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In this experimental study on a methane-hydrogen fired laboratory-scale pressurized
annular combustor, various steady and transient operating conditions were explored. Under
steady operation, the thermoacoustic stability depended strongly on the equivalence ratio,
but only weakly on the mass flow rate and hydrogen power fraction. During transient
equivalence-ratio ramps, the predominant instability of the system switched between
standing and spinning azimuthal modes. The ramping rate influenced the thermoacoustic
amplitude during the switching, as well as the onset and decay of the different modes.
The strong acoustic reflection at the choked outlet produced significant harmonic content
during both steady and transient operation. Nonlinear time-series analysis and clustering
algorithms showed that the Jensen-Shannon complexity and the permutation entropy could
accurately classify the modal dynamics in an unsupervised manner. The classification
revealed that standing azimuthal modes, with several preferred orientations, dominated
under steady operation. The amplitude of the heat-release-rate (HRR) oscillations around
the annulus depended on the mode orientation. The energy contribution from the harmonic
components was isolated via bandpass filtering, revealing that the orientation of the first
harmonic (n = 2) followed the fundamental mode, eliminating negligible HRR oscillation
regions at the pressure node of the fundamental mode. By filtering out the higher-order
harmonic content, intermittent switching between high-amplitude periodicity and low-
amplitude chaos in the fundamental azimuthal mode was uncovered. Tools from dynamical
systems theory confirmed the existence of chaos and demonstrated that the intermittency
belongs to the type-II Pomeau-Manneville class. This study provides evidence of the type-
II intermittency route to chaos in an annular combustor with longitudinal and azimuthal
modes.

DOI: 10.1103/PhysRevFluids.9.053907

I. INTRODUCTION

Fuel-flexible hydrogen-fired gas turbines are gaining broad interest amid a global transition to
carbon-free energy production [1–4]. The addition of hydrogen to natural gas in the fuel stream of a
gas turbine can significantly reduce its CO2 emissions as well as enhancing its overall power output
and efficiency [5]. However, the increased reactivity and diffusivity of hydrogen can increase the
flame speed and the resistance to aerodynamic strain, impairing the static and dynamic stability of
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the overall system. Static stability issues can include flame flashback, where the flame propagates
upstream from its intended anchoring location, potentially causing costly engine damage. Dynamic
stability issues can include combustion instabilities, also known as thermoacoustic instabilities,
in which the coupling between heat-release-rate (HRR) and pressure oscillations can lead to a
self-excited feedback loop that yields damaging flow oscillations in the combustor. The ability
of hydrogen flames to withstand higher strain rates enables them to be operated over a different
range of velocities and equivalence ratios in comparison with conventional hydrocarbon flames,
resulting in marked changes to the flow and flame time scales. Thus the addition of hydrogen
has been observed to change the relative timing between the pressure and HRR oscillations of a
combustor, which can either weaken thermoacoustic instabilities [6–9] or strengthen them [10–12].
Thermoacoustic instabilities present a major challenge for the development of fuel-flexible gas
turbines. Thus characterizing and understanding the complexities of such instabilities, especially
their response to transient operating conditions [13], is crucial to designing more efficient and
reliable gas turbines.

Gas turbines deployed for power production typically have a combustor geometry that is annular,
with several flames distributed around the annulus. This geometry can give rise to azimuthal
thermoacoustic instabilities, which have been observed both experimentally and numerically in a
variety of industrial systems [14–17] and laboratory-scale systems [18–21]. Such azimuthal modes
are characterized not only by their amplitude and frequency but also by their nature (i.e., spinning,
standing, or mixed) and orientation, as defined by the antinodal line of the standing component.
Even when the operating conditions are kept nominally steady, the mode nature, orientation, and
amplitude can still vary markedly in time. Such behavior is known collectively as the modal
dynamics and can be linked to turbulence-induced noise [15] and system asymmetries [22].

Annular combustors can host not only azimuthal modes, but also longitudinal modes, which
are characterized by the propagation of acoustic waves in the bulk-flow direction. Recently, in-
termittency and secondary bifurcations have been investigated for such longitudinal modes in a
premixed swirl-stabilized annular combustor [23,24]. The preferential generation of azimuthal or
longitudinal modes in an annular combustor can depend on the operating conditions, such as
the equivalence ratio or the mass flow rate of the reactant stream [19,25], as well as the fuel
type used [18]. However, it is important to note that azimuthal and longitudinal modes can be
simultaneously generated. Previous studies [25,26] have identified an operating regime where
phase-coupled azimuthal and longitudinal modes coexist. This regime was associated with a slanted
mode based on the HRR pattern [26]. The coexistence of azimuthal and longitudinal modes at the
same operating condition has been experimentally verified by Fang et al. [27]. In that work, the two
modes did not exist simultaneously, but in turn: the system intermittently alternated between them,
an effect later attributed to stochastic fluctuations caused by turbulence in the high-speed reactant
flow. A single mode-switch event between longitudinal and azimuthal states was observed by Mazur
et al. [28] in an annular combustor at an elevated pressure. In that system, the mode-switch event was
associated with upstream flame propagation (flame flashback), which altered the flame structure. In
that [28] and other studies at elevated pressure [9,13,29], high amplitude instabilities with significant
harmonic content were observed, further complicating the interpretation of the modal dynamics of
the system.

Although mode switching can occur even when the operating conditions are held nominally
steady in time, it is of interest to understand how thermoacoustic modes can change in response to
varying the operating conditions in time. One practical motivation for this is to identify early warn-
ing signals of thermoacoustic instability as a combustion system is adjusted from one power setting
to another. Many previous studies in thermoacoustics have examined the use of transient operating
conditions, but they were mostly limited to single-flame configurations [30–32]. Recent studies have
focused more on the use of transient operating conditions in annular combustors [25,29], but to date
only one study, focusing on azimuthal modes, has been performed under elevated pressure [13].
Improving our understanding of the onset, growth, and interaction of different thermoacoustic
modes during transient operation at elevated pressures could help researchers limit the occurrence
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FIG. 1. IPA rig and combustor instrumentation: (a) cross-sectional view with dimensions in mm, (b) pho-
tograph of the combustor during operation, (c) close-up diagram showing the injector dimensions, and
(d) overhead view showing the azimuthal arrangement of the pressure sensors and photomultiplier tubes.

and severity of self-excited thermoacoustic instabilities in practical combustion systems such as
gas turbines. Over the years, various system identification tools have been developed and tested
to better understand and characterize the behavior of thermoacoustic instabilities [33–36]. These
typically involve applying a variety of time-series methods to the pressure or HRR signals in order
to identify subtle changes at the onset of a bifurcation to a thermoacoustically unstable state. Again,
while these methods have previously been applied to single-flame combustion systems, they have
yet to be applied to annular systems in which both longitudinal and azimuthal modes may exist
simultaneously.

This experimental study investigates the self-excited thermoacoustic modes of a pressurized
annular combustion system powered by methane-hydrogen flames under both steady and transient
operating conditions. During transient operation, high-amplitude longitudinal and azimuthal modes
are simultaneously generated. Automated mode-detection tools are applied to the pressure and HRR
time-series data in order to identify the various instability regimes. Time-series analysis tools are
also used to characterize the intermittency features, including identifying the specific intermittency
type. The results are then explained in terms of changes in the modal dynamics and harmonic content
of the system.

II. EXPERIMENTAL SETUP

A. Intermediate pressure annular (IPA) combustor

In this investigation, we used the Intermediate Pressure Annular (IPA) combustor, whose key
features are described briefly below and in Fig. 1. For full details, please refer to [13,28,29].
Premixed reactants at 293 K entered a plenum chamber before passing through a bed of glass beads
and an acoustically reflective 22 mm thick sintered metal plate. This plate has a porosity of 0.12, a
mean pore size of 183 µm, and a pressure drop of �p ≈ 15 kPa at the flow rates used in the present
study [29]. The reactant mixture was distributed to the combustor via 12 injector tubes, each with
an inner diameter of Dinj = 19 mm and a centrally mounted bluff body of diameter Dbb = 14 mm,
as shown in Fig. 1. The flow swirlers used in previous studies [29] were removed for this study.
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TABLE I. Operating conditions.

