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Increased solidification delays fragmentation and suppresses
rebound of impacting drops
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The splat formed after drop impact on supercooled solid surfaces sticks to it. On the
contrary, a sublimating supercooled surface such as dry ice inhibits pinning and therefore
efficiently rebounds drops made of a variety of liquids. While rebound is expected at lower
impact velocities on dry ice, at higher impact velocities the drop fragments leave behind
a trail of smaller droplets. However, it is not known whether rebound can be entirely
suppressed or fragmentation can be controlled on such surfaces and if it depends on the
extent of solidification inside the drop. In this paper, we report on the role played by
solidification within drops in modifying the outcomes of their impact on the supercooled
ultralow adhesive surface of sublimating dry ice. We show that the solidification thickness
depends on the impact velocity and is the primary driver in suppression of rebound and
delay in fragmentation. Our findings imply that sublimating supercooled surfaces can
present a broad spectrum of outcomes from complete bouncing to no rebound, which is
not seen in drop impacts on supercooled superhydrophobic surfaces. We attribute this to
thermo-elastocapillarity, which considers bending of the solidified layer and is used to
demarcate regime boundaries and determine the coefficient of restitution during rebound.

DOI: 10.1103/PhysRevFluids.9.053604

I. INTRODUCTION

Liquid drop impact on supercooled surfaces maintained below the melting temperature (Tm) of
the solidified liquid is decisive to several industrial applications and everyday life in icy climates
[1–3]. Depending upon a liquid’s thermal and physical properties, the substrate’s wettability and
impact conditions, a fascinating spectrum of postimpact behavior is observed which ranges from
complete bouncing [4] in the absence of solidification to pinning-mediated adhesion of solidifying
drops [2,5]. In the latter, adhesion of a solidified material on surfaces, exemplified by ice accumu-
lated on roads [6], wind turbine blades [3], and aircraft wings [7], is quite undesirable, disrupting
everyday activities and industrial operations, sometimes even imperiling human safety. Conversely,
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FIG. 1. Drop impact on a typical nonwetting surface. (a) Overlayed images of the release of a drop of
diameter, D0, from a height, H0, and moment of its impact with a velocity, V0, forming a splat of maximum
diameter, Dmax. (b) Rebound of a drop to height, H1. (c) Fragmentation of splat of molten tin (reprinted with
permission, Aziz and Chandra [11]). (d) Corona splash (reprinted with permission, Xu [12]). (e) Prompt splash
(reprinted with permission, Almohammadi and Amirfazli [13]). Dotted boxes in (c)–(e) point to schematic side
views of fragmentation and splashing. Scale bars from (a)–(e) represent a length of 1 mm.

in applications like thermal spraying, splat quenching, and additive manufacturing [1,2,8] adhesion
may be used advantageously by solidifying molten metals by impaction on an underlying substrate,
resulting in the formation of a solid film of desired functional attributes. Whether the goal is to
engineer surfaces and coatings for reduced ice adhesion or to create solid thin films with specific
functional properties, achieving these objectives is crucially dependent on comprehending the
outcomes of drop impact and the role of solidification during such impacts [9,10].

Fundamentally, the drop impact outcomes are dictated by liquid density ρl , surface tension,
σl , and kinematic and geometric factors including impact velocity (V0) and initial drop diameter
(D0), and succinctly described by the Weber number, We, which represents the ratio of the inertial
(ρlD2

0V 2
0 ) and surface tension force (σlD0). Another factor besides these liquid properties which

plays an important role is the nature of the substrate as communicated by its wettability or
roughness. Therefore, the liquid drop We and the substrate properties together can aptly describe
both complete bounce (on highly nonwetting surfaces)—with or without fragmentation and pinning-
mediated adhesion [4].

Physically, in simple terms we can understand rebound by considering a drop released from a
height of H0 [as shown in Fig. 1(a)], if its initial kinetic energy, Ekin0 ∼ ρlD3

0V 2
0 , exceeds its surface

energy at maximum spread, SEmax ∼ σlD2
max, where Dmax is the maximum horizontal splat diameter,

i.e., �E = Ekin0 − SEmax > 0. The rebound height H1 [as shown in Fig. 1(b)] then can be simply
estimated from �E by equating it to

√
mgH1, where m is the mass of the drop. From this, it may

be tempting to infer that an increase in Ekin0 with a comparatively lower increase in SEmax leads to
greater rebound (or higher value of H1) but, in practice, this increase is bounded. This is because
an increase in impact velocity, V0, also increases the horizontal spreading velocity Vs as shown in
Fig. 1(a), whose spread is curtailed by surface tension. Consequently, liquid accumulates at the edge
of the spreading drop, forming a rim bounding a thinner central sheet of the denser fluid (drop),
accelerating horizontally from 0 to Vs = 3/8V0 into the lighter fluid (air) after the drop contacts
the substrate [14]. Such spreading induces Rayleigh-Taylor instability [4], with waves manifesting
as fingers at the periphery of the rim that eventually disintegrate into smaller drops, as shown in
Fig. 1(c), and the accompanying schematic shown in dashed box. It is noteworthy that such splat
fragmentation is differentiated from the frequently reported drop splashing [15–17], which refers
to the appearance of a lamella (liquid sheet) lifted upward, supported aerodynamically by a lift
force [15] [shown schematically in the dashed box associated with Figs. 1(d) and 1(e)]. Usually,
the expelled lamella in these cases either forms a bowl-like structure known as a corona splash,
shown in Fig. 1(d), or an inclined sheet known as a prompt splash, shown in Fig. 1(e), ultimately
disintegrating into small droplets.
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A key factor in the dynamics described above are dissipative losses which slow the spread and
recoil of the drop after impact. In isothermal impacts, it is commonly seen that the dissipation
becomes significant when (i) dynamic viscosity of the liquid, μl , is high and/or (ii) there is an
increase in viscous stresses (∼μlV0hpan) due to reducing splat thickness, hpan. The relative signif-
icance of dissipation due to viscosity can be assessed by two dimensionless groups: (i) Reynolds
number, Re, which is the ratio of kinetic energy (inertia), ρlV 2

0 with the energy lost due to viscous
dissipation, μlV0D0 per unit volume resulting in ρlV0D0/μl , and (ii) capillary number, Ca, given
by the ratio of viscous dissipation to the surface energy, μlV0/σl . For instance, in liquids such as
water, Re � O(102) and Ca � O(10−3) allowing us to ignore viscous effects, whereas for glycerol,
Re � O(1) and Ca � O(10), which indicates a non-negligible role of viscosity in drop dynamics.

Contrary to traditional, isothermal drop impacts on surfaces at room temperature described
heretofore, impact of liquids (at room temperature) on supercooled surfaces presents nonisothermal
conditions. Dissipation in such cases occurs thermally, through solidification, often represented
in terms of the dimensionless Stefan number, Ste = cp,s�T/L and Peclet number Pe = V0D0/αs,

where cp,s (in kJ kg−1K−1) is the specific heat capacity of the solidified layer, L is the latent heat
of solidification (in kJ kg−1), and αs (in m2 s−1) is the thermal diffusivity of the solidified layer,
respectively. Solidification of the liquid drop here commences immediately upon contact with the
surface and progresses gradually as the drop spreads, enhancing pinning to the surface. Adhesion
of such a nature [5] influences the final splat morphology, leading to intriguing outcomes such as
self-peeling [2] and fracture [18]. Consequently, conditions leading to the arrest of drop spread are
critical to the eventual shape assumed by these splats. In this regard, two main approaches have
been adopted: the first only considers hydrodynamics at the drop scale and the second considers
the dynamics at the contact line exclusively. In the first approach, at the drop scale, solidification is
either seen as reducing kinetic energy post impact [8] or cooling of the liquid is seen to augment
dissipation, which now consists of both the viscous and thermal boundary layer [19]. The second
approach focuses its attention on the contact line [20,21] and argues that spreading of solidifying
drops is arrested when, at the contact line, (i) the contact angle of the spreading drop equals the
angle of the freezing front, (ii) a critical volume at the contact line is solidified, or (iii) the liquid at
the contact line reaches a critical temperature determined by the effect of kinetic undercooling [22].
Since the dynamics of drop spread are essential in realizing the eventual fate of the deforming drop,
solidification can play a vital role in these impact scenarios.

