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A comprehensive approach, combining theoretical analysis and large-eddy simulation, is
employed in this study to investigate the influence of temperature gradient on the stability
phenomenon of the von Kármán boundary layer in a rotor-stator cavity. Further from
previous studies, a temperature term is introduced to account for centrifugal buoyancy
within the cavity. The focus is on analyzing the transitional behavior and the effects of
centrifugal buoyancy on the boundary layer of the rotating disk under operating conditions
characterized by a Reynolds number Re = �Db2/ν = 4 × 105. The findings highlight that
a temperature gradient between the stationary and rotating disks establishes enhanced
flow circulation within the cavity. Consequently, this temperature gradient significantly
influences the base flow and alters the critical Reynolds numbers governing the rotating-
disk boundary layer transition. Specifically, in the rotating-disk boundary layer, centrifugal
buoyancy causes the premature breakdown of some inviscid modes, leading to an earlier
transition to turbulence at lower Reynolds numbers. However, there exists a minimum
critical Reynolds number in the rotating-disk boundary layer, beyond which the increase in
centrifugal buoyancy does not further reduce the critical Reynolds number. This research
emphasizes the importance of considering temperature variations in rotor-stator cavities
for improved control of the stability within the rotating-disk boundary layer flow.
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I. INTRODUCTION

Since von Kármán’s [1] seminal work in 1921, the flow on a single rotating disk has been
extensively studied. However, Alfredsson et al. [2] highlighted in his review that there are still
many unresolved issues regarding the stability of boundary layer flow on rotating disks. When we
shift our focus to a rotor-stator cavity found in aero engines, the presence of inevitable temperature
differences between the rotating and stationary disks introduces even more unpredictable stability
concerns on the rotating-disk boundary layer flow (referred to as the von Kármán boundary layer
for an infinitely large rotating disk). Building upon existing research on the rotating-disk boundary
layer flow, this study aims to investigate how temperature differences affect the characteristics of
laminar-transition-turbulent flow in the boundary layer on the rotating side at high Reynolds number.

The most common flow configuration in the rotor-stator cavity is known as the Batchelor flow
[3]. The main characteristic of this flow is that there is the centrifugal on rotating-disk boundary
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layer, and the centripetal on stationary-disk boundary later, which are separated by a central rotating
core.

Under the pump effect, the fluid in the rotating-disk boundary layer moves from the low radial
region to the high radial region, accompanied by an increase in the local rotational Reynolds number
Rer = �Dr2/ν, where �D represents the rotational speed of the disk, r refers to the local radial
position, and ν denotes dynamic viscosity (see Appendix for a full list of the nomenclature).
Notably, in this paper, the superscript ∗ denotes dimensional physical quantities. Conversely,
parameters without a superscript ∗ are dimensionless. When the flow becomes unstable at a certain
radial position, as it flows radially outward, a transition from laminar to turbulent flow occurs.
However, due to its ease of capturing the transition from instability to turbulence, the pathway of
transition to turbulence on the rotating-disk boundary layer has also been extensively studied [4,5].

The early research on the rotating-disk boundary layer was primarily focused on theoretical and
experimental investigations. Kobayashi et al. [6] and Malik et al. [7] using hot-wire anemometry
both gave the Reynolds number R (R = r/δ, δ = √

ν/�D is the characteristic viscous length) for
the onset of convective instability for stationary spiral waves mode slightly below 300. Through
visualizations of the transition regime by using close-up camera, Kohama [8] discovered that the
phase velocity of the vortices is zero, indicating that the vortices remain stationary relative to the
disk. Lingwood [9] defined the spiral waves mode as Type I instabilities through linear stability
analysis, encompassing both stationary and traveling spiral waves. These instabilities are induced
by velocity inflection points and belong to inviscid crossflow instabilities. Conversely, another type
of instability, characterized by circular waves appearing in the disk boundary layer, was defined as
a Type II instability, arising from the interaction between viscosity and Coriolis forces. In addition,
Lingwood [9,10] discovered a Type III instability mode combines with the Type I instability above
R = 507 to form an absolute instability regime, inducing nonlinear effects that mark the onset of
turbulent transition. She also confirmed experimentally [11] the absolute instability above 507 by
introducing a traveling wave packet into the boundary layer and observing that the trailing edge
becomes fixed (radially) in space as it approaches R = 507, resulting in a fully turbulent flow
at about R = 600–650. Pier’s [12] theoretical research indicated that a global nonlinear elephant
mode may exist at the onset of local absolute instability, while numerical solutions of linearized
Navier–Stokes equations [13,14] and the experimental investigation of Othman and Corke [15]
using a low-amplitude initial pulse-jet excitation demonstrated that a convective behavior eventually
dominates even though regions of strong local absolute instability were present in the flow, therefore
demonstrating its linear global stability. The existence of global nonlinear modes while the flow
remains globally linearly stable implies the presence of subcritical global bifurcations. Appelquist
et al. [16] demonstrated this phenomenon using linearized direct numerical simulation (DNS) in a
rotating disk. Recently, Lee et al. [17] made a significant discovery, indicating that the vibration
source responsible for the growth of velocity fluctuations through global instability lies in the range
R = 611 to R = 630. This finding highlights the need for further investigation into the transition
mechanism of the von Kármán boundary layer to turbulence.