PH VH φ SL (ms−1) ṁair (gs−1) ṁfuel (gs−1) Thermal power (kW) Cooling power (kW)

0.3 0.57 0.5–1.1 0.43–0.45 63.8, 74.4, 85.0 1.9–5.5 92.8–272.3 16.7–110.2
0.4 0.67 0.5–1.1 0.47–0.49 63.8, 74.4, 85.0 2.5–7.3 95.3–279.6 16.1–119.0
0.5 0.75 0.5–1.1 0.50–0.53 63.8, 74.4, 85.0 3.1–9.1 97.9–287.2 16.4–111.4

The combustor had a length of 168 mm with inner and outer diameters of Di = 128 mm and
Do = 212 mm, respectively. The lower section (49 mm) of the outer wall was constructed from
quartz for optical access. The combustor was equipped with multiple water paths for cooling and the
inlet and exit temperatures were monitored. An area reduction occurs at the exit of the combustor,
defined by a fifth-order polynomial of length LCR = 34 mm and a contraction ratio of CRc = 7.
Downstream of this contraction was a choking plate of CRp = 5, resulting in a total contraction
ratio of CRtot = 35.

The test conditions are summarized in Table I. The laminar flame speed, SL, was estimated
using Cantera [37] with the GRI 3.0 mechanism for the combustion kinetics. Methane-hydrogen
blends were used, with the air and fuels (CH4 and H2) metered by four Alicat mass flow controllers
(MFCs). The volume fraction of hydrogen, VH = V̇H2/(V̇CH4 + V̇H2 ), varied between 0.57 and 0.73.
This equates to a thermal power ratio of hydrogen from PH = PH2/(PCH4 + PH2 ) = 0.3 to 0.5. A
range of air mass flow rates (from 63.8 to 85.0 gs−1) and equivalence ratios (φ = 0.6 to 1.1 in steps
of 0.1) were used, producing bulk inlet flow velocities ranging from 22.9 to 29.7 ms−1 and mean
pressures of 141 to 232 kPa. The uncertainty was estimated as ±0.01 for the equivalence ratio and
±0.04 ms−1 for the bulk velocity. These estimates represent the average uncertainty values for a
single injector, although larger injector-to-injector differences may be present [38], Fig. 5].

The present paper focuses on a final operating point at PH = 0.4, ṁair = 74.4 gs−1, and φ = 1.1.
This point was reached by linearly increasing the equivalence ratio from φ = 0.5 to 1.1, over three
different ramping times: tR = 2, 5, and 10 s. At φ = 0.5 and 1.1, the thermal power is 111.2 and
244.7 kW, respectively. The heat transfer from the flame zone to the combustor walls included
contributions from the bottom plate forming the dump plane (Pcool-d), the inner wall (Pcool-i ), and
the outer wall (Pcool-o). At PH = 0.4 and ṁair = 74.4 gs−1, the cooling power in these paths was
measured as Pcool-d = 0.7, Pcool-i = 3.9, and Pcool-o = 7.8 kW for the φ = 0.5 case and Pcool-d = 8.1,
Pcool-i = 62.8, and Pcool-o = 30.7 kW for the φ = 1.1 case.

The time delay between setting the MFC output and the mixture reaching the combustor chamber
was estimated as 0.3 ± 0.01 s, based on the pipe lengths, diameters, and the volume flow rates of
the premixed reactants. After this time delay was accounted for, the start of the φ ramping, t = 0 s,
aligned with the actual change in equivalence ratio in the combustor. The combustor was cooled
down after each test and a minimum of three repeat measurements were taken at each operating
condition.

B. Instrumentation and data acquisition

Twelve Kulite XCE-093 pressure transducers, with a sensitivity of 1.4286 × 10−4 mV/Pa, were
installed in the injector ducts to characterize the thermoacoustic modes. Nine transducers were
mounted at three circumferential locations (�k=1,3,4 = 30, 120, and 240◦) and at three axial
locations, all upstream of the dump plane (z = −44,−81, and − 133 mm). Two transducers were
mounted at z = −81,−133 mm and �k=0 = 0◦ and one transducer was mounted at z = −81 mm
and �k=2 = 60◦. The signals from the pressure transducers were conditioned via a Fylde FE-579-TA
amplifier, before undergoing digitization by a 16-bit NI 9174 DAQ system at a sampling rate of
51.2 kHz.

Photomultiplier tubes (PMT) equipped with UV filters [305(10) nm] were also installed at five
circumferential locations (�k=0,1,2,3,4 = 0, 30, 60, 120, 240◦). They were mounted at a distance of
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244(3) mm from the center of the bluff body, aligned in the radial direction, at a height of 20 mm
above the dump plane.

Two high-speed cameras (Phantom V2012) equipped with intensifiers and the same UV filters
[305(10) nm] were positioned at � = 30◦ and 120◦. The flame images were not analyzed in
the present study, but readers interested in viewing the corresponding flame shapes and HRR
distributions are referred to [39].

The temperature was measured with a K-type thermocouple mounted in the outer annular wall at
� = 0◦, 187 mm downstream of the dump plane. The tip of the thermocouple protruded 5 mm into
the combustion chamber.

III. MATHEMATICAL FRAMEWORK FOR DATA ANALYSIS

A. Azimuthal mode characterization

The amplitudes of the thermoacoustic modes were extracted at z = −81 mm as this particular
axial location hosted a large number of sensors. In this paper, overline notation (·̄) is used to denote
time averaging, while dash (·′) and hat (·̂) notations are used to denote fluctuations in the time and
frequency domains, respectively. Azimuthal modes can be examined via upstream measurements
made in the injector ducts owing to the injector-combustor coupling, which is similar to that
described by [40]. This implies that pressure oscillations in the annulus result in flow oscillations in
the injector ducts. The details of this method are described in [38].

To characterize the fundamental mode (n = 1), the pressure time series was bandpass filtered
with a bandwidth of 50 Hz centered around the frequency of interest. Following Ghirardo
and Bothien [41], the acoustic pressure oscillations in the annulus of the combustor were
resolved as

p′(�, t ) = A cos[n(� − θ )] cos(χ ) cos(ωt + ϕ) + A sin[n(� − θ )] sin(χ ) sin(ωt + ϕ), (1)

where � is the azimuthal coordinate and n is the order of the mode. Four state space variables
are used to describe the mode: A is the amplitude of the mode, nθ is the position of the antinodal
line (which is bounded between 0 and 180◦), χ denotes the nature of the azimuthal mode and is
often known as the nature angle, and ϕ is the temporal phase. Here a mode is standing if χ = 0◦,
is spinning clockwise or counterclockwise if χ = ∓45◦, or is a mix of both if 0◦ < |χ | < 45◦. The
sign convention for the spin direction is based on a top-down view of the combustor, consistent
with the coordinate system shown in Fig. 1.

B. Synchronization analysis

The Kuramoto order parameter, R, can be used to quantify the degree of synchronization between
thermoacoustic oscillations in different burners, as described in [42]

R(t ) = 1

Nb

∣∣∣∣∣
Nb∑

k=1

exp[iψk (t )]

∣∣∣∣∣, (2)

where ψk is the phase of the oscillations in the kth burner, calculated via the Hilbert transform,
while Nb is the total number of burners in the synchronization analysis. The parameter R has
values between 0 and 1: 0 indicates the absence of synchronization, while 1 indicates the complete
synchronization of oscillations in different burners.

