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The separated flow over a wall-mounted bump geometry under harmonic oscillations of
the inflow stream is investigated with direct numerical simulations. The bump geometry
gives rise to streamwise pressure gradients similar to those encountered on the suction side
of low-pressure turbine (LPT) blades. Under steady inflow conditions, the separated-flow
laminar-to-turbulent transition is initiated by self-sustained vortex shedding due to Kelvin-
Helmholtz (KH) instability. In LPTs the dynamics are further complicated by the passage
of the wakes shed by the previous stage of blades. The wake-passing effect is modeled
here by introducing a harmonic variation of the inflow conditions. Three inflow oscillation
frequencies and three amplitudes are considered. The frequencies are comparable to the
wake-passing frequencies in practical LPTs. The amplitudes range from 1% to 10% of the
inflow total pressure. The dynamics of the separated flow are studied by isolating the flow
components that are respectively coherent with and uncorrelated to the inflow oscillation.
Three scenarios are identified. The first one is analogous to the steady inflow case. In
the second one, the KH vortex shedding is replaced during a part of the inflow period
by the formation and release of a large vortex cluster. The third scenario consists solely of
the periodic formation and release of the vortex cluster; it leads to a consistent reduction
of the separated flow length over the entire period compared to the steady inflow case and
would be the most desirable flow condition in a practical application.

DOI: 10.1103/PhysRevFluids.9.053901

I. INTRODUCTION

Laminar boundary layer separation is a ubiquitous phenomenon present in several aeronautical
applications, such as low-pressure turbines (LPTs) at high-altitude flight [1–3] and unmanned aerial
vehicle (UAV) or microaerial vehicle (MAV) wings at steady and pitching conditions [4]. Separated
flow is associated with detrimental effects on aerodynamics and performance; flow control strategies
that lead to reductions in the size of the separated flow region are thus a way forward towards
improving their efficiency [5,6].
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The laminar-to-turbulent transition process has a dominant role in the reattachment of the
separated flow, thus determining the size and dynamics of separation bubbles [1,7–9] and also
the structural loading of LPT blades (e.g., [10]). The details of the transition process in separated
flows where the incoming flow and the aerodynamic surface are under steady conditions and low
environmental disturbance levels are relatively well known. In scenarios representative of leading
edge separation on airfoils and LPT blades with a moderate load, the transition is initiated by
Kelvin-Helmholtz (KH) instability of the separated shear layer, that amplifies small-amplitude
disturbances existing in the preseparated boundary layer [8,11], quickly leading to the formation
of spanwise vortices and triggering transition via nonlinear interactions of these vortices [12].
Alternative or complementary transition scenarios have been proposed for stronger adverse pressure
gradients, that involve the onset of absolute inflectional instability [13–15], spanwise modulation
of the recirculation region due to a self-excited global mode [16–19], or a combination of them
[20–22]. The transition process can be altered significantly in the presence of moderate to elevated
levels of free-stream disturbances. The incoming turbulence generates streaky structures in the
attached boundary layer upstream of separation, referred to as Klebanoff modes [23], which prevent
the formation of spanwise-homogeneous KH vortices. The interaction between the streaks and the
inflectional instability leads to the formation of short-span KH structures which enhance momentum
transfer in the wall-normal direction and result in a faster reattachment compared to cases with low
free-stream disturbances [3,9,24,25].

The flow dynamics on the suction side of LPT blades, and especially the transition process,
are complicated further by the inherent unsteadiness of the multistage machines, as the wakes
shed by one blade stage convect through the downstream passages periodically disturbing the flow
conditions of the next stage. These disturbances excite the formation of intense vortical structures
that shed and pull fluid from the recirculation region downstream, thus temporally reducing the
separated flow extent. Subsequently, the separation bubble regenerates, increasing in size until it
reaches a stationary value or the influence of the next wake impacts the flow. The transition to
turbulence is thus multimodal, promoted by periodic fluctuations of the incoming free-stream flow
and the own instabilities of the separated flow [26]. Wake-induced transition is very sensitive to
the combined effects of the adverse pressure gradient and intensity, temporal dependence, and
frequency of the inflow free-stream fluctuations. Several investigations have addressed the impact
of the wake-passing period on the length of the separated flow region, modeling the periodic
passage of wakes either as an inlet velocity deficit localized in space and time [3,27–29] or as a
harmonic change of the cross-sectional inlet conditions [30–32]. While the two approaches present
some differences, their results agree qualitatively on the impact of the wake-passing frequency and
intensity on the flow. A dimensionless frequency F , often referred to as reduced frequency, is defined
based on the characteristic free-stream velocity U and a streamwise length L representative of the
extent of the adverse pressure gradient region in the absence of wakes as F = finL/U , where fin is
the dimensional wake-passing frequency. The reduced frequency is thus the ratio of the convective
time scale and the period of the imposed free-stream variation. Ambiguity exists in the practical
characterization of F : First, the length of the steady-flow separated flow region is problem dependent
and only known a posteriori. Alternatively, other definitions of L are preferred in the literature,
like the length of the LPT blade or flat-plate used in experiments (e.g., [3,30,32]), as they can be
rigorously quantified. Second, under unsteady inflow conditions, both the free-stream velocity and
the streamwise pressure gradients change continuously and can differ significantly from the values
obtained under the steady inflow conditions. Owing to this ambiguity, the order of magnitude, rather
than the exact value of F , is relevant in the discussion of the physics.

Wake-passing reduced frequencies F close to but slightly lower than 1 are representative of aero-
engine LPTs [3]. For low F , the wake passing period is long compared with the characteristic times
of both the KH-related vortex shedding and the regeneration of the separation bubble; the impact
on the time-average separated flow and aerodynamic performance is expected to be comparatively
weak. For F above 1, successive wakes pass by the separated flow region before the separation
bubble has time to fully regenerate, which leads to significantly shorter time-averaged bubbles.
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FIG. 1. Spanwise vorticity field around a wall-mounted bump under steady inflow conditions.

These observations agree with investigations on active flow control of separated flows by means
of periodic excitation using wall suction and blowing or geometries with moving parts, reviewed
by Greenblatt and Wygnanski [5], which conclude that the forcing frequency that minimizes the
size of the separated flow is F ∼ 1. Interestingly, this frequency is typically lower than that of the
KH instability and scales with the global length of the separated flow rather than with the local
properties of the separated boundary layer.

The present work studies the separated flow formed over a wall-mounted bump geometry that
reproduces some characteristics of the suction side of a LPT blade under periodic fluctuations of
the inflow stream. Similar geometries have been employed in the past both experimentally and
numerically to study the fundamental physics of separated flow and possible means for flow control
[20,33–38]. Direct numerical simulations are carried out for ten different inflow conditions. The first
one is a steady inflow prescribed by a constant pressure difference between the inflow and outflow
that results in the transition scenario shown in Fig. 1. Under steady inflow conditions, the laminar
boundary layer separates just upstream of the bump summit. The separated shear layer sustains a
self-excited shedding of spanwise-dominant KH vortices, followed by their breakdown in smaller
three-dimensional structures and an abrupt transition to turbulence. The entrainment provided by
turbulence leads to the mean flow reattachment.

The other cases study different scenarios of wake-induced transition. The large-scale action of
passing wakes is modeled as a harmonic fluctuation of the inflow conditions (total pressure and bulk
velocity) in a manner analogous to Refs. [30–32]. Lou and Hourmouziadis [30] present results for
a single value of the reduced frequency lying in the limit F � 1. Wissink [31] considers four cases
with F ∼ 1–6 and oscillations of the inflow velocity being up to 20% of the mean value. While
the four cases simulated by [31,32] recover qualitatively the same flow dynamics, they are clearly
different from those in the experiments of [30], emphasizing the existence of different dynamical
scenarios depending on F and possibly on the amplitude of the harmonic inflow oscillations. The
main objective of the present work is to unveil and fully characterize the possible physical scenarios
and their impact on the size of the separated flow. To cover the parametric space, a matrix of nine
cases is defined with three frequencies and three fluctuation amplitudes. It is anticipated here that
three different scenarios will be identified.

The rest of the paper is organized as follows. Section II describes the geometry, computational do-
main, boundary conditions, and numerical methods used in the simulations. Section III presents and
discusses the results. A qualitative description of the flow field evolution and mean flow properties
are given in Secs. III A and III B. The triple decomposition proposed by Hussain and Reynolds [39]
is applied to separate flow components that are coherent (in-phase) with the inflow oscillation from
those occurring randomly. Section III C describes the phase-averaged fields for three representative
cases. The phase-averaged data provides information on the impact of the inflow oscillation over
the length of the separated flow and how it evolves over the inflow period, which is discussed in
Sec. III D. Section III E presents the flow component that is incoherent (i.e., uncorrelated) with the
inflow oscillation. Monitoring this component sheds light on the vortex dynamics that ultimately
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FIG. 2. Definition of the wall-mounted bump geometry. The symbols show the location of the control
points defining the Bezier curves.

govern the behavior of the separated flow. Section III F presents frequency spectra at different probe
locations. In combination, these results show that the separated flow subject to inflow oscillations
can present three different scenarios regarding the flow dynamics and their impact on the length
of the separated flow region. These scenarios are thus fully characterized in Sec. III and discussed
in Sec. IV, along with their connection with active flow control strategies. To verify that present
findings are general and not exclusive to the particular geometry of the wall-mounted bump used,
results of an analogous study considering the related yet different NASA hump geometry [33,40]
are presented in Appendix C.

II. NUMERICAL APPROACH

A. Geometry and domain

The geometry of interest is shown in Fig. 2. This geometry is based on the experimental setup
used by Saavedra and Paniagua [37,38], consisting of a plane channel with a bump protruding from
one of the walls. The bump geometry is defined by Bezier curves using 11 control points, to ensure
continuity of the surface up to the second derivatives. The bump maximum height (summit) and
the channel height are 0.036 and 0.17 m, respectively, resulting in a throat width of 0.134 m and a
blockage ratio of 21.2%. This relatively large blockage ratio impacts the pressure gradient over the
bump and especially near the bump summit. However, for the related geometry of the NASA hump,
Greenblatt et al. [40] concluded that reducing the blockage ratio indeed modifies the wall pressure
distribution but does not affect the separation and reattachment locations nor the root-mean-squared
pressure distribution.

The computational domain and a representative mesh used are shown in Fig. 3. The channel is
considered to be homogeneous in the spanwise direction. The spanwise size of the computational
domain is set as Lz = 0.08 m (more than twice the bump height), and periodic boundary conditions
are imposed on the lateral walls. For comparison, the larger spanwise domain used by Wissink

FIG. 3. Computational domain and representative mesh for spectral element computations.
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TABLE I. Boundary conditions.

[BC1] Inlet Total pressure pt as in Eq. (1) and total temperature Tt = 291.2 K
[BC2] Outlet Static pressure: p = 101 325 Pa
[BC3] Wall No-slip, adiabatic
[BC4] Sides Periodicity

and Rodi [31] is Lz = 0.12L, where their L is comparable to the length of the bump. In the present
geometry, the bump length is L ∼ 0.25 m, yielding a ratio Lz/L ∼ 0.3, which is approximately three
times larger than that of Wissink and Rodi. Furthermore, this spanwise domain is considered to be
sufficiently large since it accommodates several of the major spanwise structures, as shown below
in Figs. 7 and 8.

The computational domain is extended in the streamwise direction with respect to the reference
experiments and simulations to minimise the impact of the boundary conditions and to allow for
the introduction of a Fringe region before the downstream boundary. The inlet section (denoted by
BC1) is located 0.3 m upstream of the beginning of the bump, i.e., upstream of the first control point
in the Bezier curves as shown in Fig. 2. This relatively long distance between the inlet section and
the bump is intended to allow for the development of the incoming boundary layer.