Recently, there has been a growing interest in studying the laminar-transition-turbulent process in
the rotating-disk boundary layer on the rotating side under more complex influencing factors. Viaud
et al. [18] studied the laminar-transition-turbulent problem in an open cavity between two rotating
disks using DNS. They confirmed the correctness of Pier [12] and demonstrated that nonparallel
effects counteract the absolute instability and restore the flow stability. Viaud et al. [19] also studied
the stability of the elephant mode by extending the cavity in both radial and azimuthal directions.
They found that, when the Reynolds number was increased beyond the critical value at which
nonlinear global modes and extra-large amplitude pulse disturbances led to a globally unstable
self-sustaining wave, which resulted in a highly disordered state and triggered the transition to
turbulence. This was the first confirmation of the possibility of direct bypass transition from elephant
mode to turbulence through secondary instability in practical flow. Yim et al. [20] using a rotor-stator
cavity to investigate the transition to turbulence on the rotating-disk boundary layer. They pointed
out that, at higher Reynolds numbers, the wave forms a steep front that is no longer driven by
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FIG. 1. Sketch of the computational domain for stator-rotator cavity flow. �∗
D is the angular velocity, 2h∗

is distance between stator and rotor, and a∗ and b∗ are the radii of the hub and shroud surface, respectively. The
rotor is rotating with the hub, while the shroud and stator are motionless.

the edge, and then generates saturated spiral waves downstream, ultimately leading to the onset of
turbulence.

This study specifically focuses on a higher rotational Reynolds number, Re = �Db2/ν = 4 ×
105, where b represents the maximum radius of the disk. It presents a comprehensive analysis of
the impact of temperature-induced centrifugal buoyancy on the rotating-disk boundary layer within
the rotor-stator cavity. In fact, the relationship between the vertical temperature gradient between a
high-temperature stationary disk and a low-temperature rotating disk and the direction of centrifugal
force has been extensively discussed in the field of thermal convection [21–23]. Expanding the
range of factors influencing the stability of the rotating-disk boundary layer not only deepens our
understanding of flow dynamics but also offers valuable insights for predicting the flow behavior
within the rotor-stator cavity under varying temperature gradients.

To facilitate a comprehensive and logically sound investigation of the aforementioned research
topics and build on existing research on the rotating-disk boundary layer without temperature
difference, we use a combination of theoretical analysis, large-eddy simulations (LESs), and linear
stability analyses (LSAs) to carefully examine the influence of temperature on the boundary
layer.

This paper is organized as follows: in Sec. II the setup of the simulation is described, including
the geometrical, mathematical, and numerical modeling. Sections III and IV presents an extended
study of the problem within the von Kármán boundary layer through Bödewadt-Ekman-von Kármán
(BEK) model and large-eddy simulation. Section V provide insights into the effects of temperature
gradients on the base flow within the BEK model and the variations in the temporal growth rate
induced by the base flow in the analysis of local linear stability, respectively. Finally, conclusions
are provided and we discuss our future work on the problem of laminar-turbulent transition.

II. PROBLEM FORMULATION

A. Geometry

In this study, the geometric model follows the configuration used in previous works by Séverac
et al. [24], Poncet and Serre [25], Queguineur et al. [26], and Du et al. [27], a section of which is
shown in Fig. 1. It consists of an enclosed annulus with a radial extent of b∗ − a∗, where a∗ and
b∗ are the internal and external radii, respectively. The distance between the two disks is 2h∗. The
stator is connected to the external cylinder, while the rotor is connected to the internal cylinder,
rotating around the z axis at an angular velocity of �∗

D. The geometry is characterized by two
fixed parameters: the curvature parameter Rm = (b∗ + a∗)/(b∗ − a∗) and the aspect ratio L = (b∗ −
a∗)/2h∗, which are set to 1.8 and 5, respectively.
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TABLE I. Computational parameters used in the simulations. Re is the global Reynolds number, β�� is
the thermal Rossby number B, δt is the time step used for each iteration, where T is the rotational period of the
disk. Nz, Nr , Nθ are the number of mesh nodes in the axial, radial, and circumferential directions, respectively.

Stator Rotor Re β�� δt Nz Nr Nθ

Case1 Turbulent Laminar-transition-turbulent 4 × 105 0 T /62800 157 523 384
Case2 Turbulent Laminar-transition-turbulent 4 × 105 0.05 T /62800 157 523 384
Case3 Turbulent Laminar-transition-turbulent 4 × 105 0.1 T /62800 157 523 384

B. Mathematical

The study solves the incompressible Navier-Stokes equations for flow in cylindrical coordinate
system rotating with angular velocity �D, considering five variables (W , U , V , �, P). To achieve
nondimensionalization, length, time, and velocity terms are scaled using h∗, �∗−1

D , and �∗
Dh∗,

respectively. The dimensionless temperature � is defined as � = (2�∗ − �∗
2 − �∗

1 )/(�∗
2 − �∗

1 ),
where �∗

1 represents the temperature on the rotor, and �∗
2 is the temperature on the stator. The global

Reynolds number is defined as Re = �Db2/ν to control the flow. In this study, the typical Reynolds
numbers Re = 4 × 105 is selected, with detailed parameter settings provided in Table I. The choice
of Re = 4 × 105 aims to investigate the effect of the thermal Rossby number [B = β∗(�2 − �1),
where β∗ = 1/�∗

ref and �∗
ref = (�∗

2 + �∗
1 )/2]. This represents a typical Reynolds number where

laminar, transitional, and turbulent flows coexist in the rotating-disk boundary layer. The flow
characteristics of this case can be found in the literature [9,10,20,28–30]. Therefore, these Reynolds
numbers are suitable for investigating the effect of the thermal Rossby number on the transition
process.