In this study, focus is directed at the burners equidistantly spaced at � = 0, 120, and 240◦. This
configuration yields a Kuramoto order parameter of R = 1 for a perfectly longitudinal mode and
R = 1/3 for any perfectly azimuthal mode of the first order.
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C. Automated mode detection

In this study, the approach of Lee [43] was used for automated mode detection. This involved
combining the permutation entropy, the Jensen-Shannon complexity, and an unsupervised clustering
algorithm. These techniques are outlined briefly below; a more detailed description can be found
in [43].

The permutation entropy, PE , is a quantitative measure of the complexity of a time series and
can take on values between 0 and 1: 0 indicates purely stochastic dynamics, while 1 indicates
deterministic behavior [44]. The computation of PE involves first segmenting a time series into
small sections of length DPE , where DPE is an integer representing the number of samples. Within
each section, the data values are compared against their neighbors to determine whether they
are increasing or decreasing. Given the predetermined length of each section, there can only be
a set number of possible permutations, represented as DPE !. The combined probability of the
permutations observed in all the data sections is computed and then normalized by the total number
of possible combinations to yield the permutation entropy. In this study, the sample length was
chosen as DPE = 5 in line with [43], and the time delay between adjacent data points was set
as τPE = 1, implying that adjacent data points were separated in time by the reciprocal of the
acquisition frequency.

The Jensen-Shannon complexity [45], C, can be used to quantify the difference between the
probability density function (PDF) of a time series and a continuous uniform distribution; it can
take on values between 0 and 1. It works differently from PE , but can still reveal valuable insight
into the dynamical structures embedded in a time series. When combined together, PE and C are
particularly effective in revealing subtle variations in time series data [43].

As per Lee [43], these metrics were applied to time traces of the pressure and global HRR fluc-
tuations. In this way, three-dimensional scatter plots were generated, facilitating the classification
of various temporal features. To achieve such classification, k-medoids unsupervised clustering was
applied [46], which involved grouping similar data points together and separating dissimilar data
points. The effectiveness of this automated algorithm in detecting different dynamical states will be
assessed in Sec. IV B.

D. Phase space reconstruction

Phase space reconstruction is an established technique used to visualize and analyze the evolution
of a nonlinear dynamical system. In this study, phase space reconstruction was performed using
Takens’ time-delay embedding theorem [47], with the normalized pressure fluctuation p′/p of length
N as the sole scalar input. The time series was embedded into a Euclidean vector of dimension d:

P′(d ) = {p′
i/p, p′

i−τ /p, p′
i−2τ /p, . . . , p′

(i−(d−1)τ )/p}, (3)

where τ is the time delay and the index i = (d − 1)τ + 1, . . . , N denotes the ith reconstruction of
the state vector [48]. The optimal time delay (τ = 10) was determined from the first local minimum
of the average mutual information function [49]. The optimal embedding dimension (d = 3) was
chosen based on the false nearest neighbors algorithm [50].

E. 0–1 test

In principle, the Lyapunov exponent can be used to identify chaotic processes [51,52]. However,
the results become difficult to interpret when the experimental data is from a turbulent system
exposed to various noise sources, either intrinsic or extrinsic, resulting in a positive Lyapunov
exponent even for regular (nonchaotic) attractors, such as limit cycles or torus structures [53,54].
By contrast, the 0–1 test can be a more reliable tool for detecting chaos, even in experiments where
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significant noise is present [54,55]. In this binary test, the translation variables, Mc(ni ) and Nc(ni ),
are calculated from a normalized pressure time series p′

j/p (where j = 1, . . . , N) [55]:

Mc(ni ) =
ni∑

j=1

(p′
j/p) cos( jc), (4)

Nc(ni ) =
ni∑

j=1

(p′
j/p) sin( jc), (5)

where ni = 1, 2, . . . , N and c is a constant value. In this study, c was randomly selected as
c ∈ [3π/10, 3π/5], falling within the suggested range (π/5, 4π/5) [54,56]. The computation of
the translation variables is dependent on the value of ni, where ni � ncut. In practice, with a finite
length time series, ncut should be much smaller than the total number of variables N and is typically
chosen to be ncut = N/10 [55,57]. The diffusive behavior of the trajectory in the [Mc,Nc] plane for
increasing ni was further investigated via the mean squared displacement D(ni ):

D(ni ) = lim
N→∞

1

N

N∑
j=1

{[Mc( j + ni ) − Mc( j)]2 + [Nc( j + ni ) − Nc( j)]2}. (6)

For improved convergence of D(ni ), a modified mean squared displacement M(ni ) with the same
growth rate was used [56,58]:

M(ni ) = D(ni ) − Vosc(c, ni ), (7)

where

Vosc(c, ni ) =
⎡
⎣ lim

N→∞
1

N

N∑
j=1

(p′
j/p)

⎤
⎦

2

1 − cos(nc)

1 − cos(c)
. (8)

Here M(ni ) increases progressively for chaotic attractors but oscillates within bounds for regular
(nonchaotic) attractors. Moreover, the asymptotic growth rate of the mean squared displacement
was found via linear regression [56]:

K = corr(ξ,�) = cov(ξ,�)√
var(ξ )var(�)

∈ [−1, 1], (9)

where

ξ = (1, 2, . . . , ncut )
T , (10)

� = [M(1), M(2), . . . , M(ncut )]
T . (11)

To mitigate the effect of outliers, the calculation of K was repeated a total of Nc = 200 times,
as suggested by Gottwald et al. [56]. Then, the median of Nc values of K , denoted as Km, was
estimated. In the 0–1 test, the value of Km approaches 0 for regular dynamics, but approaches 1 for
chaotic dynamics [56,59].

F. Autocorrelation function

The autocorrelation function (ACF) is another tool for identifying chaos and has been success-
fully used on various experimental systems, such as a periodically forced neon glow discharge and a
self-excited flame-driven combustor [60,61]. For a given time series, it enables regular and chaotic
dynamics to be differentiated by quantifying the similarity between the original time series and
time-lagged copies of that series. The ACF is typically presented as a plot of the autocorrelation
coefficient Rk versus the lag k of the input normalized time series p′(t )/p [62]. The N successive
observational values of p′(t )/p made at equispaced instants t, t + �t, t + 2�t, . . . , t + (N − 1)�t
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are denoted as {p′
1/p, p′

2/p, p′
3/p, . . . , p′

N/p}, where �t is a fixed time lag. Therefore, the delayed
copy, p′(t + k)/p, of p′(t )/p separated by k time intervals has a length of N − k and the observa-
tional values are {p′

t+k/p}N−k
t=1 . The Rk between p′(t )/p and p′(t + k)/p at lag k is defined [62]:

Rk = ck

c0
, (12)

ck = E [(p′
t/p − μ), (p′

t+k/p − μ)] = 1

N

N−k∑
t=1

(p′
t/p − μ)(p′

t+k/p − μ), (13)

where μ = 1
N

∑N
t=1(p′

t/p) is the mean of p′(t )/p. The ACF would then be calculated from Rk

for k = 0, 1, 2, . . . , K , where K � N/4 [62]. For a regular time series, the ACF exhibits strong
similarities in time, resulting in long-range correlations. By contrast, the correlation is much shorter
in time for chaotic signals. Thus, as the time lag increases, the ACF for a chaotic signal decays
rapidly towards 0, but that for a regular signal decays gradually towards 0.

