. The third objective of this work is to study the evolution of the ligament
and the pinch-off dynamics.

In this paper we present a nonstationary two-dimensional model to describe the exit dynamics of
a sphere launched underneath a liquid bath surface. This paper will be organized in the following
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FIG. 1. Sketches of the sphere and the liquid bath under consideration. The initial configuration is presented
in (a) and at a later time in (b) (see text for details). The dotted line in (b) represents the initially flat surface of
the bath.

sequence. The two-dimensional model is presented in Sec. II. Typical results and the dynamic
regimes are introduced in Sec. III. The energy evolutions, the coating dynamics, and the pinch-off
dynamics are discussed in Sec. IV. Finally the conclusions are given in Sec. V.

II. MATHEMATICAL MODEL AND NUMERICAL METHOD

A. Problem settings

We consider a sphere launched underneath a water bath surface at a prescribed velocity. The
physicochemical parameters of water considered are density ρ = 1000 kg m−3, dynamic viscosity
μ = 1 mPa s, and surface tension γ = 0.072 N m−1. As shown in Fig. 1, a cylindrical coordinate
system is built for the system, whose center is vertically located at the initial flat interface and
coaxial with the sphere. A neutrally buoyant sphere of radius R̄ and density ρs = ρ is initially located
at z̄ = H̄s,0 < 0 in the water bath and launched at a velocity Ūs,0 upwards. Note that the bar denotes
a dimensional variable. The flow field and the interface shape are assumed to be axisymmetric with
respect to the z̄ axis. The typical later dynamic configuration is shown in Fig. 1(b), with a coated
layer and an attached ligament. The transient sphere position and velocity are respectively H̄s(t̄ ) and
Ūs(t̄ ), the interface top position is H̄ (t̄ ), the minimum radius of the ligament is r̄min(t̄ ), the interface
position is at (r̄surf , z̄surf ), and the thickness of the coated layer is h̄(θ, t̄ ), where θ represents the
angle relative to the positive z̄ axis and the angle vertex is at the center of the sphere.

The flow in the water bath can be modelled with the continuity and the momentum equations

∇̄ · v̄ = 0, (1a)

ρ(∂t̄ v̄ + v̄ · ∇̄v̄) = ∇̄ · σ̄ − ρgez, (1b)

where σ̄ = −p̄I + μ[∇̄v̄ + (∇̄v̄)T ] is the stress tensor, p̄ the pressure, v̄ = v̄zez + v̄rer the velocity,
and g = 9.8 m s−2 the gravitational acceleration. Note that n = nzez + nrer is the outer unit normal
vector of the calculation domain, as shown in Fig. 1(a). The vertical forces are considered in this
paper, i.e., the gravitational force and the resistive force, which can be written respectively as

Ḡ = −4

3
πρR̄3g, F̄ = −2π

(∫
�s

σ̄ · nr̄d l̄

)
· ez, (2)
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where �s is the sphere boundary and dl̄ represents the axisymmetric contour element. The acceler-
ation and the transient velocity then are respectively

ās(t̄ ) = 3(Ḡ + F̄ )

4πρR̄3
, Ūs(t̄ ) = Ūs,0 +

∫ t̄

0
ās(t̄ ′)dt̄ ′. (3)

B. Nondimensionalized problem

Using the following transformations:

z̄ → R̄z, r̄ → R̄r, ∇̄ → 1

R̄
∇, t̄ → τ̄ t, v̄ → R̄

τ̄
v, ās → R̄

τ̄ 2
as,

p̄ → γ

R̄
p, σ̄ → γ

R̄
σ, F̄ → γ R̄F, Ḡ → γ R̄G, (4)

where τ̄ =
√

ρR̄3/γ is the capillary timescale, the nondimensional system of equations becomes

∇ · v = 0, (5a)

(∂tv + v · ∇v) = ∇ · σ − Boez, (5b)

where σ = −pI + Oh[∇v + (∇v)T ] is the dimensionless stress tensor, Oh = μ/
√

ργ R̄ is the
Ohnesorge number, and Bo = ρgR̄2/γ is the Bond number. The dimensionless forces then are

G = −4

3
πBo, F = −2π

(∫
�s

σ · nrdl

)
· ez. (6)

The dimensionless acceleration and transient velocity are respectively

as(t ) = 3(G + F )

4π
, Us(t ) =

√
We +

∫ t

0
as(t

′)dt ′, (7)

where We = ρŪ 2
s,0R̄/γ the launch Weber number. All variables discussed are nondimensionalized

henceforth.

C. Initial and boundary conditions

In the axisymmetric configuration, the space- and time-dependent variables are the pressure p,
the axial velocity vz, and the radial velocity vr . The initial dimensionless position of the sphere
is Hs(0) = Hs,0, which determines the initial calculation domain. The boundary of the calculation
domain 	 consists of the following components. The free surface �surf , applied with the kinematic
condition and the dynamic condition,

vs · n = v · n, and σ · n = κn, (8)

where vs is the velocity at the interface, κ = −∇s · n is the curvature, and ∇s = (I − nn) · ∇ is the
surface gradient operator. The no-slip condition applies at the surface of the sphere �s,

vz = Us(t ) and vr = 0, (9)

the symmetry condition applies at the axisymmetric boundary �axi at r = 0,

∂rvz = 0, and vr = 0, (10)

and the hydrostatic condition applies at the bottom boundary �bot and the outside boundary �out,

σ · n = Bo zn. (11)

As initial guess, the liquid is assumed at rest,

p|t=0 = −Boz, vz|t=0 = 0, vr |t=0 = 0, (12)
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but because of the instantaneous launch of the sphere at speed Us,0, the velocity field is iterated first
to satisfy all boundary conditions at t = 0.

