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Wall vortex occurs when a cavitation bubble oscillates far from a single rigid wall (at a
dimensionless standoff distance of γr > 1.3). This study reveals that introducing a water
surface expands the wall vortex regime. A wall vortex in an expanded new regime forms
instead of a free vortex at a smaller γr value. Because of the influence of the water surface,
a broader jet pierces the bottom of a bubble. This causes the bubbles to expand easily
along the wall and form a flat shape during the second cycle. Here an outwards flow
forms instead of an upward flow after the bubble recollapses. This study investigates the
formation and development of a wall vortex in the new expanded regime via a combination
of experiments, numerical simulations, and theoretical modeling. To this end, a theoretical
model describing the radial motion R and centroid position h of the bubble between the
boundaries is developed using Lagrangian formulation. Two infinite sets of image bubbles
are used to satisfy the conditions of the water surface and rigid wall based on image theory.
The criteria for the vortex flow patterns are proposed based on the direction of the centroid
migration ḣ(tc ) of the bubble at the beginning of the second cycle tc. A free vortex occurs
when the upward flow dominates [ḣ(tc ) > 0], whereas a downwards flow dominates the
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wall vortex [ḣ(tc ) < 0]. A phase diagram of the vortex flows is obtained from the theoretical
model and is verified using the experimental results. Numerical analysis reveals that the
wall vortex flow with the influence of the water surface contributes to a greater wall shear
stress and larger area, thereby increasing the potential for surface cleaning. These findings
provide new insights for engineering applications such as ultrasonic cleaning.

DOI: 10.1103/PhysRevFluids.9.053602

I. INTRODUCTION

Bubble dynamics near a rigid wall were first studied to understand the erosion mechanism
attributable to hydrodynamic cavitation [1,2]. The key issue in this context is the toroidal collapse
resulting from a re-entrant jet, which further induces unsteady flow fields. Two vortex flow patterns
were observed based on the nondimensional standoff distance γr of the bubble to the rigid wall: (i)
a free vortex that migrates away from the rigid wall and (ii) a wall vortex that spreads along the wall
[3]. Vortex flows exhibit impressive shear, thereby resulting in considerable wall-normal forces and
large shear stresses on the wall [4–6], which can be exploited for applications such as ultrasonic
cleaning, sonoporation, drug delivery, and laser surgery [7–10].

Kornfeld and Suvorov [11] first suggested that a bubble might collapse asymmetrically and
produce a jet pointing towards a nearby rigid wall. The asymmetry of the collapse results from the
pressure gradient [12]. Further, bubble dynamics near the rigid walls have been widely studied using
experiments, numerical simulations, and theoretical modeling [13–25]. Brujan et al. [26] conducted
numerical simulations to investigate the velocity and pressure fields in a liquid surrounding a bubble.
They found that a ring vortex formed after the jet impacted a rigid wall and later spread along
the wall. Reuter et al. [3] investigated vortex flows after a laser-induced bubble collapse using a
hybrid particle image and tracking velocimetry technique. They summarized the flow field patterns
as functions of γw, such as the wall and free vortex, after multiple oscillations. Saini et al. [27]
conducted direct numerical simulations to study the formation of the vortex flows. An annular jet
formed parallel to the wall, thereby resulting in flows directed upward and a free vortex. Wall
vortex and free vortex patterns were observed in the collapse of a cavitation bubble near a sand
bed in a study conducted Sieber et al. [28]. Huang et al. [29] presented the formation of two vortex
flow patterns induced by the collapse of a cavitation bubble near a rigid wall: [Fig. 1(a)] a free
vortex migrating away from the wall and [Fig. 1(b)] a wall vortex spreading along the wall. They
discussed the influence of wall wettability on the vortex flow, and suggested that the main area
of the shear stress be enlarged spatially and temporally in the case of superhydrophobic surfaces.
The aforementioned studies demonstrated that the formation and development of a vortex flow are
determined principally by the behavior of the bubble near the boundary.

The behavior of the bubbles varies considerably when they are initiated between different
boundaries such as two perpendicular rigid walls [30], two parallel rigid walls [31], or a rigid
wall and an elastic boundary [1]. With the development of the laser-induced forward transfer
technique, bubble dynamics between a rigid wall and water surface have received increased attention
[32]. Gregorcic et al. [33] presented experimental measurements of a cavitation bubble oscillating
between a free surface and rigid wall using the deflections of a laser beam as the optical probe. They
found that the collapse time of the bubbles was shortened and prolonged by the water surface and
rigid wall boundary, respectively. Zhang et al. [34] argued that most of the motion features observed
in the double-boundary cases originate from the single-boundary cases, in addition to changes in the
speed and height. Huang et al. [35] experimentally observed three distinct patterns identified from
the morphologies of the bubbles and water surfaces. The dynamic characteristics of the bubbles
in the collapse and rebound stages varied between the different patterns. Lui et al. [36] performed
qualitative analyses of the behavior of the bubbles and water surfaces based on two-dimensional
standoff distances. The above-mentioned studies focused on analyzing the characteristics of the
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FIG. 1. Formation of two patterns of the vortex flows induced by the collapse of the cavitation bubbles
near a single rigid wall: (a) free vortex at γr = 1 and (b) wall vortex at γr = 1.5. The red arrows represent the
directions of the flow. The values of Tc are 11.94 ms at γr = 1 and 12.08 ms at γr = 1.5, respectively.

bubble and water surface, such as the velocity of the jet and height of the water skirt. Currently, the
vortex flow induced by the oscillations of the cavitation bubbles between the boundaries is not fully
understood. Additionally, applications, such as ultrasonic cleaning and sonoporation, are performed
at different boundaries. Hence, it is necessary to understand the characteristics of the vortex flow
patterns between different boundaries to determine appropriate applications.

This study provides insights into the formation and development of vortex flows induced by a
cavitation bubble between a water surface and rigid wall. A combination of experiments, numerical
simulations, and theoretical modeling was used. This paper is divided as follows: Section II de-
scribes the methodologies used in the experiments, theoretical modeling, and numerical simulations.
In Sec. III A, the influence of the water surface on the vortex flow patterns is presented through
experimental observations. The mechanisms of the bubble collapse and the subsequently generated
vortex flow under the influence of the water surface are discussed numerically in Sec. III B.
Section III C presents the criteria for the different vortex flow patterns and the corresponding phase
diagram obtained from the theoretical model. Finally, Sec. IV summarizes the study.