A high-order mesh generation tool called the High Order Hex-Quad Mesher (HOHQ) [41] is
used to generate a mesh suitable for spectral element computations. The curvature of the elements
is represented using a fifth-order polynomial. Local mesh refinement is done in the regions adjacent
to the wall and around and downstream of the bump, where the strongest velocity gradients are
expected to appear. Section II D summarizes the mesh refinement studies. The mesh finally used
consists of 31 640 rectangular elements with eight elements in the spanwise, z direction, and a
third-order polynomial in all the elements and directions.

B. Simulation setup and boundary conditions

Table I lists the boundary conditions. The flow is driven by a pressure gradient imposed through
the inflow and outflow boundary conditions. The static pressure pRef = 101 325 Pa is imposed at the
outlet and used as reference pressure. Uniform values of total pressure pt and temperature Tt are pre-
scribed at the inlet. A reference case is defined in which the inlet total pressure is constant and equal
to pt = 105 319 Pa and the inlet total temperature is Tt = 291.2 K; this case is referred to as the
steady inflow case. Under these conditions, the mean velocity at the inlet section is URef = 68.158
m/s, the static temperature at inflow (which is taken as reference temperature) is TRef = 288.9 K,
and the resulting flow has (unit length) Reynolds number Re = ρRefURefLRef/μRef ≈ 100 000
and Mach number M = URef/cRef = 0.2, where ρRef , μRef , and cRef are, respectively, the density,
dynamic viscosity, and speed of sound based on the reference temperature and pressure (TRef and
pRef ), and LRef is an arbitrary reference length which is chosen as LRef = 1 m.

In the other cases, referred to as harmonic inflow cases, a periodic variation of the total pressure
at the inlet is imposed, while the total temperature remains constant as in the steady inflow case.
The total pressure at the inlet is defined as

pt (t
∗) = pt,steady {1 + Ain sin[2π f ∗

in(t∗ − t∗
0 )]}, (1)

where pt,steady is the total pressure of the steady inflow case, Ain is the amplitude of the harmonic
oscillation, f ∗

in is a dimensionless frequency, t∗ is a dimensionless time, and t∗
0 is a reference instant.

Dimensionless velocity, time, and frequency are defined using URef and the unit length (LRef ),

u∗ = u

URef
, t∗ = t

URef

LRef
, f ∗ = f

LRef

URef
. (2)
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Note that the definition of f ∗ is not the same as the reduced frequency F discussed in Sec. I. The
definition of F is based on the representative length of the separated flow region, which is not known
a priori. Also, the specification of f ∗ based on the unit length simplifies the data temporal sampling
and subsequent analyses. Nine cases with harmonic inflow variation are considered, comprising
three amplitudes (Ain = 0.01, 0.05, and 0.1) and three different frequencies ( f ∗

in = 0.5, 1, and 2).
Early simulations showed the presence of nonphysical disturbance reflections from the outlet

boundary which impacted notably the dynamics of the separated flow. To minimize their upstream
influence, a Fringe region is applied as in Spalart [42], Spalart and Watmuff [43], Nordström et al.
[44]. This approach imposes a forcing term into a bounded spatial region extending upstream
from the outlet, to drive the flow field towards prescribed values and effectively dampen the flow
fluctuations before they reach the outlet boundary. The forcing term takes the form

s = −λ̄ F

(
x − xstart

�rise

)
(q − qtarget ), (3)

where λ̄ is a constant controlling the strength of the forcing, F (r) is a smooth function describing
the spatial structure of the forcing term, xstart is the coordinate where the Fringe region starts, �rise

is the length of the Fringe region, q is the vector of fluid variables, written in conservative variables
(as described in Sec. II C), and qtarget is the prescribed flow to be recovered at the outlet. Following
Spalart and Watmuff [43], the function F (r) is defined as

F (r) =
{ 0, r � 0,

1/
[
1 + exp

(
1

r−1 + 1
r

)]
, 0 < r < 1,

1, 1 � r.
(4)

The reference values of the density ρRef and temperature TRef , and the streamwise velocity of
the steady inflow are imposed for the target values qtarget, together with the vanishing of the wall-
normal and transversal velocity components. The Fringe parameters used in the simulations have
been determined from different tests (not reproduced here for the sake of brevity) and ensure that
the flow field does not fluctuate at the outlet and has negligible upstream effects. The Fringe forcing
is very effective in dampening vortical disturbances and short Fringe regions are typically used for
incompressible flow. Conversely, present computations consider compressible flow at relatively low
Mach number, and consequently additional disturbances of acoustic nature are introduced. Previous
tests simulating plane channels under the same inflow conditions as the wall-mounted bump showed
that Fringe regions comprising at least one acoustic wavelength were required to effectively damp
the acoustic reflections and prevent acoustic feedback with the current numerical setup. The Fringe
region used starts a sufficient distance from the bump summit, i.e., at xstart = 0.7 m and extends
to the outlet located at xoutlet = 1.7 m. The parameter �rise is set equal to xoutlet − xstart in order to
provide the lowest gradient possible, and λ̄ = 400.

C. Computational methods

Direct numerical simulations are performed using the in-house discontinuous Galerkin spectral
element code HORSES3D [45]. The flow variables are made dimensionless using LRef , TRef , pRef

and the reference velocity Uref for the steady inflow case, resulting in a unit-length Reynolds number
Re = 100 000 and Mach number 0.2, as described in Sec. II B. The dimensionless compressible
Navier-Stokes equations in conservative form take the form

∂q
∂t

+ ∇ · (fa − fv ) = s, (5)
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where q = [ρ, ρu, ρv, ρw, ρE ]T are the conservative variables, E is the specific internal energy
and s is a source or volumetric forcing term. Advective (fa) and viscous (fv) fluxes are expressed in
primitive variables as Eqs. (6) and (7), respectively:

fa
1 =

⎡
⎢⎢⎢⎢⎣

ρu
p + ρu2

ρuv

ρuw

u(ρE + p)

⎤
⎥⎥⎥⎥⎦, fa

2 =

⎡
⎢⎢⎢⎢⎣

ρv

ρuv

p + ρv2

ρvw

v(ρE + p)

⎤
⎥⎥⎥⎥⎦, fa

3 =

⎡
⎢⎢⎢⎢⎣

ρw

ρuw

ρvw

p + ρw2

w(ρE + p)

⎤
⎥⎥⎥⎥⎦, (6)

fv
1 = 1

Re

⎡
⎢⎢⎢⎢⎣

0
τxx

τxy

τxz

viτ1i + κ∂xT

⎤
⎥⎥⎥⎥⎦, fv

2 = 1

Re

⎡
⎢⎢⎢⎢⎣

0
τyx

τyy

τyz

viτ2i + κ∂yT

⎤
⎥⎥⎥⎥⎦, fv

3 = 1

Re

⎡
⎢⎢⎢⎢⎣

0
τzx

τzy

τzz

viτ3i + κ∂zT

⎤
⎥⎥⎥⎥⎦. (7)

The equation of state for ideal gas takes the form

p = (γ − 1)ρ

[
E − u2 + v2 + w2

2

]
, (8)

and Sutherland’s law is used for the dynamic viscosity

μ = 1 + Tsuth/TRef

T + Tsuth/TRef
T

3
2 , (9)

where Tsuth = 110.4 K. The dimensionless thermal conductivity is expressed as

κ = μ

(γ − 1)Pr M
, (10)

where Pr is the Prandtl number, assumed to be constant and equal to 0.72. The stress tensor, using
the Stokes hypothesis, is defined as

τ = μ((∇v)T + ∇v) − 2
3μ(∇ · v) I. (11)

The simulations are performed using third-order polynomials with Gauss nodes. Time integration
is performed with an explicit third-order Runge-Kutta scheme. A standard discontinuous Galerkin
discretization of the inviscid fluxes is done using Roe’s method for the Riemann problem and the
Bassi-Rebay 1 scheme is used for the discretization of the viscous fluxes. Further details on the
numerical implementation can be found in Ferrer et al. [45] and references therein.

D. Convergence study

Preliminary simulations are performed to study the robustness of the results with respect to the
spatial discretization and numerical parameters. The case with steady inflow is considered. Because
the nominal Reynolds number is the same for all cases, the spatial resolution requirements are
considered to be analogous. Similarly, the period of the inlet fluctuations is much longer than the
characteristic times associated with the KH vortices (see Appendix A) and the series of increasingly
smaller vortices typical of turbulent flow and thus the temporal resolution requirements are the same
for all cases.

Spectral element methods allow the spatial discretization to be refined either by reducing the size
of the elements (h-refinement) or by increasing the order of the polynomial used in the evaluation
of derivatives within each element (p-refinement). A baseline mesh is defined based on a regular
element size and different levels of zonal refinement, as shown in Fig. 3. To study the p-refinement,
second-, third-, and fourth-order polynomials are used together with the baseline mesh. To study the
h-refinement, two additional meshes were built with the element size respectively decreased (fine
mesh) and increased (coarse mesh) by ∼ 20% in all directions with respect to the baseline mesh.
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TABLE II. Convergence study of spatial and temporal resolutions. h/href : relative spatial mesh size; p:
order of the polynomial discretizing each mesh element; DOF: degrees of freedom of the spatial discretization;
�t∗ time step; Ls: mean length of the recirculation region; Ns: total number of time steps simulated after initial
transient; Nss: number of time steps per segment used in the computation of the PSD.

Discretization h/href p DOF �t∗ Ls [m] Relative cost Ns Nss

Baseline 1 3 2 024 960 3 × 10−5 0.2782 1 2 410 000 33 332
Fine 0.8 3 5 012 480 5 × 10−6 0.2818 13.82 2 400 000 200 000
Coarse 1.2 3 1 343 616 3 × 10−5 0.2836 0.60 1 350 000 33 332
Baseline + low p 1 2 854 280 3 × 10−5 0.2931 0.68 1 000 000 33 332
Baseline + high p 1 4 3 955 000 2 × 10−5 0.2858 2.31 550 000 50 000

The number of spanwise elements is six, eight, and ten in the coarse, baseline, and fine meshes,
respectively. Additionally, increasing the polynomial order p also increases the effective spanwise
resolution, enabling the assessment of results convergence with respect to spanwise discretization.
The parameters of the five discretizations tested are given in Table II, together with the number of
spatial degrees of freedom (DOF) and the time step �t∗ used.

The mean length of the separated flow region Ls is compared for the different discretizations.
The h-refinement study shows that Ls changes are below 2%, while the relative computational cost
increases an order of magnitude for the finer mesh. The effect of the polynomial order p is found to
be stronger. However, increasing the order from p = 3 to p = 4 results in a change of Ls below 3%.

The power spectra density (PSD) of the spanwise vorticity at different probe locations are
computed and shown in Fig. 4. Power spectral densities are estimated using Welch’s method [46].
For each spatial discretization, different time-step sizes �t∗ are used and varying total numbers
of snapshots Ns are stored. The PSD is computed by averaging the periodograms of segments of
Nss snapshots each with 50% overlap and a Hamming window. The segment length Nss is chosen
separately for each simulation to ensure that the frequency bin � f ∗ = 1.

The location of the probes is illustrated in Fig. 5 and given in Table III, together with other
locations that are used throughout the paper. Probes 1, 2, and 3 are located along the mean shear
layer. The reference point and Probe 4 will be referred to in Sec. III. Probe 1 is located relatively
close to the separation point, upstream of the region where the first KH vortices are observed.
Probe 2 is in the region in which KH vortices are shed. Probe 3 is located downstream, where

FIG. 4. PSD of spanwise vorticity at selected probe locations for different spatial and temporal
discretizations.
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FIG. 5. Location of the reference point and sampling probes.

vortical structures of a broad range of scales are already present. For all five spatial resolutions,
the energy spectra are roughly the same except for the case with second-order polynomial, coarser
mesh, and at higher frequencies. These frequencies are associated with small scales and present
very low energy levels, and the deviation of the spectra may indicate that the turbulent cascade is
not fully resolved. Similarly, the y+ coordinate of the first internal node of the wall-adjacent element
takes values as large as 2 at certain locations, indicating that the baseline discretization may not fully
resolve the attached boundary layer there. However, the focus of present simulations is to resolve
the flow structures dominating the separated flow dynamics, which correspond to comparatively
larger scales than the wall viscous sublayer, lower frequencies than those potentially under-resolved
in the frequency spectra, and are nevertheless robustly captured by the baseline spatial discretization
and temporal resolution (cf. Table II). This convergence study shows that further spatial refinement
can improve the resolution of finer turbulent scales, at the cost of significantly more expensive
simulations, but does not result in significant changes in the physics of interest.

