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Stability of plane Couette flow with constant wall transpiration
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Plane Couette flow with constant wall transpiration, i.e., constant blowing from below
and constant suction from above, is a solution of the Navier-Stokes equations in terms
of exponentials. It is characterized by two Reynolds numbers Re and ReV , where Re
parametrizes the moving wall and ReV describes the influence of the transpiration. For this
flow the modified Orr-Sommerfeld equation admits one of the very few exact solutions
in terms of hypergeometric functions. Based on this, we solve the stability problem,
though for the main part focus on temporal stability. For small wall-transpiration rates
up to ReV � 6.71, the flow remains unconditionally stable, analogous to the classical
Couette flow for arbitrary Reynolds numbers Re. By further increasing ReV an instability
sets in and a minimum critical Reynolds number of Re = 668 350.491 is reached at
ReV = 9.799. Hence, around this point, the destabilizing effect of blowing outweighs the
stabilizing effect of suction. By further increasing the transpiration rate beyond this point,
the corresponding critical Reynolds number Re increases again and continues to grow. This
limiting case is accompanied by the development of a strong boundary-layer-like velocity
profile near the upper wall and the flow transitions to the asymptotic suction boundary
layer (ASBL). Thus, the present analysis comprises the whole range from classical Couette
flows extended by transpiration to the ASBL, which is known to have a strongly stabilizing
effect.

DOI: 10.1103/PhysRevFluids.9.053906

I. INTRODUCTION

One of the most classical methods of laminar flow control is to apply suction or blowing at the
wall. Early experimental studies of suction for the control of the laminar boundary layer demon-
strated that boundary-layer transition can be delayed by suction of the near-wall flow. References
[1,2] used a wing whose surfaces contained many thin and closely spaced spanwise suction slits
to demonstrate the decrease in drag associated with delayed transition. The theoretical treatment
of constant suction to boundary-layer flows is considerably simplified by assuming continuous
suction through a flat plate. The stabilizing effect of constant suction to boundary-layer flows was
first theoretically studied for the inviscid case in [3], which indicated that the amplification rate
of unstable disturbances for the asymptotic profile is an order of magnitude less than that for the
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Blasius boundary layer. Only a few years later those results were reviewed and extended in [4].
In particular, that work showed that with an asymptotic suction profile the inviscid form of the
Orr-Sommerfeld equation (OSE) can be transformed into a hypergeometric equation and thus solved
exactly. Reference [5] derived an analytical solution for the simplified inviscid case composed of
Gaussian hypergeometric functions. For the viscous case, the stability of this flow was numerically
analyzed in [6]. Therein it was pointed out that suction applied at the wall is an effective method
to delay the laminar-turbulent transition. The critical Reynolds number for the asymptotic suction
boundary layer (ASBL) was given as Re = 54 370, later corrected to Re = 54 382 in [7], which
employed Chebyshev collocation methods, and recently further refined to Re = 54 378 in [8], which
solved the OSE analytically.

Additionally, the linear stability analysis (LSA) of various combinations of channel and Couette
flow with crossflow have a long history. Reference [9] investigated the influence of a constant
crossflow through porous channel walls on the stability of plane Poiseuille flow numerically using
the Galerkin method. That work demonstrated that the crossflow has a stabilizing effect, leading
to an increase in the critical Reynolds number with increasing crossflow velocity. In addition to
plane Poiseuille flow, the studies on the hydrodynamic stability of plane Couette flow (PCF) have
also received considerable attention. However, the linear stability analysis of PCF showed that the
flow is linearly stable (see Ref. [10]) for all Reynolds numbers. Nevertheless, it has been observed in
experiments that PCF undergoes transition at a Reynolds number as low as 360 ± 10 (see Ref. [11]).
Reference [12] conducted a numerical and asymptotic study on the LSA of parallel wall-bounded
flows with injection at the lower wall and suction at the upper wall. Notably, that investigation
considered a very special form of flow, which consists of a combination of Couette, Poiseuille
and wall-transpiration flows. The analytical solution therein depends on the dimensionless pressure
gradient parameter �, and only when this parameter is set to � = 0, the base flow matches our
base flow of the plane Couette flow with constant wall transpiration (PCFT). However, in that study,
the pressure gradient parameter � was set to � = ReV /Re, where the Reynolds numbers ReV and
Re are based on the injection velocity V0 and the upper wall velocity Uw, respectively. With this,
the base flow becomes linear and the boundary-layer type of behavior disappears, which is quite
different from our base flow. In conclusion, Ref. [12] covers only a very narrow range of parameters
from the aforementioned flows. In contrast, the present work focuses on the combination of the
Couette flow with wall transpiration and covers the entire parameter range of these two flows. Still,
in the study in [12] it was shown that due to the injection process, the eigenmodes are significantly
reorganized in the complex plane, resulting in the linear instability of certain modes. That work
determined numerically a critical injection Reynolds number ReV � 48 for streamwise Reynolds
numbers of Re > 3300. The study also found that higher injection rates stabilize the flow.