II. METHODOLOGIES

A. Experimental setup

As shown in Fig. 2, an experiment was conducted to observe the collapse and subsequent vortex
flow induced by a spark-induced bubble between a rigid wall and water surface. On discharge, the
strong Joule heating at the crossing point of the two electrodes vaporizes the surrounding water,
thereby generating a centimeter-scale cavitation bubble, as reported in previous studies [37,38].
This crossing point was the initial center of the bubble. The voltage was set to 240 V, while the
electrodes were a pair of 0.3-mm-diameter copper wires. To eliminate the effect of the discharge
spark on the initial expansion of the bubble, a pulsed laser (Cavilux HF810, 810-nm wavelength
and 500-W output) with a filter was used as the light source. The laser light and high-speed camera
(V1612, Phantom Co., Ltd., USA) were operated simultaneously when the electric discharge was
triggered. The sampling frequency of the high-speed camera was 73 kfps, exposure time was 2 µs,
and image resolution was 7 px/mm.

As shown in Fig. 2(b), the two-dimensional standoff distances are defined as γw = hw/Rmax and
γr = hr/Rmax, wherein hw is the distance from the initial center of the bubble to the water surface,
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FIG. 2. Schematic of the experimental setup for observing the behaviors of a spark-induced bubble between
a rigid wall and water surface: (a) Experimental setup and (b) definitions of the two nondimensional stand-off
distances (γr to the rigid wall and γw to the water surface). In (a), the green path represents the light source
originating from the pulsed laser.

hr the distance to the rigid wall, and Rmax the maximum bubble radius [16]; hw and hr were varied
by adjusting the positions of the crossing points of the copper wires and water surface. A value of
Rmax = 12 ± 0.14 mm was obtained after repeated experiments in an unbounded liquid. The bubble
equivalent radius and centroid position were calculated from the gray values in the image using the
Open Computer Vision Library (OpenCV) [39]. More details are shown in Appendix A.

B. Theoretical model

This section presents a theoretical model for describing the radial motion and centroid migration
of a cavitation bubble between boundaries using a Lagrangian formulation. Fluid mechanics is used
to model an inviscid and incompressible fluid wherein the motion is irrotational. To solve the kinetic
energy equations in the Lagrangian formulation, the image theory developed by Best [40,41] was
used to obtain expressions for the velocity potential. As shown in Fig. 3, two infinite sets of image
bubbles are used to satisfy the boundary conditions of a rigid wall of the water surface, that is, the
zero normal velocity condition at the rigid wall and linearized boundary condition of a vanishing
potential at the water surface [42]. The Lagrangian equation is expressed as follows:

L(x, ẋ, t ) = K (x, ẋ, t ) − E (r), (1)

where x and ẋ denote the sets of generalized coordinates and generalized velocities of the system,
respectively, and K and E are the kinetic energy and potential energy of the system, respectively.

When the flow fields around multiple bubbles are described by a velocity potential φ that satisfies
the Laplace equation, the kinetic energy K and potential energy V are expressed as follows:

K = −ρ

2

∑ ∫
Si

φ(Ṙi + U i · ni )dSi, (2)

dV =
∑

i

(P∞ − Pi )dVi = 4π
∑

i

(P∞ − Pi )R
2
i dRi, (3)

where ρ is the density, φ the velocity potential, Ri the radius of the ith bubble, Ui the migration
velocity of the centroid of the ith bubble, ni = ri/|ri| the unit vector in the direction of ri, Si the
surface of the ith bubble, P∞ the atmospheric pressure, and Pi the pressure on the surface of the
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FIG. 3. Imaging system for the motion of a bubble between a water surface and rigid wall. To satisfy the
boundary conditions, two infinite sets of image bubbles are used to represent the lowest-order contribution to
the potential. The blue bubble represents the original bubble as a source of q(t ), the green and orange image
bubbles the two infinite sets of image bubbles, q(t ) the image sources, and −q(t ) the image sinks.

liquid side of the ith bubble, which expressed as follows:

Pi = Pv +
(

P∞ + 2σ

Ri,initial

)(
Ri,initial

Ri

)3κ

− 2σ

Ri
, (4)

where Pv denotes the vapor pressure, Ri,initial the initial radius of the ith bubble, κ the specific heat
ratio, and σ the surface tension.

In the imaging system, two infinite sets of images are used to represent the lowest order
contribution to the potential to satisfy the boundary conditions. The image bubbles reflected from
the rigid wall had a similar source as the original bubbles, whereas those reflected from the water
surface had the opposite influence. The positive and negative image bubbles are denoted as q(t ) and
−q(t ), respectively.

Based on the study conducted by Ilinskii et al. [43], the velocity potential of the ith bubble surface
was derived as expressed in Eq. (5), when the velocity potential of the system satisfies the Laplace
equation and boundary conditions of the bubbles,

φ |Si = −
(

RiṘi + Ri

2
U i · ni

)
+

∑
m,m �=i

{
−

(
R2

m

rim
Ṙm + R3

m

2r2
im

Um · nmi

)
+ 3RiR2

m

2r2
im

Ṙm(nmi · ni )

−3RiR3
m

4r3
im

[Um · ni − 3(Um · nmi )(nmi · ni )]

}
+

∑
j,m,m �=i, j

R2
j R

2
m

2r2
imr2

jm

· Rj (n jm · nmi ), (5)

where r is the distance between the centers of the two bubbles.
Equations (6)–(8) provide the boundary conditions for the original bubble (R0), positive image

bubble (Rp), and negative image bubble (Rn),

∂φ

∂r0
= Ṙ0 + U0 · n0, at r0 = R0, (6)

∂φ

∂rp
= Ṙp + U p · np, at rp = Rp, (7)

∂φ

∂rn
= −Ṙn + Un · nn, at rn = Rn. (8)
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Consequently, the kinetic energy K in the system is represented as follows when the velocity
potential is preserved to the second order:

K = 2πρ

{
R3

0Ṙ2
0 + 1

6
R3

0U 2
0 + 2R4

0Ṙ2
∑
k=0

(−1)k (Ak − Bk )

+ R5
0Ṙ(U0 · n0k )

∑
k=0

(−1)k
(
A2

k + B2
k

)}
, (9)

where

Ak = 1

2

1

(k + 1)(hr + hw ) − hw

, (10)

Bk = 1

2

1

k(hr + hw ) + hw

. (11)

The Lagrang equations that describe a multibubble system are expressed as follows:

d

dt

(
∂L

∂Ṙ

)
= ∂L

∂R
, (12)

d

dt

(
∂L

∂ ṙ

)
= ∂L

∂r
. (13)

The equations for the radial motion R̈ and translational motion ḧ of the bubble were obtained by
substituting the kinetic and potential energies into Eqs. (12) and (13) and are expressed as follows:

R̈ =
P−P∞

ρ
+ 1

4U 2 − 3
2 Ṙ2

[
1 + 4R

3

∑
k=0(−1)k (Ak − Bk )

]
[
R + R2

∑
k=0(−1)k (Ak − Bk )

] , (14)

ḧ = U̇ = −3ṘU

R
+ 9RṘ2 + 3R2R̈

4

∑
k=0

(−1)k
(
A2

k + B2
k

)
, (15)

where R and Ṙ are the radius and surface velocity of the bubble, respectively, and h and ḣ the
centroid position and migration velocity, respectively. Interested readers can refer to Appendix B
for the detailed derivation.