D. Numerical method

The above system holds in the deformable axisymmetric domain 	(t ) with both radial and axial
dimensionless sizes Lb, occupied by water at time t = 0. For the moving mesh, we use an arbitrary
Lagrangian-Eulerian formulation with a specific mesh treatment at the boundary [36]. In this
method, the domain x(X , t ) ∈ 	(t ) is parameterized by the initial position X = x(X , 0) ∈ 	(0),
defining a time-dependent displacement field, q = x − X , which satisfies

∇2q = 0 at 	. (13)

The initial condition for the displacement is

q|t=0 = 0 at 	. (14)

We use a Eulerian description for the velocity of the free surface, the displacement of the sphere,
the axisymmetric boundary, the fixed bottom, and the fixed side boundary, respectively, expressed
as

∂t q = vnn at �surf , q =
∫ t

0
Us(t

′)dt ′ez at �s,

q · n = 0 at �axi, q = 0 at �bot and �out, (15)

where vn = v · n. The system of Eqs. (5)–(7) and (13), supplemented by the initial conditions (12)
and (14), and the boundary conditions (8)–(11) and (15) are solved in COMSOL 5.4, coupled with
the weak form PDE and the moving mesh modules. Linear Lagrangian interpolants are used for
the pressure and quadratic ones for the velocity and displacement. The bath size Lb is chosen large
enough to have no influence on the dynamics. The quality of the mesh is ensured by remeshing
when the distortion exceeds a certain value, and the independence of the results with respect to the
mesh and remeshing criteria has been checked. The simulations are stopped when Hs < Hs,0 in the
case of bouncing or rmin = 10−2 in the case of pinch-off (see details in Sec. IV C). Model validation
is presented in Appendix A.

E. Launched underneath the interface

It is known that the launch position below the bath influences the exit dynamics. Takamure and
Uchiyama [13,14] reported experiments of spheres launched at different initial positions while
controlling the impact velocity to be the same, where the impact velocity Us,im is defined as
the transient sphere velocity at Hs = 0. They found that when the launch depth increases, more
liquid will be entrained out of the bath, which later develops into droplets scattered around the
sphere. For deep launch with Hs,0 � −6, Takamure and Uchiyama [13,14] showed that the result
converges, namely it only depends on the impact velocity and is independent of the launch depth.
In Appendix B, we show numerically that the result also converges for Hs,0 � −3, which is named
as the underneath launch.

In this paper, we focus on the exit dynamics of the underneath launch. To control the impact
velocity more conveniently, we choose the launch position as Hs,0 = −0.1, note Us,im ≈ Us,0 when
Hs,0 = −0.1, details are presented in Appendix B. The launched velocity Us,0 and the launched
Weber number We are therefore mentioned as the impact velocity and the impact Weber number
henceforth, respectively. Based on the above, it results that the problem is governed by two
independent parameters, the Bond number and the impact Weber number. The following parameter
space is considered in the present paper:

10−3 � Bo � 10, 1 � We � 40. (16)
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FIG. 2. [(a)–(c)] Velocity vectors for impact Weber numbers We = 5, 12, 14, with Bond number Bo = 0.1.
The partial and full exit stages are marked out respectively for H � 2 and H > 2, the color represents the axial
velocity, and the dotted line indicates the initial flat bath surface. (d) The transient sphere velocity Us and (e)
the transient sphere position Hs and the interface top position H for different impact Weber numbers We = 5,
8, 10, 12, 14, with Bond number Bo = 0.1.

Note that, since the liquid considered is water, the Ohnesorge number and the Reynolds number
(defined as Re = ρŪs,0R̄/μ) can be expressed as a function of Bo. The Ohnesorge number is
Oh = Oh�c Bo−1/4, and the Reynolds number is Re = We1/2Bo1/4/Oh�c , respectively, in the range of
0.0013 � Oh � 0.013 and 79 � Re � 4970, where Oh�c = μ/

√
ργ �c = 0.0023 is the Ohnesorge

number for the capillary length �c = √
γ /ρg. The Froude number (defined as Fr = Ūs,0/

√
gR̄),

representing ratio of inertia to gravity, can be expressed as Fr = We1/2/Bo1/2 and is in the range of
0.32 � Fr � 200.

III. RESULTS

A. Typical results

For various impact Weber numbers We and Bond numbers Bo, three regimes can be identified
for the dynamics: (i) the bouncing-off regime, for which pinch-off never appears or appears during
the descending phase; (ii) the lower pinch-off penetration regime, for which pinch-off appears at
the lower part of the ligament during the rising phase; and (iii) the upper pinch-off penetration
regime, for which pinch-off appears at the upper part of the ligament during the rising phase. By
penetration, we mean that the sphere keeps moving upwards after it detaches from the bath. Cases
with pinch-off during the descending phase thus belong to the bouncing-off regime. Typical cases
are shown in Fig. 2, with the velocity field in Fig. 2(a)–2(c), the transient sphere velocity in Fig. 2(d),
the transient sphere position and the interface top position in Fig. 2(e). The exit process can be
divided into a partial exit stage for H � 2 and a full exit stage for H > 2. For slow launch with
We = 5, the sphere stays in the partial exit stage, as presented in Fig. 2(a). Since the liquid is
displaced by the rising sphere, the interface above the sphere is elevated and a concave deformation
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FIG. 3. The penetration Weber number Wepen and the switching Weber number Weswit, varying with the
Bond number Bo. The sketches at the maximum height for the three regimes are presented on the right.

is formed around the sphere, which have been found experimentally [1,15] and analytically [20,21].
As the sphere rises, the elevated interface deforms along the sphere and forms a coated layer, whose
thickness is relatively large at the top and can be quite thin around the equator, as shown in the inset
of Fig. 2(a) at t = 1.83. Under the action of gravitational and capillary forces, the sphere gradually
slows down and reaches a maximum height Hs ≈ 2 at t = 1.83, then descends back towards the
bath with Us < 0, as presented in Figs. 2(d) and 2(e). For faster launch with We = 8, 10, the sphere
goes higher and enters the full exit stage for H > 2 and then descends to the bath, as presented
in Figs. 2(d) and 2(e). For these cases, pinch-off does not occur during the rising phase, which
corresponds to the bouncing-off regime.