The study conducted in [13] employed a numerical investigation using a spectral-element code
to examine the impact of a spanwise-oriented ribbon on the stability of PCF. In that investigation,
PCF was perturbed by the presence of a wire positioned midway between the bounding plates and
oriented in the spanwise direction. The investigation aimed to understand how a minor geometric
perturbation of the plane Couette geometry influences flow stability. It modeled the ribbon by no-slip
boundary condition in the simulation therein and computed two-dimensional (2D) steady solutions
of the Navier-Stokes equations for the perturbed configuration and carried out the linear stability
analysis of these solutions. It was found that the 2D steady flow loses stability at Re � 230 for a
nondimensional height of the ribbon of ρ = 0.086. Reference [14] probably was the first detailed
instability exploration of the PCFT, i.e., exactly the flow that we investigate presently. The main
aim therein was to compare the high-Re energy dissipation rate to an upper bound. Interesting
enough, it was found that this flow is an example of steady laminar flows in which the dissipation
is finite in the zero-viscosity limit, if at least a small amount of transpiration is present. For the
further analysis both energy stability and classical LSA were emplyed. In particular, it was found
that the laminar flow is absolutely stable for sufficiently low Reynolds number or sufficiently large
suction, while the laminar flow is linearly unstable at high Reynolds number with small suction.
Utilizing the LSA, a critical Reynolds number of Re ≈ 700 000 was determined for a crossflow to
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top plate speed ratio of O(1×10−5). It should be noted that this critical Reynolds number is a first
estimate to our findings. Nonetheless, there are notable distinctions between our work and [14].
First, we present a comprehensive analysis of the transition from the PCFT at low transpiration rate
to one at very high wall transpiration which corresponds to the ASBL. Second, we improve the
precision of critical-Reynolds-number determination and eliminate spurious modes by employing
a dispersion relation (DR) derived from the analytical solution of the modified OSE (MOSE),
which we discuss in detail in subsequent sections. Later, Ref. [15] extended the work in [14] by
investigating the hydrodynamic instability in mutually sliding parallel plates subjected to uniform
suction and system rotation. Additionally, a numerical stability analysis of Couette flow over a
wavy wall was studied in [16]. Therein it was shown that the presence of wall waviness gives
rise to an instability at Re = 5000 that leads to the formation of streamwise vortices. Furthermore,
Ref. [17] presented in detail the generation of large-scale streamwise vortices in a laminar PCF
with sinusoidal transpiration at the lower wall. Results showed that the threshold amplitude of the
transpiration required for the onset of the instability varies approximately as Re−1.15 for large Re.
In a more recent study of the PCF, Ref. [18] analyzed the forces needed to sustain the relative
motion of parallel plates with a 2D model. Therein a periodic wall transpiration was introduced at
the lower plate to mimic the surface roughness and to determined its impact on the laminar flow.
The system equations were solved numerically with Chebyshev expansions for modal functions. A
different type of bifurcation of PCF driven by periodic transpiration was shown in that work and
the results indicated that judicious selection of spatial transpiration patterns can reduce the flow
resistance generated by viscous friction. Reference [19] investigated the linear stability of plane
porous Couette flow with a uniform vertical throughflow. Therein the Brinkman-extended Darcy
equation was used to describe the flow in the porous layer and the equivalent of the Orr-Sommerfeld
eigenvalue problem (EVP) was solved numerically using a Chebyshev collocation method. That
work presented the neutral stability of PCF in a porous medium for different values of parameters.
Additionally, it was found that the presence of throughflow modifies the basic solution and it yields
a change in the formulation of the EVP for the analysis of stability of PCF in a porous medium.

Furthermore, many numerical computations have been employed for PCF. Direct numerical
simulations (DNSs) of PCF (see Ref. [20]) found that turbulent spots can be sustained for Reynolds
numbers above Re = 375 and that the horizontal extent of the spot has an elliptical character, with
an aspect ratio that increases with increasing Reynolds number. Reference [21] employed DNS of a
highly constrained PCF to investigate the dynamics of the structures found in the near-wall region
of turbulent flows. The results therein demonstrated that turbulent PCF could not be maintained
below Re = 300. Recently, PCF with constant suction and blowing was first investigated using
DNS in [22], discovering that turbulent intensities were observed to decrease with increasing
transpiration rate. Further, it was observed that the long and wide characteristic stationary rolls
of classical turbulent Couette flow are moved towards the suction wall due to the existence of the
wall transpiration.

We are unaware of a LSA of a PCFT. This flow is interesting because it unifies in a finite domain
the effect of blowing and suction, and a priori the combined effect and its influence on the stability
of the flow are largely unknown. For this, the present paper addresses the LSA of PCFT. The
organization of the paper is as follows. The stability problem of PCFT is formulated in Sec. II.
A transition from PCFT to the ASBL in the large-ReV limit is introduced in Sec. III. We briefly
discuss the numerical methods used in the present study and results in both the temporal and spatial
framework in Sec. IV. A summary and conclusions are given in Sec. V.

