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We investigate the inertial and non-inertial dynamics of three-dimensional elastic cap-
sules flowing through a square channel presenting a sharp corner. Our study analyzes the
trajectory, surface area, velocity, and membrane stress of the capsules in the case of a single
capsule, a system of two interacting capsules, and a train of ten capsules released upstream
of the corner. The channel Reynolds number Re ranges from 0.01 to 50 and the Capillary
number Ca, which measures the ratio of the viscous and elastic stresses, ranges from 0.075
to 0.35. We find that in the inertial regime, the membrane stretch and stress increase
dramatically as compared to the non-inertial case, and that the velocity overshoot inside
the corner is also enhanced. The maximum capsule deformation is observed to depend
nearly linearly on Ca and Re. Additionally, we report a repelling mechanism between two
confined capsules when their initial interspacing distance d is smaller than a critical value
dc. The deformation of the leading capsule is found to be mitigated by the presence of
the following capsule. In the case of multiple capsules flowing through the corner, we
observe that the increase in the maximum surface area of the trailing capsules eventually
saturates at the tail of the train. Moreover, we find that the corner tends to separate the
capsules regardless of their upstream interspacing distances d . This study contributes
to the elaboration of practical guidelines for controlling capsule breakup and predicting
throughput in both inertial and non-inertial microfluidic experiments.

DOI: 10.1103/PhysRevFluids.9.053601

I. INTRODUCTION

Membrane-enclosed fluid objects, or capsules, are everywhere in natural and industrial pro-
cesses, from red blood cells (RBCs), circulating tumor cells (CTCs), or flowing eggs in biology
to encapsulated substances in the pharmaceutical, cosmetic, and food industries [1]. The study of
microcapsules, in particular, is of primary importance in a variety of biological applications, such
as sorting and enriching solutions of biological microcapsules, e.g., to segregate RBCs or CTCs, as
well as efficiently manufacturing capsules enclosing an active substance in the field of targeted drug
delivery [2,3]. In the past decade, microfluidic devices have been shown to accomplish a variety of
tasks including cell segregation based on size and deformability [4–7], concentration enrichment
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[8–10], and cell characterization [11–13]. Moreover, the increase in computing power has recently
allowed numerical studies to contribute to the design of microfluidic devices. For example, Zhu
et al. [4] numerically investigated an original microchannel geometry consisting of a semicircular
pillar located at the center of a microchannel: their study showed that this design can efficiently
segregate cells based on membrane deformability. Recently, experiments were conducted using their
microfluidic design and concluded that it can indeed sort cells based solely on membrane stiffness,
with relatively high efficacy [5]. With regards to cell characterization, Gubspun et al. [11] proposed
a method to determine capsule properties such as the membrane shear modulus by comparing the
experimental and numerical “parachute” shape of capsules in a straight microchannel. While the
majority of microfluidic investigations operate in Stokes conditions, in recent years the design and
study of inertial microfluidic devices has risen due to their ability to accurately segregate capsules by
size and to extract them from their solvent [7,14]. Inertial focusing in microfluidic devices typically
relies on a spiral-shaped channel concentrating heavier capsules to the outer, lower-curvature edge of
the channel, while lighter capsules concentrate closer to the inner, higher-curvature edge. A smooth
geometry such as a spiral-shaped channel usually does not induce a high strain nor stress on a
suspended capsule even in inertial regimes; however, little is known about the strains and stresses
induced by commonly encountered sharp geometries such as forks and corners on a capsule flowing
in the presence of inertia. Moreover, the effect of such sharp geometries on the hydrodynamic
interactions of a train of several capsules in inertial regimes is also an open question. More insight
in these directions is of practical interest in the design and operation of inertial microfluidic devices
because (i) the devices should not compromise the mechanical integrity of the capsules, i.e., it is
critical to avoid capsule breakup, and (ii) cell-sorting processes typically operate in very dilute
regimes to avoid capsule interactions, while a better understanding of such interactions would allow
to operate these devices at a moderate to high concentration optimizing efficacy and throughput.