When the impact velocity is larger, e.g., We = 12, 14 in Figs. 2(b) and 2(c), pinch-off occurs
during the rising phase. In the full exit stage, an attached ligament is formed and stretched by the
rising sphere. Note that, in this paper, the ligament is defined as the liquid between the sphere and
the bath when H > 2, namely it only occurs in the full exit stage. For the trigger of the capillary
instability [31], the competition between instability and stretching can be observed in the velocity
field. As presented in Fig. 2(b) for We = 12, the liquid in the ligament flows upwards at t = 1.44,
indicating the dominant role of stretching, while it is propelled out of the ligament both upward
and downward at t = 3.18, indicating the dominant role of capillary instability. The ligament then
finally ends up with pinch-off at the position close to the bath for We = 12 [see inset of Fig. 2(b) at
t = 3.72], whereas close to the sphere for We = 14 [see inset of Fig. 2(c) at t = 2.96]. Note that the
sphere keeps rising with Us > 0 when pinch-off happens for We = 12, 14, as shown in Fig. 2(d).
These two cases therefore belong to the lower (We = 12) and upper pinch-off penetration regime
(We = 14), respectively. In Fig. 2(e), we also present the evolution of the interface top position H ,
showing that it is slightly above the sphere, both H and Hs have almost identical evolutions. Since
H begins with the value 0, we use for convenience H instead of Hs to investigate the dynamics
henceforth.

B. Critical Weber numbers

The critical Weber numbers separating the three regimes are defined as the penetration Weber
number Wepen and the switching Weber number Weswit. For the Bond number Bo = 0.1 in Fig. 2,
the two critical numbers are Wepen = 11.5 and Weswit = 12.5. As one can expect, the two critical
Weber numbers should be functions of the Bond number Bo, as obtained and presented in Fig. 3.
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Note Wepen and Weswit are obtained by varying We while controlling Bo, and the accuracy of the
critical Weber numbers is 0.1. The two critical Weber numbers separate the dynamics into the three
regimes, and the corresponding sketches at the maximum height are shown on the right of Fig. 3.
The two critical numbers decrease slightly with increasing Bo for low-gravity cases with Bo � 0.1,
while they increase dramatically with Bo for Bo > 0.1. The decrease of Wepen for small spheres
with Bo � 0.1 is due to the decrease of the energy dissipation, which will be discussed in Sec. IV A.
For large spheres with Bo � 1, the penetration Weber number Wepen will finally tend to increase
linearly with Bo due to the increase of gravitational potential energy, as reported experimentally by
Kim et al. [1].

IV. DISCUSSIONS

In this section we investigate the details of the exit dynamics, including the energy evolutions,
the coating dynamics, and the pinch-off dynamics. Influences of the impact velocity and gravity
are discussed, and a simple model is introduced to explain the underlying mechanism of the energy
conversion.

A. Energy evolutions

During the exit process, the sphere position, the sphere velocity, the bath interface, and the
bath velocity fields evolve continuously, which induces the evolution of energies. To study the exit
dynamics, we consider the energies of the entire system, including both the bath and the sphere. The
kinetic energy Ek , the surface energy Eps, the gravitational potential energy Epg, and the mechanical
energy Emech are respectively defined as

Ek = π

∫
	

(
v2

r + v2
z

)
rdS + 2

3
πU 2

s , Eps = 2π

∫
�surf

rdl − πL2
b,

Epg = Bo

[
2π

∫
	

rzdS + 4

3
π (Hs − 1) + 1

2
πL4

b

]
, Emech = Ek + Eps + Epg, (17)

with dS is the surface element. The two terms of Ek represent the kinetic energies respectively
of the bath and the sphere, Eps represents the surface energy variation between the transient value∫
�surf

2πrdl and the initial value πL2
b , and Epg represents the gravitational potential energy variation

between the transient value Bo[
∫
	

2πrzdS + 4
3π (Hs − 1)] (where Hs − 1 is the coordinate of the

sphere center) and the initial value − 1
2πBoL4

b . All energies have been nondimensionalized by γ R̄2.
Note that all the energy evolutions presented in this section are for the rising phase for focusing on
the exit dynamics.

We first investigate the influence of the impact velocity, described by the impact Weber number
We. The energies varying with H for different We are presented in Fig. 4(a). It shows that the kinetic
energy Ek decreases while the surface and potential energies increase with H , indicating that the
energy conversion from Ek to Eps and Epg. The mechanical energy Emech decreases relatively rapidly
in the partial exit stage (H � 2) due to the strong shearing effect caused by the partially submerged
sphere and decreases much slower in the full exit stage (H > 2). Similar evolution of the energy
dissipation has also been found in droplet impact on a liquid bath [37]. Besides, in Fig. 4(a), we
notice that Eps and Epg for different We follow similar evolutions with H , where Eps and Epg/Bo
depend only on the instantaneous geometry of the bath [see (17)]. This indicates that exit processes
for different We follow the same trend, namely a geometrically governed evolution, independently
of the impact Weber number. To unravel the mechanism, the two energies are plotted in Fig. 4(b) in
a log-log plot. It shows that both Eps and Epg/Bo follow approximately the square power laws of H
in the partial exit stage, i.e.,

Eps ∝ H2, and
Epg

Bo
∝ H2, for H � 2, (18)
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FIG. 4. Influences of the impact velocity for a typical Bond number Bo = 0.1 for the rising phase. (a) The
kinetic energy Ek , the surface energy Eps, the gravitational potential energy Epg, and the mechanical energy
Emech varying with H . (b) Comparison between Eps (in dashed lines) and the rescaled gravitational potential
energy Epg/Bo (in dotted lines), with the simple model (19), where the inset shows the simple model details.
(c) The energies for the maximum height Ek,m, Eps,m, Epg,m, and Emech,m varying with the impact Weber number
We, where the inset shows the maximum interface top position Hm.