G. Recurrence plot

The recurrence plot (RP), first proposed by Eckmann et al. [63], has been used in various
fields of science and engineering to characterize the recurrence properties of nonlinear dynamical
systems [64,65]. The construction of the RP involves computing a binary matrix Ri, j based on a
reconstructed phase space. This matrix captures the distance between pairs of data points on the
phase space trajectory. For a phase trajectory P′ with points N , the recurrent matrix Ri, j is denoted
as

Ri, j = H(ε − ||P′
i − P′

j ||), i, j = 1, . . . , N, (14)

where P′
i ∈ Rd represents a state observed at time i and N is the number of considered states in

the d-dimensional phase space. H is the Heaviside step function and ε is a recurrence threshold
used for determining the recurrent property of a pair of phase trajectory points. Recurring pairs
of phase points that satisfy the criterion ε � ||P′

i − P′
i || generate filled-in (dark) patterns in the

RP, while nonrecurring pairs of phase points (ε > ||P′
i − P′

i ||) generate empty (light) patterns.
Previous studies have shown that RPs exhibit different characteristic patterns for different types of
intermittency [65–67]. For instance, for Pomeau-Manneville intermittency [68], kitelike structures
appear for type-II intermittency (Fig. 14 in Ref. [65]) but rounded upper-right corners appear for
type-III intermittency (Fig. 15 in Ref. [65]). Thus the RP can be used to identify the type of
intermittency exhibited by a dissipative dynamical system. In the present study, the recurrence
threshold ε was set at 18% of the largest attractor dimension with an embedding dimension of
d = 9 and a time delay of τ = 10.

IV. RESULTS AND DISCUSSION

The present paper focuses on the operating point at PH = 0.4, ṁair = 74.4 gs−1, and φ = 1.1,
where high-amplitude azimuthal modes are present. At this operating point, the mean pressure is
p̄ = 197.6 kPa and the mean bulk flow velocity is ū = 23.7 ms−1. This point is examined under both
steady and transient operating conditions, representing the target of an equivalence-ratio ramp. For
reference, the stability of the different operating points listed in Table I is described in the Appendix.

A. Mode transition during equivalence-ratio ramping

Figure 2 shows the transient behavior of the system leading to the onset of an azimuthal instability
at ṁair = 74.4 gs−1, φ = 1.1, and PH = 0.4. At t = 0 s, the equivalence ratio was increased linearly
from φ = 0.5 to 1.1, with the different columns in Fig. 2 corresponding to different ramping times,
from left to right: tR = 2, 5, and 10 s.
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FIG. 2. Time series analysis during ramping of the equivalence ratio at three different time scales, from
left to right: tR = 2, 5, and 10 s. Starting from the top, rows 1 and 2 show time traces of the pressure (at � =
30◦, z = −81 mm) and HRR (at � = 30◦) oscillations, respectively. Rows 3 and 4 show the Kuramoto order
parameter for pressure and HRR using signals measured at three orientations: � = 0, 120, and 240◦. Rows 5, 6,
and 7 show the normalized azimuthal and longitudinal mode amplitude (A/p̄ and |p′|/p̄), the nature angle (χ ),
and the orientation angle (θ ). At the bottom, row 8 shows the spectrogram of the normalized pressure signal,
computed using short time (0.1 s) FFTs with Hanning windowing. In rows 1, 2, and 3, the gray lines show the
time-varying equivalence ratio, mean chamber pressure, and downstream chamber temperature, respectively.
In rows 1 to 7, the dynamical states are categorized as 0L0A (combustion noise; black), 1L0A (longitudinal
mode; red), 0L1A (azimuthal mode; green), and 1L1A (transitional state; blue). These color-coded regimes are
based on the clustering results from Sec. IV B.

The gray lines in the top three rows represent the normalized temporal variation (t/tR) of the
equivalence ratio, the mean pressure, and the mean temperature. As the equivalence ratio increases,
both the mean temperature and pressure increases. A slight delay between φ, p̄, and T appears in the
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tR = 2 s case. This delay decreases as the ramping time increases, with better correlation between
φ, p̄, and T .

The spectrograms at the bottom of Fig. 2 reveal the complex dynamical response of the system.
Starting with the tR = 2 s case on the left, the combustor is initially thermoacoustically stable
(t/tR = 0), with only faint spectral lines at 325 Hz and 1.4 kHz, which correspond to incipient
longitudinal and azimuthal modes. As φ increases at t/tR ≈ 0.5, the system exhibits a strong
longitudinal mode, whose fundamental frequency increases rapidly with the combustor temperature
as φ increases, peaking at around 375 Hz. Weaker higher-order harmonics are also observed. At
t/tR = 1 when φ = 1.1, a high-amplitude azimuthal mode is also generated alongside the existing
longitudinal mode, with both the fundamental and harmonics clearly visible. Over the next ∼4–5 s,
these two modes coexist and begin to interact, as evidenced by the significant spectral content at the
difference between the fundamental azimuthal and longitudinal mode frequencies ( f ≈ 1300 Hz).
At t/tR = 3.7, the longitudinal mode decays, leaving only the azimuthal mode. After the decay of
the longitudinal mode, the frequency of the azimuthal mode is observed to decrease slightly. The
azimuthal mode remains pronounced until a ramp down to φ = 0.5, when the system returns to
a thermoacoustically stable condition via the longitudinal mode. For brevity, the latter case is not
shown for the tR = 2 s condition, but is observable in cases with a longer ramping time.

In Fig. 2, the mode amplitude is highlighted by the spectrogram color, but this can be seen more
readily in the top two rows, which show time traces of the normalized pressure (p′/p̄) and HRR
(q′/q̄) fluctuations at a single azimuthal measurement location (� = 30◦); for the pressure signal,
the axial location is z = −81 mm.

The time series data for these and subsequent plots are colored in blue, red, and green, which
relate to the automated mode detection discussed later in Sec. IV B. The envelopes of the signals
show the onset of the longitudinal mode at t/tR = 0.5, with a marked increase in the amplitude
occurring at t/tR = 1 owing to the onset of the azimuthal mode. Large amplitude fluctuations are
observed until t/tR ≈ 2. A sudden decrease in amplitude occurs at t/tR ≈ 3.7 with the decay of the
longitudinal mode. After t/tR ≈ 3.7, the pressure signal during the generation of azimuthal modes
is observed to be intermittent, which is discussed in detail in Sec. IV D.

The amplitude of each modal component can be more readily analyzed by isolating and plotting
the time series of | p̂|/p̄ for the longitudinal mode and that of A/p̄ for the azimuthal mode, as shown
in the fifth row of Fig. 2. When the longitudinal mode emerges, | p̂|/p̄ ≈ 0.02, but following the
onset of the azimuthal mode, the longitudinal mode exhibits significantly larger amplitudes (up to
| p̂|/p̄ ≈ 0.06). In the case of tR = 2 s, the azimuthal mode is observed to be intermittent during the
initial transient phase, demonstrating moderate amplitudes until the final limit cycle is reached after
the decay of the longitudinal mode.

The changes in the dominant modes are also apparent in the Kuramoto order parameter for
pressure (Rp) and HRR (Rq), shown in the third and fourth rows of Fig. 2, respectively. The value
of Rp fluctuates wildly in the absence of a coherent self-excited instability, but, at the onset of the
longitudinal mode, it approaches Rp ≈ 1. This indicates in-phase oscillations at multiple azimuthal
locations, which is consistent with the presence of a global longitudinal mode. Weak fluctuations in
Rp near unity are observed when both the longitudinal and azimuthal modes exist simultaneously,
but Rp only decreases significantly at t/tR = 3.7, with the decay of the longitudinal mode. The
azimuthal mode leads to Rp ≈ 1/3, which is consistent with the combined action of in-phase and
out-of-phase motion expected during an azimuthal instability. The value of Rq exhibits broadly
similar characteristics, but with a significantly higher level of variability during the azimuthal mode.
This greater variability reduces the reliability of Rq, making it less effective than Rp for identifying
the dominant mode.

The azimuthal mode can be examined in more detail through the time series of χ and θ , as
shown in the sixth and seventh rows of Fig. 2. At low A, the mode nature and orientation angles are
dominated by noise. However, with the onset of strong azimuthal modes, predominantly standing
waves are generated with slight fluctuations between slightly positive and negative nature angles.
The longitudinal and azimuthal modes coexist, but there is a preferred orientation angle of θ ≈ 30 to
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60◦. After the longitudinal mode decays, this preferred orientation angle changes slightly, oscillating
between two relatively stable values at θ = 30◦ and 90◦.