In the past four decades, a significant research effort has been invested into the modeling and the
study of capsule deformations in non-inertial regimes, primarily because this regime is encountered
in microcirculation such as capillary vessels and in traditional microfluidic devices. Using formalism
from the thin-shell theory [15], Barthés-Biesel and Rallison first published an analytical solution
for the time-dependant deformation of an elastic capsule in an unbounded, creeping shear flow
in the limit of small deformations [16]. Over a decade later, Pozrikidis was able to go beyond
the assumption of small deformations using a boundary integral method (BIM) [17]. The same
method was used to consider finite deformations of sheared capsules which inner and outer fluid
viscosities differ [18], as well as to study the contribution of bending stresses [19], allowing to
consider capsules suspended in an unbounded shear flow [20]. Besides unbounded geometries, Hu
et al. [21] considered an initially spherical capsule flowing through a square channel of width similar
to the capsule diameter: the originality of their work is that they performed experiments and showed
remarkable agreement between the measured and the computed capsule shape. Concomitantly, Park
and Dimitrakopoulos [22] studied the deformation of a capsule with nonunity viscosity ratio flowing
through a sharp constriction. More recently, Balogh and Bagchi [23–25] used a front-tracking
method (FTM) to analyze the motion and deformation of RBCs through complex geometries
resembling capillary vessels found in human microcirculation.

In microfluidic applications, inertia is often negligible due to the small length scales involved.
However, in recent studies, inertial particle microfluidics (IPMF) serves as an emerging technology
for the manipulation and separation of microparticles and biological cells with high precision and
efficiency [26,27]. IPMF has the potential to speed up labor-intensive nondestructive diagnosis pro-
cedures such as cell sorting and has been employed in the microbiology [28–30] and biotechnology
[31,32] industries. Because the flow velocities in inertial microfluidics are significantly larger than
their counterparts in non-inertial microfluidics [33], the aforementioned analytical theory for small
deformations as well as the popular BIM both fall short of accounting for the convective term in
the fluid momentum equation. Doddi and Bagchi [34] first studied inertial capsules in the context
of two interacting capsules in a shear flow using the FTM. They showed in particular that the two
capsules engage in spiraling motions at sufficiently high inertia. The inertial motion of a deformable
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capsule was then studied in straight microchannels [35,36], where several equilibrium positions are
found away from the channel centerline, along the cross-section diagonals. The primary inertial
forces at play include: (i) the wall repulsion force, which drives particles away from channel
walls; (ii) shear-gradient lift forces, typically directing particles towards areas of higher shear; and
(iii) drag forces within secondary flow fields, which arise due to curved streamlines [27]. With
regards to curved channels, Ebrahimi and Bagchi [37] recently investigated the migration of a single
capsule over an impressive amount of varying parameters: the channel Reynolds number, the capsule
deformability, as well as the aspect ratio and curvature of the channel were all varied independently.
Their study shows that for sufficiently high inertia, exactly two focusing locations appear near the
centers of the vortices of the secondary flow, known as Dean vortices. However no mention of
the membrane internal strains and stresses is found in their work, as their goal was not to investigate
the capsule integrity in such flows.

While straight and curved microchannels are essential components of microfluidic devices, such
simple geometries do not account for the numerous junctions, corners and coils commonly found
in these devices. To bridge this gap, Zhu and Brandt [38] investigated the non-inertial motion and
the deformation of a single elastic capsule in a sharp corner. They showed that the capsule follows
the streamlines of the undisturbed flow regardless of membrane deformability. Due to lubrication
forces, the capsule velocity decreases when approaching the corner, reaches a minimum along the
corner diagonal, and rises back to its steady state with an overshoot increasing with deformability.
Similarly, the surface area of the capsule reaches a maximum inside the corner and relaxes back to
its steady value with an undershoot more pronounced as deformability is increased. Also reported in
their study is the maximum stress in the capsule membrane, which can be used to assess mechanical
integrity and characterize the cell mechanical properties. They find that the maximum stress devia-
tion increases and shifts from the front to the top of the capsule with increasing deformability. Wang
et al. [8,9] later considered the inertial and non-inertial path selection of a single capsule through
Y and T junctions, both typically encountered in microfluidic geometries. They observe that at high
inertia, the capsule does not necessarily favor the daughter branch with the largest flow rate, and
that this effect is more pronounced for stiff membranes (corresponding to a low capillary number).
Recently, Lu et al. [10] investigated the interaction and path selection of capsules in a T junction at
moderate inertia, with the goal of enriching capsule solutions. When considering a pair of capsules,
they show that the leading capsule is weakly affected by the presence of a trailing capsule, but that
the reverse is not true. They find that the trailing capsule enters a different branch depending on the
initial interspacing distance and on the flow rate split ratio between the two daughter branches of the
T junction. They then consider a train of capsules and find two distinct regimes: (i) the interspacing
distance is low and the capsule interaction is high, resulting in an unsteady regime and affecting the
trajectories of the capsules, and (ii) the interspacing distance is large and the capsule interaction is
low, leaving the capsule trajectories identical to that of a single capsule. Interestingly, they report
that the critical interspacing distance between two capsules plotted against the flow rate split ratio
of the daughter branches results in a master curve independent of membrane deformability, capsule
size, and Reynolds number.