II. FORMULATION OF THE STABILITY PROBLEM

We consider a PCFT bounded by two walls extending to ±∞ in the x direction at y = 0 and
1. Figure 1 shows that the upper plate is moving relative to the static lower plate at a constant
wall velocity Uw. In addition, there is blowing on the lower plate and suction on the upper plate
with a uniform transpiration velocity V0. Due to the independent wall transpiration V0, two relevant
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FIG. 1. Dimensionless velocity profile of PCFT with wall-transpiration rates from ReV = 0 (pure PCF) to
ReV = 50.

Reynolds number are defined as

Re = Uwh

ν
, ReV = V0h

ν
, (1)

where the flow Reynolds number Re is based on the wall velocity Uw and the channel height h
and ReV denotes the transpiration Reynolds number based on the transpiration velocity V0. The
dimensionless base flow of PCFT has the form

U (y) = eReV y − 1

eReV − 1
, V (y) = ReV

Re
, (2)

where space and velocities have been nondimensionalized by h and Uw. Dimensionless velocity
profiles at different ReV are shown in Fig. 1. It is evident from Fig. 1 that a boundary-layer effect is
noticed for increasingly large ReV and the flow approaches the ASBL. This boundary-layer effect
becomes important when choosing the number and distribution of the collocation points for the
Chebyshev-collocation method employed in Sec. IV.

The starting point for the subsequent LSA is the MOSE with the laminar base flow velocity
U (y) = (U (y),V (y))T defined in Eq. (2), where the two-dimensional normal-mode ansatz has been
applied using the stream-function formulation for the velocity fluctuations (u′, v′),

�(t, x, y) = �(y)ei(αx−ωt ). (3)

Here α denotes the streamwise wave number, ω stands for the frequency, and �(y) denotes the
amplitude of the stream function �(t, x, y), which is defined as u′(y) = ∂�

∂y and v′(y) = − ∂�
∂x . With

this the MOSE reads[(
−iω + iαU (y) + ReV

Re
D

)
(D2 − α2) − iαD2U (y) − 1

Re
(D2 − α2)2

]
�(y) = 0, (4)

with D denoting derivatives with respect to y. For this fourth-order ordinary differential equation of
the stream function, the corresponding four boundary conditions (BCs) at the two walls are given as

�(y = 0) = 0, �(y = 1) = 0,

D�|y=0 = 0, D�|y=1 = 0. (5)

Compared to the classical OSE, the modified Eq. (4) is extended by a first- and a third-order
derivative term, scaling with ReV /Re after nondimensionalization, which arises from the constant
wall transpiration. It is interesting to note that Eq. (4) admits an exact analytical solution in terms of
generalized hypergeometric functions, which was first derived in [23] in the context of the ASBL.

053906-4



STABILITY OF PLANE COUETTE FLOW WITH CONSTANT …

For the present case it reads

�(y) = C1eαy
2F3

(
a1

b1
; z(y)

)
+ C2e−αy

2F3

(
a2

b2
; z(y)

)
+ C3eReV [(1−σ )/2]y

2F3

(
a3

b3
; z(y)

)
+ C4eReV [(1+σ )/2]y

2F3

(
a4

b4
; z(y)

)
, (6)

where the parameter σ and the argument z(y) are defined as

σ =
√

(Re2
V + 4α2)(eReV − 1) + 4i(−α + ω − ωeReV )Re

ReV

√
eReV − 1

,

z(y) = iα ReeReV y

Re2
V (eReV − 1)

.

The four linearly independent solutions of Eq. (4) contain the generalized hypergeometric functions
2F3 with the vector parameters ai and bi defined as

a1 =
[
−k̂ + k

k̂ + k

]
, a2 =

[
−k̂ − k

k̂ − k

]
, a3 =

[
1−σ

2 − k̂
1−σ

2 + k̂

]
,

a4 =
[

1+σ
2 + k̂

1+σ
2 − k̂

]
; b1 =

⎡⎢⎣1 + 2k
1+2k+σ

2
1+2k−σ

2

⎤⎥⎦, b2 =

⎡⎢⎣1 − 2k
1−2k−σ

2
1−2k+σ

2

⎤⎥⎦,

b3 =

⎡⎢⎣ 1 − σ

3+2k−σ
2

3−2k−σ
2

⎤⎥⎦, b4 =

⎡⎢⎣ 1 + σ

3+2k+σ
2

3−2k+σ
2

⎤⎥⎦, (7)

where k = α
ReV

and k̂ = √
k2 + 1. The four BCs (5) in combination with the derivative of the

eigenfunction give rise to the homogeneous matrix equation

A · C = 0, (8)

where the Aji are the respective coefficients (see the Appendix) of the constants Ci [see Eq. (6)] due
to the four BCs. For a nontrivial solution the determinant of A has to vanish, yielding the DR

det[A(α,ω, ReV , Re)] = 0, (9)

which summarizes the entire above EVP for the PCFT. It should be mentioned that the coefficients
A34 and A44 of C4 contain the exponential term eReV [(1+σ )/2] at the BC y = 1, where the exponent
is proportional to O(

√
Re) for large Re. In this limit these two elements would exceed any other

elements. Therefore, we divide the column with the coefficients Aj4 by the factor eReV [(1+σ )/2] before
the determinant is taken. Both the temporal and spatial problems have been investigated. Because of
their obvious equality on the neutral curve, for most of the subsequent results only the temporal case
will be considered further in the remainder of this paper, i.e., we have a real wave number α ∈ R
and a complex frequency ω ∈ C.