III. RESULTS

Table IV summarizes the different simulations performed in this work, comprising the reference
case that features a steady inflow and nine cases in which the inflow has a harmonic component
of different frequency f ∗

in and amplitude Ain. All the harmonic inflow cases use the same time step
�t∗ = 2 × 10−5. The initial transient, different for each case but comprising several flow-through
times, was discarded and the following simulation sampling time t∗

data = 50 was collected for the
subsequent analysis.

The steady inflow case is considered as the baseline. The length of the separated flow region,
defined as the streamwise distance from the time-averaged separation to reattachment points, is
Ls,steady = 0.2782 m. The Reynolds number based on the mean inflow velocity and Ls,steady is ReLs =
27 000, which is comparable to the works by, e.g., Embacher and Fasel [47], Kurelek et al. [48],
Dellacasagrande et al. [49]. The Reynolds number based on the maximum height of the recirculation
region, approximated here as the height of the bump, is Reh = 3600, which lies in the range of values

TABLE III. Coordinates of the reference point and sampling probes.

Probe x [m] y [m] ξ [m]

Reference 0.0 0.15 —
1 0.165 0.0417 0.06
2 0.225 0.0425 0.12
3 0.304 0.0348 0.2
4 0.2 0.05 —
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TABLE IV. Summary of the cases simulated, including the definition of the inlet pressure condition, the
characterization of time-averaged and phase-dependent values of the reference streamwise velocity, and the
length of the recirculation region Ls.

�t∗ CFLmax t∗
data Ain f ∗

in ū∗
@Ref �u∗

@Ref Ls [m] �Ls [m]

3 × 10−5 0.9 72.3 — — 1.11 — 0.2782 —
2 × 10−5 0.7 50 0.01 0.5 1.1025 0.0293 0.2782 0

0.7 50 0.01 1 1.1078 0.0301 0.2780 −0.0002
0.7 50 0.01 2 1.1072 0.0282 0.2625 −0.0157
0.7 50 0.05 0.5 1.1030 0.1467 0.2727 −0.0055
0.7 50 0.05 1 1.1022 0.1467 0.2600 −0.0182
0.7 50 0.05 2 1.1008 0.1401 0.1966 −0.0816
0.8 50 0.1 0.5 1.0872 0.2929 0.2575 −0.0207
0.8 50 0.1 1 1.0840 0.2961 0.2323 −0.0459
0.8 50 0.1 2 1.0871 0.2772 0.1536 −0.1246

reported by Gaster [7] and other experiments cited by Diwan et al. [50]. The Reynolds number based
on the boundary layer momentum thickness at the separation point is Reθ,s = 27. This number is
significantly smaller than most of the values reported in the literature for laminar separation bubbles.
However, this discrepancy is explained by the use of a wall-mounted bump, as opposed to flat
plates under an adverse pressure gradient or airfoils with small to moderate camber. The strong
acceleration of the flow in the upstream portion of the bump leads to a substantial reduction of the
boundary layer thickness. The rather low value of Reθ,s is comparable to that in geometry-induced
separation bubbles like those reported by Aniffa et al. [51].

The harmonic change of the inlet total pressure leads to a periodic acceleration and deceleration
of the bulk flow. Due to the relatively long upstream extension of the domain, the inflow changes
reach the bump with a delay. A reference point located just upstream of the bump (see Fig. 5 and
Table III) is used to characterize the bulk flow changes in the bump region. Figure 6 shows the total
pressure and streamwise velocity evolution at the reference point for the case Ain = 0.1, f ∗

in = 2.
The total pressure at this point is used to define the phase of oscillation φ in the analysis done in
the rest of the paper. The phase φ = 0◦ is chosen as the time in which the total pressure is at its
mean value and has maximum positive derivative (i.e., maximum acceleration); φ = 90◦ and 270◦
correspond respectively to the maximum and minimum values of the total pressure.

The streamwise velocity also exhibits a sinusoidal behavior, with the mean value umean remaining
the same as for the steady inflow case. A small delay T ∗

d exists between the maxima and minima
of total pressure and streamwise velocity, stemming from flow inertia. Table IV shows the normal-
ized amplitude of the streamwise velocity fluctuation, �u∗ = (umax − umin)/(2URef ). This value is

FIG. 6. Evolution of total pressure and streamwise velocity at the reference point.
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FIG. 7. Q(+) isosurface colored by streamwise velocity. Ain = 0.01 and f ∗
in = 0.5.

linearly proportional to Ain and the normalized streamwise velocity at the reference point can be
approximated by

u∗(t ) ≈ ū∗ + �u∗ sin[2π f ∗
in(t∗ + T ∗

d )]. (12)

Table IV also shows the mean value of the streamwise length of the flow recirculation region
Ls, and its relative change with respect to the steady inflow case, �Ls = Ls − Ls,steady for each one
of the cases with harmonic oscillation inflow. As opposed to �u∗, �Ls is not proportional to Ain,
indicating that essentially nonlinear dynamics govern the separated flow and its reattachment. The
nonlinearity is associated with the complex vortex dynamics originated in the separated flow region
and the impact of the flow acceleration and deceleration upon them, which will be studied in the
next sections.

FIG. 8. Q(+) isosurface colored by streamwise velocity. Ain = 0.1 and f ∗
in = 2.
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FIG. 9. Instantaneous spanwise vorticity. Ain = 0.01 and f ∗
in = 0.5.

A. Instantaneous flow fields

Figures 7 and 8 show the sequence of instantaneous three-dimensional visualizations of the
vortical structures using the Q criterion [52] for two extreme cases, namely, (Ain = 0.01, f ∗

in = 0.5)
and (Ain = 0.1, f ∗

in = 2) (see movies 1 and 2 in Supplemental Material [53]). The isosurfaces,
corresponding to the arbitrary value Q = 1000, are colored using the streamwise velocity. Figures 9
and 10 show the respective spanwise vorticity fields at the midspanwise plane. In addition to the
dimensionless time, each subfigure also indicates the corresponding phase φ. The three-dimensional
visualizations show that the flow is fully two-dimensional upstream of the bump summit, even in
the presence of vortices in the upstream part of the bump. This rules out the presence of Görtler
[54] and centrifugal global instabilities [16,19] and ensures that the flow remains laminar and
two-dimensional at separation in all cases.

The first case (Ain = 0.01, f ∗
in = 0.5) corresponds to the weakest inflow oscillations, i.e., lowest

inflow frequency and amplitude, and results in a mean recirculation length virtually identical to
that of the steady case. For this case, Fig. 9 shows a continuous shedding of KH vortices from
the separated shear layer followed by a fast transition to turbulence and recirculation of vortical
structures, qualitatively identical to the steady case (cf. Fig. 1). However, careful observation of
the separated shear layer upstream of the vortices shows some differences that gradually become
more relevant for cases with increasing Ain and f ∗

in. For φ = 0◦ the reference total pressure starts to
increase above its mean value, exerting an acceleration of the flow along the channel. Due to the
increased mass and momentum fluxes, the separated shear layer is pushed towards the bump wall.
As the flow is accelerated, the high-vorticity region associated with the laminar-turbulent transition
is also pushed towards the wall. The maximum inflow pressure occurs at φ = 90◦, followed closely
by the inflow bulk velocity. For φ between 90◦ and 270◦ the reference pressure is reduced up to
its minimum value, imposing a gradual deceleration of the bulk flow. The separated shear layer
moves away from the wall; the high-vorticity region seems to detach from the wall and the apparent
recirculation region extends farther in the streamwise direction. Finally, when φ > 270◦ the flow
gradually reaccelerates closing the period.
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FIG. 10. Instantaneous spanwise vorticity. Ain = 0.1 and f ∗
in = 2.

The second case (Ain = 0.1, f ∗
in = 2) corresponds to the strongest inflow oscillation, i.e., the

largest inflow oscillation frequency and amplitude, and results in a substantial reduction of the
mean recirculation region (�Ls/Ls,steady ≈ −44%). For this case, Fig. 10 does not show a periodic
shedding of KH vortices from the separated shear layer, but rather the formation and release of a
big vortex cluster following the harmonic change in the inflow conditions.

These observations suggest that two closely related but different physical mechanisms are at play
when the inflow has a harmonic time dependence with relatively small Ain and f ∗

in. First, the periodic
acceleration-deceleration of the bulk flow modifies the angle of the separated shear layer through
changes in the intensity of the streamwise pressure gradient. The location of the separation point
is nearly unaffected by this. Second, the periodic vertical motion of the shear layer can impact its
hydrodynamic instability properties and the ensuing dynamics of the KH vortices and the laminar-
turbulent transition. As will be quantified later, the frequency of the KH vortex shedding is distinctly
separated from the frequency of the inflow changes. On the other hand, for relatively large Ain and
f ∗
in, the organized shedding of KH vortices from the separated shear layer is replaced by a periodic

formation and ejection of large vortex clusters that is driven by the bulk flow acceleration and
deceleration. Intermediate cases are expected to show a transition from one behavior to the other, as
will be detailed in the following sections.

With the aim of isolating the shedding of KH vortices from the bulk flow oscillations imposed
by the inlet frequency, the triple decomposition proposed by Hussain and Reynolds [39] is applied.
This decomposition takes the form

q(x, t ) = q̄(x) + q̃(x, t ) + q′(x, t ), (13)

where q̄ stands for the mean (time-averaged) flow, q̃ is the oscillatory component coherent with the
inflow oscillation and q′ is the incoherent component. The term “coherent” refers to flow fluctuations
that occur in phase with the harmonic changes of the total pressure at the reference point. As such,
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FIG. 11. Time-averaged (left) and root-mean-square (center) and root-mean-square of the incoherent
component (right) of streamwise velocity field.

the mean plus coherent components are gathered together in the phase-averaged flow

〈q(x, φ)〉 = 1

N

N∑
n=0

q

(
x, tφ + n

f ∗
in

)
, (14)

where tφ is the time used as the phase reference, f ∗
in is the inlet frequency and N is the number of

periods used in the averaging. The incoherent part of the flow is computed as q′(x, t ) = q(x, t ) −
〈q(x, t )〉. The same dimensionless time lapse was used in the averaging for the three frequencies f ∗

in,
resulting in N = 25 for f ∗

in = 0.5, N = 50 for f ∗
in = 1 and N = 100 for f ∗

in = 2.