Lingwood [10] defined the Rossby (Ro) and local Reynolds (Reδ) numbers to reflect the local
stability:

Ro(r) = ��(r)/�(r), Reδ (r) = Ro(r)
r

δ
, (1)

where ��(r) = �F (r) − �D, �F (r) represents the rotational velocity of the fluid, and r denotes
the dimensional radius r∗/h∗. δ is the characteristic viscous length and �(r) is a reference rotation
rate of the system:

δ =
√

ν / �(r), (2)

�(r) = [�F (r) + �D] / 4 +
√

{[�F (r) + �D]/4}2 + [�F (r) − �D]2/2. (3)

For a single rotating disk, �F (r) represents the rotational velocity of the fluid away from the disk
boundary layer so that �F = 0. In a rotor-stator cavity, �F (r) is commonly defined as the rotational
velocity of the vortex core in the Batchelor flow [3].

In the simulation, to address the singularity issue of the velocity component V at the two
junctions, one connecting the stationary shroud and the rotating disk, and the other one connecting
the rotating hub and stator. The summary of boundary conditions is as follows:

U = 0, V = �Dr, W = 0, � = �1, rotor,

U = 0, V = 0, W = 0, � = �2, stator,

U = 0, V = �Da{1 − exp [−(1 + x/h)/0.006]}, W = 0, ∂�/∂r = 0, hub,

U = 0, V = �Db exp [(x/h − 1)/0.006], W = 0, ∂�/∂r = 0, shroud, (4)

where the value 0.006 was shown to accurately model the velocity profiles observed in
experiments [31].
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C. Large-eddy simulation based on entropy-viscosity method

Due to the high Reynolds number, in order to reduce computational costs, we have chosen to
employ the large-eddy simulation entropy viscosity method (LES-EVM). This method proposed
by Guermond [32] and Guermond et al. [33,34] utilizes the concept of the entropy residual.
In the study conducted by Wang et al. [35] and Du et al. [27], parameters αE and βE were
introduced for enhancing the controllable flow field stability, and an implicit temperature imple-
mentation method was incorporated into the LES-EVM. The capability of obtaining high-fidelity
flow fields using the proposed model was validated through verification with the open-source code
SEMTEX [36].

To employ the Boussinesq approximation, the governing equations are expressed in a cylindrical
coordinate system rotating with angular velocity �D,

∂u
∂t

+ N(u) = −∇P

ρ
+ ν∇2u − 2�D × u + β(� − �ref )�D × (�D × r) + ∇ · (νE∇u), (5)

∇ · u = 0, (6)

∂�

∂t
+ u · ∇� = κ∇2� + ∇ · (ν�∇�). (7)

where u = u(r, θ, z, t ) = (U,V,W )(t ) is the velocity field, and N(u) represents nonlinear advection
terms. Here we consider the nonlinear term in skew-symmetric form N(u) = (u · ∇u + ∇ · uu)/2.
P is the pressure, ρ is the density, and ν is the kinematic viscosity of fluid. The variables r, θ , z, and
t represent, the radial, azimuthal, axial, and time coordinates, respectively. νE and ν� are two scalars
denoting the turbulent eddy viscosity and turbulent diffusivity. For more specific details, please refer
to Du et al. [27].

The mesh is based on Nr × Nz Gauss–Lobatto collocation points in the meridional (r, z)
semiplane and Fourier expansions in the azimuthal direction and we used a fifth-order polynomial so
that (Nz × Nr × Nθ ) = (157 × 523 × 384) and Nnel = 31.53 million. The current grid is sufficiently
refined to capture the flow characteristics within the boundary layer, as compared with the grids
used by Séverac et al. [24] (Nnel = 2.85 million) and Yim et al. [20] (Nnel = 5.78 million) at the
same Reynolds number. The time step for each iteration is T/62 800. By utilizing 192 CPUs,
one step could be completed in three seconds. To further validate the accuracy of our model
and grid, we compared the results of case 1 with the experiments conducted by Séverac et al.
[24]. Figures 2(a)–2(d) compare the average radial velocity, azimuthal velocity, root-mean-square
of radial velocity, and root-mean-square of azimuthal velocity, respectively. Based on the com-
parisons with the experimental data, it can be concluded that the current model and grid are
adequate.

III. THEORETICAL MODEL FOR VON KÁRMÁN FLOW UNDER NONISOTHERMAL FLOW

The BEK model describes a family of boundary-layer flows caused by a differential rota-
tion rate between a solid boundary, or disk, and an incompressible fluid in rigid-body rotation
above. The typical boundary layers in the BEK system are the Ekman, von Kármán, and Böde-
wadt boundary layers, where the von Kármán and Bödewadt boundary layers correspond to the
boundary layers on the rotating and stationary sides of the rotor-stator cavity, respectively. In
recent years, many researchers have made appropriate modifications to the BEK model, such as
incorporating partial slip boundary conditions, to investigate the influence of surface roughness
on the stability of the BEK model [37–39]. In this section, we derive the BEK model in the
cylindrical coordinate (r∗, θ∗, z∗) system rotating at an angular velocity �∗

D. We add the tem-
perature diffusion equation and the centrifugal buoyancy force to solve the system of differential
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FIG. 2. The dimensionless average (a) radial velocity, (b) azimuthal velocity, (c) root-mean-square (rms)
radial velocity, and (d) root-mean-square (rms) azimuthal velocity corresponding to case 1 (blue line) and
experimental (red circle).