III. TRANSITION TO THE ASBL IN THE LARGE-ReV LIMIT

We will show in this section that, in a special limiting case, PCFT includes the case of the ASBL
and the former can be transformed into the latter by elementary transformations and a limiting
process. Thus, the stability characteristic of the ASBL is contained in the PCFT.

As was elaborated in the context of Fig. 1, the PCFT essentially evolves from a linear shear
flow into an exponential flow profile with boundary-layer characteristics developing with increasing
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FIG. 2. Dimensionless velocity profile of the ASBL with the displacement thickness δ1 and wall-normal
constant suction V0.

transpiration rate. Physically speaking, an increasing V0 leads to flow blockage in the entire bulk and
squeezes the flow profile to the upper wall. Although an entirely different flow, the ASBL shares
striking similarities with the PCFT, both in the physical manifestation and in the mathematical
representation of the solution of the OSE. Each respective laminar base flow features exponential
behavior, where the PCFT is defined in Eq. (2) while the ASBL is defined as

U (y) = 1 − e−y, V (y) = − 1

R̃e
, (10)

with R̃e = U∞
V0

, which is obtained by taking the displacement thickness δ1 = ν/V0 as the length
scale.

Upon comparing PCFT at high ReV and the ASBL, as depicted in Fig. 2, the velocity profiles
turn out to be complementary. For PCFT, at the upper wall, where the boundary layer is observed in
Fig. 1, the velocity reaches its maximum from where it decays exponentially towards the lower wall.
In contrast, the ASBL reaches its minimum at the lower wall and recovers towards the free-stream
velocity U∞ for increasing distances from the wall.

By simple transformations and the limiting case of large ReV , the two flows can be transformed
into each other. What essentially separates both flow profiles is a velocity shift. This discrepancy is
resolved by employing the Galilean invariance of Newtonian mechanics, i.e., via adding a negative
velocity shift to PCFT of magnitude

�U ∗ = −Uw, (11)

in dimensional variables, which after nondimensionalization reads

�U = −1. (12)

Adding the velocity shift (12) to Eq. (2) gives

Ũ (y) = U (y) + �U = eReV y − 1

eReV − 1
− 1 = eReV y − eReV

eReV − 1
. (13)

Then the velocity profile of PCFT exposed to Eq. (11) is mirrored around the y axis when compared
to the ASBL, as may easily be deduced from Fig. 1. Furthermore, the flow is still locked up by
both walls whereas the ASBL is defined on a semi-infinite domain. The latter difference may be
accounted for via a coordinate transformation of the form

ỹ = (1 − y)ReV , (14)
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where finally ReV → ∞ is assumed since the boundary-layer phenomena for PCFT occur for large
transpiration rates. A transformation as given in Eq. (14) has two effects. First, the domain is
mirrored around the x axis, mapping the upper wall to the lower wall and vice versa. Second, by
scaling with ReV , the formerly lower wall is mapped to infinity, i.e.,

y = 0 ⇒ ỹ → ∞, (15a)

y = 1 ⇒ ỹ = 0, (15b)

which essentially maps the domain between the two walls to a semi-infinite domain as given for the
ASBL. Employing the transformation (14) in Eq. (13) gives

Ũ (ỹ) = eReV (e−ỹ − 1)

eReV − 1
. (16)

The large-ReV limit then yields

lim
ReV →∞

Ũ (ỹ) = e−ỹ − 1, (17)

which equals the profile of the ASBL given in Eq. (10) mirrored around the y axis. This reflection
does not change the flow physics of the system.

Simple transformations can be used to transform the PCFT into the ASBL, and we now want to
do the same for the stability problem. For this we transform the MOSE for PCFT to the MOSE of
the ASBL, which is given by[(

−iω + iαU (y) − 1

Re
D

)
(D2 − α2) − iαD2U (y) − 1

Re
(D2 − α2)2

]
�(y) = 0. (18)

They differ in the velocity profiles U (y) as well as in the terms scaling inversely with the Reynolds
number Re−1. In fact, as will be demonstrated subsequently, the MOSE of PCFT can be transformed
such that the base flow U (y) is replaced by Eq. (17).