The above survey highlights the role of adhesion and solidification in drop impact on supercooled
surfaces, and since they act in concert with each other, isolating their individual roles in the ensuing
mechanics is often difficult. For example, because drop pinning is omnipresent on engineered
surfaces in nonisothermal impacts, the extent to which the solidification within a drop alone controls
postimpact parameters such as maximal spreading, rebound height, contact time, rebound, and
splat fragmentation is not clearly understood. The choice of test liquids and surfaces therefore
becomes extremely critical. Even though water is one of the most preferred liquids for impact
studies because of its large latent heat of fusion, surface tension, and high supercooling, the effects
of solidification within it during impact on supercooled nonwetting surfaces are small. In contrast,
low surface tension liquids like alkanes have low supercooling, low dynamic viscosity and low
heat of fusion, making them prime candidates to study effects of solidification on drop impact.
However, engineering surfaces that are completely nonwetting to them at all impact velocities is still
challenging. One of the very few solid materials that successfully meets such stringent requirements
is dry ice (DI), a supercooled (CO2 gas) material that sublimates at TDI = −78.9 ◦C. Dry ice’s
combination of being a molecular and sublimating solid eliminates any pinning between the drop
and surface [23,24] by providing near contactless levitation similar to Leidenfrost drops [25] making
it an ultralow adhesive surface even for low surface tension liquids. Hence, we choose this material
to isolate and show how solidification within a drop alone affects each of the above-mentioned
facets of drop impact. While rebound and fragmentation of drops on dry ice has been known
[23,24], we show that in the absence of pinning the extent of solidification controls both these
outcomes, delineating them from a region of no bounce when the splat merely spreads and rests
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on the surface. Since the the layer closest to dry ice is solidified, our examination concentrates
on fragmentation rather than splashing, which precludes any aerodynamic lifting of the lamella.
Further, we also show that the rebound height in cases where rebound is seen is determined by the
amount of solidification inside an impacting drop. In the course of our investigation, we also derive
and use the dependence of solidification thickness on impact velocity which, to our knowledge, has
not been tackled so far and provides a facile method to analyze such phenomena. Our efforts use a
combination of laboratory experiments and theoretical arguments to explain the underlying physics
behind our observations.

Following this Introduction, which constitutes Sec. I of the paper, we organize the remaining text
along the lines described here. We begin with a description of experimental details of the materials
tested and experimental conditions in Sec. II, following which we describe our experimental
observations on the different drop impact morphologies in Sec. III. Thereafter, in Sec. IV we
provide the theoretical foundation for the dependence of solidification thickness on impact velocity
extending Stefan’s analysis of gradual solidification of a liquid gently placed over a cold surface.
Next, in Sec. V we describe the two observed regimes: fragmentation and rebound, accompanied
by scaling arguments to determine the criterion when these may be observed. In Sec. VI, we focus
on the drop spread and derive the scaling for the maximum spreading of drop on impact. Finally, in
Sec. VII we discuss the last of our results, which detail the effect of solidification on rebound height
for different liquids. Our paper closes with Sec. VIII, which contains, in brief, a summary of our
findings, potential applications, and suggestions for future work.

II. METHODS, MATERIALS, LIQUID PROPERTIES, IMPACT CONDITIONS,
AND DIMENSIONLESS GROUPS

A. Setup and surface topography

Our setup [shown in Fig. 2(a)] consists of a needle attached to a glass syringe which is connected
to a syringe pump and operated such that a single drop is ejected at a given time. Drops of diameters
varying between 1.8 − 2.8 mm are tested and correspond to needles of gauge sizes 14, 16, 18, and 20
procured from Norsdon. Five different test liquids, namely, water and long chain alkanes, decane,
tetradecane, pentadecane, and hexadecane are chosen as test liquids, which shall be denoted by
the color coding in Fig. 2(a). The capillary length, �cap = √

σl/ρl g, where g is the acceleration
due to gravity (≈9.81 m s−2) for all these liquids is greater than or nearly equal to the drop
diameters generated, ensuring that the role of gravity is negligible in the drop deformation and
impact dynamics. After their release from the needle, the drops were allowed to impact on a dry ice

×

(a) (b)

FIG. 2. (a) Sketch of experimental setup showing impact of drop on dry ice (not drawn to scale). Listed
below are the tested liquids. (b) Topography of dry ice surface as measured using an optical profilometer giving
an average value of roughness which equals 10 µm
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slab at −78.9 ◦C. Room temperature and ambient conditions correspond to a temperature of 25 ◦C
(or 298 K) and atmospheric pressure, 1 atm.

To observe and record the drop impact behavior, we used a Photron FASTCAM Mini AX camera
at 4000 frames per second with a pixel a resolution of 1024 × 1024 pixels and a shutter exposure
time of 5 µs. The selected frame rate gave us a temporal resolution of about 0.25 ms, which was less
than the impact timescale, D0/V0 of 1 ms. To spatially resolve the impact dynamics, we used a high
magnification lens (InfiniProbe TS − 160) with a focal length between infinity and 18 mm, which
produced a magnification of 0 − 16× such that 1 pixel ≈ 15 µm. The background lighting used to
illuminate our setup consisted of an LED (Nila-Zaila) light source whose intensity was diffused and
homogenized using acrylic diffuser plates placed between the light source and the impacting drop.
Drops of size D0 (in m) and density ρl (in kg m−3) were released from heights H0 between 2 and
12 cm to vary their impact velocity (V0) 0.3 and 1.5 m s−1 on a nitrogen-purged frost-free dry ice
surface. These experiment conditions correspond to the Weber number, We, ranging from 12 to 120.
The videos obtained were analyzed using the open source software IMAGE J [26].

Lastly, the dry ice topography and roughness was experimentally measured using the Bruker-
Nano Contour GT-K Optical Profilometer at the Nanotechnology Core Facility at the University
of Illinois at Chicago. The samples were acquired with a 5 µm scanning step in both x and y
perpendicular directions in the plane as shown in Fig. 2(b) at a scanning velocity of approximately
2 mm s−1 in both directions. The three-dimensional topography revealed by these surface scans
is shown in Fig. 2(b) in the form of surface heights data acquired by the microprofilometer with
a region of interest within 1 mm2. The nonuniformity of the dry ice surface is clearly seen with
a height varying between −5 µm and 5 µm. The experiments were repeated five times at different
locations on the dry ice surface with a maximum standard deviation of 0.01 µm in the maximum and
minimum height measured. Note that for a typical sublimation rate of 1% mass per hour, initial slab
dimensions of 0.3 m × 0.15 m × 0.06 m, dry ice density of 1600 kg m−3, and experimentation
time of 10 s, the decrease in the height of the sample is approximately 0.1 µm. This is <10% of the
measured roughness, Ra ≈ 10 µm, and therefore we can conclude that sublimation does not affect
our profilometry measurements.

B. Liquid thermal, physical properties, impact conditions, and dimensionless groups

For our experiments, we chose water and four alkanes: decane (Tm ≈ −30 ◦C), tetradecane
(Tm ≈ 5 ◦C), pentadecane (Tm ≈ 10 ◦C), and hexadecane (Tm ≈ 18 ◦C). These alkanes were chosen
because, except their Tm, their other thermal-fluid properties are all nearly the same, so any
difference in their postimpact behavior can be directly attributed solely to their thermal properties.