B. Mean flow fields

Figure 11 shows the mean (time-averaged) component of the streamwise velocity field ū for
the steady inflow case, the former two extreme cases of inflow oscillations (Ain = 0.01, f ∗

in = 0.5)
and (Ain = 0.1, f ∗

in = 2), and the intermediate case (Ain = 0.05, f ∗
in = 1). The thick black lines

correspond to the time-averaged separation streamline. These results illustrate how the mean extent
of the separated flow is only slightly reduced when the intensity of the inflow oscillations is mild,
but reduced considerably for the strongest inflow oscillations. The peak reversed flow exceeds
20% of the reference velocity for the steady inflow case and is increased up to nearly 50% for
(Ain = 0.1, f ∗

in = 2). Such intense reversed flow values suggest that, in all cases, a self-excited
vortex shedding is possible stemming from an absolute KH instability [13,15]. Figure 11 also
shows the root mean square of all the flow fluctuations (phase-averaged plus incoherent components,
central column) and of the incoherent component alone (right column). The r.m.s. of the incoherent
component shows intense fluctuations in the downstream part of the recirculation region, with its
peak roughly coincident with the streamwise coordinate of the peak reversed flow and located on the
separation streamline, which are typical features of laminar separation bubbles. For the case with
strongest inflow oscillations, this peak is displaced inside of the separation streamline, indicating
that the flow fluctuations that are uncorrelated to the inflow oscillations are contained in the recir-
culation region. This will be further discussed in Sec. III E. The r.m.s. of the complete fluctuations
are identical to that for the incoherent component for the steady and weak inflow oscillation cases.
A gradual departure appears as the amplitude of the inflow oscillation increases, as the relative
intensity of the coherent component increase and becomes dominant. These fluctuations are then
concentrated on the separation shear layer, upstream of the peak of the incoherent fluctuations, are
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FIG. 12. Phase-averaged spanwise vorticity. Ain = 0.01 and f ∗
in = 0.5.

associated with phase-averaged changes in the shape and size of the recirculation region. These
changes are discussed in the next section.

Besides the main recirculation region that is formed downstream of the bump, a smaller recir-
culation appears upstream of it, analogous to those appearing in forward-facing steps (e.g., [55]).
While the appearance of this upstream recirculation is not caused by the inflow oscillations, vortices
are periodically released for the cases with larger Ain that can interact with the main recirculation
region. However, self-excited vortex shedding does not happen in the upstream recirculation, which
also remains two-dimensional as shown in Figs. 7 and 8.

C. Phase-averaged flow fields

Figures 12–14 show the evolution of the phase-averaged spanwise vorticity fields at the midspan
plane for the three representative unsteady inflow cases. The thick black lines in the figures
approximate the separation streamline at each phase. This line is computed by neglecting the
spanwise velocity component in the phase-averaged flow and integrating dx/〈u〉 = dy/〈v〉 starting
at the approximate location of the separation point.

For the case with the weakest inflow oscillation (Ain = 0.01, f ∗
in = 0.5; Fig. 12), phase averaging

successfully isolates the shear layer motion that is coherent with the inflow changes from the KH
vortex shedding: the periodic motion of the shear layer towards and apart from the wall is captured
in the phase-averaged field (as will be further discussed in the next section), but no imprint of
individual vortices or details of the subsequent transition are captured. Instead, the phase-averaged
shear layer seems to diffuse as it evolves downstream, occupying the space where vortical structures
are identified in the instantaneous flow. This region extends from the separated shear layer to the
wall and presents a noticeable patch of positive vorticity adjacent to the wall for all phases; the latter
is the imprint of vortical structures that are recirculated in the separation bubble.

The intermediate case (Ain = 0.05, f ∗
in = 1; Fig. 13) shows more clearly the vertical flapping

motion of the shear layer. As opposed to the previous case, the positive vorticity region apparently
disappears for phase angles corresponding to bulk flow acceleration (φ ≈ 0◦ in the figure) and
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FIG. 13. Phase-averaged spanwise vorticity. Ain = 0.05 and f ∗
in = 1.

becomes more intense around the peak deceleration (φ ≈ 180◦) where the wall-normal extension of
the recirculation region is larger.

Finally, Fig. 14 shows the phase-averaged vorticity for the case with strongest inflow oscillations
(Ain = 0.1, f ∗

in = 2). The phase-averaged field recovers the periodic formation and release of large

FIG. 14. Phase-averaged spanwise vorticity. Ain = 0.1 and f ∗
in = 2.
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patches of spanwise vorticity, coherent with the harmonic change of the bulk velocity. Phase
φ = 270◦ corresponds approximately to the conditions of minimum bulk velocity; for this phase, a
vortex of size comparable to the bump is clearly defined downstream of the bump summit. As the
flow reaccelerates, the vortex is released (φ ≈ 0◦) and advected downstream pushing the separation
shear layer towards the wall, sensibly reducing the length of the separated flow region. Concurrently
with this, a smaller two-dimensional vortex is formed upstream of the bump for 270◦ � φ � 45◦,
which is shed at φ ≈ 45◦ and reaches the bump summit at φ ≈ 90◦. This vortex interacts with the
separated shear layer giving rise to two coherent vortices (φ ≈ 180◦) that subsequently break down
into smaller structures, as shown in the instantaneous flow visualization of Fig. 10. However, the
phase-averaged field does not capture the evolution of these vortices after φ ≈ 225◦, indicating that
their dynamics are chaotic and not reproduced from cycle to cycle. Comparing the instantaneous and
phase-averaged fields (respectively, Figs. 10 and 14), it is observed that the vortical structures origi-
nated by the upstream vortex are completely entrapped in the recirculation region and contribute to
its re-generation.

D. Impact of the inflow conditions on streamwise acceleration and length of the separated flow

The phase-averaged fields provide relevant information regarding the impact of the harmonic
inflow changes on the streamwise flow acceleration and deceleration and the resulting length of the
separated flow region.

In order to quantify the phase-dependent streamwise acceleration, the dimensionless parameter

〈K (x, φ)〉 =
〈

ν

u3(x, φ)

(
∂u(x, φ)

∂t
+ u(x, φ)

∂u(x, φ)

∂x

)〉
(15)

is used, that can be further divided into two contributions: the contribution from the local flow
acceleration

〈K∂u/∂t (x, φ)〉 =
〈

ν

u3(x, φ)

∂u(x, φ)

∂t

〉
(16)

and the convective acceleration

〈K∂u/∂x(x, φ)〉 =
〈

ν

u2(x, φ)

∂u(x, φ)

∂x

〉
. (17)

This parameter was introduced by Spalart [56] as a pressure gradient parameter in studies of flow
relaminarization under favorable pressure gradients (K > 0) but it is also used to quantify the flow
deceleration associated with an adverse pressure gradient (K < 0) [37,49,57,58] in boundary layer
flows. In the ideal scenario of a boundary layer that is unbounded on the wall-normal direction, the
free-stream value of the streamwise velocity would be used and Bernoulli’s equation would relate it
directly to the streamwise pressure gradient. In the geometry used herein, the upper wall of the chan-
nel prevents using this definition. As an approximation to the free-stream velocity, the streamwise
velocity at the plane y = 0.1 m is used, which corresponds approximately to the midpoint between
the bump summit and the upper wall. The streamwise velocity on this plane is expected to be less
affected by the instantaneous vortical structures and viscous effects on the separated flow region,
though the irrotational flow is strictly not attained. Figure 15 shows the spatio-temporal evolution
of the phase-averaged acceleration parameter 〈K〉, for the three representative cases of harmonic
inflow oscillation. The steady inflow case is also shown for comparison.

For the same cases, Fig. 16 shows the temporal evolution of the dimensionless streamwise skin
friction at the midspan plane, defined as

Cf (x, φ) = 〈τw(x, φ)〉
pt (xref , φ) − p(xref , φ)

, (18)
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FIG. 15. Contours: Phase-averaged streamwise acceleration parameter at y = 0.1 m. Green lines: angle of
the streamline at the separation point � corresponding to the phase-averaged component (solid line), the mean
component (dashed) and the steady inflow case (dashed-dotted).

FIG. 16. Phase-averaged skin friction at the mid-span of the bump surface. Left: Ain = 0.01, f ∗
in = 0.5.

Center: Ain = 0.05, f ∗
in = 1. Right: Ain = 0.1, f ∗

in = 2. The location of the phase-averaged separation and
reattachment points is shown as a green dot for each discrete phase value.
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where xref corresponds to the location of the reference point (cf. Table III). The phase-averaged
location of the separation and reattachment point are also shown in the figure, illustrating the
streamwise length of the main recirculation region.

The steady inflow case shows the flow acceleration-then-deceleration distribution generated by
the bump. The minimum K value is obtained at x ≈ 0.35 m, which is coincident with the location
of minimum Cf . The time-averaged reattachment occurs a short distance downstream and can
be identified as the coordinate where the skin friction changes from negative to positive. The
streamwise acceleration parameter is still negative at reattachment, illustrating that the reattachment
originated from unsteady flow entrainment rather than the action of a streamwise flow acceleration.
Case (Ain = 0.01, f ∗

in = 0.5) shows the same features as the steady inflow case, with a small
amplitude modulation that follows the inlet frequency.

The cases with increasingly stronger/faster inflow oscillations exhibit a pattern of phase-
dependent deceleration-acceleration localized in the reattachment region that is repeated with each
period. For the intermediate case (Ain = 0.05, f ∗

in = 1), the minimum value of 〈K〉 occurs for φ ≈
180◦, coincident with the peak bulk flow deceleration. As the flow reaccelerates for φ > 270◦, the
region of negative 〈K〉 is displaced downstream and reduced in size. Then, for the peak acceleration
phase φ = 0◦, 〈K〉 is positive around the time-averaged reattachment point. This evolution of 〈K〉
is followed by the Cf distribution. At φ = 0◦, the reattachment point is located around x = 0.25
m; reattachment moves downstream gradually for increasing φ, resulting in a longer recirculation
bubble. During the flow reacceleration, a new region of positive skin friction is formed upstream of
the region of minimum Cf , implying that a large coherent vortical structure has been released and a
new one is being formed.

Finally, the case (Ain = 0.1, f ∗
in = 2) shows new distinct features in both the acceleration param-

eter and the skin friction. For relatively elevated values of Ain and f ∗
in the local flow acceleration

〈K∂u/∂t 〉 becomes comparable to the convective one. In consequence, 〈K〉 is alternatively positive
or negative during about half of the period. The peak deceleration is now displaced to the later
phase φ ≈ 275◦. However, its peak magnitude is increased substantially with respect to the case
(Ain = 0.05, f ∗

in = 1), and as a result the same negative values of 〈K〉 are reached before in the
period. For instance, case (Ain = 0.05, f ∗

in = 1) presents the minimum 〈K〉 value −24.74 × 10−6 at
φ slightly above 180◦, while this value is attained in case (Ain = 0.1, f ∗

in = 2) already at φ = 135◦.
The intense periodic acceleration-deceleration influences the Cf distribution notably, involving the
formation of multiple recirculation regions that are related to the advection of the coherent vortex
clusters shown in Fig. 14. Cross-comparison of the streamwise acceleration and skin friction (cf.
Fig. 15 and 16) suggests that the formation and release of the large vortical structures in the coherent
flow component are associated to surpassing a threshold negative value of the acceleration parameter
〈K〉. The reasons for this will be further discussed in later sections.