For this, first, a transformation of the y coordinate is due to Dn = (ReV )nD̃n, where D̃ is
the derivative with respect to ỹ. Considering Eq. (4), it becomes apparent that α must also be
transformed such that eventually the appearing powers of ReV due to the transformation of the
derivatives may be canceled out globally, i.e.,

α = −ReV α̃, (19)

where the minus sign is readily explained upon comparing the transformed velocity profile (17), i.e.,
Ũ (ỹ) = e−ỹ − 1, and the original velocity profile of the ASBL, i.e., U (y) = 1 − e−y. Subsequently,
the velocity shift �U = −1 is obtained via

ω = ReV (ω̃ − α̃). (20)

This has no influence on the stability characteristic of the flow as real and imaginary values of the
PCFT map to real and imaginary values of the ASBL, respectively. One final problem remains,
which is the terms scaling with Re−1. These terms will remain with a fourth power of ReV , while
all other terms will scale with a third power of ReV . This problem is rectified by comparing the
definitions of the Reynolds numbers for PCFT and the ASBL, i.e., Eqs. (1) and (10). If we now
assume that Uw = U∞, we observe that the ratios of the Reynolds numbers of Re and ReV of the
PCFT reduce to the one of the ASBL, i.e.,

R̃e := Re

ReV
= U∞

V0
. (21)

With this, all necessary transformations are established. Employing all quantities with a tilde into
the MOSE (4) for PCFT gives an equation that is mathematically equivalent to the MOSE of the
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ASBL given by Eq. (18) in the limit ReV → ∞. The four BCs (5) after transformation are finally
given by

�(y = 0) = 0 ⇒ �(ỹ = ReV ) = 0, (22a)

�(y = 1) = 0 ⇒ �(ỹ = 0) = 0, (22b)

D�|y=0 = 0 ⇒ D̃�|ỹ=ReV = 0, (22c)

D�|y=1 = 0 ⇒ D̃�|ỹ=0 = 0, (22d)

where we recall again that we have used ReV → ∞, which completes the boundary-value problem.
Thus, we have formally proven that the ASBL is a special case of PCFT. For the LSA of the ASBL
we refer to [8]. One therefore saves the effort of examining PCFT for large ReV in terms of the
rather intricate solutions of Eq. (4). Moreover, we observed a steep rise of computation time when
solving for eigenvalues at large ReV and thus obtaining solutions via the ASBL is evidently more
economic.

IV. STABILITY CHARACTERISTICS OF PCFT

A. Numerical methods

In this study, we use two numerical methods to find the eigenvalues of the system consisting of
Eqs. (4) and (5) for PCFT. In the first method, subsequently called the local method, the DR (9) is
solved for ω using an iterative numerical scheme. The key advantage is that eigenvalues can be com-
puted at arbitrary precision and no spurious modes are generated. For this, the DR (9) is numerically
solved using MATLAB with a nonlinear complex root finder based on the CXROOT package in [24],
which is based on LMFNLSQ in [25], i.e., an iterative Levenberg-Marquardt algorithm. However,
the successful computation of each specific eigenvalue using the local method highly depends
on the starting values. Furthermore, the evaluation of the generalized hypergeometric functions is
computationally slow. Therefore, this method is used mainly to increase the precision of the results
obtained from the collocation method to be described below and to eliminate all spurious modes.

The spectral collocation method is the second computational scheme, in the following called
the Chebyshev-Gauss-Lobatto (CGL) method, and is based on Chebyshev polynomials which are
applied to Eqs. (4) and (5), which transfers it to a matrix EVP. In turn, this is substituted into
a matrix eigenvalue solver, which results in discrete eigenvalue spectra. The collocation scheme
is classical, well established for this model class, so for details only we refer the reader to [26].
Although the CGL method can directly provide a large number of eigenvalues, spurious unphysical
modes may appear. These eigenvalues are filtered out by employing all eigenvalues from the CGL
method as initial guesses in the computation of the eigenvalue based on the local method. With this
combination of the local and CGL methods, both an arbitrary precision is achieved and all spurious
modes are eliminated.

B. Neutral stability surfaces, curves, and critical parameters

First, the surface of neutral stability of PCFT is examined. Classically, the neutral curve is given
in a Re-α coordinate system, which immediately sets out the critical Reynolds number as the
smallest Re on the curve of neutral stability. Due to the additional parameter ReV in our study,
the traditional neutral curve is replaced by a neutral surface. A more comprehensive overview
of the temporal stability behavior for the present flow is obtained by means of a 3D plot in
Figs. 3(a)–3(c), where the temporal neutral surface (ωi = 0) is plotted as a function of the flow
Reynolds number Re, the transpiration Reynolds number ReV , and the streamwise wave number
α. For a fixed ReV classical stability curves arise, as they are known, e.g., from boundary-layer
flows. However, also varying ReV , it can be seen in Figs. 3(a) and 3(b) that the interior of this
surface corresponds to unstable modes. The shape of the neutral surface in Fig. 3(a) shows that the
range of unstable streamwise wave numbers α increases rapidly with an increase of the transpiration
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FIG. 3. (a)–(c) Different perspectives, projections, and parameter ranges of the neutral stability surface
of PCFT as parametrized by the flow Reynolds number Re, the transpiration Reynolds number ReV , and the
streamwise wave number α. (d) Neutral stability curve at ReV = ReV,cr together with contours of growth rates
ωi > 0.