These modal observations are confirmed by statistical analysis performed over the entire duration
of the stable high-amplitude regimes for multiple test runs (not shown for brevity). Previous investi-
gations of nonswirling flames at atmospheric pressure have revealed a tendency for the generation of
spinning waves at high amplitudes [69]. Furthermore, at very high instability amplitudes, swirling
flames in the same combustor geometry always provoke strongly spinning modes [29]. The modal
preference observed in the present study may be caused by reduced symmetry [15,70] or by the
susceptibility of flames to transverse perturbations [71]. As shown in the time series, the antinodal
line is aligned preferentially at θ = 30◦ and 90◦, indicating that the configuration is slightly
asymmetric. This behavior is consistent with that observed in previous experiments [18], which
unavoidably contains a minor degree of asymmetry owing to production tolerances and individual
component variations [38], Fig. 5].

Thus far, the analysis has focused on the case of tR = 2S, but results for the other two ramping
times (tR = 10S) show broadly similar phenomena. A comparison across the different ramping
times demonstrates that the onset of the initial longitudinal mode is not a function of pressure or
downstream temperature and occurs at slightly different equivalence ratios for the three cases. No-
table differences are also observed in the amplitude of the self-excited thermoacoustic oscillations.
Increasing the ramping time (i.e., decreasing the ramping rate) leads to decreases in both the peak
amplitude of the longitudinal mode as well as the duration when the longitudinal and azimuthal
modes are simultaneously present. Therefore, it is preferable to ramp slowly if the aim is to limit
the peak amplitudes of the thermoacoustic modes. Ramping slowly also reduces the frequency and
amplitude of the longitudinal mode modulations, while eliminating intermittency during the onset
of the azimuthal mode.

B. Automated mode detection

Figure 3 presents the results of the automated mode detection for the case of tR = 2 s. The results
for the other two ramping times are similar and are thus omitted for brevity. The permutation entropy
and Jensen-Shannon complexity are presented in Figs. 3(a) and 3(b) for the pressure and HRR
signals, respectively. The permutation entropy (open circular symbols) is shown to vary in time,
with different characteristic values observed during mode onset and the occurrence of different
mode combinations. Before the onset of high-amplitude instability, PE p has a value of around
0.38. When the system is dominated by longitudinal, simultaneous longitudinal-azimuthal, and
azimuthal modes, PE p has characteristic values of around 0.25, 0.35, and 0.35–0.5, respectively,
with significant fluctuations observed only for the azimuthal-dominated case. The Jensen-Shannon
complexity (filled circular symbols) also exhibits qualitatively similar behavior, albeit with slightly
lower absolute values. The similarity of the PE p and Cp values observed during both simultaneous
longitudinal-azimuthal-mode states and dominant azimuthal-mode states may indicate that these
two pressure metrics are incapable of distinguishing between the instability regimes. However,
PEq and Cq in Fig. 3(b) show clear differences, which may be due to the increased noise of the
HRR measurements in comparison with the pressure measurements or due to significant differences
in the flame response, such as the almost complete extinction of the flame in the presence of
high-amplitude longitudinal modes [39].

The application of a clustering algorithm to both two-dimensional and three-dimensional time-
series data is shown in Figs. 3(c) and 3(d), respectively. As previously discussed, the combination
of pressure metrics in the two-dimensional data set results in similar values of PE p and Cp for
both simultaneous longitudinal-azimuthal modes and dominant azimuthal modes, resulting in a
continuous distribution spanning low to high values. A separate cluster of data points observed
just prior to t/tR = 0 and exhibiting exceptionally high values is attributed to stochastic fluctuations
arising from turbulent noise in the absence of thermoacoustic instability. The data are clustered
based on four medoids, which physically correspond to stochastic noise, dominant longitudinal
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FIG. 3. Permutation entropy and Jensen-Shannon complexity for the (a) pressure and (b) heat release rate
signals when tR = 2 s. (c) Two-dimensional complexity-entropy causality plane (CECP), a plane illustrating the
interaction between the complexity and entropy of signals. (d) Three-dimensional complexity-entropy causality
space (CECS), a feature space in which to better understand the categorization of signal behavior across the
various regimes. Cluster centroids are identified using k-medoids clustering, as denoted by orange markers.
Computations were executed with a window size of 0.1 s and a 50% overlap. The clustering patterns for the
other azimuthal sensor orientations are similar, so they are omitted here to reduce redundancy.

modes, simultaneous longitudinal-azimuthal modes, and dominant azimuthal modes. The two pres-
sure metrics, PE p and Cp, produce well-defined upper and lower medoids, but the two intermediate
medoid centers have similar values, which may lead to poor separation of some mode states.

The addition of the HRR metric PEq in the three-dimensional data set improves the identification
of the dominant azimuthal modes, resulting in a clearer distinction of this state. However, the
pure longitudinal and multiple mode states still share some continuous values, which may hamper
state identification. Again, the automated clustering leads to four medoids with the same physical
representation as the two-dimensional data set. However, these now exhibit better separation in
terms of their three-dimensional positions. The four medoids from the three-dimensional data are
used to cluster the mode states, which are color coded in Figs. 2 and 3.

A clearer assessment of this classification scheme can be found in the time series of A/| p̄| shown
previously in Fig. 2. Returning to this figure, during initial ramping of the equivalence ratio, the
system is dominated by background noise, without any evidence of high-amplitude thermoacoustic
instabilities (see black lines). Later, as the longitudinal mode strengthens, the A/| p̄| line is colored
red, representing a dominant longitudinal mode. For A/| p̄| � 0.005, the A/| p̄| line is colored blue,
denoting the presence of both longitudinal and azimuthal modes. This specific threshold value
was selected automatically, without user input, by the clustering algorithm, which is capable of
identifying even subtle quantitative differences in the time-series features between these mode
states. Finally, the decay of the longitudinal mode and the emergence of the steady high-amplitude
azimuthal mode are shown in green. It is worth noting that similar mode identification could have
been made by analyzing the relative amplitudes of the different spectral components, alongside
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FIG. 4. JPDFs showing the correlation between mode orientation, nature angle, and amplitude during
steady operation. (a) JPDF of the nature angle and mode orientation for the fundamental component and (b) the
first harmonic n = 2, as per the approach of [72]. Probability contours are shown through base 10 exponentials.
Red vector arrows indicate the mean rate of change of θ and χ . (c)–(e) Three JPDFs of the pressure envelope
and orientation of the fundamental mode for different bandpass filtered frequencies, fbp.

a quantification of the azimuthal mode amplitude A/| p̄|. However, this requires ad hoc instability
thresholds to be defined by the user, which necessitates prior knowledge of the system dynamics and
limits the wider applicability of the technique to previously unseen combustors. In the automated
identification routine used here, a variety of modal states can be accurately identified and differ-
entiated even without any user input. Moreover, this classification is made on the basis of either a
single pressure sensor in the two-dimensional data set or a single pressure sensor along with a single
HRR monitor in the three-dimensional data set, whereas the characterization of A/| p̄| requires data
from multiple azimuthal locations. Such time-series analysis tools are demonstrated here to provide
robust utility in the unsupervised identification of azimuthal, longitudinal, and mixed modal states.

C. Modal dynamics during steady operation

As the Appendix shows, for the case of φ = 1.1, ṁair = 74.4 gs−1, and PH = 0.4, after the initial
transient due to ramping of the equivalence ratio, the azimuthal mode dominates the system during
steady operation. However, as Sec. IV A shows, even during steady operation, the modal dynamics
are still azimuthal dominated, leading to significant changes in the mode orientation and nature
angle, yet the mode amplitude remains relatively unchanged. To examine this, Fig. 4 presents a
set of joint probability density functions (JPDFs) for different modal components during steady
operation. These JPDFs are formed with data compiled from six different test runs over a total
acquisition time of 52 s.