equations

1

r∗
∂ (r∗U ∗)

∂r∗ + ∂W ∗

∂z∗ = 0, (8)

U ∗ ∂U ∗

∂r∗ + W ∗ ∂U ∗

∂z∗ − V ∗2

r∗ − 2�∗
dV ∗ = − 1

ρ∗
∂P∗

∂r∗ +
(

1 − �∗ − �∗
1

�∗
ref

)
�∗2

d r∗

+ ν∗
[

1

r∗
∂

∂r∗

(
r∗ ∂U ∗

∂r∗

)
+ ∂2U ∗

∂z∗2
− U ∗

r∗2

]
, (9)

U ∗ ∂V ∗

∂r∗ + W ∗ ∂V ∗

∂z∗ + U ∗V ∗

r∗ + 2�∗
dU ∗ = ν∗

[
1

r∗
∂

∂r∗

(
r∗ ∂V ∗

∂r∗

)
+ ∂2V ∗

∂z∗2
− V ∗

r∗2

]
, (10)

U ∗ ∂W ∗

∂r∗ + W ∗ ∂W ∗

∂z∗ = − 1

ρ∗
∂P∗

∂x∗ + ν∗
[

1

r∗
∂

∂r∗

(
r∗ ∂W ∗

∂r∗

)
+ ∂2W ∗

∂z∗2

]
, (11)

U ∗ ∂�∗

∂r∗ + W ∗ ∂�∗

∂z∗ = α∗
[

1

r∗
∂

∂r∗

(
r∗ ∂�∗

∂r∗

)
+ ∂2�∗

∂z∗2

]
, (12)

where [U ∗,V ∗,W ∗,�∗, P∗] denotes the mean radial velocity, azimuthal velocity, axial velocity,
temperature, and pressure. Assuming L∗ is dimensionless length, U ∗

ref is dimensionless velocity,
so (U ∗,V ∗,W ∗) = (U,V, δW )U ∗

ref, (r∗, z∗) = (r, δx)L∗, and P = P∗ρ∗U ∗
ref. The temperature � =

(�∗ − �∗
1 )/(�∗

2 − �∗
1 ), where �∗

ref = �∗
1, Using the Boussinesq assumption, it can be shown that

β = 1/�∗
ref.

Equations (8)–(12) can be simplified as

1

r

∂ (rU )

∂r
+ ∂W

∂z
= 0, (13)
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U
∂U

∂r
+ W

∂U

∂z
− V 2

r
− 2V = − 1

Re

∂P

∂r
+ (1 − β�)r + 1

δ2Re

∂2U

∂z2
, (14)

U
∂V

∂r
+ W

∂V

∂z
+ UV

r
+ 2U = 1

δ2Re

∂2V

∂z2
, (15)

U
∂W

∂r
+ W

∂W

∂z
= − 1

δ2

∂P

∂z
+ 1

δ2Re

∂2W

∂z2
, (16)

U
∂�

∂r
+ W

∂�

∂z
= 1

δ2 Pr Re

∂2�

∂z2
. (17)

Dimensional analysis yields δ2 ∼ (Re−1), δ∗ = δL∗ = (ν∗/�∗
D)1/2, Pr = c∗

pρ
∗/k∗.

In this case it can be assumed that the pressure above the boundary layer is constant across the
boundary layer thickness. The pressure distribution in the fluid rotating at a constant angular � can
be obtained using ∂P/∂r = �r/�D.

For von Kármán flow, ∂P/∂r = 0, this set of equations leads to

2U + W = 0, (18)

U 2 + WU − (V + 1)2 + β� − U = 0, (19)

2U (V + 1) + WV + β� − V = 0, (20)

WW + P − W = 0, (21)

Pr W � − � = 0, (22)

where the prime denotes differentiation with respect to the z direction.
Equations of von Kármán flow can then be solved numerically with the following boundary

conditions:

U (0) = V (0) = W (0) = 0, �(0) = �2,

U (z → ∞) = 0, V (z → ∞) = 1, �(z → ∞) = �1. (23)

Figure 3 shows the velocity distribution of self-similar solutions for B = (�∗
2 − �∗

1 )/�∗
1 =

[−0.05, 0, 0.05] in the von Kármán boundary layer. Please note that, in the definition of the thermal
Rossby number B, the numerator represents the temperature difference between the rotating side
and the fluid. Therefore, the current B in the BEK model for the von Kármán boundary layer is
negative, indicating that the temperature on the rotating side is lower than that of the fluid. This is in
contrast with the subsequent large-eddy simulation (LES) where B is defined as positive, indicating
that the rotating side has a lower temperature than the fluid.

Due to the challenge of achieving convergence caused by a large thermal Rossby number B in
the exact numerical solution, we carefully selected three specific conditions: B = −0.05, B = 0,
and B = 0.05. These chosen conditions effectively reflect the influence of centrifugal buoyancy on
the exact numerical solution for a single disk.

For values of B less than zero and greater than zero, the centrifugal buoyancy force acts outward
and inward along the radial direction, respectively. As the thermal Rossby number B increases,
indicating a rise in temperature on the disk, the magnitude of the centrifugal buoyancy force acting
outward along the radial direction decreases.
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FIG. 3. Self-similar velocity profiles of the von Kármán flow for the case B = −0.05, 0, and 0.05. (a) Axial
velocity W , (b) radial velocity U , and (c) azimuthal velocity V . The red line is for B = −0.05, the blue line is
for B = 0, and the green line is for B = 0.05.