Reynolds number ReV . It is important, however, that the temporal instability may only occur above
a distinct threshold for ReV , as indicated in Fig. 3(c). This threshold of ReV,s � 6.71 holds up
to very large Re, here tested up to Re = 3.0 × 107, and seems to be of universal nature for the
entire flow. For small transpiration rates up to the threshold, the PCFT is linearly stable like
the PCF without transpiration. For each ReV above this threshold, a corresponding local critical
Reynolds number Re can be identified at which the flow becomes unstable. This parametrization
of the local critical Re by ReV is visualized in a linear scale in Fig. 3(b), or more precisely the
projection of the neutral stability surface onto the Re-ReV plane, which is referred to as the critical
curve. This critical curve defines the threshold for the laminar base flow of PCFT required for
the onset of temporal instability. From the form of the critical curve it is apparent that there is a
particular ReV where the Reynolds number Re is minimal. This lowest critical Reynolds number at
Recr = 668 350.491 is hereafter called the global critical Reynolds number that entails the global
critical transpiration Reynolds number ReV,cr = 9.799 and streamwise wave number αcr = 1.320.
The definition of the global critical parameters was first given in [17]. Beyond this transpiration
Reynolds number ReV,cr, the local critical Reynolds number Re increases again and continues to
grow.

When focusing on ReV,cr the neutral surface reduces to a neutral curve, which is shown in
Fig. 3(d). From this it is further observed that the maximum exponential temporal growth rate is
ωi = 0.002 75 at Re = 2.4 × 106 and α = 0.91. When further increasing Re, the range of unstable
streamwise wave numbers α becomes narrower, while the lower neutral stability branch seems to
asymptotically tend towards zero.
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FIG. 4. Temporal and spatial spectra of PCFT at the globally critical values of Recr = 668 350.491 and
ReV,cr = 9.799 for (a) streamwise wave number αcr = 1.320 and (b) frequency ωcr = 1.123.

The limiting case of the ASBL can be read directly from Fig. 3(c). In the limiting case ReV → ∞
the critical curve runs against the linear function between ReV and Re defined by Eq. (21), i.e.,
ReV = Re/R̃e, and we find that the critical Reynolds number of the ASBL is the inverse of the
slope, i.e., R̃e = 54 378, which is exactly the value found in [8].

C. Spectra and eigenfunctions

In the following, starting from the global critical parameters, a closer look is taken at the
eigenvalue spectra as well as the eigenfunctions. First, the eigenvalues of the MOSE (4) for PCFT
at Recr and ReV,cr are shown in Fig. 4. For the actual calculations, we employed n = 500 collocation
points to calculate the eigenvalues using the CGL method, as mentioned previously, based on a
MATLAB Chebyshev collocation code for which the package in [26] was modified. In order to
eliminate all spurious modes as well as to increase the accuracy of higher modes in the spectra, all
eigenvalues were subsequently iteratively refined by evaluating the DR (9). Concretely, all modes
obtained by the spectral collocation method were employed as starting points into the nonlinear
root finder for DR (9), which was evaluated with MAPLE 2019 and implemented through Muller’s
algorithm [27], a second-order secant method. The tolerated residual for the DR (9) was set to a
very low threshold, at which the iteration was halted. Due to the highly ill-conditioned behavior of
the hypergeometric function for certain parameter ranges, for our iterative refinement it became
necessary to set a tolerated residual as low as O(10−100) and the number of digits had to be
drastically increased to 120 in order to achieve convergence.

For the global critical parameters, Fig. 4(a) displays the temporal eigenvalues c, which are defined
as the complex phase velocity with c = ω/α. Branches of eigenvalues for plane Poiseuille flow were
classified in [28] as an A branch when cr → 0, a P branch when cr → 1, and an S branch when
cr → 2/3, with cr denoting the real part of the phase velocity.

Analogously, the eigenvalues for PCFT are located on three branches which have been labeled
A (cr → 0), P (cr → 1), and S (cr ≈ 0.1). As indicated in Fig. 4(a), there is one neutrally stable
eigenmode on the P branch with ci � 0. The least stable eigenmode corresponds to the Tollmien-
Schlichting (TS) wave (see Ref. [29]). The A modes, which tend to have small phase velocities, are
designated as lower wall modes, whereas the P modes, which have much higher phase velocities,
are referred to as upper wall modes. The S modes for the present flow correspond to a phase speed
equal to the average speed of the base flow. This for the PCFT can be calculated from the integral
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FIG. 5. Temporal spectra are displayed at fixed Recr = 668 350.491, αcr = 1.320, and varying ReV for
(a) ReV = 5, (b) ReV = 15, and (c) ReV = 20.

of the dimensionless base flow (2) from y = 0 to y = 1, i.e.,

Um(ReV ) =
∫ 1

0

eReV y − 1

eReV − 1
dy = 1

ReV
− 1

eReV − 1
. (23)

For the critical value ReV,cr = 9.799 we obtain Um = 0.102, which is close to cr = 0.1 of the S
modes in Fig. 4(a). It is evident that the S modes in our present study depend only on the transpira-
tion Reynolds number ReV . Figure 4(b) shows the spatial spectrum for the global critical parameters.
Similar to the temporal case, the spatial spectrum also has three branches, and we again observe the
emergence of a neutrally stable eigenvalue with αi � 0, which corresponds to the TS mode.