which verify the above speculation. Here we give a simple model to interpret the geometry devel-
opment instead of using the complicated series solution obtained in previous works [21,22], shown
in the inset of Fig. 4(b). The corresponding surface energy Eps,mod and the rescaled gravitational
potential energy Epg,mod/Bo can be obtained respectively as

Eps,mod = πH2, and Epg,mod/Bo = π

12
H3(4 − H ), for 0 � H � 2, (19)

as presented in Fig. 4(b). The derivation of Eps,mod and Epg,mod are presented in Appendix C. For the
surface energy Eps, our simple model predicts well the power law Eps ∝ H2 while overestimates the
value by 40%, namely Eps,mod ≈ 1.4Eps. For the rescaled potential energy Epg/Bo, our model pre-
dicts well the tendency for 1 < H < 2 while it underestimates the value for H < 1. The deviations
are because of the meniscus between the sphere bottom and the bath, as shown Figs. 2(a)–2(c).

To show the variation with respect to We, we define the energies and the interface top position
when the sphere reaches the maximum height, presented in Fig. 4(c) with the subscript ()m. For
We < 5, the processes only experience the partial exit stage [see Fig. 2(e)]. Since gravity has weak
effects (Bo = 0.1), the initial kinetic energy (∝ We) mainly converted into the surface energy,
leading to Eps,m ∝ We. Using the power laws (18) in the partial exit stage, the maximum height
can be determined as Hm ∝ We1/2 for We < 5 [see inset of Fig. 4(c)], which then further leads to
Epg,m ∝ We. For We ≈ Wepen, Hm increases faster with We while Ek,m has a decrease, which are
apparently due to the pinch-off. In the penetration regimes with We > Wepen, Emech,m still increases
linearly with We and is mainly composed of Ek,m, while Eps,m tends to a plateau.

We then investigate the influence of gravity, described by the Bond number Bo. The energies
varying with H for different Bo are presented in Fig. 5(a). Note that all cases with We = 10 are in the
bouncing-off regime. Different from the results in Fig. 4(a), it shows that Epg increases dramatically
with Bo, while the viscous dissipation decreases with Bo. Comparison between Eps, Epg/Bo with
our simple model are shown in Fig. 5(b), showing that the power laws presented in (18) can also
be observed in various gravity conditions. The energies for the maximum height are presented in
Fig. 5(c), showing that Ek,m does not vary much, and Emech,m is mainly composed of Eps,m for
Bo � 0.1 and of Epg,m for Bo � 0.1, indicating that gravity begins to influence the dynamics when
Bo > 0.1. Note that Eps,m and Hm [see inset of Fig. 5(c)] do not converge for Bo 	 0.1; they actually
increase slightly with Bo for Bo � 0.1, the corresponding mechanism is explained as follows. As
shown in Fig. 5(c), Emech,m increases with Bo because of less energy dissipation, Eps,m thus increases
with Bo for Bo � 0.1, which also corresponds to a larger Hm. This decrease of energy dissipation for
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FIG. 5. Influences of gravity for a typical impact Weber number We = 10, for the rising phase. (a) The
kinetic energy Ek , the surface energy Eps, the gravitational potential energy Epg, and the mechanical energy
Emech, varying with H , where Epg for Bo = 0.001 is pointed out by the arrow. (b) Comparison between Eps (in
dashed lines) and the rescaled gravitational potential energy Epg/Bo (in dotted lines), with the simple model.
(c) The energies for the maximum height Ek,m, Eps,m, Epg,m, Emech,m varying with Bo, where the inset shows the
comparison between Hm, E 1/2

ps,m, and (Epg,m/Bo)1/2.

Bo � 0.1 further means that less initial kinetic energy is needed to achieve the penetration, namely
Wepen decreases with Bo, as presented in Fig. 3.

B. Coating dynamics

During the rising phase of the sphere, the interface (rsurf , zsurf ) deforms along the sphere and
forms a coated layer h(θ, t ), as presented in Fig. 1(b), where h and θ are respectively defined as

h =
√

[zsurf − (Hs − 1)]2 + r2
surf − 1, and θ = arcsin

rsurf

h + 1
. (20)

A typical time evolution is plotted in Figs. 6(a)–6(c) for We = 10 and Bo = 0.1; Fig. 6(a) shows
the pressure field, while Figs. 6(b) and 6(c) show respectively the layer thickness h(θ, t ) and the
pressure distribution p(θ, t ) on the sphere for different time steps. All the variables presented in
this section are for the rising phase. For convenience, we define the layer thickness at θ = 0◦ as h0◦

(h0◦ = H − Hs) and the minimum thickness as hmin with the corresponding angle θmin, as presented
in Fig. 6(a). Note that we define the coated layer to be in the range of 0◦ � θ � θmin. Here we use
the full interface profile in (20) to obtain the continuous thickness function h(θ, t ). The volume of
the coated layer Vcoat is defined as

Vcoat =
∫ θmin

0
2πh sin θdθ, (21)

and the maximum value is defined as Vcoat,max. As presented in Fig. 6(a), the coated layer is entrained
in the partial exit stage and turns to be relatively thick above the apex and thin around the equator
after it enters the full exit stage. Figure 6(b) shows that h0◦ stays around 0.1 while hmin (represented
by the circles) gradually decreases to 0.01 with the final θmin ≈ 100◦. The pressure field in Fig. 6(a)
shows that the pressure is relatively high in the coated layer, whose value keeps p ≈ 2 [see Fig. 6(c)],
and suddenly decreases at the position around θmin. This indicates the fact that both axial and radial
curvatures approximate 1 in the coated layer (in the dimensional form, 1/R̄), and the axial curvature
decreases to negative for θ > θmin.