Equations (10)—(11) suggest that the alternating series
∑

k=0(−1)k (Ak − Bk ) and∑
k=0(−1)k (A2

k + B2
k ) are absolutely convergent. Hence, it is reasonable to replace the sum

of the infinite terms with that of the finite terms. The convergence and truncation errors are
analyzed in Appendix D. The results showed that 13 image bubbles (k = 3) of the finite sets were
considered to approximate the infinite sets in this study. The theoretical model was verified by
comparing the radial motion and centroid migration to the experimental observations, as shown in
Appendix D.

C. Numerical simulation

A numerical simulation was conducted using the multiphase compressible InterFoam solver in
OpenFOAM. The pressure-based implicit splitting of operators (PISO) algorithm was used to solve
transient compressible Navier-Stokes equations directly. The volume of fluid method was used
to capture the gas–liquid interface. In the simulations, the gas and liquid phases were treated as
compressible and immiscible Newtonian fluids without thermal effects or mass transfer [5,44,45].
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The continuity and momentum equations are expressed as follows:
∂ρ

∂t
+ ∇ · (ρU ) = 0, (16)

∂ρU
∂t

+ ∇ · (ρUU ) = −∇p + ∇ · τ + σχ∇α, (17)

where ρ is the density, t the time, ∇ the gradient operator, U the velocity vector, p the pressure,
τ the viscous stress tensor, σ = 0.07 N m−1 the surface tension coefficient, χ the curvature of the
interface, and α the volume fraction.

The following adiabatic equation of state was used for the gas phase as expressed as follows [46]:

ρ = ρg0

(
p

pg0

)1/κ

, (18)

where pg0 = 105 Pa is the reference pressure, ρg0 = 1.29 kg m−3 is the gas-phase density at pg0, and
κ = 1.4 is the specific heat ratio.

The Tait equation was used for the liquid phase as expressed as follows [6]:

ρ = ρl0

(
p + B

pg0 + B

)1/�

, (19)

where ρl0 = 1000 kg m−3 denotes the density of the liquid phase at pg0, � = 7.15 the Tait exponent,
and B = 3.046×108 the Tait pressure.

The gas-liquid interface was obtained by solving the following transport equation for the phase
volume fraction as expressed as follows [47]:

∂α

∂t
+ U · ∇α + ∇ · [α(1 − α)U r] = −α(1 − α)

(
1

ρl

Dρl

Dt
− 1

ρg

Dρg

Dt

)
, (20)

where Ur is the relative velocity between the two phases, also defined as U r = c|U |(∇α/|∇α|), c
the artificial compression coefficient, ρl the liquid density, and ρg the gas density.

In summary, the governing equations are solved using the following steps: The phase-volume
fraction equation is first solved, followed by the continuity and momentum equations. The equa-
tion of state was then used to update the density of each phase, while a pressure correction was
initiated. Once the desired solution accuracy was achieved, the pressure correction and PISO cycle
were terminated. This procedure is repeated with each step until the scheduled solution time os is
reached.

Figure 4 shows a schematic of the computational modeling process. In the simulations, an
axisymmetric model with a one-degree wedge structure was used in the computational domain.
The calculation domain was set to 240 mm in width and 240 mm in height. As shown in Fig. 4(b),
the wedge boundary conditions were imposed on the front and back planes of the wedge structure.
The right boundary is an axis of symmetry, both the upper and left boundaries correspond with
the outlet conditions, and the lower boundary is a rigid wall. A structural grid was used for all
the computational domains, and the grid around the bubble was further refined to a minimum
spacing of �x = 60 µm to ensure an accurate capture of the interface and flow details. The total
number of grid cells is 580 000. According to previous studies [5], the complex physics of the
bubble nucleation begins with a spherical gas bubble with a high internal pressure. The initial
bubble radius and internal pressure were set when the maximum sizes and collapse times of the
bubbles in the simulation corresponded with the experimental observations. The maximum sizes
of the bubbles Rmax are 12.06 and 12.21 mm at γr = 1.5 and γw = 2.5 in the experiment and
simulation, respectively, while they are 11.97 and 12.20 mm at γr = 2 and γw = 3, respectively.
An analysis of the grid independence was performed, as shown in Appendix C. This analysis shows
that the grid resolution used in this study is sufficient to describe the bubble behavior and flow fields
around the bubble.
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FIG. 4. Schematic of the computational modeling process: (a) Computational domain and (b) boundary
condition settings. In (b), the size of the calculation domain is set to 240 mm in width and 240 mm in height.

III. RESULTS AND DISCUSSIONS

A. Influence of water surface on vortex flow

When a bubble collapses near a single rigid wall, two distinctive vortex flow patterns are observed
after the second cycle as γr decreases: (i) a wall vortex spreads along the wall and (ii) a free vortex
migrates away from the wall [3]. Compared to a single rigid wall, we discovered that a wall vortex
was generated instead of a free vortex at a smaller γr value when introducing a water surface. A
new wall vortex regime was induced owing to the influence of the water surface. In this section, we
experimentally analyze the formation of the wall vortex in the newly expanded regime. In addition,
the variables are nondimensionalized with the time when bubble reaches the maximum size Tc and
the maximum radius of the bubble Rmax.