In the case of the von Kármán flow, when B is less than zero, the centrifugal buoyancy force
in the radial outward direction causes a significant increase in radial velocity within the boundary
layer. Following the law of mass conservation in the meridional (r, z) semiplane, an increase in
radial velocity naturally leads to an increase in axial velocity. Therefore, when the direction of the
centrifugal buoyancy force aligns with the radial velocity, it results in an increase in both radial and
axial velocities. However, due to the significant centrifugal force in the base flow, the von Kármán
boundary layer is sensitive to changes in centrifugal buoyancy. This implies that variations in the
centrifugal buoyancy force have a more pronounced effect on the mean flow in the von Kármán
boundary layer.

The above conclusion demonstrates that, as the thermal Rossby number B varies, the base flow
exhibits consistent changes. Therefore, in order to conduct more effective large-eddy simulations, B
values greater than zero are selected in the subsequent analysis.

IV. EFFECT OF THERMAL ROSSBY NUMBER ON VON KÁRMÁN LAYER
IN A ROTOR-STATOR CAVITY

In the high Reynolds number flow with Re = 4 × 105, the stator side has already transitioned
to a fully turbulent flow, while the boundary layer on the rotor side exists in a state of coexistence
between laminar, transition, and turbulence [20,24,40]. Due to the larger thermal Rossby number
B, the convergence becomes more difficult. Therefore, three parameters, B = 0, 0.05, and 0.1, have
been chosen for the current operating condition.

Figure 4 presents the averaged flow characteristics inside the cavity. Specifically, Fig. 4(a)
illustrates the axial distribution of radial velocity U at r̃ = 0.5 [̃r = (r − a)/(b − a)]. In the study,
the influence of viscous forces is more pronounced in the current operating condition, while the
impact of centrifugal forces is relatively weaker. Nevertheless, centrifugal forces still lead to an
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FIG. 4. Mean velocity and temperature profiles of the flow in the rotor-stator cavity at Re = 4 × 105.
(a) Dimensionless average radial velocity Ũ [Ũ = U/(�Dr)] at r̃ = 0.5; (b) dimensionless average temperature
� at r̃ = 0.5; (c) dimensionless average azimuthal velocity Ṽ [Ṽ = V/(�Dr)] at z = 0; (d) dimensionless
average temperature � at z = 0. The red line is for B = 0, the blue line is for B = 0.05, and the green line
is for B = 0.1.

increase in the dimensionless radial velocity within the two boundary layers. This indicates that even
under the current condition, centrifugal forces still exert a certain influence on the flow. In Fig. 4(b),
a distinct pattern can be observed in the temperature distribution at r̃ = 0.5. As B increases, the
temperature gradients within the boundary layers on the stator side and rotor side become larger
and smaller, respectively. Furthermore, in the core regions within the two boundary layers, the
temperature remains relatively constant. In Fig. 4(c), the radial distribution of nondimensional
circumferential velocity at the midsection (z = 0) of the two disks is presented. The nondimensional
circumferential velocity increases with an increase in B at the lower radii and decreases with an
increase in B at the higher radii. In Fig. 4(d), the radial distribution of temperature at the midsection
(z = 0) of the two disks is shown. There are some differences in temperature near the hub at the
lower radii. This discrepancy may be attributed to the introduction of centrifugal forces, causing
significant changes in the flow near the hub. However, as this paper primarily focuses on the impact
of centrifugal forces on the boundary layer of the disk, the discussion regarding the temperature
discrepancies near the hub at the lower radii is considered beyond the scope of the present study.

Figure 5 presents a temperature contour plot within the boundary layer on the rotor side, offering
a vivid depiction of the distinct characteristics of laminar flow, transition, and turbulence on the disk
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FIG. 5. Contour plot of instantaneous dimensionless temperature � at z = 0.98 for Re = 4 × 105.

surface. It is important to note that the unstable spiral waves observed in the transition region exhibit
an opposite tilt direction compared with those on the stator side. However, due to the presence of
bifurcation and fragmentation effects, accurately determining the number of spiral waves becomes
challenging.

At higher radial positions, the spiral waves diminish, and only chaotic and irregular turbulent fea-
tures are observed. Qualitatively, an increase in B amplifies the bifurcation effect of the spiral waves.
Some spiral waves tend to prematurely fracture, leaving behind cone-shaped turbulent patches,
as indicated by the green line region in Fig. 5(b). This phenomenon highlights the heightened
instability of the boundary layer on the rotor side as centrifugal forces strengthen. The transition
region progressively shifts towards lower radii, and the onset of turbulence occurs at relatively
lower radii.

To quantitatively investigate the radial changes in the flow state of the rotating-disk boundary
layer, we adopted the methodology outlined by Imayama et al. [41]. Specifically, at z = 0.98, we
examined the radial distribution of the dimensionless root mean squared velocity, denoted Vrms. This
parameter, defined as Vrms = [VV − (V )2]1/2/(�Dr), captures the fluctuations in velocity within the
boundary layer.