Influences of the impact velocity on the coated layer are presented in Fig. 7. We here mainly
consider the evolution of the coated volume, whose maximum status Vcoat,max is pointed out by
circle in Figs. 7(a)–7(d). As shown in Fig. 7(a), the coated volume Vcoat only increases in the partial
exit stage with H � 2 and decreases due to the capillary drainage after entering the full exit stage.
During the increase of Vcoat, the angle θmin keeps increasing, h0◦ remains at the order of 0.1 for large
We while it decreases with H for small We, and hmin decreases monotonically with We. It should be
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FIG. 6. Evolutions of the coated layer for the rising phase for a typical case with We = 10 and Bo = 0.1.
(a) Typical time steps, the color indicates the pressure field, the dotted line represents the position of the initial
flat surface. [(b) and (c)] The coated layer thickness h(θ, t ) and the pressure distribution p(θ, t ) on the sphere
at different time steps; the circle represents hmin and θmin, and the arrow indicates the time evolution.

noted that θmin becomes around 90◦ for large We, namely only the upper half of the sphere is coated
tightly by the liquid. To show the influences of the impact velocity more quantitatively, we plot
Vcoat,max varying with We in Fig. 7(f) and the corresponding sketches in Fig. 7(e). For increasing
impact velocity, Vcoat,max first increases linearly with We, i.e., Vcoat,max ∝ We for small We, and
tends to a constant for large We. The mechanism is interpreted as follows. Let us define HVmax,
θmin,Vmax, h0◦,Vmax, and hmin,Vmax as the height, the angle of the minimum layer thickness, the layer
thickness at the apex, and the minimum layer thickness corresponding to Vcoat,max, respectively.
For small impact velocities, the maximum volume Vcoat,max occurs at HVmax ∼ Hm [see Fig. 7(a)],
which leads to HVmax ∝ We1/2 [note Hm ∝ We1/2 is presented in the inset of Fig. 4(c)]. This can
also be found in Fig. 7(b) as θmin,Vmax increases with We. On the other hand, h0◦,Vmax and hmin,Vmax

increase with We [see inset of Fig. 7(f)], and h0◦,Vmax ∝ We1/2 can be found for small We. Since
the thickness of coated layer should be mainly determined by h0◦,Vmax at the apex, the maximum
volume thus can be estimated as Vcoat,max ∼ πHVmaxh0◦,Vmax, leading to Vcoat,max ∝ We. Note that
πHVmax is the dimensionless coated area. For large impact velocities, the maximum volume occurs
at HVmax ≈ 2 [see Fig. 7(a)], and the coated layer thickness is limited to h0◦,Vmax ∼ 0.1 since the
launch position is Hs,0 = −0.1 [see inset of Fig. 7(f)]. The maximum volume thus can be estimated
as Vcoat,max ∼ 0.2π , as shown in the dashed line in the inset of Fig. 7(f).

Influences of gravity on the coated layer are presented in Fig. 8, where the maximum status
Vcoat,max is also pointed out by circle in Figs. 7(a)–7(d). It shows that, with the larger gravity effect,
Vcoat,max occurs at a lower height HVmax and its value is smaller and θmin,Vmax remains around 90◦.
For the layer thickness, the gravity effect can be observed when Bo = 10, for which h0◦ decreases
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FIG. 7. Influences of the impact velocity for a typical Bond number Bo = 0.1 for the rising phase. [(a)–(d)]
Transient values varying with H for different We: the volume of the coated layer Vcoat in (a), the angle for
minimum thickness θmin in (b), the layer thickness above the apex h0◦ in (c), and the minimum layer thickness
hmin in (d), where the circle indicates the status for the maximum volume Vcoat,max. (e) The sketches of the
coated layer at the maximum volume Vcoat,max. (f) The maximum volume Vcoat,max varying with We; the inset
shows h0◦,Vmax and hmin,Vmax varying with We.

FIG. 8. Influences of gravity for a typical impact Weber number We = 10 for the rising phase. [(a)–(d)]
Transient values varying with H for different We: the volume of the coated layer Vcoat in (a), the angle for
minimum thickness θmin in (b), the layer thickness above the apex h0◦ in (c), and the minimum layer thickness
hmin in (d), where the circle indicates the status for the maximum volume Vcoat,max. (e) The sketches of the
coated layer at the maximum volume Vcoat,max. (f) The maximum volume Vcoat,max varying with Bo; the inset
shows h0◦,Vmax and hmin,Vmax varying with Bo.
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FIG. 9. Pinch-off behavior of different impact We with Bo = 0.1. (a) The minimum ligament radius rmin in
log scale varying with the time distance �t to pinch-off in log scale, the inset shows both axes in linear scale.
(b) The derivative of r3/2

min with respect to time t , versus rmin; the dotted line represents dr3/2
min/dt = −0.61. The

dashed lines in (a) and (b) represent rmin = 0.1.

dramatically with H [see Fig. 7(c)]. The sketches and the maximum volume Vcoat,max are presented
in Figs. 8(e) and 8(f), respectively. It shows that Vcoat,max keeps decreasing with larger Bo, and two
power laws can be observed, namely Vcoat,max ∝ Bo−0.033 for Bo � 0.1 and Vcoat,max ∝ Bo−0.5 for
Bo � 0.1. Since the coated area (determined by θmin,Vmax ∼ 90◦) is generally 2π , the coated volume
thus depends only on the layer thickness. As presented in the inset of Fig. 8(f), the two power laws
hold also for the layer thickness. For Bo � 0.1, both h0◦,Vmax and hmin,Vmax decrease slightly with
Bo, whose tendencies generally fit ∝ Bo−0.033. For Bo � 0.1, h0◦,Vmax decreases rapidly with Bo
with h0◦,Vmax ∝ Bo−0.5. It should be noted that with larger Bo, the difference between h0◦,Vmax and
hmin,Vmax decreases, which indicates that the gravity effect uniforms the coated layer, as illustrated
in Fig. 8(e).