A free vortex forms after the oscillations of a spark-induced bubble at γr = 1 without the
influence of the water surface (see Fig. 1). When a bubble is generated between the rigid wall
and water surface, the vortex flow pattern does not change owing to the small influence of the
water surface at γr = 1 and γw = 2. As shown in Fig. 5, the spark-induced bubble expanded and
reached its first maximum radius at 1.0Tc after the electrical discharge was triggered. As the bubble
shrinks, its bottom surface deforms into a semielliptical shape, while the upper surface quickly
moves down. At 1.8Tc, a jet generated from the top of the bubble pierced the bottom, while the
bubble broke into two toroidal bubbles at 2.02Tc. After the jet impacted the wall, the lower main
bubble rebounded at 2.2Tc and reached its second maximum at 3.0Tc. Further, the bubble surface
contracted in the direction parallel to the wall more rapidly than that perpendicular to the wall. After
the recollapse, the bubble migrates upward at 3.9Tc. This indicates that the inward flow parallel to
the wall dominated and converged to the axis of symmetry, thereby resulting in an upward flow
directed away from the wall. Finally, a free vortex forms, thereby trapping the remaining bubbles
and causing them to migrate upward at 5.3Tc.

As γw further decreases, a wall vortex is formed instead of a free vortex, as shown in Fig. 6. As
the bubbles expanded, the water surface moved upwards, thereby forming a liquid column. During
shrinkage, a jet is induced, thereby pointing away from the water surface and towards the rigid wall.
The width of the jet was broader than that shown in Fig. 5. After the broader jet penetrates the
bottom, the bubbles expand along the wall and form a flat shape at 3.8Tc. As the bubble recollpases,

053602-8



WALL VORTEX INDUCED BY THE COLLAPSE OF A …

FIG. 5. Formation of a free vortex at γr = 1 and γw = 2: [(1)–(8)] the first cycle, [(9)–(13)] the second
cycle, and [(14)–(20)] the subsequent oscillations of the bubble and migration of the generated free vortex. In
this case, experiment Rmax = 11.97 mm and Tc = 1.10 ms. The flow induced by the bubble collapse is obtained
from the image sequences of the experimental observations and the red arrows represent the directions of the
flow. An animation of this case is available in video [48].

the upper surface of the flat-shaped bubble simultaneously impacts the wall at 4.0Tc. Further, the
bubble migrates along the wall at 5.0Tc. This indicated that an outwards flow along the wall was
induced instead of an upward flow. A wall vortex was observed owing to the migration of the
remnant bubble at 5.0Tc.

FIG. 6. Formation of a wall vortex at γr = 1 and γw = 1: [(1)–(8)] the first cycle, [(9)–(13)] the second
cycle, and [(14)–(20)] the subsequent oscillations of the bubble and migration of the generated wall vortex. In
this case, experiment Rmax = 11.97 mm and Tc = 1.10 ms. The flow induced by the bubble collapse is obtained
from the image sequences of the experimental observations, while the red arrows represent the directions of
the flow. An animation of this case is available in video [48].
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FIG. 7. Experimental results for the equivalent radius R and centroid position h of a spark-induced bubble:
(a) free vortex at γr = 1 and γw = 2 and (b) wall vortex at γr = 1 and γw = 1. The blue squares and orange
circles represent the equivalent radius and centroid position, respectively.

We obtained the bubble equivalent radii and centroid positions using OpenCV [39] from the
experimental observations presented in Figs. 5 and 6. In Fig. 7, the abscissa represents the time,
whereas the ordinates on the left and right represent the bubble radius and centroid position,
respectively. A value of zero for the ordinates indicates the position of the rigid wall. In these
two cases, the centroid position h hardly migrated during the expansion of the first cycle. The
bubbles were accelerated to migrate downwards owing to the nonspherical collapse and downwards

FIG. 8. Comparisons of the bubble shape evolution between experimental observations and numerical
simulations. (a) Free vortex at γr = 1 and γw = 2: Experiment Rmax = 12.06 mm, Tc = 1.31 ms; simulation
Rmax = 12.21 mm, Tc = 1.32 ms. (b) Wall vortex at γr = 1 and γw = 1: Experiment Rmax = 11.97 mm, Tc = 1.10
ms; simulation Rmax = 12.20 mm, Tc = 1.12 ms. The experimental observations are shown in the background,
and the numerical simulations as blue contours. The contours represent the bubble shape at a volume fraction
of 0.5.
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FIG. 9. Variations in the jet duration (tp − t j) with γw at γr = 1.5 obtained from the numerical simulations.
The upper right corner shows the definition of the jet duration: from the time of formation (t j) to the time of
piercing the bubble bottom (tp). The bubble shapes at the jet formation are shown below at four different γw .
Here the navy and light blue represent the bubble and liquid, respectively.

motion of the jets. The differences appeared in the bubble rebound. The bubbles migrate upward
and later downwards during the second cycle in the case of the free vortex [see Fig. 7(a)]. In the
case of the wall vortex in the newly expanded regime, the bubble continued migrating downwards
[see Fig. 7(b)]. The results revealed that the vortex flow patterns depended principally on the
bubble migration during the second cycle. This is determined by the direction of migration ḣ at
the beginning of the second cycle, that is, at the end of the first cycle. We found that ḣ was positive
(ḣ > 0) for the free vortex and negative (ḣ < 0) for the wall vortex.

B. Mechanism of bubble jetting and vortex flow

Numerical simulations were conducted using OpenFOAM to further analyze the jetting mech-
anism and subsequent vortex flow induced by the collapse of a cavitation bubble. To verify
the accuracy of the simulation, the bubble shape evolutions obtained from the simulations were
compared to the experimental observations in the cases of a free vortex and wall vortex. As shown
in Fig. 8, the experimental observations in the background and the numerical simulations are
represented as blue contours. The contours represent the bubble shape at a volume fraction α of
0.5. Overall, the outer shape of the bubble between the numerical simulations and experimental
observations corresponded, including the generation of the free and wall vortex. The numerical
simulation method accurately describes the bubble oscillations between the rigid wall and water
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FIG. 10. Variations in the maximum jet radius Rjet obtained from the numerical simulations with γw at
γr = 1.5. The upper right corner shows the definition of the jet radius. The bubble shapes at the jet piercing are
shown below at four different γw . Here the navy and light blue represent the bubble and liquid, respectively.

surface. The comparisons of the bubble equivalent radius and centroid position between the numer-
ical simulations, theoretical model, and experimental observations are presented in Appendix D.