Figure 15 also shows the angle of the separation streamline with the x direction at the separation
point corresponding to the phase-averaged flow, the mean flow and the steady inflow case. Under
steady flow conditions, a direct relation exists between the streamwise pressure gradient (K), the
gradient of the wall shear (∂Cf /∂x) and the separation angle � [59]:

tan � = −B

(
∂Cf

∂x

/
K

)
s

, (19)

where B is a dimensionless constant and the subscript s refers to the separation point. This
dependence of � on K and Cf together with the complex dependence of the latter on the harmonic
inflow oscillations anticipates that the separation angle has a strongly nonlinear behavior. The steady
inflow case presents a mean angle � ≈ 6 deg. Following the periodic changes in 〈K〉, the shear layer
moves towards and apart the wall which translates in a reduction or increase of the streamline angle
at separation. For increasingly stronger inflow oscillations, the mean separation angle is reduced
and its oscillation amplitude increased. In line with the phase-averaged oscillations of the separated
shear layer already discussed, the separation angle oscillations become substantial for the strongest
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FIG. 17. Probability density function of the phase-averaged recirculation bubble length 〈Ls〉. (- - -) time-
averaged value; (-·-·) time-averaged for the steady inflow case, Ls,steady.

inflow oscillation case (Ain = 0.1, f ∗
in = 2) and a phase-delay appears between the extreme values

of 〈K〉 (positive or negative) and the angle.
The streamwise length of the recirculation bubble Ls is computed at each phase φ as the distance

between the separation point near the bump summit and the first reattachment point downstream,
that are highlighted as green dots in Fig. 16. Due to the fine discretization of φ, the black dots vi-
sually form nearly continuous lines. Figure 17 shows the probability density function (PDF) of 〈Ls〉
for all the simulated cases. The time-averaged length for each case and the time-averaged length for
the steady inflow case are also shown. Table IV tabulates the numeric values. Cases with relatively
low values of Ain and f ∗

in (towards the upper left panels of the figure) show that the recirculation
length remains close to that of the steady inflow case with a very narrow distribution range. As Ain

or f ∗
in are increased individually (e.g., Ain = 0.05, f ∗

in = 1), the PDF becomes significantly broader,
indicating large changes in 〈Ls〉 over the period. The time-averaged recirculation length is reduced
in all cases, but the distribution is not centered around it and the length at some phases can be
substantially longer or shorter than Ls,steady. This intense temporal variation of 〈Ls〉 is expected to
be associated with periodic changes in the aerodynamic forces exerted on the bump, which may be

053901-20



IMPACT OF HARMONIC INFLOW VARIATIONS ON THE …

highly undesirable in the practical scenario of a low-pressure turbine [10]. Finally, the cases with
larger values of Ain and f ∗

in (towards the bottom right panels of Fig. 17, and particularly Ain = 0.1,
f ∗
in = 2) present a PDF which is again centered on the mean Ls value. This value is remarkably

reduced with respect to Ls,steady. Notably, the PDF tail falls to zero for recirculation lengths below
Ls,steady, implying that the separation length is reduced for all phases, including those in which the
bulk flow is decelerated. This is also relevant in practical scenarios, as the detrimental effects of
flow separation would be consistently reduced with respect to the steady inflow case.

E. Incoherent vorticity and vortex dynamics

The phase-averaged results in the previous section illustrate the overall dynamics of the shear
layer and the behavior of the separated flow on account of the harmonic inflow changes. The length
of the recirculation region and the impact of the inflow oscillation frequency and amplitude are,
in turn, a consequence of changes in the vortex dynamics induced by the transient changes in the
streamwise acceleration. For comparatively low values of Ain and f ∗

in, vortex rolls are formed at
the separated shear layer resulting from the KH instability, which initiates the laminar-to-turbulent
transition. The spread of the shear layer, entrainment of fluid into the recirculation region and
ultimately flow reattachment are governed by the complex dynamics of these vortices. These
processes are not captured by the phase-averaged fields, which only recover their consequences.

For low f ∗
in, the characteristic period in which the shear-layer motion occurs is much longer than

the characteristic time for the formation and advection of the vortices, as will be shown below.
In consequence, the vortex dynamics are completely recovered in the incoherent flow component
q′ of the triple decomposition. The vortices are formed and initially move along the separated
shear layer, whose motion is captured by the phase-averaged component. To separate the vortex
dynamics from the shear-layer motion, the following procedure is adopted. First, an orthogonal
curvilinear coordinate system (ξ, η) is defined, as shown in Fig. 12. The line η = 0 corresponds
to the phase-averaged separation streamline and ξ is the curvilinear coordinate measured along
it. Then, an inverse transformation is performed to map the curvilinear-coordinates grid points to
cartesian coordinates with the streamline as the centerline axis. Details of the inverse transformation
process are described by Legleiter and Kyriakidis [60].

This shear-layer fitted system of coordinates is inspired by the one used by Himeno et al. [61] to
study the vortex dynamics along the steady shear layer formed within a slat cove. In the present case,
the curvilinear coordinates depend on the phase angle, following the motion of the phase-averaged
separation streamline. Figure 18 shows the total (left column), the phase-averaged (middle column)
and the incoherent (right column) components of the spanwise vorticity in the curvilinear mesh,
for the case representative of the weaker inflow oscillations (Ain = 0.01, f ∗

in = 0.5). Note that the
phase-averaged separation streamline corresponds to the horizontal line η = 0, and the bump wall
is mapped to a curve line with η < 0 whose geometry changes with the phase.

The incoherent component portrays a complex arrangement of vortices typical of a transitional
shear layer [9,11,12,35]. The process is initiated with the formation of organized pockets of span-
wise vorticity in the initial part of the shear layer. These vortices grow in amplitude as they travel
downstream along η = 0, soon reaching non-linear amplitudes and then interacting and merging
with the recirculating vortical structures adjacent to the wall.

To visualize the spatiotemporal dynamics of these vortices, the incoherent spanwise vorticity ω′
z

at η = 0 is plotted in the (ξ, t∗) plane for the steady inflow case and the three cases representative
of harmonic inflow in Fig. 19. Note that ω′

z is a disturbance superimposed upon the phase-averaged
flow and consequently its positive and negative values do not directly imply vortical structures
rotating both in clockwise and counterclockwise directions.

The steady inflow case shows the continuous formation of vortical structures of similar amplitude
and apparent shedding frequency that propagate downstream at a nearly constant speed along the
mean shear layer. With the choice of contour levels used, they become observable around ξ = 0.1 m,
which for the steady case corresponds to x ≈ 0.2 m. Case (Ain = 0.01, f ∗

in = 0.5) presents a very
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FIG. 18. Triple decomposition of spanwise vorticity. Ain = 0.01 and f ∗
in = 0.5.

FIG. 19. Incoherent spanwise vorticity at η = 0 for the steady inflow case and the three representative cases
with harmonic inflow.
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similar picture, but the location where the vortical structures are first seen now oscillates very mildly
following the inflow phase; bulk flow deceleration displaces the observable incoherent vorticity
upstream and vice versa. The modulation of the vortex shedding location is increased by increasing
either Ain or f ∗

in.
The intermediate case (Ain = 0.05, f ∗

in = 1) presents an additional feature for certain regions of
the (ξ, φ) plane. As in the previous cases, regular periodic positive and negative streaks of vorticity
are visible, with their initial ξ location following the inflow fluctuation phase. However, for a certain
phase range (between φ = 3π/2 = 270◦ and φ = 2π = 360◦) this pattern is replaced by a “wedge”
of distinct behavior, as schematized in the corresponding panel of Fig. 19. The wedge originates
at the phase φ ≈ 3π/2, for which ω′

z reaches observable amplitudes sensibly upstream than for the
preceding phases. From this point, two rays depart at different downstream speeds that enclose a
region where the vorticity presents a disorganized behavior.

The wedge’s origin is coincident with the phase of minimum bulk velocity. This is interpreted
in the following manner: during most of the inflow period, the vortex dynamics follow the same
qualitative picture as for the lower Ain and f ∗

in cases, characterized by a regular formation of KH
vortices for which the shedding location follows the inflow phase. At some instant during the
phase-average deceleration (90◦ < φ < 270◦), the streamwise deceleration parameter 〈K〉 surpasses
a threshold value in the region neighboring the reattachment point. As a result, the KH vortices
and other shear layer eddies are not released from the rear part of the reversed flow region but
are entrapped in the recirculation region and initiate the formation of a large cluster of vortical
structures. Immediately following the beginning of the acceleration phase, the large vortex cluster is
released, similar to the shedding of leading-edge vortices in oscillating airfoils (e.g., Lind and Jones
[62]).

The vortex cluster is advected downstream during the initial part of the acceleration phase and
subsequently, the regular shedding of KH vortices resumes. In the visualization of the phase-average
flow for this case (Fig. 13) a large vortex cannot be clearly discerned, but the presence of the vortex
lump can be inferred by the changes in the streamline curvature between φ = 315◦ and 360◦ and
by the emergence of a region with positive Cf within the main recirculation, prior to its release, in
Fig. 16. The formation and release of a large vortex cluster is more easily observed by visualizing
the complete flow field (without separating phase-averaged and incoherent components), as done in
Fig. 20.

Finally, the incoherent vorticity for the case (Ain = 0.1, f ∗
in = 2) does not present a regular

shedding of KH vortices akin to the steady or low inflow frequency cases. Instead, it is characterized
by the continuous appearance of wedges, corresponding to the periodic formation and shedding of
large vortex clusters following the inflow changes. With the large vortex cluster being recovered
in the phase-averaged flow (Fig. 14), the incoherent component consists of smaller size eddies that
are trapped and evolve inside the recirculation region during the deceleration part of the period and
are convected downstream when the vortex cluster is released. Owing to their chaotic nature, these
structures are not repeated from cycle to cycle and hence are not coherent with the inflow changes,
but their presence in the ω′

z field allows the location and tracking of the coherent vortex clusters.

F. Frequency spectra

Frequency spectra are studied in this section to further the characterization of the impact of the
inflow oscillations on the separated flow dynamics. The procedure for the calculation of the power
spectral densities (PSDs) for the steady inflow case is described in Sec. II D. For the harmonic
inflow cases, the procedure is adapted to account for the periodic nature of the data. The sampling
parameters are summarized in Table V. To allow for comparisons, the same averaging period is used
for all cases, corresponding to the lowest of the inflow frequencies, � f ∗ = 0.5. Thus, the averaging
is done over segments comprising one inflow period for f ∗

in = 0.5, two periods for f ∗
in = 1 and four

periods for f ∗
in = 2. For all cases, the PSD is averaged over 25 segments of length 1/� f ∗ = 1/0.5 =

2.
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FIG. 20. Q(+) isosurface colored by streamwise velocity. Ain = 0.1 and f ∗
in = 1.
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TABLE V. Temporal sampling parameters: Ns: total number of snapshots; �t∗
s : time step between snapshots

used in the analysis; Nss: number of snapshots per segment.

f ∗
in Ns �t∗

s Nss Overlap

Steady 2 410 000 3 × 10−5 66 666 50%
0.5 50 000 1 × 10−3 2000 0%
1 50 000 1 × 10−3 2000 0%
2 100 000 5 × 10−4 4000 0%

Figure 21 shows the spectra of the streamwise and wall-normal velocity components at Probe
4 (see Fig. 5 and Table III). For the steady inflow case, this probe is located just outside of the
separated shear layer at the streamwise location where the first KH vortices are formed. The spectra
for the steady inflow and the weak inflow oscillation (Ain = 0.01, f ∗

in = 0.5) cases are identical,
presenting a narrowband peak at frequencies f ∗ = 15 − 21 with a maximum at f ∗ ≈ 18. As shown
in Appendix A, this frequency corresponds to KH instability and follows accurately the scaling
proposed by Diwan and Ramesh [11]. The intermediate case (Ain = 0.05, f ∗

in = 1) also exhibits
the narrowband peak corresponding to the KH vortices; the peak amplitude and frequency remain
comparable to that of the steady forcing case, but the sidebands are broader. However, new peaks
appear for the inflow frequency and its harmonics. The f ∗

in peak has an amplitude that is two orders
of magnitude larger than the peak KH frequency. The spectra for the case with the strongest inflow
oscillation (Ain = 0.1, f ∗

in = 2) also contain the peaks corresponding to the inflow frequency and its
harmonics. However, the narrowband peak corresponding to KH vortices is not observable in this
case. The amplitude for all frequencies is increased above those corresponding to KH vortices. In
consequence, KH vortices could still exist but be shadowed by other, more energetic, fluctuations.

To shed light on the last point, the PSD of the incoherent spanwise vorticity ω′
z is calculated

at a location at the shear layer corresponding to ξ = 0.12 for all the cases simulated and shown in
Fig. 22. Left, center and right subfigures correspond to the lower, intermediate and higher amplitude
of the inlet oscillation Ain, respectively. For each of them, the three frequencies are shown. The
spectra for the steady inflow case are also shown in the three figures for reference. The spectra
for the lower Ain cases (Fig. 22, left) are qualitatively identical, being dominated by KH vortices.

FIG. 21. Power spectral density of the streamwise and wall normal velocity at Probe 4, (x, y) = (0.2, 0.05).
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FIG. 22. Power spectral density of the incoherent spanwise vorticity ω′
z at the shear layer, ξ = 0.12.