Figure 6(a) demonstrates that the disturbances induced by the hub lead to significant circumfer-
ential velocity fluctuations, as indicated by the non-negligible values of the root mean square (Vrms)
at lower radii. The x axis represents the dimensionless radial position r̃. However, as the distance
from the hub increases, the Vrms gradually decreases, signifying a progressive stabilization of the

FIG. 6. (a) Azimuthal fluctuation velocity Vrms, (b) growth rates −αi at z = 0.98 for Re = 4 × 105. The red
line is for B = 0, the blue line is for B = 0.05, and the green line is for B = 0.1.
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FIG. 7. (a) Azimuthal fluctuation velocity Vrms, (b) growth rates −αi at z = 0.98 for Re = 4 × 105. The red
line is for B = 0, the blue line is for B = 0.05, and the green line is for B = 0.1. The x axis represents local
Reynolds Reδ , which is defined according to Eq. (1).

flow. Continuing further in the radial direction, the Vrms value reaches a minimum. Subsequently,
with the emergence of spiral waves, the Vrms value experiences a rapid increase. In the case of B = 0,
when approaching the radial position where the spiral waves break, the Vrms value does not exhibit
a decrease as observed during the rupture of individual rotating disk’s spiral waves [28,41]. Instead,
it gradually increases with the radial position. This behavior can be attributed to the intensification
of disturbances at higher radii caused by the presence of the shroud. In the case of B = 0, where
the position of spiral wave breakage is closer to higher radii, the Vrms value does not decrease but
rather shows a slow increase. This can be attributed to the exacerbation of disturbances at higher
radii by the shroud. Furthermore, the presence of the shroud also contributes to a sharp increase in
the Vrms value in the outermost region. This finding is consistent with the observations of Yim et al.
[20] and suggests that the shroud plays a role in amplifying turbulence in the outermost region. In
the presence of centrifugal forces, the spiral waves tend to break earlier compared with the case of
B = 0. The rupture of spiral waves leads to a slight decrease in the Vrms value, as indicated by the
prominent feature represented by the shades of pink in Fig. 6. This observation is consistent with
the findings reported by Imayama et al. [28,41]. Subsequently, the presence of the shroud induces
disturbances, leading to a gradual increase in the Vrms value. As the region predominantly influenced
by the shroud is approached, the curves for all three cases nearly coincide, indicating a convergence
in the behavior of Vrms.

By analyzing the amplitudes of Vrms, it is possible to determine the radial growth rate, denoted
−αi, assuming an exponential decay of the form Vrms ∼ exp(−αir), as depicted in Fig. 6(b). To
ensure data consistency, a moving average method with a window size of n = 5 was applied for
curve fitting. This approach helps to smooth out the data by calculating the average of each point
and its neighboring four points, providing a more representative trend. The growth rate starts to
decrease after reaching its maximum value. This decrease in the growth rate is commonly attributed
to nonlinear effects [41].

All the analyses presented thus far have been based on the local dimensionless radius r̃. However,
in order to facilitate a more meaningful interpretation of the flow characteristics and to relate them to
existing literature, in Fig. 7, the values of r̃ have been converted into Reδ using the precise definitions
provided in Eq. (1).

From Fig. 7(b), it is evident that, when B = 0, the onset of nonlinear effects occurs at Reδ =
274.9. In contrast, when considering the rotor-stator cavity without a hub, this value is 298.2 [20],
while for a single rotating disk, it is 507. This discrepancy can be attributed to the additional
disturbances introduced by the hub, which lead to the premature occurrence of nonlinear effects.
However, the introduction of centrifugal buoyancy forces shifts the onset of nonlinear effects to
lower Reynolds numbers. Specifically, for B = 0.05 and B = 0.1, the onset of nonlinear effects
is triggered at approximately Reδ ≈ 240. This indicates that the presence of centrifugal buoyancy

053908-11



DU, XIE, XIE, AND WANG

FIG. 8. Frequency-radial contour plot at (z = 0.98, θ = 0) for Re = 4 × 105, where the color repre-
sents the magnitude of each frequency obtained from the FFT transformation. (a) B = 0(0 < r̃ < 1),
(b) B = 0(0 < r̃ < 0.7), (c) B = 0.05(0 < r̃ < 0.7), (d) B = 0.1(0 < r̃ < 0.7).

forces accelerates the onset of nonlinear phenomena, leading to a transition to more complex flow
behavior at lower Reynolds numbers compared with the case without centrifugal buoyancy forces.
Importantly, as the centrifugal buoyancy force continues to increase, the critical Reynolds number
does not decrease further. This indicates that there exists a minimum value for the critical Reynolds
number in the von Kármán boundary layer beyond which an increase in centrifugal buoyancy force
does not reduce the critical Reynolds number any further.

Through the preceding discussion, we have elucidated the impact of centrifugal buoyancy on the
transition region. However, we have not delved into the specific changes in the spiral waves and
their influence on the transition region. To address this, we conducted a fast Fourier transform
(FFT) analysis along the radial position at z = 0.98 and θ = 0 to investigate this phenomenon
in more detail. The results are depicted in Fig. 8, where the color indicates the magnitude of the
corresponding frequency amplitude.

Figure 8 depicts the spectrogram of the entire radial range under the B = 0 condition. Near
the frequency F [F = F ∗2 π/(�∗

D)] approximately equal to 13, a noteworthy high-amplitude
region emerges within positions where 0.4 < r̃ < 0.6. This particular frequency and amplitude
result primarily from the presence of spiral waves. As the radial position increases, and the flow
undergoes a transition to fully turbulent, the amplification of high-frequency regions experiences
a rapid increment but tends to be uniformly distributed without a distinct dominant amplitude, as
shown by the red solid line in the Fig. 8(a). The high-frequency region of Fig. 8(a) exhibits a clear
boundary near the radius r̃ = 0.6. This aligns precisely with a characteristic of turbulence. To reduce
the influence of fully turbulent regions with consistent attributes at higher radii on flow analysis,
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FIG. 9. Modes and energy obtained from dynamic mode decomposition at z = 0.98 for Re = 4 × 105.
F/F0 represents the mode normalized by the rotational frequency of the disk. E represents the energy
corresponding to the mode. The red dot is for B = 0, the blue triangle is for B = 0.05, the green inverted
triangle is for B = 0.1.