As aforementioned, the vortex flow patterns were principally determined by the bubble behavior
during the oscillations. Bubble shapes and migration are affected by the formation and piercing of
the jet. The variations in the jet duration (tp − t j) with γw at γr = 1.5 obtained from the numerical
simulations are shown in Fig. 9. The jet duration is defined as the time interval from the formation
t j to the piercing of the bubble bottom tp. The jet formation time was determined when the height
of the bubble hbubble was greater than that of the jet hjet as shown in the figure. The bubble shapes
at the jet formation are shown below for four different γw. The jet duration (tp − t j) increased as γw

decreased. This is because the jet was generated earlier during shrinkage owing to the influence of
the water surface (see the cases from γw = 1.0 to γw = 5.0). As the influence of the water surface
is enhanced, the bubble wall close to it expands easily, and the pressure gradient inducing the jet
occurs earlier.

Figure 10 shows the variations in the jet radius Rjet obtained from numerical simulations with γw

at γr = 1.5. Rjet is defined as the radius of the cross section of the jet piercing the bubble bottom.
The bubble shapes at the jet piercing are shown below for the four different γw. As γw decreases,
Rjet increases because a longer jet duration results in a greater radial velocity of the jet. Further, a
broader jet is generated during jet piercing. Hence, the constraint of the water surface affects the
formation and development of the jet, thereby affecting the subsequent bubble behavior and vortex
flow patterns (see Figs. 11 and 12).

Figure 11 shows the flow fields for the formation of a free vortex obtained from the numerical
simulations at γr = 1 and γw = 2. In the figure, (1)–(3) represent the first cycle, (4)–(7) the second
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FIG. 11. Flow fields of the formation of a free vortex obtained from the numerical simulations at γr = 1
and γw = 2. In the figure, (1)–(3) represent the first cycle, (4)–(7) the second cycle, (8) and (9) the vortex flow
during subsequent oscillations of the bubble, and (10) a global view of the free vortex. In this case, experiment
Rmax = 12.21 mm and Tc = 1.32 ms. The vorticity fields and streamlines are shown on the left. The amplitudes
of the vorticity are represented by the color bars. The volume fraction fields and velocity vectors are shown on
the right. Navy and light blue represent the phases of gas and liquid, respectively.

cycle, (8) and (9) the vortex flow during subsequent oscillations of the bubble, and (10) the global
view of the free vortex. Here the jet pierced the bottom of the bubble at 1.8Tc, and a vortex ring
induced by the stagnation flow was observed by the streamlines at 2.0Tc. The bubble later rebounds
with the outwards flow, and the centroid position migrates upward. After 3.0Tc, the bubble shrank
simultaneously in both radial and axial directions during the second cycle, as indicated by the
velocity vectors. The inward flows dominated and converged at the origin. Further, an upward flow
forms at 3.7Tc. As the bubbles continued to oscillate, vortex rings migrating upwards were observed
in the streamlines at 7.0Tc. A global view of the free vortex is shown in Fig. 11(10).

Figure 12 shows the flow fields for the formation of a wall vortex in a new expanded regime
obtained from the numerical simulations at γr = 1 and γw = 1. Compared to Fig. 11, γw decreases,
while the influence of the water surface is enhanced in this case. The broader jet pierced at 2.1Tc.
This caused the bubble to expand easily along the wall during the rebound, while the centroid
position migrated downwards. Further, the inner toroidal boundary of the bubble begins to contract,
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FIG. 12. Flow fields of the formation of a wall vortex in an expanded new regime obtained from the
numerical simulations at γr = 1 and γw = 1. In the figure, (1)–(3) represent the first cycle, (4)–(7) the second
cycle, (8) and (9) the vortex flow during subsequent oscillations of the bubble, and (10) a global view of the
wall vortex. In this case, experiment Rmax = 12.20 mm and Tc = 1.12 ms. The vorticity fields and streamlines
are shown on the left. The amplitudes of the vorticity are represented by the color bars. The volume fraction
fields and velocity vectors are shown on the right. Navy and light blue represent the phases of gas and liquid,
respectively.

whereas the outer boundary expands outwards at 2.5Tc. The induced downwards flow impacts and
moves along the wall during the bubble collapse in the second cycle (see 4.0Tc). As the bubbles
continued to oscillate, outward-migrating vortex rings were observed in the streamlines at 7.0Tc. A
global view of the wall vortex is shown in Fig. 12(10).

C. Criteria and phase diagram for vortex flow patterns

When a bubble is generated between the water surface and rigid wall, the induced broader jet
pierces the bottom of the bubble. This causes the bubbles to expand easily along the wall and form a
flat shape during the second cycle. The outwards flow dominated during the subsequent oscillations
of the bubble. The new regime of the wall vortex was induced by the influence of the water surface.
Figure 13 shows a schematic of the vortex flow pattern after the second bubble cycle. As regards a
wall vortex near a single rigid wall with a large γr , the bubble was relatively far from the wall at
the beginning of the second cycle tc. Here the centroid migrates downwards as the bubble rebounds
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FIG. 13. Schematic of the criteria for the vortex flow patterns after the second bubble cycle: (a) ḣ < 0 for
wall vortex, (b) ḣ > 0 for the free vortex, and (c) ḣ < 0 for the wall vortex with the influence of the water
surface. Frames (1)–(4) represent the beginning, rebound, maximum size, and collapse of the bubble in the
second cycle, while frame (5) represents the vortex flow pattern. The blue arrows represent the directions of
the flow. Here R is the bubble radius, h the centroid position, and ḣ the direction of centroid migration.

ḣ(tc) < 0 and downwards flow dominated in this case. For a free vortex, the bubble centroid migrates
upward during the rebound [ḣ(tc) > 0], while the upward flow dominates. For a wall vortex in the
newly expanded regime, the centroid migrates downwards [ḣ(tc) < 0].

