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Noise-induced transitions past the onset of a steady symmetry-breaking
bifurcation: The case of the sudden expansion
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We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady
symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale.
By generalizing the multiple-scale weakly nonlinear expansion technique employed in the
literature for the response of the Duffing oscillator, we rigorously derive a stochastically
forced Stuart-Landau equation for the dominant symmetry-breaking mode. The probability
density function of the solution, and of the escape time from one attractor to the other, are
then determined by solving the associated Fokker-Planck equation. The validity of this
reduced order model is tested on the flow past a sudden expansion for a given Reynolds
number and different noise amplitudes. At a very low numerical cost, the statistics obtained
from the amplitude equation accurately reproduce those of long-time direct numerical
simulations.
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I. INTRODUCTION

Fluid flows, governed by the Navier-Stokes equations, are known to exhibit an extremely rich
phenomenology, including pattern formation, spatiotemporal chaos, turbulence, etc. Specifically,
some fluid flows can reach an attracting coherent structure (e.g., fixed point) where they appear to
be locally stationary for possibly extremely long times but, from time to time, because of a rare
fluctuation, exit the basin attraction of such coherent structure and transit towards another one.
Although possibly restricted to some specific regimes in the parameter space, rare transitions are
observed in completely different contexts. These include three- or two-dimensional experimental
turbulent flows [1], for instance, wakes behind an Ahmed body (a simplified car model) [2] or an
axisymmetric [3,4] bluff body. Other examples are found in magnetohydrodynamics experiments
[5], two-dimensional numerical turbulent flows [6–8], and atmospheric flows [9,10].

In the framework of equilibrium statistical mechanics, steady states of the system minimize a
potential. Thenceforth, some. laws describing the probability of rare transitions can be analytically
derived. The Arrhenius law, in particular, considers a bistable overdamped system driven by a
stochastic noise ξ (t ) at temperature �e, dt x = −dxV (x) + √

2kB�eξ (t ), with V a double-well
potential of potential barrier �V . The law predicts the expected time 〈�T 〉 between two transitions
to scale like the exponential of minus the potential barrier separating two attractors, divided by the
square of the fluctuations intensity, i.e., 〈�T 〉 ∝ exp[−�V/(kB�e)].

However, fluid flows are mostly out-of-equilibrium systems, for energy is constantly injected
(typically at boundaries) and dissipated by viscosity. In addition, Navier-Stokes equations have
a continuously infinite number of degrees of freedom, which, after discretization, translates into
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thousands or millions of degrees of freedom, depending on the flow complexity. Therefore, charac-
terizing rare transitions from one basin of attraction of the Navier-Stokes equations to another is a
current scientific challenge.

There exist some specific numerical approaches in considering these transition events. All
are motivated by the fact that a direct numerical simulation of the system is inappropriate in
the statistical study of transition events, both because they occur over possibly extremely long
timescales and because the large number of degrees of freedom makes the numerical simulations
of the Navier-Stokes equations unreasonably slow and energetically costly. Instead, the used nu-
merical techniques incorporate some elements of the large deviation theory [11], which considers
nonequilibrium dynamical systems in the limit where they are forced by weak noise (consistent with
the fact that transitions are rare). The general idea is to compute the most likely trajectory that links
two given stable and distinct states. This specific trajectory is called an instanton and was shown
in Ref. [11] to minimize an action in the path integral representation of the system. The probability
of the transition along the instanton can also be computed and used to estimate the expected time
between two transition events.

The instanton was numerically computed in different fluid flow modelizations: from two-
dimensional geophysical turbulence [6,12] to one-dimensional Burgers turbulence [13] and to the
transition between the plane Poiseuille flow and a traveling wave solution in a two-dimensional
periodic domain [14]. More recently, Ref. [15] considered the three-dimensional stochastically
forced Navier-Stokes equations and obtained the most likely configurations for extreme vorticity
and strain events as the numerical solutions of the instanton problem. A more indirect manner
to determine the instanton is by using the adaptive multilevel splitting algorithm [16], which is
a rare event algorithm whose effect is to magnify the number of transition events. Thereby, very
large statistics of transition paths can be produced that are expected to concentrate around and
reveal the instanton. Recently, this method was successfully employed in Ref. [7] for the turbulent
flow obtained from a simplified model of Jupiter troposphere’s dynamics. The work presented in
Ref. [17], concerned about extreme mechanical forces exerted by a turbulent flow impinging on a
bluff body, constitutes another example. It was also shown in a recent work [18] that the computation
of the instanton trajectory could be linked to a more basic nonlinear maximization problem of the
flow kinetic energy [19].

To the knowledge of the authors, all the works mentioned so far relied on numerical tools. In the
present paper, we shall employ a different strategy, expected to be valid at least in some simplified
situations. In the spirit of Ref. [20], who focused on the extension of the classical nucleation theory
to an active phase-separating system, we first aim at analytically reducing the dimensionality of a
flow forced by a weak and slowly varying stochastic noise. Then, analytical tools from statistical
mechanics such as the Fokker-Planck equation will be deployed to compute the statistics of the
reduced-order system, which is substantially easier to study and physically interpret than the original
equation.

A general method for reducing the dimensionality of a nonlinear system was developed in
dynamical system theory and is valid asymptotically close to a bifurcation point in the parameter
space, where an eigenmode of the linearized operator becomes unstable and grows exponentially.
The idea is to derive an equation for the amplitude(s) of the bifurcating eigenmode(s). Such an
equation is of minimal dimension (and nonlinear order) yet extracts the core of the nonlinear
behavior of the original equation in the vicinity of a bifurcation point [21]. Its derivation relies
on a clear multiple-scale asymptotic expansion procedure, and its first use in fluid mechanics dates
back to Ref. [22] in the context of thermal convection. It was used in numerous studies since then
and still is nowadays, for instance in Refs. [23–28] to cite only a few.

Of particular interest here, the analyses in Refs. [29–31] derive a Stuart-Landau weakly nonlinear
amplitude equation for the steady symmetry-breaking eigenmode in the flow past a two-dimensional
plane sudden expansion. Thereby, the two asymmetric attractors of the flow after the bifurcation
could be approached as the equilibrium solutions of a single-degree-of-freedom equation, with good
accuracy for Reynolds numbers asymptotically close to its critical value at the bifurcation. Note that
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a substantial body of work is devoted to the sudden expansion flow, due to its common appearance
in the industrial or academic context. In addition to the ones already presented, could also be
mentioned the studies in Refs. [32] and [33], concerned with the stability of the two-dimensional
plane sudden expansion for different geometries and inlet velocity profiles, respectively.

The construction of amplitude equations can be generalized to nonlinear dynamical systems
subject to a stochastic forcing, as shown in Refs. [34–36] for the Duffing and Duffing-Rayleigh
oscillators, respectively. The inclusion of a noise term in an amplitude equation would have the
effect of making its solution transit from one of its equilibrium solutions to another, for instance
when the latter equation describes a supercritical or subcritical pitchfork or a subcritical Hopf
bifurcation. The statistics of these transitions could be obtained with low computational efforts, yet
in principle apply to the original equation, under the simplifying hypothesis made for the derivation
of the amplitude equation.