Figures 4(a) and 4(b) show the JPDFs of the orientation and nature angles for both the fun-
damental and first harmonic components. For the n = 1 mode, the system can take on every
orientation, but a statistical preference emerges for orientations between θ = 20◦ and 100◦, as noted
previously in the time series of Fig. 2. The most probable nature angles are near zero, confirming
the predominance of standing modes. The JPDF structure consists of a high-probability streak and
a low-probability donut structure centered at θ ≈ 180◦ and χ ≈ 5◦. Red vector arrows are used to
highlight the mean rate of change of the orientation and nature angles, as per the approach of [72].
These form a counter clockwise trajectory around the circular JPDF pattern, producing an overall
trajectory resembling a figure of 8. These characteristics indicate the most likely location of an
attractor to be at θ ≈ 90◦ and χ ≈ 0◦. For the n = 2 mode, the modal preferences and switching
patterns are broadly similar, demonstrating that these features are coupled to the fundamental mode.
Greater variability, however, is seen in both the nature and orientation angles of the n = 2 mode,
which may be ascribed to the lower signal-to-noise ratio for this specific component.

In this particular case, because the modal amplitude (An=1) remains relatively constant while
the nature angle is near zero, the local amplitude at a specific azimuthal position is expected to be
predominantly a function of the mode orientation angle. To explore this, Figs. 4(c)–4(e) show three
JPDFs of the normalized pressure envelope and the normalized mode orientation angle. The JPDFs
include pressure data from five different azimuthal locations, which collapse onto each other when
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plotted against their normalized orientation angle, θ − �. The pressure envelope at each orientation
angle is calculated from a filtered time series using the Hilbert transform and is then normalized by
the quaternion amplitude, A. Normalization of both the orientation and amplitude is performed using
the fundamental component (n = 1). Several frequency ranges are used for bandpass filtering of the
pressure signal in order to precisely isolate the subtle behavior of different modal components.

The fundamental frequency for this case is f = 1666 Hz. Therefore, bandpass filtering the
pressure data with a frequency window of fbp = 1 to 3000 Hz can capture the fundamental azimuthal
mode (n = 1) and the residual spectral content from the longitudinal mode as well as other combi-
nations of those modes, as shown in Fig. 4(c). High-probability regimes are distributed according to
the modulus of a cosine function, demonstrating that the local pressure envelope for the fundamental
mode is controlled by the orientation angle. This also demonstrates that the nature angle and residual
longitudinal components do not appear to have a significant effect on the local pressure envelope.
Bandpass filtering the data from fbp = 3000 Hz to 4000 Hz removes the fundamental azimuthal
mode, but retains the first harmonic (n = 2) at f ≈ 3300 Hz, as shown in Fig. 4(d). This JPDF
has a similar modulus cosine distribution, but with half the wavelength and at a lower normalized
amplitude. Normalization by the fundamental amplitude leads to a first harmonic of amplitude
An=2 ≈ 0.3An=1, which is consistent with the scaling reported in [29]. It should be noted, however,
that as these measurements are made in the upstream injector duct, rather than in the combustor
itself, any frequency dependence of the acoustic impedance (which is not characterized herein)
may change this amplitude ratio in the combustor. The alignment of the pressure envelope JPDF is
similar to that of the fundamental mode and, even though the orientation is normalized with respect
to the fundamental component, these still collapse. This indicates a consistent spacial arrangement
of the first harmonic structure with respect to the fundamental mode. Bandpass filtering the data
between fbp = 1 Hz and 4000 Hz captures the n = 1 and 2 azimuthal modes, producing the more
unusual distribution shown in Fig. 4(e). This structure arises owing to the more complex relationship
between the first- and second-order standing modes, which can contribute either constructively
or destructively at a given location, depending on the mode orientation. An interesting feature
is that the pressure amplitudes are no longer exceedingly low, unlike the behavior seen earlier at
θn=1 − � = ±90◦ in Fig. 4(c). These specific locations correspond to a pressure node for the n = 1
mode, but a pressure antinode for the n = 2 mode, which explains why the pressure response does
not drop to near zero at those locations.

This section has demonstrated that the amplitude of the pressure response at a specific azimuthal
location is mainly a function of the mode orientation. The mode orientation changes gradually over
time due to the inherent modal dynamics, which depend on how the preferred mode of orientation is
influenced by geometric asymmetries and noise in the system. Consequently, measurements taken
at a single azimuthal location are expected to contain significant intermittency as a result of the
time-varying mode orientation. Furthermore, the presence of strong harmonic components in the
pressure signals is likely to profoundly affect the observed intermittency. The characteristics of
intermittency and its relationship to chaos are examined in detail in the next section.

D. Intermittency and chaos

In various branches of science and engineering, it is important to identify the routes to chaos
taken by a nonlinear dynamical system. This is because such routes play a key role in determining
the stability and dynamics of the system during its transition from ordered to complex states, such
as turbulence [73]. Characterizing such routes constitutes a vital step towards the development
of tools for modeling, predicting, and controlling the system dynamics [74]. Since the 1980s,
several universal routes to chaos have been established, with three of the most common being
the period-doubling route, the torus-breakdown route (i.e., the Ruelle-Takens-Newhouse route),
and the intermittency route [75]. For the latter route, Pomeau and Manneville [68] identified
three different types of intermittency in dissipative dynamical systems: type I corresponds to a
saddle-node bifurcation, type II corresponds to a Hopf bifurcation, and type III corresponds to an
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inverse period-doubling bifurcation. All three types of Pomeau-Manneville intermittency have been
widely observed in various natural and engineered systems, demonstrating their universality [76,77].

In thermoacoustics, type-II intermittency has been observed in laminar Rijke-tube combus-
tors operating in a thermoacoustically self-excited regime [67,78]. It has also been observed in
turbulent premixed combustors where low-amplitude chaotic fluctuations (combustion noise) are
gradually replaced by increasingly long, intermittent bursts of high-amplitude periodic oscillations
(limit-cycle dynamics) as a bifurcation parameter is adjusted past the onset of thermoacoustic
instability [79,80]. However, although there is extensive evidence of the type-II intermittency route
to chaos in various laminar and turbulent combustors [23,79,80], much of the focus to date has been
on longitudinal thermoacoustic modes, with relatively little attention given to the intermittency of
azimuthal thermoacoustic modes.

In view of this, we performed nonlinear time-series analysis at an operating condition of φ = 1.1,
ṁair = 74.4 gs−1, and PH = 0.4 using data collected at an azimuthal angle of � = 0◦ for tR = 2 s
[see Fig. 2(a)]. The data were analyzed after the passage of an initial transient period lasting typically
t = 8 s, after which a statistically stationary, but intermittent, regime is reached. As noted earlier,
the intermittent dynamics are attributed to the multimodal characteristics of the system (see Fig. 4).
To examine how these modal components contribute to the observed intermittency, we bandpass
filtered the pressure signal with a spectral window of 1–3000 Hz, thus isolating the first azimuthal
mode [as per Fig. 4(c)].

Figure 5(a) shows the normalized pressure fluctuation signal p′/p at � = 0◦. This signal (black
line) consists of intermittent bursts that are strongly correlated with changes in the nature angle
χ (green line) and the mode orientation angle θ (purple line). These intermittent bursts are high-
amplitude periodic epochs associated with limit-cycle dynamics and tend to occur when the antinode
line is oriented at θ ≈ 30◦. These bursts of periodicity emerge above a background of low-amplitude
chaos (as confirmed below), which is observed for orientations near θ ≈ 90◦, consistent with the
data in Fig. 4. This behavior is thought to be governed by the azimuthal mode switching. It is
therefore important to identify the type of intermittency present at a specific azimuthal location, as
this could reveal clues about the underlying route to chaos.