Consequently, the vortex flow patterns can be determined by the migration of the bubble at the
beginning of the second cycle, that is, at the end of the first cycle (tc). The direction of the centroid
migration ḣ(tc) represents the direction of the system momentum at tc because the radial motion
can be ignored. Consequently, the criteria for vortex flow patterns are proposed based on ḣ(tc) at
tc. A free vortex is formed at ḣ(tc) < 0, while ḣ(tc) > 0 is formed for a wall vortex. The criteria
expressions are summarized as follows:

Free vortex: ḣ(t ) > 0, at t = tc

Wall vortex: ḣ(t ) < 0, at t = tc (21)

A theoretical model was solved to obtain the bubble radius and centroid position at different
standoff distances. By combining these criteria, a phase diagram of the vortex flow patterns was
obtained, as shown in Fig. 14. In the figure, the orange area represents the free vortex regime, the
blue the wall vortex, and the navy blue the new regime expanded by the water surface. At γw > 4, the
constraint on the water surface barely affected the bubble dynamics and vortex flow. A free vortex
transition into a wall vortex as γr increases, as in the case of a single rigid wall. At 0.85 < γw < 4,
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FIG. 14. Phase diagram of the vortex flow induced by the oscillations of a cavitation bubble between a
water surface and rigid wall. The plus and square represent the experimental observations of the free vortex
and wall vortex, respectively. The orange and blue areas are obtained by solving the theoretical model. The
orange area indicates the free vortex regime. The blue area represents the wall vortex, wherein the navy blue
area represents the expanded new regime by the water surface. At γw < 4, the formation and development of
the vortex flow are affected by the constraint of the water surface.

the wall vortex in the new expanded regime arises owing to the influence of the water surface.
When 0.5 < γw < 0.85, no free vortex occurred as γr decreased and was completely replaced by
the wall vortex. Consequently, the boundary line between the free and wall vortex regime becomes
an exponential function instead of a straight line in the case of a single rigid wall. The introduction
of the water surface enlarged the wall vortex regime. The wall vortex was generated at a smaller γr

value.
The experimentally obtained results are plotted in a phase diagram for comparison. The plus and

square symbols represent the experimental observations of the free and wall vortices, respectively.
The free vortex regime determined through experimental observations was slightly larger than that
obtained using the theoretical model. This is because higher-order quantities were neglected in
the theoretical model to simplify the deduction of the velocity potential. Overall, the theoretical
estimates correspond with the experimental observations.

According to Reuter et al. [3] and Zeng et al. [5], the shear stress induced by the vortex flows is
important in engineering applications. Reuter et al. [3] observed that a wall vortex was generated
at γr > 1.3. Our study revealed that the introduction of a water surface expanded the wall-vortex
formation regime. To further evaluate its potential for different applications, we numerically inves-
tigated the spatiotemporal distribution of the wall shear stress induced by different vortex flows, as
shown in Fig. 15. Figure 15(a) shows the free vortex, Fig. 15(b) the wall vortex, and Figs. 15(c)
and 15(d) the wall vortex under the influence of a water surface. In the spatiotemporal distributions,
the first colored bar represents the inward shear stress (towards the axis of symmetry), whereas the
second represents the outwards shear stress (away from the axis of symmetry). The wall shear stress
was obtained as τ = μdU/dy at y < ε, wherein ε is the thickness of the region with a constant
shear rate located within the boundary layer. As shown in Figs. 15(a)–15(d), the jet impacted the
rigid wall, thereby producing a high outwards shear stress after the first collapse of the cavitation
bubble. After the second bubble cycle, the wall shear stress was principally induced by the vortex
flow. Comparing Figs. 15(a) to 15(b), the wall vortex has a higher wall shear stress (125.89 kPa)
after t = 4Tc and the area is extended to 1.21Rmax, while a maximum of 25.12 kPa for free vortex.
This suggests that the wall vortex has a greater potential for applications such as ultrasonic cleaning.
As regards the wall vortex with the influence of the water surface, the maximum wall shear stress
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FIG. 15. Comparisons of the spatiotemporal distributions of the wall shear stress: (a) free vortex, (b) wall
vortex, and [(c) and (d)] wall vortex with the influence of the water surface. The influence of the water surface
on the sum of the shear stress is shown in (e) and (f). In the spatiotemporal distributions [(a)–(d)], the first
color bar represents the inwards shear stress (towards the axis of symmetry), while the second represents the
outwards shear stress (away from the axis of symmetry).

is 120.23 kPa and the area increases up to 1.74Rmax in Fig. 15(c), while in Fig. 15(d) it reaches
a maximum of 143.88 kPa and an area of 1.48Rmax. The comparisons between Figs. 15(a) and
15(c) and Figs. 15(b) and 15(d) suggest that the wall vortex with the influence of the water surface
produces a larger shear stress area and higher wall shear stress.
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We investigated the sum of the shear stresses induced by the vortex flow, as shown in Figs. 15(e)
and 15(f). The sum of the shear stresses was calculated by integrating the shear stress in the vortex
area as 1/(xmaxtmax)

∫
t

∫
x(μdU/dy)dxdt at y < ε. The blue squares indicate the sum of the outwards

and inward shear stresses. The orange circles and green triangles indicate the sum of the outwards
and inward shear stresses, respectively. As γw decreases, the sum of the shear stresses increases from
20.52 to 33.00 kPa at γr = 1, and increases from 25.76 to 30.73 kPa at γr = 1.5. As the influence
of the water surface was enhanced, the outwards and inward shear stresses increased.

IV. CONCLUSIONS

In this study, we found that the introduction of a water surface expands the wall vortex regime;
that is, a wall vortex forms instead of a free vortex at a smaller γr value. The wall vortex in the
newly expanded regime was investigated using a combination of laboratory experiments, numerical
simulations, and theoretical modeling. Owing to the influence of the water surface, a broader jet
pierced the bottom of the bubble. This caused the bubbles to expand easily along the wall and form
a flat shape during the second cycle. Hence, an outwards flow formed instead of an upward flow
after the bubble recollapsed.

Experimental observations revealed that the vortex flow patterns depend principally on bubble
migration during the second cycle. The criteria for the vortex flow patterns were proposed based
on the direction of the centroid migration ḣ(tc) of the bubble at the beginning of the second cycle
tc. The direction of the centroid migration ḣ(tc) represents the direction of the system momentum
at tc because the radial motion can be ignored. Hence, a free vortex occurs when the upward flow
dominates [ḣ(tc) > 0], while the downwards flow dominates the wall vortex [ḣ(tc) < 0].

A theoretical model was developed using a Lagrangian formulation to describe the bubble radius
and centroid position between the boundaries. In the model, image theory was used to obtain
expressions for the velocity potential, and two infinite sets were obtained to satisfy the boundary
conditions of the water surface and rigid wall. Based on these criteria, a phase diagram of the vortex
flows was obtained by solving a theoretical model. The boundary line between the free and wall
vortex regime becomes an exponential function instead of a straight line in the case of a single rigid
wall. The theoretical estimates correspond with the experimental observations.