To understand the effect of variation of ReV on the temporal eigenvalue spectrum c =
c(Re, ReV , α), three more cases are examined. In Fig. 5, the eigenspectra in Recr and αcr are
compared for varying ReV . The spectra for varying ReV have similar three-branch structures. The
modes on the S branches move with increasing ReV in the direction of a lower real part of the phase
velocity cr , which is due to the decrease in the bulk velocity of the base flow Um with increasing ReV .
In addition, we observe that the number of modes on A branches increases and the modes seem to
asymptotically tend towards the origin. This may be attributed to the fact that the base flow of PCFT
in the vicinity of the lower plate decreases with increasing ReV and approaches zero with larger ReV

(see Fig. 1). The P branches of spectra have a bifurcated structure and the least stable modes appear
on them. When ReV > ReV,cr, the imaginary part of the phase velocity ci of the least stable mode
is reduced with increasing ReV from ci = −0.008 93 at ReV = 15 in Fig. 5(b) to ci = −0.024 19 at
ReV = 20 in Fig. 5(c), i.e., the flow becomes more stable.
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FIG. 6. Plots of the (a) u and (b) v eigenfunctions parametrized by ReV at fixed Re = Recr and α = αcr. The
eigenfunctions are respectively normalized by the maxima of the u components and were plotted employing
the exact solution (6).

Figure 6 displays the eigenfunctions associated with the least stable modes of the spectra in Fig. 5
and the TS mode of the spectrum in Fig. 4(a). The magnitude of the streamwise component u and
the wall-normal component v are plotted using the exact eigenfunctions given by Eq. (6). Because
of apparent reasons as pointed out in Sec. III, the eigenfunction profiles of the PCFT are similar to
those of the ASBL in [7] (see Fig. 4 therein) if mirrored around the y axis compared to the ASBL
eigenfunctions. Both velocity eigenfunctions of the PCFT vanish at the lower and upper plates due
to their respective boundary conditions. From the shapes of the u eigenfunctions in Fig. 6(a) we
observe that the maxima of the eigenfunctions occur close to the upper wall. Boundary-layer-type
effects of the u eigenfunction are observed near both the upper and the lower plates with only a
weak dependence on Rev [see insets in Fig. 6(a)]. In addition, Fig. 6(b) shows that the ratio between
the v eigenfunctions is larger than for the u eigenfunctions at varying Rev though their magnitudes
are one order of magnitude apart. The stronger v dependence on Rev might indicate a dominant
influence on the stability of the flow.

V. CONCLUSION

The analytical solution of the MOSE (4) for the PCFT based on an exponential velocity profile
was derived in terms of 2F3 generalized hypergeometric functions. Together with the boundary
conditions at the upper and lower plate, this yielded an EVP which in turn was rewritten into a DR
for the complex frequency ω for the temporal problem depending on Re, ReV , and α. In addition,
we showed that in the limiting case ReV → ∞, the stability problem for the ASBL is obtained.
The EVPs of the PCFT in our study were tackled using two numerical methods, i.e., a local and
a CGL method. In the first step in the CGL method the EVP for the stability analysis was solved
numerically using the Chebyshev collocation method. In the second step, with the local method
based on the DR (9), we inserted all eigenvalues from the collocation method as initial guesses
into the DR and as a result were able to (i) eliminate all spurious modes and (ii) at the same time
arbitrarily increase the precision of the eigenvalues.

Results of the stability analysis showed that the PCFT is always stable for values of the
transpiration Reynolds number below the threshold ReV � ReV,s = 6.71. Beyond this value the
flow may become unstable depending on α and Re. Neutral stability surfaces were derived to
represent the range of transpiration Reynolds number ReV and the range of Reynolds number Re for
which instability occurs. Furthermore, critical curves were obtained by the projection of the neutral
stability surface onto the Re-ReV plane. On the critical curve a particular point of ReV was extracted
at which the Reynolds number Re is minimal. The globally critical values were determined to
Recr = 668 350.491, ReV,cr = 9.799, αcr = 1.320, and ωcr = 1.123. Moreover, temporal and spatial
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spectra of the PCFT showed that the eigenvalues are located on three branches. In the temporal
spectra in Recr and αcr, by increasing ReV , the S modes move towards a lower phase velocity due
to a decrease in the corresponding averaged speed of the base flow and A modes tend towards the
origin, which may be caused by a decline in the base flow near the lower wall. It can further be
observed that the TS modes, defined as the most critical mode in the respective spectra, exclusively
appear on the P branch, which is in contrast to plane Poiseuille flow, where the critical modes
instead appear on the A branch. Finally, the u eigenfunctions develop a strong boundary-layer-like
velocity profile near the upper wall. In addition, the ratio between the v and u components reaches
its maximum when the flow is neutrally stable.

Note that we intended to refrain from extending the present work further, e.g., to transient growth
(TG), instead focusing here on the base modes. To this end, we highlight the two limiting cases of
PCFT, i.e., pure PCF without wall transpiration and the ASBL, which represents the limiting case
for very high transpiration rates.