C. Pinch-off dynamics

In the penetration regimes, when the minimum radius of the ligament turns much smaller than
the sphere size, namely rmin 	 1, pinch-off happens. We first consider the local pinch-off behavior.
Since the Ohnesorge number we considered in the present paper satisfies Oh � 0.013, the ligament
first enters the inertia pinch-off regime [38–40] with the self-similar behavior rmin = 0.717�t2/3,
where �t = tp − t is the time distance to the final pinch-off, the coefficient 0.717 holds in the
inviscid limit [41]. We plot pinch-off behaviors for typical cases in Fig. 9 for rmin � 0.002. Note
the case where We = 11.5 belongs to the lower pinch-off penetration regime and the cases where
We = 15, 20, 30 belong to the upper pinch-off penetration regime. As presented in Fig. 9(a),
rmin decreases as �t decreases for different We, and they converge to the same curve with
the 2/3 power law when rmin < 0.1. The inset of Fig. 9(a) shows that the time distance �t
corresponding to rmin = 1 is smaller for larger We, which is in line with the fact that a faster
stretching induces a stronger radial contraction. To show the entering of the pinch-off phase
more clearly, we transform the power law into r3/2

min = 0.61(tp − t ) [40]. As presented in Fig. 9(b),
dr3/2

min/dt begins to decrease when rmin < 0.1 and reaches the minimum value dr3/2
min/dt ≈ −0.54 at

rmin ≈ 0.01. The deviation between −0.54 and −0.61 is because of the viscous effect, as reported
in Ref. [41]. One should also note that the ligament later exits the inertia pinch-off regime [see
rmin < 0.01 in Fig. 9(b)], then enters the viscous regime, and finally ends up with the inertia-
viscous pinch-off regime [38]. Considering both the precision and the computing time, we stop
the simulation at rmin = 0.01, and the corresponding time is regarded as the pinch-off time tp in the
present paper.

The axial stretching determines whether the pinch-off occurs or not, as presented in Fig. 2. To
show the role of the axial sphere motion on the radial contraction of the ligament, the evolution
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FIG. 10. (a) The minimum radius rmin varying with H for different We around Wepen = 11.5 for Bo = 0.1.
[(b)–(f)] The interface evolutions of the cases shown in (a); the descending phase for We = 10.5, 11.0, 11.1; and
the rising phase for We = 11.5, 12.0. The solid arrows indicate the descending or rising phases, respectively,
while the dotted arrows indicate the corresponding trajectories of rmin.

of the minimum radius rmin with H are presented in Fig. 10 for Bo = 0.1 and different values of
We around Wepen = 11.5. Differences occur when the sphere is close to its maximum height. The
evolutions of rmin are pointed out with dotted arrows in Fig. 10(a), and the evolutions of the profile
are presented in Figs. 10(b)–10(f). As presented in Fig. 10(b) with We = 10.5, after the transition
into the descending, the interface falls down and flattens, while its minimum radius increases [see
also Fig. 10(a)]. For We = 11.0, as shown in Fig. 10(c), the ligament first contracts and then expands
during the descending phase, and the corresponding rmin thus first decreases then increases [also see
Fig. 10(a)]. Pinch-off occurs when the impact velocity increases, as shown in Figs. 10(d)–10(f) for
We = 11.1, 11.5, and 12.0. The ligament is stretched long enough to trigger the capillary instability
and finally ends with pinch-off. The difference is that pinch-off happens during the descending phase
for We = 11.1, happens just at the time the sphere stops for We = 11.5, and happens during the
rising phase for We = 12.0, as pointed out by the dotted arrows in Fig. 10(a). It is worth noting that
Fig. 10(d) shows that pinch-off could occur during the descending phase for We � Wepen, namely
after the sphere is bounced downwards by the interface, which is thus classified as the bouncing-off
regime. In the inset of Fig. 10(d), we also show the overturn phenomenon, which is a geometrical
feature of the inertia pinch-off regime.

When the impact velocity is even higher, as introduced in Sec. III B, the pinch-off switching
occurs. The difference between the two critical Weber numbers, Weswit − Wepen, varying with
Bo is presented in Fig. 11(a). Note the accuracy of Weswit − Wepen is 0.2. The difference keeps
coincidently Weswit − Wepen ≈ 1 for Bo � 0.1, then increases with Bo for Bo > 0.1, and finally
tends to Weswit − Wepen ∝ Bo for Bo � 0.1 [see inset of Fig. 11(a)]. To show the details of
the switching, we plot evolutions of the interface profile and the axial velocity at r = 0 for
We = 11.5, 12.5, 13.5 in Fig. 12. The pinch-off location is defined as zp, pointed out by arrows in
Figs. 12(a)–12(c). In Fig. 11(b), we show that when Bo = 0.1, the pinch-off location zp stays at
zp ≈ 1 for 11.5 � We � 12.4 and switches to zp ≈ 3 at We = 12.5 and then increases with We.
The switching mechanism is stated as follows. As shown in the literature [31,42,43], the ligament
can be well described by the one-dimensional model before overturning [see Fig. 10(d)]. We here
introduce the dimensionless continuity equation, written in the following form:

Dt (ln rsurf ) + 1
2∂zvz = 0, (22)

where Dt represents the material derivative and vz is assumed to be r independent in the ligament.
This equation indicates that location with large ∂zvz leads to a strong contraction [large Dt (ln rsurf )],
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FIG. 11. (a) Weswit − Wepen in linear scale varying with the Bond number Bo in log scale; the inset shows
both axes in log scales. (b) The pinch-off location zp varying with the impact Weber number We for Bo = 0.1;
the inset shows zp varying with the Bond number Bo for We = 20. (c) The pinch-off time tp varying with the
impact Weber number We for Bo = 0.1, the inset shows tp varying with the Bond number Bo for We = 20.
(d) The distance �z from the pinch-off position to the sphere bottom at the pinch-off instant, varying with the
impact Weber number We, the inset shows both axes in log scales.