However, if stochastic amplitude equations were found to be accurate models for some specific
flows indeed [3,4,37], then the noise term systematically resulted from an ad hoc addition. In other
words, the rigorous method deployed for the Duffing oscillators in Refs. [34–36] to recover a
noise term at the level of the amplitude equation directly from the stochastically forced original
equation does not seem to have been yet applied to the Navier-Stokes equations. Therefore, this will
be the primary focus of the present paper.

For this purpose, we will consider a flow experiencing a supercritical pitchfork bifurcation, such
that our method is a generalization of that outlined in Ref. [31] and will result in a stochastically
forced Stuart-Landau equation. Yet the proposed method is expected to be adaptable to other fluid
flows subject to multistability, thus to noise-induced transitions, closely after a bifurcation. Such
situations include other flows experiencing a supercritical pitchfork bifurcation, such as the one
in a pipe junction for some junction angles [38] or between a corotating disk pair for some gap
ratio [39]. Supercritical pitchfork bifurcations also occur in laminar (or turbulent) three-dimensional
wakes of rectangular prisms for some aspect ratios [28], in the granular plane Couette flow for some
parameters [25], in active suspensions of elongated swimming particles (immotile shakers or motile
pullers or pushers) for some swimming speed [26], in the two-dimensional flow past an inverted flag
if the aspect ratio is large enough and the small-enough mass ratio [40], etc. The method could also
be extended to flows subject to a subcritical Hopf or subcritical pitchfork bifurcation. In the latter
case, three stable equilibria exist, and some examples are found in the infinitely diverging channel
(Jeffery-Hamel flow) [23], in active suspensions [26], in an axisymmetric liquid bridge subjected to
axial flow [41], and many others.

The method to derive a stochastically forced Stuart-Landau equation directly from the stochasti-
cally forced Navier-Stokes equations is outlined in Sec. III. The probability density function of its
solution, as well as the statistics of the transition time between its two deterministic attractors, will
then be computed by means of the Fokker-Planck equation. The results are reported and compared
with direct numerical simulations in Sec. IV.

II. PROBLEM DEFINITION

We consider fluid flows governed by the incompressible Navier-Stokes equations (NSE)

∂t U = −C[U, U] − ∇P + Re−1�U + Fξ (αεt )f

0 = ∇ · U, (1)

where U is the velocity field, P is the pressure field ensuring U to be divergence-free, and Re is
the Reynolds number. The nonlinear advection operator C[a, b]

.= [(∇a)b + (∇b)a]/2 has been
defined. We will restrict the analysis to Re numbers asymptotically close to a critical value
Rec, where the flow experiences a steady and supercritical symmetry-breaking bifurcation, also
called supercritical “pitchfork” bifurcation. Note that in the rest of the paper, the use of the term
“symmetry” will always refer to a discrete symmetry. Specifically, we will consider cases where a
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distance to criticality, defined as

ε
.= Re−1

c − Re−1, is such that 0 < ε � 1, (2)

in accordance with Refs. [24,31]. In other terms, the symmetric flow at Re > Rec possesses a steady
symmetry-breaking eigenmode unstable with a growth rate of O(ε). In the linear regime, this mode
thus grows exponentially until nonlinearities have an effect after a long time of O(ε−1), implying
its amplitude to be both linearly and nonlinearly modulated over a slow timescale τ

.= εt .
In addition, the flow is stochastically forced with Fξ (αεt )f , where f = f (x) is the forcing spatial

structure. The term ξ (αεt ), with α > 0 and α = O(1), is a random signal with zero mean. Since ε is
by assumption very small, this signal varies slowly as compared to ξ (t ) and according to the same
slow time τ as that of the symmetry-breaking eigenmode. The signal ξ (t ) is a Gaussian sampling-
limited white noise signal. The latter has a typically large band-limiting frequency ωd , given by the
sampling time step �t as ωd = π/�t . In order to characterize these random processes, we introduce
the Fourier transform F[∗] of a temporal signal of length [0, T ] with T → ∞ and its inverse F−1[∗]
as

û(ω) = F[u(t )] = 1√
T

∫ T

0
u(t )e−iωt dt, u(t ) = F−1[û(ω)] =

√
T

2π

∫ ∞

−∞
û(ω)eiωt dω. (3)

In the Fourier domain, the random signal ξ̂ (ω) = F[ξ (t )] is constructed as

|ξ̂ (ω)| = α
√

ε, for |ω| � ωd , and |ξ̂ (ω)| = 0 elsewhere. (4)

Note that α
√

ε does not depend on the frequency. The choice of this specific value for the intensity
of ξ (t ) is made purposely so that the Fourier transform of the noise ξ (αεt ), when taken over the
slow time τ = εt , yields a unit intensity. Since α is not included in the definition of the slow time τ ,
its square root is not taken in (4), whereas that of ε is. The calculations will be provided in the next
section. For each ω, the phase of ξ̂ (ω) is random and drawn according to a uniformly distributed
law between 0 and 2π .

We emphasize that the stochastic forcing considered in the present paper is not general but
specific for at least two reasons. The first is that it consists of a scalar noise process depending
solely on time, multiplying a structure that is frozen in space. The second is that the (sampling-
limited) white noise defined in (4) has a constant value for |ξ̂ (ω)|, whereas it would be more
generally characterized by a constant value for 〈|ξ̂ (ω)|2〉, if 〈∗〉 denotes the ensemble average. This
generalization matters in the cases where T is finite and/or if the noise is not an ergodic process.

From the definition (3), it follows that

F[ξ (αεt )] = 1√
T

∫ T

0
ξ (αεt )e−iωt dt = 1

αε
√

T

∫ αεT

0
ξ (s)e−isω/(αε)ds = 1

αε
ξ̂
( ω

αε

)
, (5)

(which is a well-known property of the Fourier transform) and therefore

|F[ξ (αεt )]| = 1√
ε

for |ω| � ωco, (6)

where we have defined

ωco
.= αεωd , and where we recall that α = O(1). (7)

Therefore, the frequency ωco is the cut-off frequency(hence the subscript “co”) of the slowly varying
noise ξ (αεt ). Although it was implicit, in (5) we have also used the fact that, since we take the limit
of infinitely large T and α, ε > 0, integrating between 0 and T or between 0 and αεT leads to the
same result. The small parameter ε being set by the Re number, the parameter α gives the freedom
to change ωco as long as α is of order unity. Accordingly, the small parameter αε = ωco/ωd =
O(ε) � 1 takes the immediate meaning of the ratio between the shortest measurable timescale
(i.e., the sampling one = π/ωd ) and the shortest timescale excited by ξ (αεt ).
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FIG. 1. (a) Example of random signals as a function of time. The blue continuous line is a sampling-limited
white noise ξ (t ) (multiplied by a factor 10 for better visualization), whereas the blue continuous line with
bullets is the slowly varying version ξ (αεt ). (b) Modulus of the Fourier transforms of the signals shown in (a).
The specific values ε = 0.0026, α = 1/8, and a sampling time step �t = 0.025 have been selected; this sets
ωd = 125.7 and ωco = 0.04.