Even the case of pure PCF without wall transpiration does not appear to be fully understood
to date and, in particular, the theory of TG does not fully describe the transition mechanism (see
Refs. [30,31]). Rather, the work of [31] showed very clearly that considering only the linear TG
is not sufficient to predict streak instability. It was shown that nonlinear modifications of the TG
process must be included in order to assess the instability of the flow. The work of [31,32] then
performed and extended a secondary stability analysis of the linear TG in pure PCF. Significantly
different methods are required for the pure PCF in order to represent its instability mechanisms (see,
e.g., [32–36]).

For the other limiting case of very high transpiration rates, i.e., ReV → ∞, it was shown herein
that this corresponds to the ASBL. There are a number of theoretical, numerical, and experimental
works for the ASBL and they all agree that the critical Reynolds number assumes a very high value,
about Recrit ≈ 54 378. Care should be taken because the above Reynolds number for the ASBL in
the present work is obtained from the ratio of Re/ReV defined by Eq. (21), and the critical Reynolds
number of the ASBL can be read directly from the reciprocal of the slope of the neutral stability
curve in the Re-ReV plane.

The data that support the findings of this study are openly available in [37].
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APPENDIX: MATRIX ELEMENTS OF THE COEFFICIENT MATRIX A

With the BCs (5) the matrix elements of the coefficient matrix A in Eq. (8) are given by the
expressions

�(y = 0) = C1 2F3

(
a1

b1
; z(0)

)
︸ ︷︷ ︸

A11(α,ω,ReV ,Re)

+C2 2F3

(
a2

b2
; z(0)

)
︸ ︷︷ ︸

A12(α,ω,ReV ,Re)

+C3 2F3

(
a3

b3
; z(0)

)
︸ ︷︷ ︸

A13(α,ω,ReV ,Re)

+C4 2F3

(
a4

b4
; z(0)

)
︸ ︷︷ ︸

A14(α,ω,ReV ,Re)

= 0,

(A1)
d�(y)

dy

∣∣∣∣
y=0

= C1

[
α 2F3

(
a1

b1
; z(0)

)
+ ReV z(0)

a1

b1
2F3

(
a1 + 1
b1 + 1

; z(0)

)]
︸ ︷︷ ︸

A21(α,ω,ReV ,Re)

+C2

[
−α 2F3

(
a2

b2
; z(0)

)
+ ReV z(0)

a2

b2
2F3

(
a2 + 1
b2 + 1

; z(0)

)]
︸ ︷︷ ︸

A22(α,ω,ReV ,Re)
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+C3ReV

[
1 − σ

2
2F3

(
a3

b3
; z(0)

)
+ z(0)

a3

b3
2F3

(
a3 + 1
b3 + 1

; z(0)

)]
︸ ︷︷ ︸

A23(α,ω,ReV ,Re)

+C4ReV

[
1 + σ

2
2F3

(
a4

b4
; z(0)

)
+ z(0)

a4

b4
2F3

(
a4 + 1
b4 + 1

; z(0)

)]
︸ ︷︷ ︸

A24(α,ω,ReV ,Re)

= 0, (A2)

�(y = 1) = C1 eα
2F3

(
a1

b1
; z(1)

)
︸ ︷︷ ︸

A31(α,ω,ReV ,Re)

+C2 e−α
2F3

(
a2

b2
; z(1)

)
︸ ︷︷ ︸

A32(α,ω,ReV ,Re)

+C3 eReV [(1−σ/)2]
2F3

(
a3

b3
; z(1)

)
︸ ︷︷ ︸

A33(α,ω,ReV ,Re)

+ C4 eReV [(1+σ/)2]
2F3

(
a4

b4
; z(1)

)
︸ ︷︷ ︸

A34(α,ω,ReV ,Re)

= 0, (A3)

d�(y)

dy

∣∣∣∣
y=1

= C1 eα

[
α 2F3

(
a1

b1
; z(1)

)
+ ReV z(1)

a1

b1
2F3

(
a1 + 1
b1 + 1

; z(1)

)]
︸ ︷︷ ︸

A41(α,ω,ReV ,Re)

+C2 e−α

[
−α 2F3

(
a2

b2
; z(1)

)
+ ReV z(1)

a2

b2
2F3

(
a2 + 1
b2 + 1

; z(1)

)]
︸ ︷︷ ︸

A42(α,ω,ReV ,Re)

+C3ReV eReV [(1−σ )/2]

[
1 − σ

2
2F3

(
a3

b3
; z(1)

)
+ z(1)

a3

b3
2F3

(
a3 + 1
b3 + 1

; z(1)

)]
︸ ︷︷ ︸

A43(α,ω,ReV ,Re)

+C4ReV eReV [(1+σ )/2]

[
1 + σ

2
2F3

(
a4

b4
; z(1)

)
+ z(1)

a4

b4
2F3

(
a4 + 1
b4 + 1

; z(1)

)]
︸ ︷︷ ︸

A44(α,ω,ReV ,Re)

= 0,

(A4)

where ai

bi
= ai1ai2

bi1bi2bi3
and we have further made use of the identity d

dy 2F3( a
b ; y) = 2F3( a+1

b+1 ; y).
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