defined as the upper suction or lower drainage locations, as shown by arrows in Fig. 12. As shown in
Figs. 12(a) and 12(d), for We = 11.5, the lower drainage is stronger than the upper suction, leading
to a lower pinch-off. Since Bo = 0.1 in Fig. 12, the gravity effect is negligible (as discussed in
Sec. IV A), and the lower drainage thus is induced by the capillary forces. As the impact velocity
increases, the upper suction turns stronger, which just overcomes the lower drainage at We = 12.5
and leads to the almost-simultaneous pinch-off, as shown in Figs. 12(b) and 12(e). For an even larger
impact velocity, e.g., We = 13.5 in Figs. 12(c) and 12(f), the upper suction is much stronger than
the lower drainage, and the upper pinch-off thus happens first. It should also be mentioned that the
ligament falls back to the bath after pinch-off, which could further induce a cavity and a jet [44]. The
inset of Fig. 11(b) shows the gravity effect on zp for We = 20, showing that zp decreases with Bo,
and switches from upper to lower at Bo ≈ 1. Now, let us consider again Fig. 11(a); the switching is
found due to the competition between the upper suction and the lower drainage: For Bo � 0.1, the
lower drainage is mainly induced by the capillary forces, and Weswit − Wepen is thus independent
of Bo; for Bo � 0.1, the lower drainage is mainly induced by gravity, and Weswit − Wepen is thus
linear with Bo.

Finally, we consider the pinch-off time tp. As shown in Fig. 11(c), tp decreases with We and tends
to a power law tp ∝ We−1/2 for We � 1, indicating that the radial contraction is mainly induced by
the axial stretching (Us ∼ √

We). As for the gravity effect, the inset of Fig. 11(b) shows that for
We = 20, tp decreases slightly with Bo due to larger gravity drainage. Using the pinch-off time,
we can predict the pinch-off position by the concept of decay length [29,45]. Duchemin et al. [45]
studied a ligament with an impulsive axial motion on one side and showed that the axial depth at
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FIG. 12. Evolutions for the interface profile and the axial velocity at r = 0 for We = 11.5 in [(a) and (d)],
12.5 in [(b) and (e)], and 13.5 in [(c) and (f)] with Bo = 0.1. The pinch-off location zp is pointed out in (a)–(c),
and the lower drainage and the upper suction locations are pointed out in (d)–(f).

which the liquid is affected by the motion (denoted λ) is proportional to
√

t , i.e., λ ∝ √
t . Kim

et al. [29] studied the pinch-off behavior of a ligament attached to an accelerating sphere from
a bath. They discussed this axial depth and found that it agrees satisfactorily with λ ∝ √

t . We
here show the distance �z from the pinch-off position to the sphere bottom varying with We in
Fig. 11(d), where �z = Hm − zp − 2. The distance increases with We for lower pinch-off cases,
while it decreases slightly with We for upper pinch-off cases, the latter shows a power law �z ∝
We−1/4 [see inset of Fig. 11(d)]. The mechanism of the −1/4 power law are stated as follows. For the
attached ligament, the stretching motion stabilizes the ligament [31], which indicates that capillary
instability is triggered at a position where the stretching motion decays to zero. The distance thus
can be estimated as �z ∼ λp, where λp ∝ √

tp is the axial position of the pinch-off. For large impact
Weber numbers, applying the power law tp ∝ We−1/2, one obtains �z ∝ We−1/4.

V. CONCLUSIONS

In this paper the exit dynamics of a sphere launched underneath a liquid bath surface has been
described by means of a nonstationary two-dimensional model. The exit process is sequenced into
a partial exit stage for the interface top position H � 2 and a full exit stage for H > 2. In the partial
exit stage, the interface on the sphere is elevated and deforms into a coated layer. In the full exit
stage, a ligament is formed and stretched by the rising sphere. The dynamics can be separated into
a bouncing-off regime, a lower pinch-off penetration regime, and an upper pinch-off penetration
regime, depending on the impact Weber number We and the Bond number Bo. The differences
between the dynamic regimes are the occurrence and the location of pinch-off. With an increasing
Bo, the penetration Weber number Wepen and the switching Weber number Weswit first decrease
slightly with Bo for Bo � 0.1 and then increase with Bo for Bo > 0.1.
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The energy evolutions, the coating dynamics, and the pinch-off dynamics are studied separately.
The energy evolutions shows that the impact kinetic energy Ek mainly converts into the surface
energy Eps for low-gravity cases with Bo � 0.1 and into the gravitational potential energy Epg for
large-gravity cases with Bo � 0.1. A simple model is demonstrated to show that the energies satisfy
Eps ∝ Epg/Bo ∝ H2 in the partial exit stage. The coated layer is defined as the liquid that coats
tightly on the sphere, which is entrained during the partial exit stage and essentially occurs on the
upper hemisphere. The maximum coated volume increases linearly with the impact Weber number
for slow impact and tends to constant for fast impact, the latter is related to the launch depth. The
breakup of the ligament happens due to the triggering of capillary instability, which ends up with
pinch-off. The switching between the lower and upper pinch-off locations is shown as the result
of the competition between the upper suction and the lower drainage, the latter being dominated
by capillary forces for low-gravity cases with Bo � 0.1 or by gravity for large-gravity cases with
Bo � 0.1. The difference between Weswit and Wepen, namely Weswit − Wepen, is independent of
Bo for Bo � 0.1, and increases with Bo for Bo > 0.1. Finally, the pinch-off time tp was found to
decrease with both We and Bo, and a power law tp ∝ We−1/2 is observed for We � 1 due to the
dominant of stretching contraction.
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APPENDIX A: VALIDATION OF THE MODEL

In this Appendix, we validate our model for both the resistive force and the interface profile.
To validate the resistive force exerted on the sphere during the exit dynamics, we compute first the
resistive force of a sphere in a very large bath with negligible gravity, i.e., as in an infinite medium. In
practice we set the Bond number Bo = 10−3, the bath size Lb = 104, and the initial sphere position
Hs,0 = −5 × 103, and the sphere velocity Us is set to be a constant. The resistive force F is obtained
using (6), which converges to a constant value at sufficiently large time, from which we can compute
the drag coefficient as follows:

Cd = F̄
1
2ρŪ 2

s S̄
, (A1)

where S̄ = π R̄2 is the windward area. As shown in Fig. 13(a), our numerical predictions agree well
with the published data [46], which is also obtained using the axisymmetric model.