Some random signals ξ (t ) and ξ (αεt ) are shown in Fig. 1 in both the temporal and Fourier
domains. We stress that as long as the slow noise is band limited with a cut-off frequency around
ωco, the results are not expected to depend on the specific shape of its spectrum (see also a more
detailed discussion in Sec. IV D).

We also introduce the Hermitian inner products,

〈ua|ub〉 .=
∫

�

uH
a ubd� and

〈[
ua

pa

]∣∣∣∣
[

ub

pb

]〉
p

.=
∫

�

uH
a ub + pH

a pbd�, (8)

where the superscript H denotes the Hermitian transpose and the symbol � the spatial domain. In
(8) the second inner product includes the pressure (hence the subscript p), whereas the first does not.
In the following, || ∗ || designates the norm induced by the first scalar product in (8). The spatial
structure of the forcing in velocity f has a unitary norm, i.e., ||f || = 1, and we scale the forcing
amplitude F as

F
.= φ

√
ε

3 � 1 with φ = O(1). (9)

The characterization of the parameters ε, α, and φ is summarized in Table I. Their respective
presence gives sufficient freedom for the Re number, the slow noise cut-off frequency ωco, and the
forcing amplitude F , to be chosen independently of each other. For instance, a noise with the same
intensity and cut-off frequency could force flows with two different Re numbers; in the latter case,
the parameter ε would be different between the two flows but α and φ could be adapted to conserve
ωco and F .

TABLE I. Characterization of the dimensionless parameters.

Parameter Mathematical constraint Permits to fix independently...

ε � 1 ... the Re number, according to (2)
α O(1) ... the noise cut-off frequency ωco, according to (7)
φ O(1) ... the stochastic forcing amplitude F , according to (9)
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III. WEAKLY NONLINEAR EXPANSION

We now derive an equation for the amplitude of the bifurcated steady mode, in the presence of a
weak and slowly varying noise. In the absence of this stochastic forcing, the calculations would be
similar in all respects to those of Ref. [31]. Moreover, the derivation of an amplitude equation for
the Duffing oscillator subject to a narrow-band noise was already proposed in Refs. [34–36], among
others. The rigorous procedure outlined in these latter works to include a noise term in an amplitude
equation is applied to the Navier-Stokes equation thereafter.

As already mentioned, since we consider Re numbers close to a critical value for a steady
bifurcation, as expressed in (2), the temporal variations of the flow perturbation around the neutral
equilibrium are assumed to occur over the slow timescale τ = εt . This assumption and the ensuing
scaling are consistent with the fact that the flow is forced by the slow noise ξ (αεt ) = ξ (ατ ). The
flow field is approached by the following expansions:

U = Uc + √
εu1(τ ) + εu2(τ ) + √

ε
3
u3(τ ) + O(ε2), and

P = Pc + √
εp1(τ ) + εp2(τ ) + √

ε
3
p3(τ ) + O(ε2), (10)

where Uc(x) is a velocity field in a neutral equilibrium at Rec, symmetric in space around a generic
plane for three-dimensional flows or around a generic axis for two-dimensional flows. Considering
a two-dimensional flow with a symmetry axis located at y = ys, the symmetry assumption of Uc

implies

Uc(x) =
[
Uc(x, y)
Vc(x, y)

]
=

[
Uc(x, 2ys − y)
−Vc(x, 2ys − y)

]
. (11)

By increasing the Re number above Rec, the flow Uc is subject to a steady bifurcation which breaks
the symmetry of the overall flow.

Introducing the expansions (2) and (10) into (1) leads to a cascade of linear problems to be solved
successively. At order O(

√
ε), we collect[

0
0

]
= L

[
u1

p1

]
with L

.=
[−2C[Uc, ∗] + Re−1

c � −∇
∇· 0

]
, therefore

[
u1(τ, x)
p1(τ, x)

]
= A(τ )

[
q(x)
pq(x)

]
,

(12)

where [q(x), pq]T is the eigenmode of the linear operator L that is associated with a null eigenvalue.
We normalize it such that ||q|| = 1. Note that q is also the nontrivial kernel of L. In addition,
the eigenmode q is antisymmetric: Therefore, again considering a two-dimensional flow and a
symmetry axis at y = ys, the velocity field q satisfies

q(x) =
[

qx(x, y)
qy(x, y)

]
=

[−qx(x, 2ys − y)
qy(x, 2ys − y)

]
. (13)

In the following, the adjoint mode associated with [q, pq]T will be denoted by [q†, p†
q]T . In other

terms, it corresponds to the eigenmode associated with the null eigenvalue of the operator L†, adjoint
to L under the second scalar product in (8). The slowly varying and real scalar amplitude A(τ ) in
(12) is for now arbitrary.

At O(ε) we obtain the solution u2(τ, x) = A(τ )2uA2

2 (x) + u�
2 (x), where

−L

[
uA2

2

pA2

2

]
=

[−C[q, q]
0

]
, and − L

[
u�

2
p�

2

]
=

[−�Uc

0

]
. (14)

The operator L being singular, the compatibility condition needs to be verified for the particular
solutions to the systems in (14) to be nondiverging. The latter condition requires the right-hand side
to be orthogonal to the kernel of the adjoint of L, i.e., orthogonal to [q†, p†

q]. Since the symmetric
fields C[q, q] and �Uc yield a null inner product with the antisymmetric field q†, the compatibility
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condition is naturally satisfied and the two systems can directly be solved for. In practice, this can
for instance be done with a pseudoinverse algorithm. The component of uA2

2 and u�
2 on the kernel

q that stems from the homogeneous part of the solution is set to zero according to 〈q†|uA2

2 〉 =
〈q†|u�

2 〉 = 0. Indeed, accounting for a nonzero homogeneous solution was shown in Ref. [31] to
have no consequences on the coefficients of the final amplitude equation.

At O(
√

ε
3) we assemble the system

−L

[
u3

p3

]
= −A

[
2C[q, u�

2 ] + �q
0

]
− A3

[
2C

[
q, uA2

2

]
0

]
− dA

dτ

[
q
0

]
+ φξ (ατ )

[
f
0

]
. (15)

This time, the compatibility condition is not naturally satisfied but leads to an equation for A(τ ),

dA

dτ
= λA(τ ) + μA(τ )3 + ηφξ (ατ ) = −dV

dA
+ ηφξ (ατ ), (16)

with the coefficients

λ = −〈q†|2C[q, u�
2 ] + �q〉

〈q†|q〉 , μ = −〈q†|2C
[
q, uA2

2

]〉
〈q†|q〉 and η = 〈q†|f〉

〈q†|q〉 . (17)

In addition, the double-well potential

V = V [A]
.= −λA2

2
− μA4

4
(18)

has been defined. Equation (16), for the amplitude of the antisymmetric bifurcated mode is the
classic Stuart-Landau equation for a real-valued amplitude, with the difference that it is now stochas-
tically forced. The stochastic term is not an ad hoc addition to a pre-existing amplitude equation but
is derived rigorously from the forced Navier-Stokes equations (1). The explicit formulas for the
coefficients in (17) can be directly evaluated numerically and do not require any a posteriori fitting.
Indeed, they involve scalar products of fields that are all known: the eigenmode q, the adjoint mode
q†, and the second-order fields u�

2 and uA2

2 , all defined at Re = Rec, as well as the forcing structure f .
The Fourier transform over the slow timescale, noted Fτ [∗], of the noise ξ (ατ ) reads

Fτ [ξ (ατ )] = 1√
εT

∫ εT

0
ξ (ατ )e−iωτ dτ =

√
ε√
T

∫ T

0
ξ (αεt )e−iωεt dt = 1

α
√

ε
√

T∫ αεT

0
ξ (s)e−iωs/αds = 1

α
√

ε
ξ̂

(
ω

α

)
, (19)

therefore, following (4), we have that

|Fτ [ξ (ατ )]| = 1 for |ω| � αωd , (20)

and |Fτ [ξ (ατ )]| = 0 everywhere else. This profile is illustrated by the black dotted line in Fig. 1(b).
It is important to notice that Fτ [ξ (ατ )] is independent of the small parameter ε, which was done
intentionally and explains the peculiar choice of intensity in (4). In this manner, the amplitude
equation (16) does not depend on ε and the ensuing results need not be recomputed for each Re
considered, if everything else is fixed.

Let us briefly discuss the deterministic regime where φ = 0. The coefficient λ contains the
sensitivity of the null eigenvalue to a base flow modification +εu�

2 induced by the fact that we
consider a Re > Rec. Therefore, ελ is directly the growth rate of the bifurcated steady mode and
is positive. Accordingly, the equilibrium solution Ā0 = 0 of (16), corresponding to a symmetric
flow, is unstable. The coefficient μ contains the sensitivity of the null eigenvalue to a base flow
modification +εA2uA2

2 , nonlinearly induced by the Reynolds stress of the perturbation
√

εAq. If μ

is negative, then nonlinearities have a stabilizing effect that counteracts linear instability. Therefore
two additional equilibrium solutions ±Ā, with Ā

.= √−λ/μ > 0, exist and are stable. They are the
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two minima of the potential V . On the contrary, if μ is positive, then nonlinearities included in
(16) have a destabilizing effect and no stable equilibrium exists at that order: The bifurcation is
subcritical and the expansion must be pursued at higher orders. This latter case will not be treated
in what follows.

In the stochastically forced regime where φ 
= 0, the amplitude A may randomly switch back and
forth between the two attractors Ā and −Ā after unpredictable and possibly long times. Therefore,
we are particularly interested in the probability distribution of A. The probability density function
(PDF) P of the amplitude A can be computed directly by means of the Fokker-Planck equation [42].
For this, the state space needs to be augmented in order to account for the fact that ξ (ατ ) is a
band-limited white noise because of the presence of the constant α in the argument. Following
Ref. [42] (Appendix A1 and Supplement S.10), ξ (ατ ) is treated as a system variable resulting from
low-pass filtering, at a cut-off frequency of αωd , of a white noise (on the slow timescale) χ (τ )
whose band-limiting frequency is the largest achievable by the system, ωd . We insist that ωd is
chosen sufficiently large for none of the results presented in this paper to depend on it. For the
sake of simplicity, a first-order low-pass filter of cut-off frequency αωd is chosen and thus ξ (ατ ) is
approached by the solution of the first-order stochastic differential equation,

dξ

dτ
+ αωdξ = αωdχ, (21)

where χ (τ ) is a white noise such that |Fτ [χ ]| = 1 for |ω| � ωd . Equation (21) leads to |Fτ [ξ ]|2 =
1/[1 + ω2/(αωd )2], which is a rather coarse approximation of (20). This matters little, however,
since as mentioned, the results are not expected to depend too much on the exact shape of the
noise as long as they conserve the cut-off frequency. Again following Ref. [42] (chapter 4.7), the
Fokker-Planck equation associated with the system consisting of the equations (16) and (21) is
written as

∂P

∂τ
= − ∂

∂A
[(λA + μA3 + ηφξ )P] + αωd

∂ (ξP)

∂ξ
+ (αωd )2

2

∂2P

∂ξ 2
, (22)

where P = P[A, ξ , τ ] vanishes for |A|, |ξ | → ∞. By definition of a probability density function, P
has a unitary area:

∫∫ ∞
−∞ PdAdξ = 1, ∀τ . We introduce P̄ = P̄[A] the PDF of only A in a stationary

regime, reached after infinitely long τ , such that

P̄
.=

∫ ∞

−∞

(
lim

τ→∞ P[A, ξ , τ ]
)
dξ . (23)

We also define P̄w to be P̄ in the “pure” white noise limit where αωd → ∞, which possesses the
analytical expression

P̄w .= lim
αωd →∞ P̄ = 1

Z
exp

[
− 2V

(φη)2

]
, Z a normalization constant. (24)

In the next section, the stochastically forced weakly nonlinear (WNL) amplitude A, its probability
density function P̄, and the statistics of the escape time �T of A between its two attractors ±Ā will
be computed for a selected flow geometry. Furthermore, results will be compared to direct numerical
simulations (DNS).

IV. APPLICATION CASE: THE FLOW PAST A SUDDEN EXPANSION

The application case is chosen as the two-dimensional plane flow past a sudden expansion [see
the nondimensional geometry in Fig. 2(a)]. The Reynolds number is defined as Re = hU∞/ν, where
h is the inlet channel height, U∞ the centerline (maximum) velocity of the inlet parabolic velocity
profile, and ν the kinematic viscosity. The inlet is located at the streamwise coordinate x = −5
(made nondimensional by h). At x = 0, the flow goes through a sudden expansion of expansion
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FIG. 2. Deterministic case φ = 0. (a) Snapshots of the streamwise velocity of the stable steady solution(s)
obtained by DNS at Re = Rec = 79.3 (top) and at Re = 100 > 79.3 (center and bottom); in the latter case, two
equilibrium solutions are found. (b) Measure M that quantifies the asymmetry of the flow, as defined in (25),
and computed in the steady regime for both WNL and DNS approaches. The continuous blue line is associated
with the stable equilibrium solutions predicted by the deterministic amplitude equation ±M̄ with M̄ = √

εβĀ,
whereas the dotted line corresponds to the unstable equilibrium.

ratio ER = 3, and the outlet of the expansion is situated further downstream at x = L = 40, where
the flow reparallelizes.

The linear and nonlinear Navier-Stokes equations are solved for the velocity field U = [U,V ]T

and the pressure by means of the finite element method with Taylor-Hood (P2, P2, P1) elements,
respectively, after implementation of the weak form in the software FreeFem++. The steady
solutions of the Navier-Stokes equations are solved using the iterative Newton-Raphson method, and
the linear operators are built thanks to a sparse solver UMFPACK implemented in FreeFem++. The
mesh is constituted of approximately 4×104 triangular elements, whose edge size varies between a
minimum value of 0.015 near the expansion corners and a maximal value of 0.15 farther upstream
and downstream, leading to about 2×105 degrees of freedom for the global flow field (velocity and
pressure).