The thermal, phase change, and fluid properties for the liquid and solid phases of water and the
four different alkanes tested are detailed in this section. These are used in this paper and listed
in Table I as thermal, fluid, kinematic and interfacial properties, and dimensionless numbers. The
elastic (Young’s) modulus, Y for solid alkanes is taken to be 2 × 108 Pa, as alkanes fall under the
category of paraffin wax while that for ice is 9.33 × 109 Pa [18]. To calculate the thermal diffusivity
for the solid (αs) and liquid (αl ) phases, we use the formulas αs = ks/ρscp,s and αl = kl/ρl cp,l . Also,
the properties of the liquids in their solidified form are considered at their melting temperature,
Tm, and their surface tension in their liquid form, σl , is considered to be within the same order of
magnitude as that in solid form, σs. For water, σs ≈ 90 mN m−1 and, considering alkanes in their
solid form to be similar to solid paraffin wax, it amounts to approximately a value of 35 mN m−1

about 1.3 times their value in liquid form. Upon contact with the dry ice substrate, the liquid
immediately solidifies and therefore the interfacial tension between the solidified layer and dry ice
is dropped from further analysis. The roles of other interfacial tensions that may arise are described
in the relevant sections for regime transitions, Secs. V A and V B. The thermal conductivity of dry
ice is kDI = 0.011 W m−1K−1. All values presented here are taken from literature [27,28].

A decrease in temperature when the drop touches the dry ice surface can lead to an increase
in dynamic viscosity, resulting in enhanced viscous dissipation, offering a plausible reason for the
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TABLE I. Thermal, fluid, interfacial properties, kinematic quantities, and dimensionless groups.

Water Decane Tetradecane Pentadecane Hexadecane

Specific heat [kJ kg−1K−1] Liquid, cp,l 4.18 2.21 2.19 2.20 2.22

Solid, cp,s 1.70 2.20 1.90 2.00 2.20

Thermal Thermal conductivity [W m−1K−1] Liquid, kl 0.60 0.14 0.14 0.14 0.14

properties Solid, ks 2.20 0.17 0.14 0.15 0.22

Thermal diffusivity [m2 s−1] Liquid, αl [×10−7] 1.43 0.87 0.83 0.82 0.81

Solid, αs [×10−7] 11.44 0.85 0.81 0.83 1.11

Latent heat [kJ kg−1] Liquid � Solid, L 334 194 227 207 236

Surface tension [N m−1] Liquid, σl [×10−3] 72 23.83 26.56 27.07 27.47

Fluid Dynamic viscosity [Pa s−1] Liquid, μl [×10−3] 0.89 1.26 2.33 3.10 3.30

properties Density [kg m−3] Liquid, ρl 998 728 764 769 770

Solid, ρs 920 840 880 884 886

Impact Initial drop diameter [m] D0 [×10−3] 2.80 1.82 1.88 1.98 1.98

conditions Impact velocity [m s−1] V0 0.24−1.29 0.25−1.44 0.20−1.45 0.27−1.22 0.19−1.30

Stefan number Ste 0.40 0.56 0.70 0.86 0.91
Dimensionless

Peclet number Pe [×104] 0.53−2.84 0.52−2.98 0.48−3.54 0.65−2.90 0.59−3.12
groups

Weber number We[×10] 0.23−6.60 0.34−11.35 0.22−11.77 0.46−8.85 0.21−9.21

arrest of movement of the spreading drops. For this to be true, the viscous effects need to penetrate
a larger thickness, typically the height of the pancake (hpan) formed after drop impact, which would
take longer compared to solidification of a thin microlayer (δ) of the drop in the vicinity of dry
ice. To emphasize the role of solidification over viscous effects, we can compare the timescales of
spreading, D0/V0, viscous penetration, ρl (D0/4)2/μl , and thermal penetration (δ2/αs), using the
length scales, D0/4 [for example, Fig. 3(a), t = 4 ms] and δ for viscous and thermal penetration,
respectively, at which arrest of spread may be expected. For typical conditions representative of our
experiments, D0 = 2 mm, V0 = 1 m s−1, αs = 10−7 m2 s−1, ρl = 770 kg m−3, μl = 1 mPa s (from
Table I) and δ ≈ O(10) µm, we calculate the aforementioned times scales (approximately) as, 2,
125, and 1 ms, respectively. This implies that only spreading and thermal penetration timescales are
comparable, and hence viscous effects can be neglected.

Similarly, for temperature-dependent properties such as density, viscosity, and surface tension to
influence drop spreading, the thickness of the thermal boundary layer in time, D0/V0, corresponding
to the drop impact and spreading timescale should be the order of the thickness of flattened drop.
For our impact scenarios, this value of the thermal boundary layer is O(10) µm, which means that
the temperature decrease in the liquid drop is only restricted to a thin layer close to the sublimating
dry ice surface.

Hence, our choice of test liquids ensured that the role of temperature-dependent liquid properties
or the role of viscosity was negligible. At room temperature, the nondimensional Ohnesorge number,
Oh = μl/

√
ρlD0σl for all liquids tested, was relatively low assuming values between 0.0025 and

0.008.

III. EXPERIMENTAL OBSERVATIONS

Using the experimental methodology and liquids described above, we systematically investigate
two main aims: (i) splat morphology after impact and its dependence on the impact We and (ii)
coefficient of restitution (COR) as measured by the rebound height. Our experimental findings
addressing the first aim are displayed as a sequence of images in Figs. 3(a)–3(d) (also see
Supplemental Material (SM) [29] movies 1 and 2). At low impact velocities, all liquids bounce,
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(a) (b)

(d)

(e) (f)

(c)

FIG. 3. Different regimes in drop impact (a) bouncing with negligible solidification for water at We ≈
20, (b) bouncing with discernible solidification for hexadecane We ≈ 24, (c) fragmentation for We ≈ 80, and
(d) no bounce for We ≈ 84. Raw data corresponding to transition regime boundaries between bouncing and
fragmentation and bouncing and no bounce for different liquids as a function of (e) Dmax/D0 and (f) We.

similar to findings reported in literature [23–25]. Here, to compare our results with these earlier
studies, we used water as the test liquid and impacted it with a dry ice surface at We ≈ 20, an
example of which is shown in Fig. 3(a). We observe splat morphology and rebound behavior
identical to previous works [23–25]. To examine the effects of solidification, we experiment with
hexadecane, which should exhibit higher solidification as it has higher Ste (see Table I). For a
hexadecane drop impacting at We ≈ 24, shown in Fig. 3(b), when solidification was substantial
we continue to observe bouncing like water but with the major difference that the bottommost
layer of drop looked partially solidified. Usually in supercooled surfaces, solidification-induced
pinning restricts bounce-off, so this result on dry ice surface is unique, especially since it proves
that bouncing can be observed if adhesion is minimized or eliminated entirely. To test whether
bouncing continues or ceases, we gradually increase the higher impact velocities. At higher We (or
impact velocities), two distinct outcomes emerge for almost the same We (see SM [29] movie 3), the
first being drop fragmentation [see Fig. 3(c) for decane, We ≈ 80] and the other wherein bouncing is
suppressed altogether [Fig. 3(d) for hexadecane, We ≈ 84]. This suggests that impact outcomes are
dominantly dictated by solidification, which for low Ste liquids like decane and water are shown to
result in fragmentation, producing a drop smaller in diameter which continues to bounce. In contrast,
for liquids like hexadecane, pentandecane with high Ste, or increased solidification, bouncing is
suppressed entirely when the thicknesses of the solidified layer increases.

Lastly, we collate the raw data gathered from our experiments with all five liquids in terms of
We and Dmax/D0 and plot them as shown in Figs. 3(e) and 3(f). Light green, light purple, and light
yellow color codes are used for demarcating regimes of bounce, fragmentation, and no bounce. It is
to be noted that higher values of We and Dmax/D0 typically imply higher impact velocities, V0.

In our second objective, we focus on the effect of solidification on the bounce height. All
four alkanes and water are tested to understand this behavior in detail. A sample result from our

053604-7



VARUN KULKARNI et al.