Figs. 8(b)–8(d) display only the intercepted spectral cloud images within 0 < r̃ < 0.7, representing
the three operating conditions of B = 0, 0.05, and 0.1, respectively. In the case of B = 0.05, two
distinctive regions of high amplitude with different dominant frequencies are observed within
0.3 < r̃ < 0.6. Upon closer examination, it becomes evident that these two frequencies overlap
in the radial direction, indicating that the presence of different modes is induced by the branching
or breaking of the spiral waves in this specific region. This phenomenon of bifurcation on a single
rotor disk aligns with Fig. 12 of the study by Imayama et al. [41]. When B = 0.1, the radial extent
occupied by the dominant frequencies begins to diminish at r̃ = 0.5, and another mode dominated
by a different frequency emerges at subsequent positions. It can be inferred that the introduction of
centrifugal forces leads to a faster branching and decay of spiral wave structures in the transition
zone, as reflected in the frequency spectrum.

Figure 9 shows the modes and the energy distribution diagrams corresponding to the modes
obtained by DMD decomposition of 6280 time series within one turntable period on the z = 0.98
surface. From B = 0 to B = 0.1, the modal energy with the highest energy gradually decreases,
and the corresponding frequency becomes smaller. However, the energy corresponding to almost
all high-frequency modes increases. This reflects the premature breakdown of the dominant mode,
leading to the transfer of its energy to all high-frequency modes.

V. THE LOCAL LINEAR STABILITY ANALYSIS

In this section, we refer to the fourth-order Orr-Sommerfeld equations as outlined by Lingwood
[9]. Then extract the velocity profiles from the current numerical simulation results and use them in
the linear stability analysis.

The specific derivation of the equations can be found in Lingwood [9]; however, for brevity, we
provide the expression of the fourth-order Orr-Sommerfeld equations here without delving into the
detailed derivation:

[i(D2 − γ 2)
2 + R(αU + βV − ω)(D2 − γ 2) − R(αD2U + βD2V )]X = 0. (24)
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FIG. 10. (a) Neutral (ωi = 0, αi = 0) stability diagrams, calculated from the fourth-order Orr-Sommerfeld
equation at β = 0.0467. (b) The relationship between the local temporal growth rate ωi and the radial wave
number α for the azimuthal wave number β = 0.049. Red is for B = 0, blue is for B = 0.05, green is for
B = 0.1.

In the context of the fourth-order Orr-Sommerfeld equations, the symbols have the following
meanings: ω represents the frequency of the disturbance in the rotating frame, R = r/δ represents
the Reynolds number which is based on the viscous length. β is the prescribed integer circumfer-
ential wave number (β = m/R), m is the number of spiral waves, α is the radial wave number, and

γ 2 = α2 + β
2
.

For the rotating-disk boundary layer, velocity profiles were selected at r̃ = 0.5, corresponding
to a Reynolds number of R = 406. The objective of this selection was to investigate the stability
characteristics in the unstable region of the boundary layer under temporal modes.

However, it is important to note that there is a difference in length scales between the current
Orr-Sommerfeld equations, where the z direction is scaled by the viscous length scale δ, and the
numerical simulation, where the length scale is half the distance between the disks. Therefore, to
apply the velocity profiles from the numerical simulation to the current equations properly, a suitable
stretching transformation is required:

∂U

∂δ
= ∂U

∂h

h

r

r

δ
= ∂U

∂h

h

r
R. (25)

Due to the presence of azimuthal velocity in the core region of the rotor-stator cavity, the
Reynolds number R should be based on the viscous length scale and rotating velocity of fluid away
from the disk. So here R should be replaced with Reδ .

Figure 10(a) illustrates the results of the stability analysis on the rotating side. The thermal
Rossby number only affects the upper branch of the neutral curve. However, in contrast, as the
thermal Rossby number increases, the opening of the upper branch of the neutral curve becomes
smaller. The results in Fig. 10(b) demonstrate that when the thermal Rossby number is greater than
zero, any disturbance at the local level increases with time, indicating that the flow is unstable and
will develop into turbulence. Upon closer examination, within the range of α from 0.04 to 0.1, the
growth rates corresponding to B = 0.05 and B = 0.1 are nearly identical, consistent with the results
from the numerical simulation. This suggests that for these two operating conditions, the critical
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Reynolds number for convective instability has reached its minimum value. For larger values of
α, the growth rate at B = 0.05 is higher than at B = 0.1, which is consistent with the instability
reflected in the azimuthal fluctuation velocity Vrms in Figs. 6(a) and 7(a). However, the variation in
Vrms between B = 0.05 and B = 0.1 is small, while the current variation is significant. Regarding
this issue, we believe that linear stability analysis overlooks specific factors such as radial constraints
that are unique to the rotor-stator cavity. Therefore, the results of linear stability analysis should be
considered as a reference, while the outcomes obtained from large-eddy simulations provide a more
accurate basis for analysis.