A. Deterministic regime

The critical Re number before the steady bifurcation is numerically found to be Rec = 79.3,
which compares relatively well with the value Rec = 81.4 reported in Ref. [31]. As we checked the
convergence of Rec with respect to the spatial discretization, the slight difference is rather explained
by the fact that our entrance length is half of the one considered in Ref. [31]. For Re � Rec, the
flow is symmetric in the sense of (11) around the centerline axis at y = ys = 1.5, as can be seen in
the uppermost snapshot in Fig. 2(a).

For Re > Rec, the symmetry of the flow is broken, as we can observe on the snapshots at
the center and the bottom of Fig. 2(a). The degree of asymmetry is quantified according to a
scalar measure that we call M, and whose definition is always arguably arbitrary. Nevertheless,
we propose it to be the signed L2 norm of the crosswise velocity component evaluated along the
symmetry axis (located at y = ys = 1.5). The sign is chosen as being that of the crosswise velocity
along the symmetry axis and at x = 2, for it is where the crosswise velocity component qy of the
antisymmetric eigenmode q = [qx, qy]T (with ||q|| = 1) reaches its (chosen positive) maximum. In
other terms, qy(x = 2, ys) = maxx[qy(x, ys)] = 0.136. Eventually, M reads

M
.= sgn[V (x = 2, ys)]

√∫ L

0
V (x, ys)2dx. (25)
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The WNL approximation of M is given by evaluating V (x, ys) according to the expansion (10), then
using that Vc(x, ys) = v2(x, ys) = 0, ∀x (Vc the crosswise velocity of the base flow and v2 that of the
second-order field u2) for a symmetry reason, leading to

M = sgn[
√

εqy(2, ys)︸ ︷︷ ︸
>0

A + O(
√

ε
3
)]

√∫ L

0
[
√

εAqy(x, ys) + O(
√

ε
3
)]2dx

= sgn(A)
√

ε|A|
√∫ L

0
qy(x, ys)2dx + O(

√
ε

3
)

= √
εβA + O(

√
ε

3
), (26)

with β =
√∫ L

0 qy(x, ys)2dx = 0.266 a proportionality constant.

The coefficients in (17) are found as λ = 5.984 and μ = −0.02962, leading to Ā = √−λ/μ =
14.21. We stress that the coefficients are evaluated from known fields, without any fitting parameters.
For a given Re number (setting ε), the equilibrium amplitudes ±Ā are associated with the equilib-
rium asymmetry measures ±M̄ with M̄ = √

εβĀ. The slope of the red dashed line in Fig. 4(b) of
Ref. [31] corresponds to our definition of λ. By visual inspection, we estimate for the former a value
of ≈5.8 which indeed agrees well with our λ; no numerical value is given for μ in Ref. [31].

In the deterministic case where φ = 0, the DNS and WNL steady solutions are compared under
the measure M in Fig. 2(b) as a function of the Re number. As we are close to the treshold
value Rec, both approaches are in excellent agreement, thus validating the well-posedness of
the weakly nonlinear expansion (10). Note that, interestingly, the latter implies the scaling M ∝√

1/Rec − 1/Re when Re is asymptotically close to Rec. The agreement between both approaches
progressively degrades as we increase Re, presumably due to higher-order nonlinearities neglected
in the expansion. Nevertheless, the relative error remains reasonable for the considered range of Re,
with a maximum value of ≈11% for Re = 110. Overall, the agreement between both approaches is
comparable with the one already reported (with a different measure) in Fig. 5 of Ref. [30].

In the rest of the study, we will fix the Re number to Re = 100.

B. Stochastic regime: Amplitude statistics

Let us now activate the stochastic forcing (φ 
= 0). We choose the forcing structure to be f = q†,
which maximizes the absolute value of η in (17), thus the impact of the forcing. We numerically
find η = 1.492. For Re = 100, we show in Fig. 3 some temporal signals of M for four gradually
increasing forcing amplitudes φ, of the same given noise realization ξ (αεt ). The cut-off frequency
ωco of the slowly varying noise is set at ωco = 0.04. Due to the non-normality of the operator
L, this specific choice is not arbitrary and will be detailed in the last section of the paper. The
WNL predictions and the DNS data are compared directly, as they are forced by the exact same
noise. For both signals, under the stochastic forcing, M experiences some random oscillations in
the neighborhood of one of the two attractors. After some time, these oscillations may by chance
become sufficiently strong such that M transits to the neighborhood of the other attractor, as it
overcame the potential barrier separating the two. This scenario is increasingly likely with the
forcing amplitude. With the exception of some relatively short episodes, the agreement between
WNL and DNS signals is visually excellent in Fig. 3, at least for the considered noise realization. A
small but systematic overestimation of the WNL prediction is to be noticed though, already present
at the deterministic level and observable in Fig. 2(b) for Re = 100. Some discontinuities can also
be noticed in the DNS signal, due to the multiplication with the sgn function in the definition of M.

A more quantitative and systematic comparison of both approaches is performed by running, for
a given forcing amplitude, nine additional simulations to that of in Fig. 3, each corresponding to a
different random noise realization. This generated a sufficient amount of data for convergence of
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FIG. 3. Temporal signal of M in a stochastically forced regime, with forcing amplitudes φ ∈
[10, 14, 18, 22]. The noise realization ξ (αεt ) is the same for all the results shown. A Re number of Re = 100 is
chosen, implying ε = 0.0026. A time step �t = 0.025 was found sufficient for the convergence of the results,
which sets ωd = 125.7. We further choose ωco = 0.04, which determines α = 1/8 that we check to be O(1)
indeed. The two deterministic attractors ±M̄ with M̄ = √

εβĀ = 0.1935 are highlighted by horizontal black
dotted lines. The small crosses highlight a “transition” (see definition in text) of the WNL signal from the
neighborhood of one attractor to the neighborhood of the other.

the PDF of |M|, shown in Fig. 4 for φ ∈ [10, 14, 18, 22]. We also show P̄, the PDF associated with
the steady solution of the Fokker-Planck equation (22), defined in (23). Its asymptotic shape in the
limit where αωd tends to infinity, P̄w defined in (24), is also visible. First, we observe that P̄ agrees
poorly with P̄w, from which we conclude that accounting for a filtered noise in the Fokker-Planck
model, at a cut-off frequency αωd (over the slow time, thus εαωd over the fast), has a significant
effect. The probability density function P̄ is more localized than P̄w around M̄, presumably because
the noise corresponding to the former is filtered and thereby has a lower root-mean-square (by
Parseval’s theorem) than the noise of the latter, thus is less efficient is dislodging M from one of its
attractors.

On the other hand, from the excellent agreement between P̄ and the PDF obtained from direct
simulations of the amplitude equation (16), we also conclude that the results are robust to the order
of the filter that generates the slow noise; indeed, P̄ is associated with a first-order filtered noise
whereas the noise in (16) is infinite-order filtered (square signal in the frequency domain). Therefore,
one does not need to be too careful in the way the slow noise is constructed.