(a) (b)

FIG. 4. (a) Experimental images showing decrease in rebound height, H1, with increasing solidification as
indicated by the Ste number. (b) H1 at two different We ≈ 20 (half-filled semicircles) and 45 (filled semicircles),
demonstrating two specific influences: first, the decrease in H1 for all liquids with an increase in We and,
second, a decrease in H1 at given We for liquids with higher Ste or with increased solidification.

experiments at We ≈ 20 is shown in Fig. 4(a) (also see SM [29] movie 2). In this figure, we see
that from left to right, with increasing solidification, the rebound height decreases. Our results were
further tested at different We to observe whether for a particular liquid, an increase We leads to a
decrease in rebound height. Figure 4(b) depicts the raw data relating to two We ≈ 20 and 45 and
we note that increasing We leads to a decrease in rebound height for all liquids. Our measurements
indicate that solidification not only depends on the liquid thermal and phase change properties but
also the impact velocity or We.

Both of the above observations are studied in detail and rationalized theoretically in the next
section (Sec. IV), where the effect of solidification with We is quantified. We then use this
information in deriving criteria for regime transitions in Sec. V, followed by an account of how
drop spread is affected by solidification in Sec. VI, which is an ancillary goal in understanding the
drop dynamics of this nature better, and conclude with Sec. VII where our theoretical framework is
used to explain our observation on rebound height.

IV. DEPENDENCE OF SOLIDIFIED LIQUID LAYER δ ON IMPACT WEBER NUMBER We

As suggested during the description of our experiments, partial solidification is important in
understanding the mechanics behind our observations. In this section, we quantify it by calculating
the thickness of the solidified portion of a liquid (δ) when it comes in contact with a supercooled
dry ice surface. An important consideration in this regard is that the surface of the dry ice is not
smooth (see Sec. II) and the contact made by the drop is not perfect. Moreover, increasing We can
greatly affect this area of contact too, thereby increasing the extent of heat transfer. Additionally,
the properties at the surface can differ significantly from that in the bulk. Together, these effects
lead to development of non-negligible thermal contact resistance at this contact area, developing
a temperature distribution as shown in Fig. 5(i). Two extreme limits of this at low and high We
with the difference in contact area are also sketched in Figs. 5(ii)(a) and 5(iii)(a) with the resulting
temperature distribution in Figs. 5(ii)(b) and 5(iii)(b). In the following, we meticulously analyze
cases of high We when contact resistance is negligible and then the case for arbitrary We with finite
contact resistance.

A. Thickness of solidified liquid layer δ at We = 0

We first consider the energy balance, commonly known as Stefan’s condition [1,30,31], at the
solidification interface [30] and written as follows:

ρsL
dδ

dt
= ks

∂T

∂z

∣∣∣∣
s

− kl
∂T

∂z

∣∣∣∣
l

. (1)
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FIG. 5. (i) General scenario of a drop in contact with a surface with non-negligible contact resistance,
Rc, and the ensuing temperature distribution at the dry ice–liquid interface with a contact temperature of Tc.
Portion of the solidified drop in contact with the supercooled surface is marked with a solidification thickness
of δ. Two limiting cases of contact resistance, Rc, when (ii) Rc ≈ 0 when We is high, sketched in (a) with
corresponding temperature profile in liquid and solid phases shown in (b), depicting Tc ≈ TDI. Note the red
line within the zone of the solidified drop is a linear approximation to the unsteady temperature distribution,
which in the limit of small δ is an accurate representation of the temperature gradient at quasisteady or low Ste.
(iii) Rc � 1 when We is low is sketched in (a) with corresponding temperature profiles in liquid and solid
phases shown in (b) depicting Tc ≈ Tm (iv) section of the drop in contact with the dry ice texture at one location.
(v) Exploded view showing depth of capillary penetration, hcap, and dynamic pressure head due to drop impact,
hdyn, used to estimate contact resistance at a given We.

Here, ρs is the density of the solidified liquid,L is the latent heat of solidification of the liquid, and δ

is the thickness of the solidified layer. Equation (1) is representative of the fact that the latent heat for
solidification ρsL dδ

dt is provided by the difference of conductive heat transfer in the liquid −kl
∂T
∂z |l

and solid −ks
∂T
∂z |s phases across the solidification front [see Figs. 5(i)–5(iii)]. dδ/dt is the velocity

of the interface while it is solidifying, ks is the thermal conductivity of the solidified liquid, and kl

is the liquid thermal conductivity. In Eq. (1), −kl
∂T
∂z |l is much smaller compared to −ks

∂T
∂z |s as the

thickness of the solidified layer, O(10−6) is much smaller than the diameter of the drop, O(10−3)
and, therefore the gradient, ∂T

∂z |s, is larger compared to ∂T
∂z |l . Here, �Ts = Tm − TDI (for the solid

phase) is O(10) and �Tl = Tm − Tamb (for the liquid phase) is also O(10). Going forward, since
�Tl will not be used, the subscript l will be dropped and �T would mean �Ts. Furthermore, we
use the approximation dT/dz as �T/δ, which is true for a quasisteady approximation when Ste < 1
and implies that the temperature distribution within the solid layer is linear as shown in Fig. 5(ii)(b)
between the limits Tm and TDI. We shall see in Sec. IV A 1 that this approximation is fairly accurate
by considering the unsteady nature of the problem. Finally, using the foregoing simplifications, we
can express δ as

ρsL
dδ

dt
= ks

�T

δ
. (2)

Integrating Eq. (2), we derive the expression for δ using the definition of nondimensional Ste,
(= cp,s�T

L ), and the initial condition, δ(0) = 0, as given below:

δ =
√

2Ste αst = 2λ
√

αst, where λ =
√

Ste/2. (3)

Ste used here indicates fast solidification where large (>1) and small values (<1) correspond to slow
solidification. Also, Eq. (3) is very useful to determine the scaling for the solidification timescale
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by expressing t as tsol and rearranging Eq. (3):

tsol ∼ δ2

αsSte
= ρsδ

2L
ks�T

. (4)

We shall use this expression as a timescale in the next section, but before that we completely
nondimensionalize Eq. (3) by evaluating Eq. (2) at tcon ≈ 5D0/V0 [8], which denotes the time for
which the drop is in contact with the dry ice surface. By defining δ = δ/D0 we reduce Eq. (3) to

δ =
√

10Ste

Pe
. (5)

The value of λ in Eq. (3) assumes a quasisteady approximation (Ste < 1) of the governing energy
equation which gives rise to a linear temperature distribution within the solidified layer [18]. For
our case, Ste, though less than 1, is not significantly low to completely eliminate the time-dependent
term in the governing equation. We explore this in the next section and see if the quasisteady (linear)
approximation is actually reasonably justified for us.

1. Determining the prefactor λ

To calculate λ corresponding to the exact nonlinear temperature distribution in the solid and
liquid layers, we would need to solve the one-dimensional heat equation [1] for both phases with
Stefan condition as one of the boundary conditions. This is expressed as below for the liquid (l) and
solid (s) layers:

∂Tl,s

∂t
= αl,s

∂2Tl,s

∂z2
. (6)

At z > δ, Eq. (6) is solved for the liquid phase and for z < δ it is solved for the solid layer with the
matching Stefan condition at the interface, z = δ. A general solution [1,30] to Eq. (6) can be written
as

Tl,s = Al,s + Bl,s erf

(
z

2
√

αl,st

)
. (7)

The four constants Al , As, Bl , and Bs can be determined from the boundary conditions for the solid
and liquid phases:

Tl = Tamb at z → ∞, t � 0 (liquid layer), (7a)

Tl = Tm at z → δ, t > 0 (liquid layer), (7b)

Ts = TDI at z = 0, t � 0 (solid layer), (7c)

Ts = Tm at z → δ, t > 0 (solid layer). (7d)

The temperature distribution obtained in the solid and liquid layers using the boundary conditions
above are therefore given by:

Ts = TDI + Tm − TDI

erf(λ)
erf

(
z

2
√

αst

)
, (8)

Tl = Tamb − Tamb − Tm

erfc(λ
√

αs/αl )
erf

(
z

2
√

αl t

)
. (9)

In determining the temperature distributions in Eqs. (8) and (9), we have used the relations erf(q) =∫ q
0 e−p2

dp and erfc(q) = 1 − erf(q), where erf(q) and erfc(q) are the error and complementary
error functions, respectively. Furthermore, erf(0) = 0 and erf(∞) = 1. We also substitute for δ

as 2λ
√

αst in the expressions for the two temperature distributions above, however, it introduces
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another unknown λ. This can be evaluated using the Stefan boundary condition stated in Eq. (1),
amounting to the transcendental Eq. (10), which can be solved for λ:

√
πλ eλ2

erf(λ) = Ste. (10)

The roots of Eq. (10) for different Ste lead to λ ≈ O(10−1) [30]. For small λ at small Ste, eλ2
erf(λ) ≈

2λ/
√

π , leading to λ = √
Ste/2 (derived in the next section). In this linear approximation, we see

for our chosen values of Ste (refer to Table I) the values for λ lie between 0.5 − 0.67 and are in
close agreement with those obtained from the exact solution of Eq. (10), which lie in the range
0.45 − 0.6.