We numerically investigated the spatiotemporal distributions of the wall shear stress induced
by different vortex flows. The analysis suggests that the wall vortex has a greater potential for
applications such as ultrasonic cleaning. When introducing a water surface, no free vortex occurs
as γr decreases and is completely replaced by the wall vortex at 0.5 < γw < 0.85. Furthermore, the
wall vortex under the influence of the water surface produces a larger shear stress area and higher
wall shear stress. The findings of this study provide new insights for engineering applications such
as ultrasonic cleaning, sonoporation, drug delivery, and laser surgery.
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APPENDIX A: DETAILS OF IMAGE PROCESSING

The bubble equivalent radius was calculated from the equivalent area using the gray values in the
image based on OpenCV [39]. As shown in Fig. 16, the original image is first extracted in grayscale.
Further, a region-filling process is used to obtain the equivalent area of the bubble. The equivalent
volume (V ) is calculated by integrating the equivalent area around the symmetric axis. The bubble
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FIG. 16. Details of the gray value processes by OpenCV: From the original image to the region filling. The
original image is from experiment observations. The red lines represent the symmetric axis of the bubble.

equivalent radius (R) was obtained from V = 4/3πR3 assuming that the bubble remained spherical
during the oscillations. The bubble centroid (h) is determined using h = ∫

ydxdy/
∫

dxdy.

APPENDIX B: DETAILED DERIVATION PROCESS OF THEORETICAL MODEL

The velocity potential function of an inviscid, irrotational, and incompressible liquid flow field
satisfies Laplace’s equation

∇2φ = 0. (B1)

The velocity potential of the ith isolated bubble with the boundary conditions corresponding to
an infinite liquid is expressed as follows:

φi = −R2
i

ri
Ṙi − R3

i

2r2
i

U i · ni. (B2)

In a system with m multiple interacting bubbles, the velocity potential is expressed as follows:

φ0 =
∑

m

φ0
m. (B3)

This equation did not satisfy the boundary conditions for multiple bubbles; hence, the equa-
tion was corrected. The Taylor expansion for the velocity potential near the ith bubble is expressed
as follows:

φ0(ri ) = φ0
i (ri ) +

∑
m �=i

φ0
m(rmi + rm) = φ0

i (ri ) +
∑
m �=i

[
φ0

m(rmi ) + cmi · rm + · · · ], (B4)

where rmi = ri − rm and cmi are calculated by differentiating the velocity potential,

cmi =
[
∂φm(rm)

∂rm

]
= R2

m

r2
mi

Ṙmnmi − R3
m

2r3
mi

[Um − 3(Um · nmi )nmi]. (B5)

A comparison reveals that the term cmi · rm is a problem wherein the boundary conditions are not
satisfied for the ith bubble. Further corrections were made to the velocity potential. It is assumed
that the modified velocity potential φ′ satisfies the Laplace equation. Hence,

φ(ri ) = φ0(ri ) + φ′(ri ). (B6)

The corresponding expansion for the corrected velocity potential is expressed as follows:

φ′(ri ) = φ′
i (ri ) +

∑
m �=i

φ′
m(rmi + rm) = φ′

i (ri ) +
∑
m �=i

[φ′
m(rmi ) + dmi · rm + · · · ], (B7)
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where

φ′
i (ri ) =

∑
m �=i

R3
i

2r2
i

cmi · ni, (B8)

φ′
m(rmi ) =

∑
m �=i

R3
m

2r2
mi

cim · nmi. (B9)

The correction is truncated by neglecting the small quantities above the fourth order to obtain the
velocity potential function as expressed as follows:

φ(ri ) = φ0
i (ri ) + φ′

i (ri ) +
∑
m �=i

[
φ0

m(rmi ) + φ′
m(rmi ) + cmi · rm

]
. (B10)

The velocity potential of the ith bubble surface is obtained by solving the following velocity
potential function:

φ |Si= −
(

RiṘi + Ri

2
U i · ni

)
+

∑
m,m �=i

{
−

(
R2

m

rim
Ṙm + R3

m

2r2
im

Um · nmi

)
+ 3RiR2

m

2r2
im

Ṙm(nmi · ni )

− 3RiR3
m

4r3
im

[Um · ni − 3(Um · nmi )(nmi · ni )]

}
+

∑
j,m,m �=i, j

R2
j R

2
m

2r2
imr2

jm

· Rj (n jm · nmi ), (B11)

according to the following equation:∫
Si

(a · ni )(b · ni )dSi = 4π

3
R2

i (a · b), (B12)
∫

Si

(ni )dSi = 0. (B13)

The kinetic energy of the flow field for the interaction of multiple bubbles is obtained by
substituting the velocity potential into the kinetic energy expression in Eq. (2) as expressed as
follows:

K = 2πρ

{ ∑
i

R3
i Ṙ2

i + 1

6

∑
i

R3
i U 2

i +
∑

i,m,i �=m

2R2
i R2

m

rim
ṘiṘm

+
∑

i,m,i �=m

R2
i R2

m

r2
im

[RiṘm(U i · nim) + Rm · Ri(Um · nmi )]

+ 1

2

∑
i,m,i �=m

R3
i R3

m

r3
im

[(U i · Um) − 3(U i · nim)(Um · nmi )]

+
∑

i, j,m,m �=i, j

R2
i R2

j R
3
m

r2
imr2

jm

ṘiṘ j (n jm · nim)

}
. (B14)

As regards the image system, the boundary conditions for the positive image bubble Rp and
negative image bubble Rn are expressed as follows:

∂φ

∂rp
= Ṙp + U p · np, at rp = Rp. (B15)

∂φ

∂rn
= −Ṙn + Un · nn, at rn = Rn. (B16)

Considering the influence of the image bubbles on the initial bubble R0, we substitute the velocity
potentials of the image bubbles and boundary conditions into the equation for the kinetic energy of
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the flow field (preserved to second order) as expressed as follows:

K = 2πρ

{
R3

0Ṙ2
0 + 1

6
R3

0U 2
0 + 2R4

0Ṙ2
∑
k=0

(−1)k (Ak − Bk )

+ R5
0Ṙ(U0 · n0k )

∑
k=0

(−1)k
(
A2

k + B2
k

)}
, (B17)

where

Ak = 1

2

1

(k + 1)(hr + hw ) − hw

, (B18)

Bk = 1

2

1

k(hr + hw ) + hw

, (B19)

according to the Lagrangian formulation,

L(x, ẋ, t ) = K (x, ẋ, t ) − V (r). (B20)

The terms in the Lagrange equations are as follows:

d

dt

(
∂L

∂Ṙ

)
= 2πρ

[
6R2

0Ṙ2
0 + 2R3

0R̈0 + (
8R3

0Ṙ2
0 + 2R4

0R̈0
) ∑

k=0

(−1)k (Ak − Bk )