The agreement between P̄ and the PDF reconstructed from the DNS is globally satisfactory when
plotted over |M|/M̄. When plotted over |M| [see inset of Fig. 5(a)], both PDFs are slightly offset
due to the difference between deterministic attractors. In addition, the agreement seems to degrade
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FIG. 4. Probability density function of |M| for the four different forcing amplitudes considered in Fig. 3.
The external parameters are also the same as for Fig. 3. For the blue dots “WNL” and the red dashed-dotted
line with the square markers “DNS,” 10 simulations, each corresponding to a different noise realization and
long of t = 1.1×104 units of times, were performed and post-treated. The magenta line “WNL, P̄”, defined in
(23), is the steady solution of the Fokker-Planck equation (22). The black dashed line “WNL, P̄w”, defined in
(24), also corresponds to the steady solution of the Fokker-Planck equation but in a case of “pure” white noise
where αωd → ∞. The insets show to the same data as the main figures, but as a function of |M| instead of
|M|/M̄. The vertical red dashed line is the deterministic attractor M̄ of the DNS whereas the vertical, dotted,
blue line is the one from the WNL approach [see Fig. 2(b)].

for |M| → 0. This is explained by the fact that M, due to its definition as a L2 norm of the crosswise
velocity (25), is null if and only if the crosswise velocity is strictly null everywhere along the
symmetry axis; because, for instance, of higher-order nonlinear terms neglected in the expansion,
this condition is very unlikely to be met in the DNS. This effect is all the more pronounced by
increasing φ.

C. Stochastic regime: Escape time statistics

By considering the absolute value |M|, the transition events from the neighborhood of one
attractor to the other were not considered. However, as developed in the Introduction, they are
of great interest in practice and thus are studied thereafter. Let us first put a formal definition of
what we mean by “transition.” A “transition” from the neighborhood of one attractor to the other is
decreed whenever the following scenario occurs: At some t1, M goes above −cM̄ < 0 (respectively,
below cM̄ > 0), and does not go below (respectively, above) this same threshold again before going
above (respectively, below) the opposite one cM̄ (respectively, −cM̄) at some t3, where the constant
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FIG. 5. Probability density function of the escape time �T between two transition events from the
neighborhood of one attractor to the neighborhood of the other. Lighter colors correspond to larger forcing
amplitude φ where φ ∈ [10, 18, 26]. The parameters are the same as for Fig. 3, specifically Re = 100 and
ωco = 0.04. For the markers “WNL” (dots for φ = 10, squares for φ = 18 and diamonds for φ = 26, 10 direct
simulations of (16), each corresponding to a different noise realization and long of t = 1.1×106 units of times,
were performed and post-treated. The continuous lines “WNL, F.-P.” (F.-P. for Fokker-Planck), are obtained by
marching in time the Fokker-Planck equation (22) with appropriate initial and boundary conditions (see main
text). Panels (a) and (b) show the same data, (a) in linear-linear scale and (b) in log-linear scale. The thin black
dashed- lines are exponential laws b exp (−b�T ), where b = b(φ) is a fitted parameter.

c > 0 is chosen, perhaps arbitrarily, as c = 0.8; then a transition has occurred at the largest of all
time(s) in the interval [t1, t3] for which M is null. Under this definition, the transitions are highlighted
for the WNL signal by the black crosses in Fig. 3. For φ = 10 the time interval �T separating two
transitions, shown with an arrow in Fig. 3, sometimes called an “escape time” or “first passage time,”
seems to be on average extremely long. This also underlines the importance of using a reduced-order
model. In a simulation long of τ = 30 (corresponding to t = τ/ε = 1.1×104) units of times, only
two transitions could be captured, at a large computational cost for the DNS. By increasing φ to
φ = 22, the oscillations of M around ±M̄ are more intense, and the transitions are more frequent
(13 transitions could be captured).

In order to approximate the PDF of the escape time �T between two transitions, a sufficiently
large number of these transition events has to be reported, and the simulations have to be sufficiently
long to also capture very large �T , constituting the tail of its PDF. For this reason, for each of
the considered forcing amplitude, 10 simulations of the amplitude equation (16) to an extremely
large final time of τ = 3000 (corresponding to t = τ/ε = 1.1×106) were performed. Each of these
simulations corresponds to a different realization of the slow noise. Some PDF of �T reconstructed
by post-processing the so-generated data are proposed in Fig. 5 [lin-lin scale in Fig. 5(a), and log-lin
scale in Fig. 5(b)].

Alternatively, the PDF of �T can be computed by marching in time the Fokker-Planck equa-
tion (22) with appropriate boundary and initial conditions [43]. The initial condition is set as

P[A, ξ , τ = 0] = δ(A − Ā)
exp

(
− ξ 2

2σ 2

)
σ
√

2π
, (27)

which translates the fact that trajectories are systematically started at the attractor Ā, whereas the
initial condition for the noise is random and follows a centered normal distribution of standard
deviation σ , i.e., ξ (t = 0) ∼ N (0, σ 2). Precisely because the noise has zero mean, the variance σ 2
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FIG. 6. Mean value and standard deviation of �T . The parameters are the same as for Fig. 3, specifically
Re = 100 and ωco = 0.04. The blue dash-dotted line is obtained as follows: For each forcing amplitude 10
direct simulations of (16), each corresponding to a different noise realization and long of t = 1.1×106 units of
times, were performed and post-treated. The continuous magenta line “WNL, F.-P.” (F.-P. for Fokker-Planck), is
obtained by marching in time the Fokker-Planck equation (22) with appropriate initial and boundary conditions.
In (b) the inset shows the fitted parameter b of the exponential law writing b exp (−b�T ). The mean value and
the standard deviation reconstructed from this exponential law, both equal to 1/b, are shown by means of the
blacked dashed line. The red dotted line is the Eyring-Kramers formula as given in (29).

is equal to the root mean square of the signal, which is expressed by Parseval’s theorem,

σ 2 〈ξ〉=0= 1

T

∫ T

0
ξ (αεt )2dt = 1

2π

∫ ∞

−∞
|F[ξ (αεt )]|2dω = 2ωco

ε2π
= αωd

π
= α

�t
(28)

(i.e., two times the area below the red or black curve in Fig. 1, divided by 2π ). For the boundary
condition, P = 0 for |ξ |, A → ∞ is maintained, but instead of also imposing P = 0 for A → −∞,
we set P[−cĀ, ξ , τ ] = 0, ∀ξ, τ . As expressed in Ref. [43]: “this boundary condition is a probability
sink, which leads to a monotonic decay in time of the integral [

∫∫
P[A, ξ , τ ]dAdξ , which] represents

the probability of not having crossed the threshold [−cĀ] before time t .” Consequently the PDF of
the escape time is the temporal derivative of 1 − ∫∫

P[A, ξ , τ ]dAdξ , for the latter expression is the
probability of having escaped to the neighborhood of the attractor −cĀ, while (27) guarantees that
all trajectories initially were at the other attractor Ā.