B. Thickness of solidified liquid layer δ at any We

The expression for dimensionless solidified layer thickness δ (=δ/D0) at time tcon ≈ 5D0/V0

as given by Eq. (5) predicts increasing values of δ/D0 at lower initial impact velocities V0 or
Pe (and by extension We). However, we expect the solidified layer thickness to decrease with
lower We as lesser contact is established at lower We, amounting to decreased heat transfer [see
schematic Fig. 5(iii)]. To obtain this variation, we recognize that contact resistance, Rc, can inhibit
growth of the dimensionless solidified layer, δ. Here we derive the relation for δ with We, which
includes the effect of contact resistance, Rc, to be used in theoretically determining the regime
transition boundaries in Sec. V and coefficient of restitution (COR) calculations used in Sec. VII,
pertaining exclusively to the regime where the drops bounce back. We divide our discussion into
two subsections, the first of which deals with determining δ = f(t, Rc), the second on establishing
the dependence of Rc with impact velocity (V0) or impact We.

1. Expression for δ as a function of contact resistance and time

When a liquid drop touches the surface of dry ice, heat is lost from the liquid drop to the
composite dry ice or CO2, thereby solidifying the drop. The CO2 gas pockets lead to an increase
in contact resistance, which becomes significant at lower impact We [see Fig. 5(iii)]. The transfer
of heat occurs in three layers: (i) contact layer comprising of the composite dry ice or CO2 surface,
(ii) solidified liquid layer, and (iii) the liquid layer (drop) as shown in Fig. 5(i). Initially, the heat is
transferred to the contact surface from the liquid drop which is at a higher (ambient) temperature.
Thereafter, the liquid drop solidifies and creates another layer through which the heat is transferred
via conduction to the remaining liquid drop. The heat transfer in these three cases may be written
mathematically as follows [32]:

(1) Solidification of liquid drop by releasing latent heat, ρsL dδ
dt .

(2) Conduction through solidified layer to liquid drop, ks
Tamb−Tc

δ
. Here, ks is the thermal conduc-

tivity of the solidified liquid, Tamb is the initial drop temperature, and Tc is the contact temperature of
the interface when the drop meets dry ice. The linear temperature distribution within the solidified
layer due to low Ste justifies use of this simple expression (see Sec. IV A 1 for further details).

(3) Contact surface to solidified portion of the liquid drop, Tc−TDI
Rc

.
Equating (1), (2), and (3) above, we obtain

ρsL
dδ

dt
= ks

Tm − Tc

δ
= Tc − TDI

Rc
. (11)

The above three equations contain two unknowns, δ and Tc which we can solve, bearing in mind that
Rc is known and shall be determined in Sec. IV B 2. Considering the last two of these expressions,
(2) and (3), the contact temperature Tc can be obtained in terms of δ as

Tc = TmksRc + TDIδ

ksRc + δ
. (12)

Exploring Eq. (12) in the limits Rc ≈ 0 and Rc � 1, we obtain Tc as TDI and Tm respectively. The
temperature profile corresponding to these are sketched in Figs. 5(ii)(b) and (iii)(b). To solve for δ,
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we consider the first two cases, (1) solidification of liquid drop and (2) conduction through solidified
layer in Eq. (11), and after a little algebra arrive at a nondimensional form of the differential
equation governing the evolution of δ in time by choosing δ = δ/D0 and τ = t/(D2

0/αsSte)

dδ

dτ
= 1(

Bicr
s

)−1 + δ
. (13)

The Biot number of the solidified layer, Bicr
s in Eq. (13) is equivalent to the dimensionless contact

resistance defined as D0/ksRc. Large values of Bicr
s denote low contact resistance as usually assumed

[see Figs. 5(ii)(a) and 5(ii)(b)] while finite, lower values signify increasing role of contact resistance
[see Figs. 5(iii)(a) and 5(iii)(b)]. With this physical description in mind, we solve Eq. (13) subject
to the initial condition δ(0) = 0, which represents the state when the solidified layer has not formed
just when the drop touches the dry ice surface. The solution (neglecting the root which yields a
negative value for δ) to Eq. (13) is therefore given by

δ =
√(

Bicr
s

)−2 + 2τ − (
Bicr

s

)−1
. (14)

In Eq. (14), the dependence of Bicr
s on impact velocity or We (in nondimensional terms) remains to

be determined, which we shall pursue in the next section.

2. Dimensionless contact resistance, Bicr
s as a function of impact We

One of the crucial considerations for estimating the contact resistance (Rc) is the area
of the drop that is in contact with the composite dry ice or CO2 gas surface. As one would expect,
the higher the impact velocity, the more would be the area of contact compared to the case when
the contact is purely due to gentle deposition. A simple way to account for this increase in contact
area is by considering the ratio of depth the liquid penetrates due to impalement and total depth
which includes the depth that is achieved upon gentle deposition [33]. The depth to which a liquid
penetrates a texture (hcap) can be calculated as hcap = σl/ρl gRa, which is obtained by equating the
Laplace pressure of meniscus of radius of curvature, Ra, and the hydrostatic pressure of column
of height, hcap [see Figs. 5(iv) and 5(v)], whereas the depth associated with the impalement of the
asperities is given by the Bernoulli dynamic pressure head, hdyn = V 2

0 /2g. The ratio, fs, therefore
assumes the form

fs = V 2
0 /2g

σl/ρl gRa + V 2
0 /2g

. (15)

On rearranging the above and defining Ra = Ra/D0, we get

fs = WeRa

2 + WeRa
. (16)

In terms of heat transfer, it means that the conduction across an interface with a roughness (depth)
Ra, effective reference flat area, fsAref (adjusted for the true contact area by the factor, fs), and
thermal conductivity of kDI should be the same as that of an interface with contact resistance Rc

and area, Aref . For a temperature difference �T across the interface, such an energy balance implies
kDI fsAref�T/Ra = R−1

c Aref�T , which yields fs = Ra/RckDI. Hence, fs can now be expressed as
RaBicr

DI. Equation (16) thus takes the form

Bicr
DI = We

2 + WeRa
. (17)

Note that Bicr
DI and Bicr

s are related to each other as Bicr
s = (kDI/ks)Bicr

DI. Equating kr = kDI/ks and
using Eq. (17) in Eq. (14), we obtain the dependence of δ on We in the time the drop is in contact
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(a) (b)

FIG. 6. (a) Variation of dimensional solidified thickness δ with We (in bouncing regime) as given by
Eq. (18). The dotted lines show the value of δ when contact resistance is negligible, corresponding to
Bicr

s → ∞. (b) For any other Bicr
s corresponding to a finite We, δ can be simply written as 2λλc

√
αst , where

λ = √
Ste/2 and λc = f (We) = 0.2We2/5 or ∼V 4/5

0 . λc assumes values from 0.2 to 1 which specifically for
lower We and Bicr

s can be averaged close to 0.5 and approximately 1 at higher We or Bicr
s as used in order of

magnitude analysis for the scaling arguments to determine the regime boundaries [Fig. 8(b) in Sec. V].