Roughly the same amplitudes are obtained for the frequencies associated with the KH vortices for
the three values of f ∗

in, while the higher frequency range, corresponding to the turbulent cascade, is
found to be slightly more energetic with increasing f ∗

in. Conversely, the spectral for the intermediate
Ain (Fig. 22, middle) shows qualitative changes that occur gradually as the inflow frequency f ∗

in is
increased. The amplitude of the KH narrowband peak is reduced while it is increased for all the
other frequencies. For the largest inflow frequency, f ∗

in = 2, the KH peak is not present anymore
and the amplitude at the corresponding frequency is lower than for the cases with KH vortices.
This shows that the regular KH vortex shedding is not shadowed by more energetic fluctuations,
but rather eliminated. Individual KH vortices are still formed in the initial part of the separated
shear layer, but in an irregular manner, and they are not released from the recirculation bubble but
trapped within it and quickly distorted by their interaction with the fine-grained turbulence. Finally,
the spectral for the largest Ain (Fig. 22, right) follows the same trend as the intermediate Ain ones.

The changes observed in the PSD with increasing Ain and f ∗
in are consistent with the vortex

dynamics discussed in Sec. III E. As the large vortex cluster is formed, most of the vortical structures
present in the separated shear layer get trapped in the recirculation region instead of being shed
and advected downstream. Nonlinear interactions between the recirculating structures lead to their
merging and progressive breakdown into smaller structures, which leads to a more energetic and
flatter spectral. In turn, the recirculation of random eddies of diverse scales prevents the formation
of well-defined KH vortices in the separated shear layer.

IV. DISCUSSION AND CONCLUSIONS

This paper studies the impact of harmonic oscillations of the inflow velocity, imposed via the
total pressure, on the flow over a wall-mounted bump geometry. This geometry gives rise to a
streamwise pressure gradient distribution with similar features to those encountered in LPT blades.
The harmonic inflow oscillation roughly models the effect of the passage of the wake due to the
previous stage of blades, periodically creating a velocity deficit followed by acceleration, and
consequently a periodic modification of streamwise velocity gradients.

Under steady inflow conditions, the laminar-to-turbulent transition is initiated by a self-excited
KH instability with a well-defined vortex-shedding frequency ( f ∗

KH ≈ 18). These vortices are sub-
ject to secondary instabilities and interactions with turbulent structures that are recirculated within
the separated flow and progressively break down into smaller eddies as they travel downstream. The
associated entrainment leads to the reattachment of the mean flow.

The impact of the inflow oscillations on the flow dynamics is strongly dependent on the frequency
and amplitude of the oscillations. The cases studied involve oscillations of the inflow total pressure
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FIG. 23. Descriptive illustrations of the three scenarios. Dashed blue lines: phase-averaged separation
streamline; solid blue: KH vortices; orange: small-grained vorticity; red: vortex cluster; green arrows show
the instantaneous trajectory of the flow structures.

Ain between 1% and 10% of the mean value, and frequencies f ∗
in = 0.5–2, substantially lower than

f ∗
KH but comparable to the wake-passing frequency in LPT turbines. If the reference velocity URef

and the mean recirculation length for the steady inflow case Ls = 0.2782 m are used to calculate the
reduced frequency F defined in Sec I, the inlet frequencies f ∗

in take the values F = 0.1391, 0.2782,
and 0.5564, which lie between the F � 1 and F ∼ 1 ranges. Three different scenarios have been
identified. Appendix B shows the classification of the cases, and Fig. 23 depicts them schematically:

Scenario (i): Inflow-modulated Kelvin-Helmholtz vortex shedding, corresponding to compara-
tively weak inflow oscillations (lowest values of Ain and f ∗

in; cf. Figs. 7 and 23 left). The transition
process is qualitatively the same as for the steady inflow case. However, the harmonic changes of
the bulk velocity lead to a periodic vertical displacement of the separated shear layer, phase-locked
to the inflow oscillation. While the self-sustained vortex shedding originated by KH instability
remains, its spatial amplification is modulated by the changes in the shear layer properties: vortex
shedding takes place upstream for the part of the period in which the bulk flow is decelerated and
downstream for the part in which it is accelerated. Consequently, the phase-averaged length of the
recirculation region Ls changes gradually over the period, but the mean length (i.e., averaged over
the period) is approximately the same as for the steady case. This scenario is consistent with the
experiments by Lou and Hourmouziadis [30] that imposed inflow oscillations with �u∗ = 0.13 and
F ≈ 0.06 (obtained by scaling their reported dimensionless frequency with the mean length of their
separation bubble).

Scenario (ii): Alternation between KH vortex shedding and formation/release of a large vortex
cluster, corresponding to intermediate inflow oscillations (see Figs. 20 and 23 center, and movies
3 and 4 in Supplemental Material [53]). For a portion of the period, KH-initiated vortex shedding
is dominant, identical to scenario (i). However, as the bulk flow decelerates, the phase-averaged
streamwise acceleration parameter 〈K〉 transiently surpasses a threshold negative value in the region
neighboring flow reattachment, giving rise to new dynamics: the vortical structures formed in the
shear layer are not shed and advected downstream. Instead, they are entrapped in the recirculation
region, which accordingly grows in size forming a large vortex cluster formed by eddies of a
wide range of scales. When the bulk flow is reaccelerated, instead of reducing the recirculation
region gradually through the shedding of KH vortices [as in scenario (i)], the large vortex cluster
is released and advected downstream. The advection of the vortex cluster pulls the stagnant fluid,
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transiently reducing the separated flow extent. Subsequently, the recirculation region regenerates
and the KH vortex shedding restarts. The periodic formation and release of the large vortex cluster
impact the phase-averaged length of the reversed flow region drastically: the time-averaged Ls is
reduced with respect to the steady inflow case, but the deviations from the mean value (see the
PDFs in Fig. 17) become considerably broader including lengths longer than those for the steady
inflow. Important hysteresis effects appear between the accelerating and decelerating parts of the
period. This scenario would translate into undesirable conditions regarding practical LPT blades,
involving strong oscillatory loads without a substantial reduction of the mean separation length.

Scenario (iii): Phase-locked formation and release of large vortex clusters, corresponding to
strong inflow oscillations (the largest values of Ain and f ∗

in; cf. Figs. 8 and 23 right). The dynamics
of the formation and release of the large vortex cluster following the inflow oscillations occupy
all periods: before one vortex cluster has time to travel downstream a distance sufficient for the
recirculation region to reinitiate the KH vortex shedding, the threshold value of the streamwise
acceleration parameter is reached and a new vortex cluster is being formed. The deviation of the
separated flow length over the period is larger than that of scenario (i) but less than that of scenario
(ii). More importantly, the phase-averaged Ls is smaller than the mean length for the steady inflow
case for all the phases and the time-averaged Ls is remarkably reduced, above a 40% for the case
(Ain = 0.1, f ∗

in = 2). Regarding a practical LPT application, this scenario would be preferable over
the other two. This scenario is the same recovered in the simulations by Wissink and Rodi [31]
and Wissink [32], who considered different inflow frequencies between F ≈ 1 and F ≈ 6 and
amplitudes �u∗ between 0.05 and 0.2.

In order to clarify if our conclusions regarding the three different scenarios are general or
particular to wall-mounted bump geometry considered so far, Appendix C briefly presents an
analogous study considering the related setup of the NASA hump. The same three scenarios are
recovered, while the combination of values of Ain and f ∗

in for each of them is changed.
It is to be noted that the impact of the inflow oscillations is not related to the individual

parameters Ain or f ∗
in but to a combination of both. In all the cases Ain is too large to be considered

a linear flow disturbance, and f ∗
in is an order of magnitude lower than the natural frequency of

the Kelvin-Helmholtz instability, f ∗
KH . The transition between the different scenarios is thus not

associated with the excitation of the KH instability. The transition between scenarios (i) and (ii)
is related to the existence of a threshold value of the acceleration parameter 〈K〉. When this value
is exceeded transiently in the region towards the end of the bump, a large vortex cluster is formed
and eventually released. According to the cases simulated, the threshold value is bounded between
〈K〉 = −16.71 × 10−6 and −22.43 × 10−6 (see Appendix B). However, the numerical value of this
parameter is particular to the definition of 〈K〉 used, which is based on an arbitrary y coordinate. On
the other hand, the transition between scenarios (ii) and (iii) is related to the ratio between the inlet
oscillation period and the time required for the recirculation region to regenerate and restart the KH
vortex shedding after the release of one vortex cluster.

Our results cannot ascertain if a further increase in the inflow frequency would lead to further re-
ductions in the time-averaged separated flow length. Within scenario (iii), the optimal time-averaged
Ls reduction would be achieved by a balance between increasing the amount of recirculating fluid
advected with one vortex cluster (i.e., the size of the phase-averaged vortex) and increasing the
frequency of release of such clusters. However, the impact of inflow oscillations on the dynamics and
time-averaged length of separated flows described in this work presents similarities with studies of
active flow control via harmonic suction/blowing or moving parts reviewed by Greenblatt and Wyg-
nanski [5] and with the experiments by Hasan [63], Sigurdson [64]. These works report the existence
of an optimal forcing frequency that scales with the global size of the recirculating flow region and
the free-stream inflow velocity. Forcing at this frequency range promotes the phase-locked formation
and shedding of large vortices similar to present scenario (iii), altering the dynamics from those of
the KH-initiated transition [scenario (i)]. Greenblatt and Wygnanski [5] concluded that the optimal
forcing frequency scales with the streamwise length of the unforced recirculating flow region, Ls.
Conversely, Hasan [63], Sigurdson [64] argue that the natural frequency for the “shedding of the
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FIG. 24. Scaling of the most amplified frequency along the separated shear layer.

entire bubble” (i.e., release of the large coherent vortex cluster) scales with its wall-normal height
h, in analogy to the von Karman vortex street, and the optimum forcing would act at this frequency.
Sigurdson [64] proposed a dimensionless frequency Stshedding = f h/Us = 0.07–0.08 (where Us is
the free-stream velocity at the separation point) and demonstrated that it correlates well with a
variety of geometry-induced separation bubbles. Translated to the dimensionless form used herein,
the global shedding frequency results f ∗

shedding = 2.9–3.3, which is only slightly higher than the
largest f ∗

in considered.
On the other hand, forcing with higher frequencies, aimed at exciting the -local- KH instability,

may lead to a faster transition via scenario (i) [47] or by inducing pairing of KH-vortices [12,48].
This certainly leads to reductions in the time-averaged separation length, but in view of present
results, these reductions are expected to be smaller than the ones achieved by exciting the global
dynamics of the separated flow.
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APPENDIX A: FREQUENCY OF THE KELVIN-HELMHOLTZ INSTABILITY

Diwan and Ramesh [11] proposed a scaling of the frequency corresponding to the most amplified
KH instability based on the linear instability analysis of piecewise linear velocity profiles resembling
separated shear layers in the presence of a wall. This scaling combines the local (i.e., at individual
streamwise locations) properties of the flow: the wall-normal coordinate and streamwise velocity of
the inflection point (yin and Uin), the vorticity thickness δω, and the most amplified frequency f , into
two dimensionless parameters: the dimensionless frequency f (y2

in + δ2
ω )/ν and a modified Reynolds
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FIG. 25. Phase-averaged streamwise acceleration parameter.
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TABLE VI. Classification of the cases. Minimum values of the time-averaged and phase-averaged stream-
wise acceleration parameter and reduction of the time-averaged length of the separated flow region. The first
row corresponds to the steady inflow case.