The PDFs resulting from this approach are included in Fig. 5 and compared with those obtained
by post-processing the data generated from direct simulation of (16). The agreement between both
approaches is globally good. Moreover, it is observed in Fig. 5(b) that the PDF of the escape
time decays exponentially for sufficiently large �T ; thereby it can be thought of as following
an exponential law, reading be−b�T . The parameter b is fitted on the PDF obtained with the
Fokker-Planck equation and gives a fair approximation, particularly for the lowest φ considered
in the figure. It is also clear that increasing the forcing amplitude implies a faster exponential decay
of the PDF. Indeed, by increasing the intensity of the external excitation, crossing the potential
barrier between the two attractors is made easier, thus large escape times are less and less likely.

The mean escape time 〈�T 〉 and its standard deviation std(�T ) associated with the PDFs in
Fig. 5 and those for others forcing amplitudes are shown in Fig. 6 as a function of the forcing
amplitude. The agreement between the results from the Fokker-Planck equation and from direct
simulations of the amplitude equation is good for the mean escape time. They also collide on the
value 1/b predicted by the exponential law. Although the differences are barely visible in Fig. 6(a),
the value 1/b is all the closer to 〈�T 〉 obtained from Fokker-Planck than φ is small; in other words,

053905-14



NOISE-INDUCED TRANSITIONS PAST THE ONSET OF A …

the PDF of �T tends towards an exponential law in the limit where φ → 0. This result is well
known from the large deviation theory.

In the “pure” white noise limit where αωd → ∞, and for vanishing forcing amplitude, the mean
escape time is given by the Eyring-Kramers formula (sometimes also called Kramer’s escape rate)
according to

lim
φ→0

lim
αωd →∞〈�T 〉 = 1

ε

√
V ′′(Ā)|V ′′(0)|

2π
exp

[
− 2�V

(ηφ)2

]
, (29)

where

�V
.= V (Ā) − V (0) = λ2

4μ
, V ′′(Ā) = 2λ, and V ′′(0) = −λ. (30)

Expression (29) can be found in Ref. [42], Chapter 5.10, formula (5.111). Without the prefactor
multiplying the exponential, (29) is referred to as the Arrhenius law in thermodynamics. The
relevance of the Eyring-Kramers formula here might appear surprising given the out-of-equilibrium
nature of the system (1). Nevertheless, it stems from the fact that, in the specific situation considered
in this paper, the Navier-Stokes equation could be reduced to a one-dimensional noisy dynamic, with
the deterministic part deriving from a potential. Note that the factor 1/ε in (29) accounts for the fact
that the amplitude equation is written over the slow timescale τ = εt . The Eyring-Kramers formula
(29) is drawn as the red-dotted line in Fig. 6(a) and appears accurate until relatively large φ ≈ 15.
Above this value, it is interesting to notice that the parameter b increases rather linearly with φ, such
that the mean escape time decreases as a rational function, thus faster than (29).

The evolution of the standard deviation of �T with φ, shown in Fig. 6(b), is quantitatively and
qualitatively similar to the one of 〈�T 〉.

Note that the statistics of the escape time �T shown in Fig. 5 and Fig. 6 have not been directly
compared with those from DNS. That is because, as said, they have been produced over simulations
long of t = 1.1×106 units of time, deliberately extremely long to capture large �T . We could not
afford DNS of such extreme length, and this is precisely what motivated the approach proposed in
this paper. If, as mentioned in the Introduction, specific algorithms exist in computing the escape
time directly from the fully nonlinear Navier-Stokes equation in (1), their implementation is out
of the scope of this paper. Note, however, that a complete comparison between fully and weakly
nonlinear escape time statistics would be necessary, since a good agreement between the steady
statistics in Fig. 4 generically does not imply a good agreement between dynamical quantities such
as �T . Results shown in Fig. 3, however, suggest that such a comparison would be successful.

D. Stochastic regime: Choice of the cut-off frequency

Let us now say a word about the choice of the cut-off frequency ωco. First, it is important to
notice that the band-limiting frequency ωd = π/�t can be chosen, in theory, to be arbitrarily large.
Therefore, ωco = εαωd , ε being set by the Re number and α = O(1), could also be arbitrarily large
(as long as it is much smaller than ωd ). However, if the linearized operator L, defined in (12),
is non-normal, then there is a specific value of ωco above which we expect the predictions from
the amplitude equation to become inaccurate. To determine it, we consider the response of the
flow linearized around the neutral, symmetric equilibrium at Rec, Uc, to a stochastic forcing fξ (t ),
where ||f || = 1 and ξ (t ) is a white noise such that |ξ̂ (ω)| = 1, ∀ω. In the linear paradigm, the
amplitude of the forcing term is irrelevant and is set to one for the rest of the reasoning. In the Fourier
domain, valid in the limit of large times after the transients fade away, the response writes û(ω) =
R(ω)f ξ̂ (ω), the operator R(ω)

.= (iωI − L)−1 being called the resolvent operator. By decomposition
on the basis of eigenmodes of L, the resolvent operator has a dyadic representation [44,45],

R(ω) =
∞∑
j=1

1

iω − γ j

q j〈q†
j |∗〉

〈q†
j |q j〉

, (31)
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FIG. 7. The red continuous line is the (linear) transfer function ||R(ω)f || [norm of the expression (32)]
with f = q† of the sudden expansion flow linearized around its symmetric neutral equilibrium at Re = Rec.
The blue dashed line is the Lorentzian function (33) only accounting for the response of the virtually neutral
mode q, resonant at ω = 0. Both curves would collide exactly if L was a normal operator, for q† would then
excite only q. Four horizontal black dashed lines are drawn at ω ∈ [4, 8, 16, 32]×10−2.

where q j (with ||q j || = 1), q†
j (with ||q†

j || = 1) and γ j are the jth eigenmode, associated adjoint
mode, and eigenvalue of L, respectively. Eigenvalues are ordered such that Re(γ1) � Re(γ2) � . . . ,
implying γ1 = 0, q1 = q, and q†

1 = q†. The forcing structure considered in the paper was chosen to
be f = q†, which generates

R(ω)q† = 1

iω

q
〈q†|q〉 +

∞∑
j=2

1

iω − γ j

q j〈q†
j |q†〉

〈q†
j |q j〉

. (32)

Had the operator L been normal, both the direct modes and the adjoint modes would form an
orthonormal basis and all the inner products 〈q†

j |q†〉 for j � 2 would be identically null. This

way, the transfer function ||R(ω)q†ξ̂ (ω)||/||q†ξ̂ (ω)|| = ||R(ω)q†|| reduces to a classical Lorentzian
(resonant) response peaked around the resonant frequency ω = 0,

||R(ω)q†||2 = 1

ω2〈q|q†〉2 . (33)

However, L is generally non-normal due to the linearization of the advection term, and neither the
direct eigenmodes nor the adjoint ones constitute an orthonormal basis. Therefore the sum in (32)
does not vanish, and the Lorentzian (33) is only accurate in the limit |ω| → 0, where the term in
1/(iω) in (32) dominates the sum.