with the surface as

δ =
√(

2D0 + WeRa

krWe

)2

+ (2αsSte) t −
(

2D0 + WeRa

krWe

)
. (18)

For a roughness Ra = 10 µm [see Fig. 2(b)] contact time, tcon ≈ 5D0/V0 and D0, We, and Ste given
in Sec. II, we plot the variation of δ with We obtained in expression (18) as shown in Fig. 6(a). Since
Eq. (18) is cumbersome to use, we see its equivalence with the commonly used form containing√

t . Normally, it contains a prefactor λ, which physically represents the role of solidification in a
particular liquid [see Sec. IV A, Eq. (3)] when contact resistance effects are not included. For finite
Bicr

s , we consider a form analogous to the traditional form but including a multiplicative factor λc to
account for the difference caused due to a non-negligible contact resistance:

δ = 2λcλ
√

αst with λ =
√

Ste/2 and λc = f
(
Bicr

s

)
or f (We). (19)

Our results for δ using Eq. (18) are now plotted as a function of We in Fig. 6(a). The curve
so obtained can now be compared with Eq. (19) to determine λc, our correction to the standard
expression which does not include effects of contact resistance. We notice from Fig. 6(a) that δ

decreases by a factor of 5 at very low We or Bicr
s , such that λc is O(10−1) at lower We with an

average value of 0.5 at these lower values and close to 1 at higher We or Bicr
s . We specifically

plot λc in Fig. 6(b) and see that it yields a dependence of the form λc ∼ We2/5 or V 4/5
0 . As

Bicr
s → ∞ (representing no contact resistance), we recover the standard result, δ = √

2Steαs t ,
which is shown by dotted lines in Fig. 6(a) and implies λc → 1. We observe that water has lower
values for δ compared to the alkanes. This is expected since it has the lowest Ste, which implies slow
solidification and thereby its effective thermal diffusivity (αeff = αsSte2) [1,34] is the least, differing
by almost factor of 4 from water to the alkanes, which is seen as a difference in solidification
thickness by a factor of 2 at high Bicr

s or We.
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V. REGIME BOUNDARIES

A. Transition boundary between fragmentation and no bounce

At large We, a (flattened) drop close to its maximum spread (Dmax at time t = tmax) displays
a fingerlike formation as a consequence of Rayleigh-Taylor instability, arising at its rim due to
the inertia overcoming the stabilizing force of surface tension [4,35,36], ultimately leading to its
fragmentation into smaller droplets. On frigid surfaces, as the drop equilibrates to the contact
temperature the solidified layer additionally contracts which in the absence of pinning leads to
bending [2] as opposed to fracture when there is adhesion [18]. Therefore, inertia of the spreading
drop encounters additional resistance due to bending of the solidified layer, besides surface tension
and fragmentation being delayed.

For modeling such a scenario, we begin by approximating the volume of the spreading drop as
a cylindrical pancake with diameter D and height h, where Dmax/2, Dmax/3, and 2V0 are chosen
as the approximate average length scales (for D and h) and horizontal spreading velocity scale
(V ) from the moment inertia begins to compete with solidification and surface tension just upon
impact (at t = 0) until fingers begin to form (at t = tmax). To obtain these scales, we consider time-
averaged values from t = 0 to tmax [see Figs. 5(a)–5(c)]. Thus, D = Dmax/2 (average of D = 0
at t = 0 and D = Dmax at t = tmax) and V = 4V0/2 (average of V = 4V0 at t = 0 and V 
 V0 at
t = tmax), where the value 4V0 is motivated by the fact that the drop upon impact experiences an
initial acceleration horizontally such that V is related to the vertical impact velocity as |V0cot (θa)|
[37], with the apparent contact angle θa being approximately 166o for our (and superhydrophobic)
surfaces.

Our experiments indicate that near the fragmentation-bounce transition at t = tmax, h ≈ D0/3,
and related to Dmax as Dmax/D0 ≈ 2.5 (more precisely, for water and decane this ratio is 2.1 and 2.8,
respectively), from where we get the time-averaged pancake thickness as h ≈ (D0 + D0/3)/2 =
Dmax/3, which is the more appropriate form compared to the one (hpan) used later, using mass
conservation as the drop flattens more and develops corrugation on the rim. This implies that the

kinetic energy is given by (1/2)(ρl )( π
4

D2
max
4

Dmax
3 )(4V 2

0 ) which, for fragmentation to occur needs to
exceed the sum of (i) elastic bending energy stored in the solidified layer of average thickness δ (in
m), Y δ3/12(1 − γ 2), where Y is the Young’s modulus (in N m−2) and γ is Poisson’s ratio as well

as (ii) the surface energy of the cylinder, σl ( π
4 )( D2

max
4 ), finally resulting in the following criterion for

fragmentation (scaled by D3
0):

D3
max

D3
0

>
2Y δ3

πρlV 2
0 D3

0(1 − γ 2)
+ 3σlD2

max

2ρlV 2
0 D3

0

. (20)

Note that in term (i), elastic bending energy signifies the energy associated with the unbending of
the solidified layer of the lower portion of area A of the curved drop [dark blue shaded region in
schematic Fig. 8(b)] and is also multiplied by D2

maxκ
2 ≈ 1 as κ ∼ D−1

max and area A ∼ D2
max shown

in the schematic Fig. 8(c).
Solving the above equation requires determining the temporal evolution of solidification δ(t ) as

the drop spreads from 0 → Dmax → D0 and evaluating it at the time tmax, corresponding to D ≈
Dmax, which is when fingers begin to appear [see Fig. 3(c)].

To estimate tmax, we analyzed the temporal evolution of the spreading droplet diameter (D)
variation with time (t) for all the liquids. Examples of this analysis in the form of a nondimensional
drop diameter (D/D0) as a function of nondimensional time (tV0/D0) for all liquids at the same We
and for the same liquid (hexadecane) at different We are shown in Figs. 7(a) and 7(b), respectively.
For all the liquids, we find that the total contact time of drops, tcon = 5D0/V0 and tmax = 5D0/4V0,
representing one-fourth of its oscillation [38]. Further analysis of the ratio of the experimental
contact time, tcon,exp with the inertiocapillary time scale tin(=

√
ρlD3

0/σl ) as a function of
√

We
showed that tcon,exp scales as We−1/2 [see Fig. 7(c)]. Using simple algebra this scaling simplifies
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FIG. 7. Variation of dimensionless spreading diameter D/D0 with dimensionless time tV0/D0 for drop
bouncing (a) at constant We ≈ 40, different liquids, and (b) for hexadecane and different We, the dotted vertical
line at t = tmax denotes the time at maximum spread, D = Dmax (c) ratio of the experimental contact time, tcon,exp

with the inertiocapillary time, tin, showing its scaling with
√

We.

to tcon,exp ∼ D0/V0 (replaced by tcon hereon), supporting the choice of this timescale in subsequent
analysis.

We emphasize that the choice of tcon scaling as D0/V0 is neither counterintuitive nor does it con-
tradict existing works. Impacts of dry ice which have been likened to impacts on superhydrophobic
surfaces have expressed the rebound (or contact) time as

√
ρlD3

0/σl [39], which seems to be odds
with D0/V0. On closer inspection, we see that both are, in essence, the same with D0/V0 being the
more generalized form. To understand this in detail, we note that the inertiocapillary velocity scale,
V0 is given by

√
σl/ρl D0 for a length scale given by the drop diameter, D0 which means that D0/V0

produces
√

ρlD3
0/σl as the time inertiocapillary time scale, tin. A natural query that arises from this

explanation is why we do not use tin for our analysis, consistent with literature. The reason for it
is that solidification makes rebound calculations more complicated. The surface energy required
to achieve rebound needs to not only equal the diminished inertia due to solidification but also
overcome bending stresses (see Sec. VI for details). In earlier works [23], effects of solidification
in rebound from dry ice have been largely unexplored as the choice of liquids (for instance, water)
used for experimentation experience minimal solidification upon impact and therefore obviating the
need to account for dissipation arising due to it. That being said, research on rebound of viscous
drops does exist [40], and a contact time, tcon = (1 + 1

8 Oh2)tin which corrects tin by the prefactor
(1 + 1

8 Oh2) for small Oh to accommodate effects of viscous dissipation is derived. In our work, a
similar correction could be made to tin to account for dissipation due to solidification however since
the scale, D0/V0 absorbs all these effects we choose that as the contact time. In a future study, an
explicit relation between tcon and tin for nonisothermal drops impacts, in general, could be explored
and derived.