The power spectral density (PSD) of p′/p at � = 0◦ is shown in Fig. 5(b). Consistent with the
interpretation given in Sec. IV C, the pressure signal exhibits the classic signs of intermittency as
proposed by Pomeau and Manneville [68]: the system switches back and forth between a regular
(nonchaotic) state and a chaotic state. In the present work, intermittency is revealed by the PSD as
well, which shows intermittent bursts of sharp dominant peaks during the high-amplitude epochs
of periodicity. These bursts emerge above a background of broadband spectral features during the
low-amplitude epochs of chaos. In phase space, the high-amplitude state corresponds to a closed
repetitive orbit belonging to a limit-cycle attractor [Fig. 5(c1)], as evidenced by the appearance of
two separate clusters of trajectory crossings in the double-sided Poincaré map [Fig. 5(d1)]. However,
the low-amplitude state corresponds to a strange attractor [Fig. 5(c2)], as evidenced by a complex
nonrepeating phase trajectory, resulting in a fractal section in the Poincaré map [Fig. 5(d2)]. This
fractal behavior is confirmed by the correlation dimension, which is a topological metric used to
quantify the degree of self-similarity in an attractor and was calculated here using the algorithm
of Grassberger and Procaccia [81]. The results (not shown) indicate that the correlation dimension
approaches a noninteger value of Dc ≈ 5.7 within the self-similar range of Euclidean distances. This
confirms that the low-amplitude state corresponds to a strange attractor, rather than a fixed-point
attractor perturbed by stochastic noise.

Two more analysis tools are used to confirm the existence of chaos in the low-amplitude state:
the 0–1 test [Fig. 5(e)] and the ACF [Fig. 5(f)]. In the 0–1 test [56], the high-amplitude periodic
state [Fig. 5(e1)] shows translation variables that follow a circular path with a clearly defined
boundary. The mean squared displacement M(ni ) is seen to oscillate within fixed bounds, leading
to a growth rate of Km = 0. Put together, these 0–1 test results indicate the presence of a periodic
process [56,59]. By contrast, the low-amplitude chaotic state [Fig. 5(e2)] shows translation variables
that follow a random walk, producing a Brownian-motion-like trajectory. The metric M(ni ) is no

053907-15



AHN, NYGÅRD, WORTH, YANG, AND LI

(a)

(b)

(c1) (d1)

(c2) (d2)

(e1)

(e2)

(f1)

(f2)

(i)

(ii)
(i)

(ii)

(iii)

(iii)

(g)
Kite-like 

structure

(h)

Limit 

cycle

Chaos

FIG. 5. (a) Time series and (b) short-time PSD of the normalized pressure fluctuation p′/p for a state of
intermittency at � = 0◦. Also shown are the (c) phase portraits, (d) Poincaré maps, (e) translation variables,
mean displacement, and asymptotic growth rate from the 0–1 test, (f) autocorrelation function, (g) recurrence
plot, and (h) first return map. In the subfigure labels, a numerical index of 1 indicates the high-amplitude
limit-cycle regime (blue) and a numerical index of 2 indicates the low-amplitude chaotic regime (red). The
intermittency is of the type-II Pomeau-Manneville class, as evidenced by the presence of kitelike patterns in
the recurrence plot and a spiral pattern in the first return map. The pressure signal was acquired at z = −81 mm
from the injector and was bandpass filtered with a spectral window of 1–3000 Hz.

longer bounded, but grows progressively with ni at a rate of Km = 1. These 0–1 test results are
consistent with a chaotic process [54,56,59]. Next, the periodic and chaotic states are examined
through the ACF. For the periodic state [Fig. 5(f1)], the envelope of the ACF decays gradually as
the number of time lags increases, which is indicative of regular (nonchaotic) motion and consistent
with a periodic limit cycle. By contrast, for the chaotic state [Fig. 5(f2)], the envelope of the
ACF decays much more rapidly as the number of time lags increases. The ACF envelope is a
wavy curve instead of a straight line, indicating the presence of short-range correlations and weak
self-similarity [61,62,82].

053907-16



LONGITUDINAL AND AZIMUTHAL THERMOACOUSTIC …

We identify the type of intermittency present in the fundamental azimuthal mode of our annular
combustor using the recurrence plot (RP) and the first return map. Figure 5(g) shows the overall RP
and its magnified view for a single switching event. In both panels, the empty patches correspond
to high-amplitude limit-cycle oscillations, while the filled patches correspond to low-amplitude
chaos. The intermittent interruption of the chaotic epochs by strong bursts of periodicity generates a
distinct checkerboard pattern. In the magnified view of the switching event, an elongated upper-right
corner appears as the system transitions from chaos to limit-cycle dynamics, forming a kitelike
structure. Such a structure is the hallmark sign of type-II intermittency conforming to the scenario
of Pomeau and Manneville [68]. Figure 5(h) shows the first return map, where the iterates are
seen forming a clear spiral trajectory. Such a spiral trajectory is another hallmark sign of type-II
intermittency [83,84].

The predominance of a single azimuthal-mode frequency is characteristic of moderate
amplitude instabilities, which are commonly found in atmospheric laboratory-scale annular com-
bustors [18,38]. Here, we have experimentally demonstrated that the intermittency route to chaos
can arise in the fundamental azimuthal mode of an annular combustor, broadening the universality
of this transition scenario across different types of combustion systems and beyond just longitudinal
thermoacoustic modes. This sets the stage for the development and application of generic control
techniques formulated from chaos theory [74,85]. Moreover, we have shown that the observed
intermittency conforms to type II of the Pomeau-Manneville class [68]. This specific class of
intermittency is known to be amenable to modeling [75,82], suggesting that existing modeling tools
from intermittency theory could be repurposed to improve the analysis and understanding of the
thermoacoustic behavior of annular combustors. Finally, the discovery of the type-II intermittency
route to chaos in the present system raises the possibility that the wide assortment of intermittency-
based precursors [80,86,87] already developed for the early detection of thermoacoustic instability
in longitudinal combustors might work on annular combustors as well.

It is worth noting that high-amplitude instabilities, induced by a choked downstream boundary
at the combustor exit, can produce strong harmonic components. To explore how these components
influence the intermittent dynamics, we widened the bandpass filter window to 1–4000 Hz, allowing
both the fundamental azimuthal mode (n = 1) and its first harmonic (n = 2) to be included in the
signal [consistent with Fig. 4(e)]. As Fig. 6 shows, notable differences can be found between the
previous signal (black line: type-II intermittency route to chaos) and the new signal containing
both the fundamental and first harmonic (orange line). In the latter case, intermittent switching
occurs between medium- and high-amplitude periodicity (limit cycles), rather than between low-
amplitude chaos and high-amplitude periodicity. The inclusion of the first harmonic has only
a minor influence on the high-amplitude dynamics [Fig. 6(c1)], which remain periodic with a
time-independent amplitude and a frequency at the fundamental azimuthal mode [Fig. 6(b)]. By
contrast, the inclusion of the first harmonic obscures the low-amplitude chaos observed in Fig. 5,
replacing it with medium-amplitude epochs containing both period-1 and period-2 dynamics at
the first harmonic of the fundamental azimuthal mode [Figs. 6(c2), 6(f), and 6(g)]. This periodic
behavior is clearly visible in the PSD, where the dominant spectral line alternates between f = 1666
and 3300 Hz [Fig. 6(b)]. In the reconstructed phase space [Figs. 6(d) and 6(e)], repetitive closed
orbits are observed at different time scales, producing two and four clusters of trajectory crossings
in the Poincaré map. Hence, during the medium-amplitude epochs, the system exhibits period-1
and period-2 dynamics at different time intervals. Put together, these observations concur with our
assessment of the JPDF (Fig. 4): the low-amplitude chaos observed earlier can be readily obscured
by the stronger fundamental and first harmonic of the azimuthal mode.