To illustrate this, we compare in Fig. 7 the transfer function ||R(ω)q†|| of the sudden expansion
(at Re = Rec), with the Lorentzian response (33). As expected, both curves coincide in the limit
|ω| → 0, where the virtually neutral eigenmode enters in resonance and thus dominates the flow
response. Nevertheless, by increasing the frequency above ω = 0.04, both curves depart from each
other and the Lorentzian significantly underestimates the response. This is the consequence of the
non-normality of the operator L, which implies that q† has a non-null projection over all the other
adjoint modes, thus exciting in the response all the associated direct modes; far from the resonant
frequency, the eigenmode q has no reason to dominate over this response. Consequently, if the noise
term contains frequency above ωco = 0.04, then reducing the first-order dynamics of the system on
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FIG. 8. Probability density function of |M|, similarly as in Fig. 4 but for a fixed φ = 12; to save some
computational time, the 10 simulations, each corresponding to a different noise realization have been shortened
to t = 1.1×103 units of times with respect to the computations shown in Fig. 4. The data are shown for
four different values of the cut-off frequency ωco ∈ [4, 8, 16, 32]×10−2. These four specific frequencies are
highlighted with vertical black dashed lines in Fig. 7.

the single mode q, which was the case in the weakly nonlinear expansion, see (12), might be a poor
approximation.

This is exemplified in Fig. 8, where we show the probability density function of |M|, similarly as
in Fig. 4 but for a fixed forcing amplitude φ = 12 and four increasing values of the cut-off frequency,
ωco ∈ [0.04, 0.08, 0.16, 0.32]. The agreement between the PDF obtained from the WNL approach
(direct simulation or Fokker-Planck), and the one extracted from DNS, seems to progressively
degrade by increasing ωco. This is particularly true for M close to zero where the weakly nonlinear
PDF largely overestimates the nonlinear one. As explained previously, that is because for too-large
ωco the eigenmode q, which is the only one described by the amplitude equation, does not dominate
the flow response anymore, and other modes reveal themselves. Due to the activity of these auxiliary
modes, the probability of having a null or very low crosswise velocity along the symmetry axis is
reduced, and it becomes more and more unlikely for |M| to take null or small values. Presumably for
the same reasons, it appears in Fig. 8(d) that for the largest considered ωco = 0.32, on the contrary,
large values of |M| become more likely in the DNS than in the WNL method. As a side comment,
note also that increasing ωco incidentally makes P̄ converge towards P̄w, as expected.

V. SUMMARY AND PERSPECTIVES

In summary, based on the existing literature we have proposed a method to derive a stochastically
forced equation for the amplitude of the slowly varying dominant eigenmode, after a steady
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symmetry-breaking bifurcation. To this purpose, the noise too was assumed to be slowly varying, in
other words, filtered at a certain cut-off frequency much slower than the band-limiting frequency of
the overall system. We gave a precise manner to evaluate a priori the cut-off frequency for which the
weakly nonlinear expansion, that reduces the linear dynamics to a single eigenmode, is justified. It
is the frequency above which the transfer function of the linearized flow departs from a Lorentzian
that only encompasses the dominant mode. We also showed that the order of the filter, generating
the slow noise from a classical white noise, mattered little.

The probability density function of the mode amplitude obtained from the amplitude equation,
either by direct simulations or by solving the related Fokker-Planck equation, compared well with
the stochastically forced direct numerical simulations. Unsurprisingly, this is particularly true for
small forcing amplitude, as increasing the latter increases the relative importance of higher-order
nonlinear terms that have been neglected in the weakly nonlinear expansion and renders small values
of the asymmetry measure M unlikely.

The amplitude equation has reduced the dynamics of the flow to a single coordinate whose
dynamics derive from a potential. This is particularly convenient when it comes to computing
escape time statistics. Indeed, for vanishing forcing amplitude, the waiting time between two events
where the solution transits from the neighborhood of one attractor to the other, was found to
increase as the exponential of the inverse of the forcing intensity squared. Clearly, this precludes
the utilization of direct numerical simulations. On the other hand, as a reduced-order model, the
amplitude equation can make predictions at a low numerical cost.

Nevertheless, even in different cases where the obtained amplitude equation will contain more
than one degree of freedom, therefore where generically no potential function exists, the method
proposed in this paper can be seen as bridging a system of very high dimension, governed by the
Navier-Stokes equation, with the large deviation theory and/or the Fokker-Planck equation that are
very effective in systems of low dimension. In this manner, predictions about rare transition statistics
could be made without relying on intensive numerical techniques.

For future research, the method outlined in this paper shall be extended to more general stochastic
forcings than a single spatial structure multiplied by a slow noise. Instead, one could consider
forcing the flow as in Ref. [46] with a sum of orthonormal forcing spatial structures, multiplied
by uncorrelated white noise processes. As in Ref. [46], this orthonormal family of forcing structures
can be sorted in descending order from largest to smallest maintained variance of the linear response.
Because of the non-normality of the linearized operator, it is possible that only a few of the leading
forcings contribute to most of the total variance and thus need to be included. The leading (also
called “optimal”) forcing structure will be the adjoint mode, as considered in this paper, for the
associated modal response is resonant in ω = 0 thus its variance [proportional to the integral of
(33) over the frequencies] diverges. The suboptimal forcing structures, however, will be orthogonal
to the adjoint and trigger streamwise convective non-normal amplification in the flow at nonzero
frequencies. At a nonlinear level, the modal and non-normal responses will interact with each
other, which is not taken into account in the present analysis, and knowing the role played by the
non-normal response at nonzero frequencies over the noise-induced transitions would be of great
interest. For this purpose, the method proposed in Refs. [47,48] to derive amplitude equations for
non-normal responses could be coupled with that proposed in the present paper for the modal one.
In considering noises that are not slowly varying, one could think of splitting slowly and rapidly
varying parts and consider the linear response to the rapidly varying part in the Fourier domain at
third order.

Eventually, we believe that, although concerned with the rather specific configurations of laminar
flows past a supercritical bifurcation and subject to external stochastic forcing, the present study
could be seen as part of a more general and fundamental study on out-of-equilibrium systems
with infinitely many degrees of freedoms. This includes fluid flows in a turbulent regime, where
rare transitions are observed in numerous situations, as presented in the Introduction. It could be
interesting to extend the method proposed here to transitions between turbulent large-scale coherent
structures, where the stochastic driving is endogenous and results from nonlinear interactions of
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the fluctuations. For instance, the construction of a stochastically forced amplitude equation could
be done on a turbulent mean flow obtained a priori with a quasilinear analysis as developed in
Ref. [49]. Indeed, such turbulent mean flows are also subject to bifurcations and multistability, as
clearly shown in Refs. [49–51] and many others.

The scope also covers other physical systems governed by other stochastic ordinary or partial
differential equations. This includes active matter, population dynamics, adaptive networks, micro-
biological systems, climate science, and many others. As an example, it could be interesting to apply
the present method in the spatiotemporal system of bacteria considered in Ref. [52] and subject to
a subcritical pitchfork bifurcation above a critical mean bacterial density. Consequently, a stable
solution made of a dense bacterial colony appearing at one boundary of the domain coexists with
another symmetrically placed at the other boundary of the domain. It was shown in Ref. [52] that, in
certain regimes, the introduction of noise triggers rare and aperiodic transitions between these two
solutions.
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