Returning to deriving our criterion for fragmentation, we invoke Stefan’s condition [30] to
evaluate δ at tmax = 5D0/4V0, wherein the latent heat of fusion equates to the conduction heat
transfer across the solidified layer with a temperature difference, �T = TDI − Tm where, TDI is the
substrate temperature. From Eq. (19), this results in δ = 2λλc

√
αst where, λ(= √

Ste/2) accounts
for the contact resistance limited solidification, λc(=0.2We2/5) is a constant multiplier to the
prefactor λ. Using the defintion of Ste and Pe, we obtain an expression for non-dimensional
solidified thickness, δ = δ/D0 = λc

√
5Ste/2Pe, where λ is replaced by

√
Ste/2. Physically, higher

Ste implies faster solidification and higher Pe indicates a smaller depth to which the effects of
the substrate temperature penetrate. Although low velocity (i.e., smaller Pe) would mean a thicker
thermal boundary layer, the contact resistance of the drop and dry ice interface (accounted by λc)
limits its growth. The overall consequence of this competition is an increase in δ ∼ V 4/5

0 , resulting
from δ = 0.32 We2/5√Ste/Pe, which includes correction for contact resistance of the drop and dry
ice interface as shown in Sec. IV.
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FIG. 8. (a) Drop just before and after impact from height H0 with initial diameter D0 and impact velocity
V0. (b) Sketch of the flattened drop of total thickness, hpan, showing the surface tension force acting on it (c). The
final shape of the solidified layer of thickness δ (with radius of curvature κ−1) before rebound where δ 
 hpan.
(d) Regime map showing three distinct impact outcomes affected by partial solidification: (i) Fragmentation
(in light yellow), (ii) no bounce (in light purple), and (c) bouncing with or without significant solidification (in
light green). The dotted vertical line represents the region beyond which the solidified layer thickness δ is ≈14
µm and bold lines correspond to the regime boundaries for fragmentation and no bounce given by inequalities
(21) and (22).

Experiments show that the transition from bouncing to fragmentation We for water and decane
are approximately 30 and 70 while the ratio of Dmax/D0 are 2.1 and 2.8 respectively (see Sec. III,
Figs. 3(e) and 3(f)]. This means the corresponding term (Dmax/D0)3 is approximately 10 and 22
for water and decane. At t = tmax = tcon/4 ≈ 5D0/4V0 [see Figs. 8(a)–8(c)], δ = 15 µm (water),
50 µm (decane) for a drop of D0 = 2.3 mm impacting at V0 = 1 m s−1. Using Y = 9 (ice), 0.2
(paraffin wax for solid decane) ×109 Pa, and γ = 0.5, the term 2Y δ3/πρlV 2

0 D3
0(1 − γ 2) evaluates

to 10 for water and 16 for decane. On the other hand, at the transition We, we find that the term
3σlD2

max/2ρlV 2
0 D3

0 amounts to 0.22 for water and 0.16 for decane. From these, we conclude that
the second term, 3σlD2

max/2ρlV 2
0 D3

0, of Eq. (20) can be dropped for our impact conditions close to
fragmentation. Consequently, inequality (20) transforms to

Dmax

D0
> χ1

(
λc

√
Ste

Pe

)
, (21)

where χ1 = √
5/2[2Y/π (1 − γ 2)ρlV 2

0 ]1/3. Inequality (21) suggests that as the thickness of the
solidified layer increases, fragmentation of the drop is delayed, in agreement with our experimental
observations for water and decane [see Fig. 8(d)].

Note that our criterion excludes splashing considerations based on lifting of the lamella and a
difference between the tip speed and the rate of increase of the wetted area [15,16]. Solidification of
the liquid layer close to the supercooled surface forestalls detachment of the lamella as its tip speed
reduces drastically [41,42], thereby preventing its lifting. Details regarding this are also described in
the Introduction. So, Eq. (21) predicts a simpler criterion for fragmentation. Further note that other
interfacial energies like that of the solidified liquid with the dry ice substrate and solidified liquid
with the unsolidified liquid do not play a part in our considerations for transition to fragmentation
as they are balanced internally by the latent heat which equals the free surface energy required to
create these new interfaces. Additionally, axial strain in the solidified splat is minimal and only the
energy required to bend it is significant, which is provided by the liquid surface tension (σl ). Also,
surface energy of the solid (σs) is insignificant due to the smaller curved surface area. Therefore, in
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the spreading process, only changes in surface energy of the liquid manifests itself as a major factor
along with elastic bending energy of the solidified layer which is balanced with the kinetic energy.

B. Transition boundary between rebound and no-bounce

Delayed fragmentation implies bouncing is observed over a larger range of impact velocities
or We when solidification is limited but significant. But an increase in We leads tetradecane, pen-
tadecane, and hexadecane drops to transition from bounce to a no-bounce state without undergoing
fragmentation [see Fig. 2(b)], SM movie 3 for hexadecane [29], where this is pronounced). We
suggest that as solidification increases, the energy required to deform, bend, and wrap the solidified
layer around the drop also increases such that the drop instead of bouncing [see Fig. 2(b)] rests on
the surface [see Fig. 2(d)] without pinning.

To determine the conditions under which no-bounce would occur, we consider the flattening
out of the drop into a pancake [see Fig. 8(b)] with diameter Dmax and thickness hpan ≈ D3

0/D2
max,

obtained by conserving mass before and after impact. The mass of the solidified layer (δ) is a small
fraction of the total mass and hence ignored. Bouncing with drop solidification would require the
available bending capillary torque due to surface tension, πσlDmaxhpan [43,44] to overcome the flex-
ural rigidity which is mathematically the same as the elastic bending energy, Y δ3/12(1 − γ 2). The
solidified layer thickness δ(= λc

√
10Ste/Pe) is determined at the drop contact time tcon ≈ 5D0/V0

demonstrated in Figs. 8(a)–8(c) and used in the remainder of this paper where we are concerned
with rebound. In nondimensional terms, the above arguments lead to

Dmax

D0
< χ2

(
λc

√
Ste

Pe

)−3

, (22)

where χ2 = 3π
√

10
25 σl (1 − γ 2)/Y D0. Plotting Eq. (22) in Fig. 8(d), we see that it predicts the

transition from no bounce to bounce well. In development of the above expression, contribution
of surface tension of the solidified liquid and interfacial tension of the solidified liquid with the
unsolidified liquid are contingent on their dominant contributions in creating a torque to bend the
solidified layer. Due to the small thickness of the solidified layer, they act at shallow angles with
a small vertical component and therefore do not create a substantial torque compared to the liquid
surface tension which acts dominantly around the periphery of the spreading drop. The lines of
surface tension of the solidified liquid drop and the dry ice substrate pass through the center of the
axisymmetric splat about which bending is considered. This creates no torque as the moment arm is
zero, thereby allowing us to neglect it.

VI. DROP SPREADING

Solidification affects both spreading and rebound of drops which can be quantified using maxi-
mum spread (Dmax) of the drop on impact [24,39] and its rebound height (H1). To determine the
arrest in the spread of the diameter of the deforming drop upon impact, we consider the Padé
approximant that interpolates between limits where a drop bounces in the absence of solidification
and the other when its completely solidified yet capable of bouncing back.