Ain f ∗
in Ain f ∗

in Kmin < K >min < K∂u/∂x >min < K∂u/∂t >min �Ls/Ls,steady Scenario
×10−6 ×10−6 ×10−6 ×10−6

— — — −9.76 — — — — (i)
0.01 0.5 0.005 −10.62 −12.44 −13.22 −2.37 0 (i)
0.01 1 0.01 −10.54 −13.60 −13.96 −2.44 −0.0007 (i)
0.01 2 0.02 −11.45 −22.43 −24.45 −4.51 −0.0564 (ii)
0.05 0.5 0.025 −10.24 −16.71 −16.04 −6.46 −0.0198 (i)
0.05 1 0.05 −10.48 −24.74 −22.20 −11.53 −0.0654 (ii)
0.05 2 0.1 −14.10 −36.12 −39.93 −22.87 −0.2933 (iii)
0.1 0.5 0.05 −9.11 −23.34 −22.75 −12.82 −0.0744 (ii)
0.1 1 0.1 −12.16 −36.44 −36.14 −22.61 −0.1650 (ii)
0.1 2 0.2 −17.86 −53.37 −50.99 −40.87 −0.4490 (iii)

number R̄ = (Uinyin/ν)
√

yin/δω. A linear dependence between the two numbers is postulated. In a
practical flow field, the separated shear layer evolves downstream, which translates into increasing
values of R̄. As the scaling stems from inviscid linear instability, its predictions are expected to hold
up to limited R̄ values. Diwan and Ramesh [11] demonstrated that the scaling correctly predicts the
KH frequency of several different experiments, up to R̄ = 1400.

To ascertain that the narrowband frequency peak of f ∗ ≈ 18 identified in the PSD for the steady
inflow case corresponds to KH instability, the scaling is applied to our simulation data and shown
in Fig. 24. The theoretical and experimental results of Diwan and Ramesh [11] are also shown for
comparison. This comparison concludes that f ∗ = 18 indeed corresponds to the KH instability.

APPENDIX B: CLASSIFICATION OF THE HARMONIC INFLOW CASES

Table VI shows the correspondence between the simulated cases and the scenario observed
for the vortex dynamics, as described in Sec. IV. This classification is based on cross-comparing
the time histories of the phase-averaged streamwise acceleration parameter (Fig. 25), the in-
coherent spanwise vorticity along the phase-averaged shear layer (Fig. 26), the PDFs of the
phase-averaged length of the separated flow region (Fig. 17) and the frequency spectra 22. For
reference, the evolution of the three-dimensional flow represented as in Fig. 20 is also checked.
Animations showing the flow field evolution for representative cases are provided as Supplemental
Material [53].

TABLE VII. Summary of the cases simulated for the NASA hump, including the definition of the inlet
pressure condition and the characterization of time-averaged and phase-dependent values of the reference
streamwise velocity and the length of the recirculation region Ls.

t∗
data Ain f ∗

in ū∗
@Ref �u∗

@Ref Ls [m] �Ls [m]

27 — — 1.0958 — 1.2460 —
16 0.005 0.25 1.0974 0.0339 1.2284 −0.0176
16 0.005 0.5 1.0967 0.0348 1.0012 −0.2448
16 0.025 0.25 1.0953 0.1699 0.8610 −0.3850
12 0.025 0.5 1.0932 0.1744 0.4531 −0.7929
12 0.05 0.5 1.0887 0.3498 0.4079 −0.8381
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FIG. 26. Incoherent spanwise vorticity at η = 0 for the all nine cases with harmonic inflow.

The table shows, for each simulated case, the minimum values of the acceleration parameter for
the corresponding time-averaged flow K̄ , the phase-averaged flow 〈K〉 and its two components. The
time-averaged values are considerably lower than the phase-averaged ones and are not useful in
the classification of the cases. The minimum of 〈K〉 decreases independently with the amplitude
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FIG. 27. Computational domain, representative mesh, and boundary conditions for NASA Hump cases.

and frequency of the inlet oscillations. The convective acceleration 〈K∂u/∂x〉 dominates for low Ain

and/or f ∗
in values. As a rough approximation, the temporal acceleration 〈K∂u/∂t 〉 ∼ Ain f ∗

in, and this
component becomes comparable to the convective acceleration for the largest values of the product
Ain f ∗

in.

APPENDIX C: SIMULATIONS CONSIDERING THE NASA HUMP

To demonstrate the generality of the physical phenomena with respect to other wall-bounded
bump geometries, an analogous study is conducted on a wall-mounted modified Glauert hump
model [33,40], often referred to in the literature as the NASA hump. The setup of the simulation
is shown in Fig. 27. The domain of the simulation is (13 × 0.909 × 0.5) m in the longitudinal,

FIG. 28. Instantaneous spanwise vorticity for the NASA hump. Ain = 0.005 and f ∗
in = 0.25.
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FIG. 29. Instantaneous spanwise vorticity for the NASA hump. Ain = 0.05 and f ∗
in = 0.5.

normal, and spanwise directions, respectively. A scaling of the hump geometry allows the reference
chord length of the model, LRef to be unity. The ratio of the hump height to the channel height is
identical to Greenblatt et al. [40], which is 0.1407. The domain is discretized into 77 616 high-order
elements and simulated with third-order polynomial (4 967 424 DOFs). The Fringe region starts
from xstart = 3 m with �rise = 2 m and λ = 400.

The boundary conditions of the domain are nearly identical to the aforementioned study but a
free-slip condition is imposed at the upper boundary. In the harmonic inflow cases, the total pressure
variation with time follows Eq. (1), with pt,steady = 102 143 Pa. Simulations are conducted with
the inflow air density ρ = 1.184 kg/m3, and the dynamic viscosity μ = 1.366 × 10−3 Pa s. In
these conditions, the flow has a characteristic Reynolds number Re = 30 000 and Mach number
0.1 at the inlet for the steady inflow. The Reynolds number based on the maximum height of the
recirculation region and respectively the length of the separated region is Reh ≈ 3840 and ReLs =
37380. These numbers are comparable with those of the simulations presented in the paper. The
Reynolds number based on the boundary layer momentum thickness at the separation point is Reθs =
171. Based on the proposed scaling of Hasan [63] and Sigurdson [64], the natural frequency of
shedding of the KH vortices is f ∗

KH ≈ 2.1, and the vortex cluster shedding frequency is f ∗
shed ≈

0.6–0.7.
Table VII summarizes the cases simulated, showing the harmonic inflow parameters, the mean

and oscillation amplitude of the streamwise velocity at a reference point, (x, y, z) = (0, 0.9, 0.25) m,
the time-averaged length of the separated flow region and its reduction with respect to the steady
inflow. The instantaneous spanwise vorticity for the harmonic inflow cases (Ain = 0.005, f ∗

in = 0.25)
and (Ain = 0.05, f ∗

in = 0.5) is presented in Figs. 28 and 29, respectively. The first case recovers
scenario (i), dominated by KH vortices, while the second one shows the phased-locked formation
and release of the vortex cluster, characteristic of scenario (iii). The classification of the cases for
the NASA hump geometry is given in Table VIII along with the minimum value of the acceleration
parameter components computed at the wall-normal coordinate y = 2.778h. This coordinate is the
same used for the computation of K in Sec. III.
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TABLE VIII. Classification of the cases for the NASA hump geometry. Minimum values of the time-
averaged and phase-averaged streamwise acceleration parameter and reduction of the time-averaged length of
the separated flow region. The first row corresponds to the steady inflow case.

Ain f ∗
in Ain f ∗

in Kmin < K >min < K∂u/∂x >min < K∂u/∂t >min �Ls/Ls,steady Scenario
×10−6 ×10−6 ×10−6 ×10−6

— — — −6.05 −6.05 −6.05 — — (i)
0.005 0.25 0.00125 −6.78 −15.24 −15.28 −0.18 −0.0141 (i)
0.005 0.5 0.0025 −8.51 −19.61 −19.85 −0.27 −0.1965 (ii)
0.025 0.25 0.00625 −9.15 −20.53 −20.40 −0.28 −0.3090 (ii)
0.025 0.5 0.0125 −10.02 −24.48 −25.29 −3.66 −0.6364 (ii)
0.05 0.5 0.025 −16.70 −42.77 −43.74 −8.33 −0.6726 (iii)

[1] R. E. Mayle, The 1991 IGTI Scholar Lecture: The role of Laminar-Turbulent transition in gas turbine
engines, J. Turbomach. 113, 509 (1991).

[2] J. P. Bons, R. Sondergaard, and R. B. Rivir, The fluid dynamics of LPT blade separation control using
pulsed jets, J. Turbomach. 124, 77 (2002).

[3] J. D. Coull and H. P. Hodson, Unsteady boundary-layer transition in low-pressure turbines, J. Fluid Mech.
681, 370 (2011).

[4] M. V. Ol, Unsteady Low Reynolds number aerodynamics for micro air vehicles (MAVs), Tech. Rep.
AFRL-RB-WP-TR-2010-3013 (Air Force Research Laboratory, Ohio, 2010), https://apps.dtic.mil/sti/tr/
pdf/ADA522060.pdf.

[5] D. Greenblatt and I. J. Wygnanski, The control of flow separation by periodic excitation, Prog. Aerosp.
Sci. 36, 487 (2000).

[6] R. J. Volino, O. Kartuzova, and M. B. Ibrahim, Separation control on a very high lift low pressure turbine
airfoil using pulsed vortex generator jets, J. Turbomach. 133, 041021 (2011).

[7] M. Gaster, The structure and behaviour of separation bubbles, Reports and Memoranda 3595 (Queen
Mary College, London, 1967), https://reports.aerade.cranfield.ac.uk/bitstream/handle/1826.2/2862/arc-
rm-3595.pdf?sequence=1isAllowed=y.

[8] A. Dovgal, V. Kozlov, and A. Michalke, Laminar boundary layer separation: Instability and associated
phenomena, Prog. Aerosp. Sci. 30, 61 (1994).

[9] B. R. McAuliffe and M. I. Yaras, Transition mechanisms in separation bubbles under low- and elevated-
freestream turbulence, J. Turbomach. 132, 011004 (2010).

[10] E. M. Curtis, H. P. Hodson, M. R. Banieghbal, J. D. Denton, R. J. Howell, and N. W. Harvey, Development
of blade profiles for low-pressure turbine applications, J. Turbomach. 119, 531 (1997).

[11] S. S. Diwan and O. N. Ramesh, On the origin of the inflectional instability of a laminar separation bubble,
J. Fluid Mech. 629, 263 (2009).

[12] O. Marxen, M. Lang, and U. Rist, Vortex formation and vortex breakup in laminar separation bubbles, J.
Fluid Mech. 728, 58 (2013).

[13] D. A. Hammond and L. G. Redekopp, Local and global instability properties of separation bubbles, Eur.
J. Mech. B Fluids 17, 145 (1998).

[14] U. Rist and U. Maucher, Investigations of time-growing instabilities in laminar separation bubbles, Eur.
J. Mech. B Fluids 21, 495 (2002).

[15] M. P. Avanci, D. Rodríguez, and L. S. B. Alves, A geometrical criterion for absolute instability in
separated boundary layers, Phys. Fluids 31, 014103 (2019).

[16] V. Theofilis, S. Hein, and U. Dallmann, On the origin of unsteadiness and three-dimensionality in a
laminar separation bubble, Philos. Trans. R. Soc. London A 358, 3229 (2000).

[17] F. Gallaire, M. Marquillie, and U. Ehrenstein, Three-dimensional transverse instabilities in detached
boundary layers, J. Fluid Mech. 571, 221 (2007).

053901-35

https://doi.org/10.1115/1.2929110
https://doi.org/10.1115/1.1425392
https://doi.org/10.1017/jfm.2011.204
https://apps.dtic.mil/sti/tr/pdf/ADA522060.pdf
https://doi.org/10.1016/S0376-0421(00)00008-7
https://doi.org/10.1115/1.4003024
https://reports.aerade.cranfield.ac.uk/bitstream/handle/1826.2/2862/arc-rm-3595.pdf?sequence=1isAllowed=y
https://doi.org/10.1016/0376-0421(94)90003-5
https://doi.org/10.1115/1.2812949
https://doi.org/10.1115/1.2841154
https://doi.org/10.1017/S002211200900634X
https://doi.org/10.1017/jfm.2013.222
https://doi.org/10.1016/S0997-7546(98)80056-3
https://doi.org/10.1016/S0997-7546(02)01205-0
https://doi.org/10.1063/1.5079536
https://doi.org/10.1098/rsta.2000.0706
https://doi.org/10.1017/S0022112006002898


HIMPU MARBONA et al.