VI. SUMMARY AND CONCLUDING REMARKS

This study investigates the laminar-transition-turbulent process of incompressible rotating-disk
boundary layers in a centrifugal buoyancy-driven cavity using theoretical analysis and large-eddy
simulation. The typical transition Reynolds numbers, Re = 4 × 105 was selected based on existing
literature. In the numerical simulations, the density variations caused by temperature changes were
simulated in a rotating cylindrical coordinate system using the Boussinesq assumption. The main
findings of this study can be summarized as follows:

(i) As the Reynolds number increases, the influence of viscous shear stress on the flow in the
rotor-stator cavity becomes more significant, while the effect of temperature-induced centrifugal
buoyancy weakens. Therefore, the changes in the dimensionless radial and azimuthal velocities
caused by centrifugal buoyancy at the current Reynolds number are smaller.

(ii). Despite the small temperature difference and resulting small changes in dimensionless
velocities in the current case, our LES revealed that the stability of the rotating-disk boundary
layer on the rotating disk is still significantly affected. Specifically, when the temperature on the
rotating side is lower, the rotating-disk boundary layer experiences an early breakdown of Type I
spiral waves mode caused by crossflow instability, leading to a decrease in the critical Reynolds
number for transition to turbulence.

(iii) It seems that there is a minimum value for the critical Reynolds number when the flow
transitions to turbulence on the rotating side. In the current simulation, it is observed that as B
increases, the critical Reynolds number reaches a minimum value and does not decrease further.
Specifically, the minimum critical Reynolds number at which nonlinear effects occur is approxi-
mately Reδ ≈ 240.

Based on the research, we have identified the unique influence of temperature difference on
rotating-disk boundary layers. Although relatively simple models were used, the qualitative findings
and the role of temperature-induced centrifugal buoyancy in this typy of boundary layers can be
extended to similar flow conditions.

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support of the National Outstanding Youth
Science Fund Project of the National Natural Science Foundation of China (Grant No.52122603),
the National Science and Technology Major Project (J2019-III-0003-0046), the Sichuan Science
and Technology Program (NO:2022ZDZX0036) and the cloud computing supported by the Beijing
Super Cloud Computing Center. Furthermore, the authors extend their sincere gratitude to Dr. W.
Zhicheng for his valuable assistance in numerical simulations, and to Dr. L. Jianxin and Dr. Z.
Zhongyu for their insightful discussions on stability analysis.

APPENDIX : NOMENCLATURE

Table II lists the nomenclature used in this paper.
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TABLE II. Nomenclature of all parameter symbols appearing in the paper.

a∗ Internal radii (dimensional)
a Internal radii (a∗/h∗)
b∗ External radii (dimensional)
b External radii (b∗/h∗)
B Thermal Rossby number; B = β∗(�∗

2 − �∗
1 )

E Energy corresponding to the mode in DMD
F∗ Sampling point frequency (dimensional)
F Sampling point dimensionless frequency; F = F ∗2π/(�∗

D )
h∗ Half the spacing between the disks (dimensional)
L Aspect ratio; L = (b∗ − a∗)/2h∗

N(u) Nonlinear term
Nz, Nr, Nθ Axial, radial and azimuthal degrees of freedom
P Pressure
r Local radius (r∗/h∗)
r̃ Local radius; r̃ = (r − a)/(b − a)
Ro Rossby number; Ro(r) = ��(r)/�(r)
Reδ Local Reynolds numbers based on viscous length δ and Rossby number Ro;

Reδ = RRo
R Reynolds number based on viscous length δ; R = r/δ
Re Global Reynolds numbers; Re = �Db2/ν

Rer Local Reynolds numbers; Re = �Dr2/ν

Rm Curvature parameter; Rm = (b∗ + a∗)/(b∗ − a∗)
(u · ∇u + ∇ · uu)/2 Nonlinear terms in skew-symmetric form

Vrms Root mean square of the radial velocity; Vrms = [VV − (V )2]
1/2

/(�Dr)
V Time and circumferentially averaged radial velocity V
W ∗,U ∗,V ∗ Velocity of axial, radial and azimuthal direction (dimensional)
W,U,V Dimensionless velocity of axial, radial and azimuthal direction; (W,U,V ) =

(W ∗,U ∗,V ∗)/(�∗
Dh∗)

W̃ , Ũ , Ṽ Dimensionless velocity of axial, radial and azimuthal direction; (W̃ , Ũ , Ṽ ) =
(W,U,V )/(�Dr)

z Dimensionless local axial based on viscous length (z∗/δ∗)
z̃ Dimensionless local axial; z̃ = z∗/h∗

α, β Radial and azimuthal wave numbers
αE , βE Control parameters of νE

β∗ Thermal expansion coefficient; β∗ = 1/�∗
ref

β Dimensionless thermal expansion coefficient; β = B/(�2 − �1)
�∗

D Angular velocity of the rotating disk (dimensional)
� Dimensionless angular velocity of the disk
�F (r) Rotational velocity of the fluid away from the disk boundary layer
�∗ Temperature (dimensional)
�∗

1, �
∗
2 Temperature of rotor and stator (dimensional)

�∗
ref Reference temperature in Boussinesq approximation; �∗

ref = (�∗
2 + �∗

1 )/2
� Dimensionless temperature. � = (2�∗ − �∗

2 − �∗
1 )/(�∗

2 − �∗
1 )

�1, �2 Dimensionless temperature of rotor and stator
δ Viscous length. δ = √

ν/�D

��(r) The difference in rotational velocity of the fluid away from the disk boundary layer
with the rotor

νE , ν� Scalars denoting the turbulent eddy viscosity and turbulent diffusivity in LES-EVM
−αr Radial growth rate
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