]
− P − P∞

ρ
, (B21)

∂L

∂R
= 2πρ

[
3R2

0Ṙ2
0 + 1

2
R2

0U 2
0 + 4R3

0Ṙ2
0

∑
k=0

(−1)k (Ak − Bk )

]
, (B22)

d

dt

(
∂L

∂ ṙ

)
= 2πρ

[
R2

0Ṙ0U0 + 1

3
R3

0U̇0 − (
5R4

0Ṙ2
0 + R5

0R̈0
) ∑

k=0

(−1)k
(
A2

k + B2
k

)]
, (B23)

∂L

∂r
= 2πρ

[
−2R4

0Ṙ2
0

∑
k=0

(−1)k
(
A2

k + B2
k

)]
. (B24)

The equations of motion for a bubble between a rigid wall and water surface are expressed as
follows:

R̈ =
P−P∞

ρ
+ 1

4U 2 − 3
2 Ṙ2

[
1 + 4R

3

∑
k=0(−1)k (Ak − Bk )

]
[
R + R2

∑
k=0(−1)k (Ak − Bk )

] , (B25)

ḧ = U̇ = −3ṘU

R
+ 9RṘ2 + 3R2R̈

4

∑
k=0

(−1)k
(
A2

k + B2
k

)
. (B26)

When the bubble is in an unbounded liquid (without migration), the radial motion equation is
transformed into the Rayleigh-Plesset equation as expressed as follows:

RR̈ + 3

2
Ṙ2 = P − P0

ρ
. (B27)

APPENDIX C: VERIFICATION OF NUMERICAL SIMULATIONS

Three grids with different numbers of nodes are used to verify the grid independence of the
simulations. Grids with 420 000, 580 000, and 810 000 nodes were considered and referred to as
coarse, medium, and fine grids, respectively. The initial conditions of the bubble for numerical
simulations (R0 and pin0) are uniquely determinable based on the experimental observations. Here
the initial radius of the bubble R0 is determined based on the size of the copper wires. It is set as
R0 = 1 mm, which is slightly larger than the crossing point of two 0.3-mm diameter electrodes. The
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FIG. 17. Variations in the bubble radius (a) and wall pressure below the bubble centroid (b) for three
different grids at γr = 1.5 and γw = 1.5. The three grids are a coarse grid, medium grid, and fine grid with
420 000, 580 000, and 810 000 nodes, respectively.

initial internal pressure pin0 = 84 MPa is then determined from the maximum bubble radius Rmax

and time when the bubble reaches the maximum size Tc, which are obtained from experimental
observations. The other settings in the simulations are as follows: dynamic viscosity of the liquid
μl = 8.545×10−4 Pa s, dynamic viscosity of the gas μg = 1.840×10−5 Pa s, specific heat capacity
of the liquid Cpl = 4195 J kg−1 K−1, specific heat capacity of the gas Cpg = 1007 J kg−1 K−1, and
surface tension σ = 0.07 N m−1. As compared to the nonspherical collapse near boundaries, the
thermal and mass transfer effects are more pronounced in the case of spherical bubble collapses.
Meanwhile, the formation of the vortex flow is mainly due to the movement of the jet, indicating
that the thermal and mass transfer effects are not significant in these processes. Thus, the thermal
effects and mass transfer are neglecting.

Figure 17 shows the variations in the bubble radius and wall pressure below the bubble centroid
over time for the three grids at γr = 1.5 and γw = 1.5. The results obtained with the coarse grid
exhibited some differences from the others in the later stages of the first cycle, whereas the results
of the medium and fine grids were consistent in terms of the evolution of the bubble radius and wall
pressure. As regards the coarse grid, the maximum errors in the radius, pressure, and collapse time
were 1.15%, 11.1%, and 2.08%, respectively. Hence, we used a medium grid of 580 000 nodes in
all the simulations to balance the simulation accuracy and computational efficiency.

APPENDIX D: VERIFICATION OF THEORETICAL MODEL

The influence of the image bubbles on the original bubble decreased with the distance. Hence,
finite sets of image bubbles are used to approximate infinite sets to obtain solutions for the
theoretical model. We compared the radial and centroid migrations for the different numbers of
image bubbles. The fourth-order Runge-Kutta algorithm is used to solve the theoretical model. The
atmospheric pressure was P∞ = 105 Pa. The specific heat ratio of the gas was κ = 1.4 and the
vapor pressure was Pv = 2300 Pa. Figure 18 compares the theoretical results for the γr = 1.5 and
γw = 2.5 for different numbers of image bubbles. Here k = 1, 2, 3, and 4 represent 5, 9, 13, and 17
image bubbles, respectively. The enlarged areas are represented by the green boxes. As k increases,
the results approach those of the infinite sets, while the maximum relative deviations of the results
decrease. These are 10.92%, 5.87%, and 1.99% for the bubble radius and 3.95%, 2.46%, and 0.73%
for the centroid position. Hence, it is reasonable to use the 13 image bubbles (k = 3) from the finite
sets to approximate the infinite sets.
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FIG. 18. Comparisons of the theoretical results at γr = 1.5 and γw = 2.5 for different numbers of image
bubbles: The (a) bubble radius R and (b) centroid position h. k = 1, 2, 3, and 4 represent 5, 9, 13, and 17 image
bubbles, respectively. The enlarged areas are shown in green boxes.

Figure 19 shows a comparison of the bubble radius and centroid position between the numerical
simulations, theoretical model, and experimental observations during the first oscillation. The open
symbols, solid lines, and dotted lines represent the experimental observations, theoretical solutions,
and simulation results, respectively. As shown in Fig. 19, the errors in the maximum radius
are 0.10% for γr = 1.5 and γw = 2.5, 0.06% for γr = 1 and γw = 2 between the experimental
observations and numerical results, and 0.54% and 0.93% between the experimental observations
and theoretical solutions. Some differences in the centroid positions appeared at a later stage of
collapse. One reason for this deviation is that higher-order quantities were neglected to simplify the
derivation of the theoretical model. Overall, the numerical simulation method and theoretical model
accurately described the dynamics of the bubble between a rigid wall and the water surface.

FIG. 19. Comparison of the bubble radius and centroid position between the numerical simulations,
theoretical model, and experimental observations during the first oscillation: (a) γr = 1.5 and γw = 2.5 and
(b) γr = 2 and γw = 3. The open symbols represent the experimental observations, solid lines the theoretical
solutions, and dotted lines the simulation results.
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