While We1/2 is surely the limit for bouncing with no solidification, the other limit can have poten-
tially other options. To demonstrate the success of scaling choosing We1/2 and WePe1/2Ste−1/2 as the
asymptotic limits, we consider other asymptotic limits and show their relatively poor performance.
The unsatisfactory scaling of data using Pe1/5 or Re1/5 as one of the asymptotic limits besides We1/2

is tested here. Before we proceed, it is important to note that the role of surface tension in our
scaling model for drop spreading is significant and the scaling relations Dmax/D0 ∼ Pe1/5 or Re1/5

only consider solidification and sticking [1,31], however, we also test them as potential options to
confirm the correct scaling as we show later in this section.
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(a) (b)

FIG. 9. Scaling using (a) Pe1/5 and We1/2, (b) Re1/5 and We1/2 as the asymptotic limits for Padé approxi-
mant interpolation (dotted lines).

(1) Interpolation between We1/2 and Pe1/5: The rationale behind the scaling for Dmax/D0 ∼
We1/2 [39] and Dmax/D0 ∼ Pe1/5 [31] is documented in literature. Figure 9(a) shows this scaling,
which has an R2 ≈ 0.79 and is poor compared to the R2(≈0.97) obtained for the interpolation using
We1/2 and WePe1/2Ste−1/2 as the asymptotic limits.

(2) Interpolation between We1/2 and Re1/5: Another candidate when the drop is solidified and
flattened is Re1/5 [39]. Although it does not explicitly include thermal effects, it can still be a viable
candidate. Figure 9(b) shows this scaling which has an R2 ≈ 0.83 and is poor compared to the
R2(≈0.97) obtained for the interpolation using We1/2 and WePe1/2Ste−1/2 as the asymptotic limits.

Since we only consider conditions where complete drop rebound is observed, a more restrictive
limit which continues to account for surface tension is more successful and is derived below. This
is also confirmed by the fact that αsPe/αlSte > We5/2 for our test conditions, which follows from
the fact that the capillary timescale is indeed less than the timescale for arrest of the spread of the
drop [31].

Therefore, in scaling Dmax/D0 shown in Fig. 10, we choose We1/2 and WePe1/2Ste−1/2

as the asymptotic limits for Padé’s approximant, which represent no solidification (We1/2) and
complete solidification (WePe1/2Ste−1/2). The first limit given by Dmax/D0 ∼ We1/2 is obtained
from the complete conversion of kinetic energy into surface energy and shown [45,46] to be
more applicable than Dmax/D0 ∼ We1/4 [39]. For the second limit, we tested the possibility of

(a) (b)

FIG. 10. (a) Scaling for maximum non-dimensional spread, Dmax/D0 using Padé approximant [46] and
given by (dotted line), Eq. (23). (b) The Padé approximant closely follows the scaling relation, Dmax/D0 ∼
We0.4 [23,25].
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Dmax/D0 ∼ Re1/5 and Dmax/D0 ∼ Pe1/5 as possible options, which have been traditionally used
for completely solidified splats [1,31], however, both yield unsatisfactory scaling with R2 � 0.85
and do not depict a situation where the drop rebounds. Consequently, we consider a hypothetical
situation where the drop solidifies almost instantly as it starts to spread on a supercooled surface
such that Dmax ≈ D0 and hpan ≈ δ. In this limit, the energy balance between total energy of the
drop before and after contact reads ρlD3

0V 2
0 + σlD2

0 ∼ σsD2
max + σshpanDmax, where σs (in N m−1)

is the surface tension of the test liquids in their solidified state. Ignoring the slight differences
between σs and σl (see Sec. IIB), it follows that σlD2

0 ≈ σsD2
max, which results in the energy balance

ρlD3
0V 2

0 ∼ σsδDmax that can be recast as Dmax/D0 ∼ We(Pe/Ste)1/2.
The interpolating Padé approximant function corresponding to these limits is given by

Dmax

D0
We−1(Pe/Ste)−1/2 = P1/2

0.0025 + P1/2
, where P = We−1Pe−1Ste (23)

[see Fig. 10(a)] and corresponds to R2 ≈ 0.98. The slight preponderance of data to the left axis of
the plot shows more cases with partial solidification and bouncing. Note that, comparing our inter-
polation with previous studies on drop impact and rebound on a gaseous cushion in nonisothermal
conditions [23,25], we see that the scaling for the spread factor Dmax/D0 ∼ We2/5 stated therein has
a close overlap with our Padé fit [see Fig. 10(b)].

VII. DROP REBOUND

In the last part of our discussion, we investigate the role of drop solidification (in terms of Ste)
on the rebound height (in terms of H1) as shown in Figs. 4(a) and 4(b) (also see SM movie 2
[29]). As discussed before, the thickness of the solidified layer δ is related to Ste and the impact
velocity through Pe or We, which motivates these investigations. To quantitatively understand this
decrease in H1, we develop a theoretical expression for the COR (ε), which includes the effects
of solidification. COR is represented by the ratio of the rebound (V1) and initial velocity (V0)
(see inset of Fig. 11) and is indicative of the repellency of a surface such that superhydrophobic
surfaces with low contact angle hysteresis demonstrate the highest ε ≈ 1 [38]. To evaluate ε,
we consider kinetic energy after impact and rebound, Er (=mV 2

1 /2), and the initial kinetic energy
Ein(=mV 2

0 /2) and the energy loss during rebound, �E , which is the sum of contributions from
loss of kinetic energy due to arrest of movement of the solidified layer, (1/2)(ρsπD2

s δ/4)V 2
0 (where

Ds ≈ Dmax/2 is the average contact diameter as the drop spreads from 0 to Dmax and ρs is the density
of the solidified layer, δ) and energy expended in bending the solidified layer, Y δ3/12(1 − γ 2).With

these considerations, Er can be simply written as Ein − �E , which leads to ε2 = 1 − a1δ − a2δ
3
,

where a1 = (3/8)(ρs/ρl )(Dmax/D0)2 and a2 = Y/πρlV 2
0 (1 − γ 2). Denoting ξ = a1δ + a2δ

3
, we

FIG. 11. Comparison of experimental data and theoretical prediction for coefficient of restitution (ε) for
the first bounce of a partially solidified drop.
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may write concisely ε = √
1 − ξ . Comparing our experimental results with theoretical predictions

in Fig. 11 evaluated at t = tcon, we find that 1 : 2 scaling between ε and 1 − ξ is recovered.

VIII. SUMMARY AND CONCLUSIONS

In summary, using a unique combination of ultralow adhesive dry ice surface and alkanes
as liquids, we isolated the role of solidification during drop impact. We further demonstrated
that solidification within a drop, even though partial, dissipates its initial kinetic energy to delay
fragmentation, reduces its spread, and decreases its coefficient of restitution—even suppressing the
rebound entirely, thus providing a strategy to control the drop deposition by locally changing the
substrate temperature in applications such as paint spraying and additive manufacturing. The frag-
mentation and no-bounce criterion and the maximum spreading diameter developed herein along
with calculations on contact resistance limited depth of solidification are expected to be applicable
to any liquid contact with supercooled substrates and especially those with ultralow adhesion. They
also serve to provide unique insights into dissipation mechanisms in drop impact on supercooled,
nonwetting surfaces. The findings in this paper expand our current understanding, which has limited
itself to studies of drop rebound on dry ice to other previously unknown or unexplained outcomes
such as fragmentation and no bounce. This makes dry ice a versatile platform which can lead to
a whole gamut of scenarios unlike traditional supercooled surfaces which are restricted to pinning
mediated adhesion. The finding that despite partial solidification, drops can rebound from a surface
on ultralow adhesive surfaces can have significant implications for designing robust icephobic and
anti-icing surfaces. Lastly, we expect our results have a tremendous bearing on developing strategies
to repel or enhance adhesion of a wide range of liquids undergoing a liquid-solid phase change
when in contact with surfaces, including applications such as wax deposition, and liquid transport
in microfluidic channels besides scenarios where fragmentation needs to be controlled.
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