In summary, this section has revealed the profound influence that harmonic content can have
on the analysis and interpretation of the intermittent dynamics of an annular combustor, even at
just a single azimuthal location during changes in the mode orientation. When the fundamental
azimuthal mode is isolated ( fbp = 1–3000 Hz), type-II Pomeau-Manneville intermittency between
high-amplitude periodicity and low-amplitude chaos is observed. However, when the first harmonic
of the fundamental azimuthal mode is included ( fbp = 1–4000 Hz), the low-amplitude chaos is
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FIG. 6. (a) Time series and (b) short-time PSD of the normalized pressure fluctuation p′/p signal filtered
with two different frequency bands during a state of intermittency at � = 0◦. Also shown are (c) magnified
views of the p′/p signal, (d) phase portraits, and (e) Poincaré maps showing that the high-amplitude epochs
correspond to a period-1 limit cycle and the medium-amplitude epochs correspond to combinational dynamics
consisting of both period-1 and period-2 limit cycles. Subfigures (f) and (g) contain magnified views of the
period-1 and period-2 epochs, as seen via the time series, phase portraits, and Poincaré maps. The pressure
signal was acquired at a location z = −81 mm from the injector. The signal captures the fundamental azimuthal
mode and its first harmonic, along with the longitudinal mode.

overwhelmed by intermittency between medium- and high-amplitude periodic dynamics associated
with period-1 and period-2 motion.

V. CONCLUSIONS

Azimuthal thermoacoustic instabilities have been experimentally examined in a pressurized
annular combustor featuring 12 bluff-body-stabilized methane-hydrogen flames. A wide range of
operating conditions were investigated with the hydrogen power fraction varying from 30 to 50%
(PH = 0.3 to 0.5), the air mass flow rate varying from ṁair = 63.8 to 85.0 gs−1, and the overall
equivalence ratio varying from φ = 0.5 to 1.1. These operating conditions led to a pressure ratio
exceeding 1.89 across the downstream nozzle, implying a sonic exit condition.

First, the dynamic stability of the system was assessed at steady operating conditions. At a fixed
hydrogen power fraction, the pressure amplitude and frequency increased with the equivalence
ratio. At equivalence ratios up to stoichiometric, longitudinal modes were readily generated, but
at the highest equivalence ratios, azimuthal modes were preferred. As the hydrogen power fraction
was increased, the frequency of the self-excited thermoacoustic modes also increased, but their
amplitudes decreased.

Next, the transient behavior leading to the onset of thermoacoustic instability was studied by
carefully controlling the ramp rate of the equivalence ratio, at a single operating condition. From
an initially stable state, longitudinal modes were first generated. Following this, a finite regime was
identified in which both longitudinal and azimuthal modes existed simultaneously, with significant
fluctuations in the modal amplitude. After some time, the longitudinal mode decays, while the
azimuthal mode reaches a steady amplitude. Owing to the high amplitude of the thermoacoustic
oscillations, significant harmonic content was also observed.
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Automated mode detection was performed using a combination of time-series analysis tools. The
permutation entropy and Jensen-Shannon complexity were used, with the former calculated with the
pressure time series of a single injector and the latter calculated with both pressure and HRR data.
The application of k-medoids clustering in the complexity-entropy causality space (CECS) was
shown to adequately identify different modes of the system, including the stable state, both pure
longitudinal and pure azimuthal modes, as well as regimes where both modes were simultaneously
generated.

The high-amplitude azimuthal mode was preferentially standing in nature, with several preferred
mode orientations. The modal dynamics of this configuration were investigated by studying the
joint probability density functions of the different modal state space parameters and their rates of
change. It was found that the modal dynamics of the first harmonic closely resembled that of the
fundamental mode, implying that the pressure node of the fundamental mode is the location of a
pressure antinode of the first harmonic. This finding has important implications for the intermittency
behavior at the node locations, which was then analyzed in detail.

The intermittent dynamics of the fundamental azimuthal mode were investigated via phase
space reconstruction, the recurrence plot, and the first return map. The intermittency manifested
in the form of near-random bursts of high-amplitude periodicity on a limit-cycle attractor against
a background of low-amplitude chaos on a strange attractor. The presence of chaos was verified
through the 0–1 test and the autocorrelation function and strangeness was verified through the
correlation dimension. Notably, when the data was bandpass filtered to isolate the fundamental
azimuthal mode, type-II Pomeau-Manneville intermittency was observed in the azimuthal mode of
an annular combustor en route to chaos. However, including the first harmonic of the fundamental
mode in the data was found to obscure the low-amplitude chaos between the intermittent bursts
of periodicity. This led to a different form of intermittency, one involving switching between
high-amplitude periodicity and medium-amplitude combinational dynamics consisting of period-1
and period-2 limit cycles. Put together, these observations reveal that the harmonic content of the
system has a profound influence on the low-amplitude pressure response, altering the intermittent
dynamics during states in which the mode orientation changes.
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APPENDIX

Figure 7 shows stability maps in a parameter space defined by the mass flow rate and the
equivalence ratio. These maps encapsulate the various self-excited thermoacoustic modes arising
at different hydrogen power fractions. The top row shows the normalized pressure amplitude,
while the bottom row shows the dominant frequency of the thermoacoustic modes. The data were
sampled during steady operation, after any transient features due to ramping have decayed. The data
correspond to the dominant modes in terms of the amplitude of the pressure oscillations. The focus
is on hydrogen power fractions in the range PH = 0.3–0.5 because the use of either lower values
(PH = 0.0–0.2) or higher values (PH = 0.6–0.7) did not lead to thermoacoustic instability. These
limiting conditions are omitted in the interest of brevity.

In general, as the equivalence ratio and mass flow rate increase, the mean absolute chamber
pressure rises (from 136 to 232 kPa) and the bulk flow velocity decreases (from 29.7 to 22.9 ms−1).
For the highest mass flow rates and equivalence ratios, the system exhibits a choked boundary
condition at the exit.
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FIG. 7. Stability maps displaying the normalized pressure amplitude (a)–(c) and the dominant frequency
(d)–(f) of the thermoacoustic modes for various mass flow rates and equivalence ratios. Each column corre-
sponds to a unique hydrogen fraction: PH = 0.3, 0.4, and 0.5. In the bottom row (d)–(f), the appearance of
two data markers at the same operating point indicates the coexistence of two dynamical states. The blue
text adjacent to these markers denotes the probability of generating azimuthal modes, expressed as Nazi/Ntests

based on calculations involving at least four test runs. Specifically, the data points at PH = 0.3 and φ = 0.6,
corresponding to air mass flow rates of ṁair = 63.8, 74.4, and 85.0 gs−1, are stable states. These states are
dominated by noise, exhibiting very low amplitudes, and are highlighted with a red box. Below this, lean blow
out is highlighted with a separate red box. For higher hydrogen fractions than those shown, the system is stable
with only low-amplitude fluctuations, so these results are not shown.

The stability boundary changes slightly with PH, but generally the system becomes more ther-
moacoustically unstable as the equivalence ratio increases. At moderate values of the equivalence
ratio, the system is dominated by self-excited longitudinal modes with frequencies ranging from
258 to 411 Hz and with amplitudes of up to around 2% of the mean chamber pressure. However,
when PH = 0.4 and 0.5, at the highest equivalence ratios and mass flow rates, the longitudinal
modes are always suppressed, replaced by azimuthal modes with frequencies ranging from 1666
to 1703 Hz and amplitudes of around 1% of the mean chamber pressure. Several operating points
along this boundary can support bistable behavior (denoted by dual markers in Fig. 7), where
either high-amplitude azimuthal or longitudinal modes become self-excited after steady operating
conditions are reached, depending on the initial conditions. When present, azimuthal modes are
characterized by a single transition event—a shift from a longitudinal to an azimuthal mode. In
Fig. 7, the blue fractions at the bistable operating points indicate the probability of an azimuthal
mode being generated, in terms of the number of repeat measurements made at each condition.
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