For the interface profile prediction, the two-dimensional model applied in this paper has been
used to study the dynamics of a ligament drawn out of a bath [31], which agrees well with the
experiments for both the interface profile and the breakup height. In addition, we compare results of
our model with a published experiment of a sphere launched underneath a liquid bath surface. Kim
et al. [1] used a spring to shoot a sphere of various diameters and densities towards the water-air
interface at different velocities and angles. The comparison of profiles at the pinch-off moment is
shown in Fig. 13(b) for ρs/ρ = 1.34, Bo = 0.19, and Hm = 6.44, showing that our prediction agrees
well with the experimental data (obtained from Fig. 1(c) in Kim et al. [1]).

APPENDIX B: INFLUENCE OF THE SUBMERGED STAGE

In this Appendix, we show the influence of the submerged stage. For convenience, we define
the dimensionless velocity at the maximum sphere height as Us,m and the dimensionless maximum
sphere height as Hs,m. We first investigate a sphere launched with a constant initial velocity
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FIG. 13. Validations of the model. (a) The comparison of drag coefficient Cd between our model and the
published data [46]. (b) The interface profile obtained using our model in the solid line compared with the
experimental data for ρs/ρ = 1.34, Bo = 0.19, and Hm = 6.44 at the pinch-off moment [1].

Us,0 = 3.87 (We = 15) at different initial positions Hs,0. Evolutions of the transient sphere velocity
Us and the layer thickness h0◦ for the rising phase are presented in Fig. 14(a), where h0◦ = H − Hs.
As the launch position Hs,0 becomes deeper, Us,im decreases due to a longer submerged path,
which further leads to a lower maximum height Hs,m. Cases with Hs,0 = −3 and −2 are in the
bouncing-off regime with Us,m = 0, while cases with Hs,0 = −1 and −0.1 are in the penetration
regimes with Us,m > 0. As presented in the inset of Fig. 14(a), the layer thickness h0◦ always tends
to h0◦ ≈ 0.1 after entering the full exit stage (H > 2), while it oscillates stronger for a deeper launch
position. Note that the oscillation is caused by the wave induced by the submerged sphere, which
corresponds to more energy loss and could induce complex rupture of the interface [4,13–15].

We then investigate the exit dynamics by controlling the impact velocity Us,im = 2.83. As
presented in Fig. 14(b), the maximum sphere height Hs,m generally increases with deeper launch
positions Hs,0, and it converges for deep launch with Hs,0 � −5. On the other hand, the inset of
Fig. 14(b) shows that the launch velocity increases with deeper Hs,0. The increase of Hs,m is due to
the fact that the liquid around the sphere has been accelerated during the submerged rising stage,
which thus exerts less resistive force on the sphere during the exit. Similar results have been reported
experimentally in Refs. [13,14]. In Fig. 14(b), a new convergence region can be observed for the
underneath launch with Hs,0 � −3. The details of the underneath launch with the impact velocity
Us,im = 2.83 are plotted in Fig. 14(c). It shows that the transient sphere velocity Us for different Hs,0

FIG. 14. [(a) and (c)] Transient sphere velocity Us varying with the transient sphere position Hs of the
rising phase, for different launch positions Hs,0, with a constant launch velocity Us,0 = 3.87 in (a) and a constant
impact velocity Us,im = 2.83 in (c), where the insets show the thickness h0◦ of the coated layer above the sphere.
(b) The maximum sphere height Hs,m varying with the launch position Hs,0, with the same impact velocity
Us,im = 2.83, where the inset shows the corresponding launch velocity Us,0. All cases are for Bo = 0.1.
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FIG. 15. Sketch of the simple model, where L̄b is the bath radius and R̄, H̄ , and R̄sec are respectively the
radius, the height, and the section radius of the spherical cap.

develops in the same tendency and stops at Hs,m ≈ 3. For the layer thickness h0◦ , as shown in the
inset of Fig. 14(c), the evolutions are similar after entering the full exit stage (H > 2), and large
oscillations can also be observed for Hs,0 = −2, −3. These results show that for the underneath
launch, the exit dynamics is reasonably independent of the launch depth if Hs,0 � −3. Since the
launch velocity Us,0 = 2.88 approximates the impact velocity Us,im = 2.83 for Hs,0 = −0.1, we set
Hs,0 = −0.1 in the present paper to directly control the impact velocity.

APPENDIX C: DERIVATION OF ENERGIES FOR THE SIMPLE MODEL

In this Appendix, we show the details of the derivation for Eps,mod and Epg,mod based on the simple
model mentioned in Sec. IV A. As shown in Fig. 15, the interface is simplified into a spherical cap
and a flat surface. The radius and the height of the spherical cap are respectively R̄ and H̄ , and the
radius of the section R̄sec then can be obtained as R̄sec =

√
R̄2 − (R̄ − H̄ )2. The transient interface

area is π (L̄2
b − R̄2

sec) + 2π R̄H̄ , with the initial interface area being π L̄2
b . The surface energy variation

relative to the initial value thus can be obtained as

Ēps,mod = γ
(
2π R̄H̄ − π R̄2

sec

) = γπH̄2, for 0 � H̄ � 2R̄. (C1)

The gravitational potential energy variation relative to the initial value is induced by the dense

volume inside the spherical cap, which can be calculated as Ēpg,mod = πρ
∫ H̄

0 (r̄2z̄)dz̄, where r̄ =√
R̄2 − (z̄ + R̄ − H̄ )2, leading to the form,

Ēpg,mod = πρg

12
H̄3(4R̄ − H̄ ), for 0 � H̄ � 2R̄. (C2)

Nondimensionalized by γ R̄2, one can finally obtain the dimensionless surface energy Eps,mod and
gravitational potential energy Epg,mod, as given in (19).
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