[18] D. Rodríguez and V. Theofilis, Structural changes of laminar separation bubbles induced by global linear
instability, J. Fluid Mech. 655, 280 (2010).

[19] D. Rodríguez, E. M. Gennaro, and M. P. Juniper, The two classes of primary modal instability in laminar
separation bubbles, J. Fluid Mech. 734, R4 (2013).

[20] P.-Y. Passaggia, T. Leweke, and U. Ehrenstein, Transverse instability and low-frequency flapping in
incompressible separated boundary layer flows: an experimental study, J. Fluid Mech. 703, 363 (2012).

[21] D. Rodríguez and E. M. Gennaro, Enhancement of disturbance wave amplification due to the intrinsic
three-dimensionalisation of laminar separation bubbles, Aeronaut. J. 123, 1492 (2019).

[22] D. Rodríguez, E. M. Gennaro, and L. F. Souza, Self-excited primary and secondary instability of laminar
separation bubbles, J. Fluid Mech. 906, A13 (2021).

[23] R. G. Jacobs and P. A. Durbin, Simulations of bypass transition, J. Fluid Mech. 428, 185 (2001).
[24] D. Simoni, D. Lengani, M. Ubaldi, P. Zunino, and M. Dellacasagrande, Inspection of the dynamic

properties of laminar separation bubbles: Free-stream turbulence intensity effects for different Reynolds
numbers, Exp. Fluids 58, 66 (2017).

[25] S. Hosseinverdi and H. Fasel, Numerical investigation of laminar-turbulent transition in laminar separation
bubbles: The effect of free-stream turbulence, J. Fluid Mech. 858, 714 (2019).

[26] H. P. Hodson and R. J. Howell, Bladerow interactions, transition and high-lift aerofoils in low-pressure
turbine, Annu. Rev. Fluid Mech. 37, 71 (2005).

[27] R. J. Volino, Effect of unsteady wakes on boundary layer separation on a very high lift low pressure
turbine flow, J. Turbomach. 134, 011011 (2012).

[28] A. G. Gungor, M. P. Simens, and J. Jiménez, Direct numerical simulations of wake-perturbed separated
boundary layers, J. Turbomach. 134, 061024 (2012).

[29] S. Karaca and A. Gungor, DNS of unsteady effects on the control of laminar separated boundary layers,
Eur. J. Mech. B Fluids 56, 71 (2016).

[30] W. Lou and J. Hourmouziadis, Separation bubbles under steady and periodic-unsteady main flow condi-
tions, J. Turbomach. 122, 634 (2000).

[31] J. G. Wissink and W. Rodi, DNS of a laminar separation bubble in the presence of oscillating flow, Flow,
Turbul. Combust. 71, 311 (2003).

[32] J. G. Wissink, Separating, transitional flow affected by various inflow oscillation regimes, Appl. Math.
Modell. 30, 1134 (2006).

[33] A. Seifert and L. G. Pack, Active flow separation control on wall-mounted hump at high Reynolds
numbers, AIAA J. 40, 1363 (2002).

[34] A. Bernard, J. M. Foucaut, P. Dupont, and M. Stanislas, Decelerating boundary layers, a new scaling and
mixing length model, AIAA J. 41, 248 (2003).

[35] M. Marquillie and U. Ehrenstein, On the onset of nonlinear oscillations in a separating boundary-layer
flow, J. Fluid Mech. 490, 169 (2003).

[36] E. Pescini, F. Marra, M. D. Giorgi, and A. Ficarella, Investigation of the boundary layer characteristics for
assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers, Exp. Therm.
Fluid Sci. 81, 482 (2017).

[37] J. Saavedra and G. Paniagua, Transient performance of separated flows: Characterization and active flow
control, J. Eng. Gas Turbines Power 141, 011002 (2018).

[38] J. Saavedra and G. Paniagua, Experimental analysis of reynolds effect on flow detachment and sudden
flow release on a wall-mounted hump, Exp. Therm Fluid Sci. 126, 110398 (2021).

[39] A. K. M. F. Hussain and W. C. Reynolds, The mechanics of an organized wave in turbulent shear flow, J.
Fluid Mech. 41, 241 (1970).

[40] D. Greenblatt, K. B. Paschal, C.-S-Yao, J. Harris, N. W. Schaeffer, and A. E. Washburn, Experimental
investigation of separation control Part 1: Baseline and steady suction, AIAA J. 44, 2820 (2006).

[41] D. A. Kopriva, HOHQMesh, the high order hex-quad mesher, https://trixi-framework.github.io/
HOHQMesh/ (2010).

[42] P. Spalart, Direct numerical study of leading-edge contamination, in Fluid Dynamics of 3D Turbu-
lent Shear Flows and Transition, AGARD Conf. Proc. No. 438 (AGARD, Neuilly-sur-Seine, 1989),
pp. 5.1–5.13.

053901-36

https://doi.org/10.1017/S0022112010000856
https://doi.org/10.1017/jfm.2013.504
https://doi.org/10.1017/jfm.2012.225
https://doi.org/10.1017/aer.2018.115
https://doi.org/10.1017/jfm.2020.767
https://doi.org/10.1017/S0022112000002469
https://doi.org/10.1007/s00348-017-2353-7
https://doi.org/10.1017/jfm.2018.809
https://doi.org/10.1146/annurev.fluid.37.061903.175511
https://doi.org/10.1115/1.4003232
https://doi.org/10.1115/1.4004882
https://doi.org/10.1016/j.euromechflu.2015.11.007
https://doi.org/10.1115/1.1308568
https://doi.org/10.1023/B:APPL.0000014917.71180.f1
https://doi.org/10.1016/j.apm.2005.02.016
https://doi.org/10.2514/2.1796
https://doi.org/10.2514/2.1937
https://doi.org/10.1017/S0022112003005287
https://doi.org/10.1016/j.expthermflusci.2016.09.005
https://doi.org/10.1115/1.4040685
https://doi.org/10.1016/j.expthermflusci.2021.110398
https://doi.org/10.1017/S0022112070000605
https://doi.org/10.2514/1.13817
https://trixi-framework.github.io/HOHQMesh/


IMPACT OF HARMONIC INFLOW VARIATIONS ON THE …

[43] P. R. Spalart and J. H. Watmuff, Experimental and numerical study of a turbulent boundary layer with
pressure gradients, J. Fluid Mech. 249, 337 (1993).

[44] J. Nordström, N. Nordin, and D. Henningson, The fringe region technique and the Fourier method used
in the direct numerical simulation of spatially evolving viscous flows, SIAM J. Sci. Comput. 20, 1365
(1999).

[45] E. Ferrer, G. Rubio, G. Ntoukas, W. Laskowski, O. Mariño, S. Colombo, A. Mateo-Gabín, H. Marbona,
F. Manrique de Lara, D. Huergo et al., HORSES3D: A high-order discontinuous Galerkin solver for flow
simulations and multi-physics applications, Comput. Phys. Commun. 287, 108700 (2023).

[46] P. D. Welch, The use of Fast Fourier Transform for the estimation of power spectra: A method based on
time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust. 15, 70 (1967).

[47] M. Embacher and H. F. Fasel, Direct numerical simulations of laminar separation bubbles: Investigation
of absolute instability and active flow control of transition to turbulence, J. Fluid Mech. 747, 141 (2014).

[48] J. W. Kurelek, M. Kotsonis, and S. Yarusevych, Vortex merging in a laminar separation bubble under
natural and forced conditions, Phys. Rev. Fluids 4, 063903 (2019).

[49] M. Dellacasagrande, D. Basi, D. Lengani, D. Simoni, and J. Verdoya, Response of a flat plate laminar
separation bubble to Reynolds number, free-stream turbulence and adverse pressure gradient variation,
Exp. Fluids 61, 128 (2020).

[50] S. S. Diwan, S. J. Chetan, and O. N. Ramesh, On the bursting criterion for laminar separation bubbles, in
IUTAM Symposium on Laminar-Turbulent Transition, edited by R. Govindarajan (Springer Netherlands,
Dordrecht, 2006), pp. 401–407.

[51] S. M. Aniffa, V. Caesar, V. Dabaria, and A. Mandal, Characteristics of geometry- and pressure-induced
laminar separation bubbles at an enhanced level of free-stream turbulence, J. Fluid Mech. 957, A19
(2023).

[52] J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech. 285, 69 (1995).
[53] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.053901 for

movies depicting the Q(+) isosurface for cases involving scenarios 1, 2, and 3.
[54] O. Marxen, M. Lang, U. Rist, O. Levin, and D. Henningson, Mechanisms for spatial steady three-

dimensional disturbance growth in a non-parallel and separating boundary layer, J. Fluid Mech. 634,
165 (2009).

[55] A. J. Bowen and D. Lindley, A wind-tunnel investigation of the wind speed and turbulence characteristics
close to the ground over various escarpment shapes, Boundary Layer Meteorol. 12, 259 (1977).

[56] P. R. Spalart, Numerical simulation of boundary layers: Part 3. Turbulence and relaminarization in sink
flows, NASA Technical Memorandum 88220, NASA Ames Research Center, California, 1986.

[57] Y. B. Suzen, P. Huang, L. S. Hultgren, and D. E. Ashpis, Predictions of separated and transitional
boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation,
J. Turbomach. 125, 455 (2003).

[58] F. Ambrogi, U. Piomelli, and D. Rival, Characterization of unsteady separation in a turbulent boundary
layer: Mean and phase-averaged flow, J. Fluid Mech. 945, A10 (2022).

[59] M. J. Lighthill, Introduction. Boundary layer theory, in Laminar Boundary Layers, edited by L. Rosenhead
(Clarendon Press, Oxford, 1963), Chap. II, pp. 46–113.

[60] C. Legleiter and P. Kyriakidis, Forward and inverse transformations between cartesian and channel-fitted
coordinate systems for meandering rivers, Math. Geol. 38, 927 (2006).

[61] F. H. Himeno, D. S. Souza, F. R. Amaral, D. Rodríguez, and M. Medeiros, SPOD analysis of noise-
generating Rossiter modes in a slat with and without a bulb seal, J. Fluid Mech. 915, A67 (2021).

[62] A. H. Lind and A. R. Jones, Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade
section, Phys. Fluids 28, 077102 (2016).

[63] M. A. Z. Hasan, The flow over a backward-facing step under controlled perturbation: Laminar separation,
J. Fluid Mech. 238, 73 (1992).

[64] L. W. Sigurdson, The structure and control of a turbulent reattaching flow, J. Fluid Mech. 298, 139 (1995).
[65] www.upm.es.

053901-37

https://doi.org/10.1017/S002211209300120X
https://doi.org/10.1137/S1064827596310251
https://doi.org/10.1016/j.cpc.2023.108700
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1017/jfm.2014.123
https://doi.org/10.1103/PhysRevFluids.4.063903
https://doi.org/10.1007/s00348-020-02958-y
https://doi.org/10.1017/jfm.2023.53
https://doi.org/10.1017/S0022112095000462
http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.053901
https://doi.org/10.1017/S0022112009007149
https://doi.org/10.1007/BF00121466
https://doi.org/10.1115/1.1580159
https://doi.org/10.1017/jfm.2022.561
https://doi.org/10.1007/s11004-006-9056-6
https://doi.org/10.1017/jfm.2021.93
https://doi.org/10.1063/1.4958334
https://doi.org/10.1017/S0022112092001642
https://doi.org/10.1017/S0022112095003259
http://www.upm.es