In this study, we investigate the inertial and non-inertial motion and the interaction of deformable
capsules flowing through a sharp corner, which is a very common geometry in microfluidic devices.
As the efficiency of these devices is defined in terms of the capsules throughput, which can be
optimized by increasing the flow rate as well as the concentration of capsules, our objective is
twofold: first, we aim to quantify the effet of inertia on the deformation of a single capsule in
a microfluidic-relevant geometry, second, we seek to describe the hydrodynamic interactions and
deformation differences between leading and trailing capsules when a pair and a train of capsules
are considered. The rest of this paper is organized as follows. In Sec. II, we describe the governing
equations as well as the flow configuration and the considered parameter space. In Sec. III, we
give an overview of our numerical method and we investigate the impact of the inlet length. We
analyze the motion of a single capsule in Sec. IV, both in the non-inertial and in the inertial regimes.
Section V is devoted to the analysis of binary interactions of a pair of capsules, where the influence
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of the initial interspacing distance is investigated. In Sec. VI, we consider a train of ten capsules
flowing through the corner and we discuss the velocity and deformation discrepancies between the
leading and trailing capsules. Finally, we conclude in Sec. VII.

The documented source code allowing to reproduce all of the simulations and figures presented
in this study is freely available online [39].

II. GOVERNING EQUATIONS AND PROBLEM STATEMENT

The capsule membrane � is assumed infinitely thin and is surrounded by an incompressible,
Newtonian fluid of constant viscosity and density. In all of this study, the capsule inner and outer
fluids are assumed identical: in particular their viscosity ratio is unity. The fluid is described by the
mass and momentum conservation equations:

∇̃ · ũ = 0, (1)

∂ũ
∂ t̃

+ ũ · ∇̃ũ = 1

ρ̃
∇̃ p̃ + ν̃�̃ũ + 1

ρ̃
f̃ b, (2)

where ũ is the velocity field, p̃ is the pressure field, ρ̃ is the density, ν̃ = μ̃/ρ̃ is the kinematic
viscosity, μ̃ is the dynamic viscosity, and f̃ b is a body term accounting for the action of the
membrane on its surrounding fluid. The dimensional quantities are denoted by the ∼ symbol. The
membrane exhibits elasticity and bending resistance, and its action on the fluid is local, resulting in
the following expression for f̃ b:

f̃ b = ( f̃ elastic + f̃ bending)δ̃(x̃ − x̃�), (3)

where δ̃(x̃ − x̃�) is a Dirac distribution that is nonzero on the surface of the membrane.
The shear and area-dilatation membrane stresses are described using the thin-shell theory, and

are briefly summarized here. The interested reader is referred to Green and Adkins [15] as well as to
the analytical study of Barthés-Biesel and Rallison [16] for more details. We adopt a neo-Hookean
law [15], which surface strain-energy function is expressed as

W̃s
NH = Ẽs

2

(
λ2

1λ
2
2 + 1

λ2
1λ

2
2

)
, (4)

where λ1,2 are the principal stretches in the two tangential directions, and Ẽs is a shear modulus.
The principal stresses σ̃1,2 are given by

σ̃i = 1

λ j

∂W̃s
NH

∂λi
, i, j ∈ {1, 2}, i �= j. (5)

The bending stresses for biological membranes are governed by Helfrich’s bending energy Ẽb

[40,41]:

Ẽb = Ẽb

2

∫
�

(2κ̃ − κ̃0)2dS, (6)

where Ẽb is the bending modulus, κ̃ is the mean curvature and κ̃0 is a reference curvature. Taking
the variational formulation of Eq. (6) leads to the bending force per unit area Ã:

f̃ bending/Ã = −2Ẽb[�sκ̃ + 2(κ̃ − κ̃0)(κ̃2 − κ̃g + κ̃0κ̃ )]n, (7)

where κ̃g is the Gaussian curvature and n is the outer normal vector.
At t = 0, an initially spherical capsule of radius ã is placed in a square channel of width W̃ = 3ã

at a distance h̃0 = 30ã from a sharp corner, as represented in Fig. 1. An average cross-section ve-
locity Ũ0 is imposed at the inlet boundary, while the outflow boundary condition ∂ũn/∂n = 0 is
imposed at the outlet boundary. When several capsules are considered, we use the same initial
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FIG. 1. (a) Schematic of the geometry of the fluid domain. The channel has a square cross-section of side
length 3ã. (b) Visualization of the full channel and the computational grid over the symmetry plane of the
channel

conditions as Lu et al. [10]: a trailing capsule is inserted in the simulation only after the centroid of
its preceding capsule has advanced by a distance d̃ . Our problem is governed by the dimensionless
numbers:

(1) The channel Reynolds number Re = ρ̃Ũ0W̃ /μ̃,
(2) The Capillary number Ca = μ̃Ũ0ã/Ẽs, representing the ratio of viscous stresses over elastic

stresses,
(3) The reduced bending stiffness coefficient Eb = Ẽb/(Ẽsa2),
(4) The confinement ratio β = 2ã/W̃ ,
(5) The reduced initial gap between capsules d0 = d̃/2ã − 1.
In this study, the Reynolds number Re ranges from 0.01 to 50, the Capillary number Ca varies

from 0.075 to 0.35, and the reduced initial gap d0 is chosen from 0.125 to 1. The reduced bending
stiffness Eb and the confinement ratio β are both kept constant, with β = 2/3 and Eb = 5 × 10−3

as proposed by Pozrikidis [42]. Here, a small confinement ratio can significantly enhance trajectory
control, particularly in applications like cell sorting. In such a setup, the confinement effectively
channels the cells, allowing for more accurate sorting based on their directed trajectories which
is especially beneficial to a cell-sorting geometry situated downstream of the corner. The reference
curvature κ̃0 is equal to −2.09/ã in this study, as is common for some biological membranes [43,44].
In the rest of this study, we use the capsule radius ã as the characteristic length scale, and we define
the characteristic time scale as the ratio of the capsule radius over the average cross-section velocity,
i.e., T̃c = ã/Ũ0. By applying adaptive mesh refinement as depicted in Fig. 1(b), our simulation
employs approximately 6.7 million Eulerian cells. Such a number of cells represents a significant
reduction from the 8.6 billion Eulerian cells required by a conventional uniform Cartesian grid to
maintain an equivalent resolution on the capsule membrane. The dimensionless time step magnitude
�t = �t̃/T̃c varies between 10−4 and 5 × 10−4 depending the Reynolds number Re.

III. NUMERICAL METHOD AND VALIDATIONS

We use our adaptive front-tracking method (FTM) to solve the above equations: we provide
below a brief overview of the numerical method, while an in-depth description is available in
[45]. Equations (1) and (2) are solved using the finite volume method on an adaptive octree grid
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FIG. 2. (a) Taylor deformation factor DT,m for an elastic capsule with Helfrich bending in a simple shear
flow at Re = 0.01, γ̇ = 1, and Ca = 0.15; the numerical results of the current study are presented as a red
line, in comparison with the data previously reported in the literature [38,49]; (b) convergence of the maximum
tension σ̃2,max with increasing grid resolution for a single capsule in a simple shear flow at Re = 10, γ̇ = 1,
and Ca = 0.15.

using the open-source software Basilisk [46]. The membrane is discretized using an unstructured
triangulation and Eq. (5) is solved using a linear finite element method, while Eq. (7) is solved
using a paraboloid-fitting method. The membrane triangulation and the octree grid communicate
by means of the immersed boundary method [47,48], where the Dirac distribution in Eq. (3) is
regularized using a cosine-based formulation:

δ̃(x0 − x) =

⎧⎪⎪⎨
⎪⎪⎩

1

64�̃3

3∏
i=1

(
1 + cos

(
π

2�̃
(x0,i − xi )

))
if |x0,i − xi| < 2�̃

0 otherwise

, (8)

where x0 = [x0,1 x0,2 x0,3] is the location of a Lagrangian node on the surface discretization of the
membrane, and �̃ is the local mesh size of the Eulerian octree grid.

To properly analyze the dynamics of the capsule as it flows through the corner, it is crucial
to address the following key aspects in the numerical validation: (i) the chosen mesh resolution
needs to be sufficiently fine to resolve the complex fluid-structure interactions within the wall-
membrane lubrication layer, and (ii) the capsule should be in a steady state when entering the corner.
As such, we conduct a grid convergence study with special focus on the resolution along the capsule
membrane; and we perform a sensitivity analysis of our geometry with respect to the inlet length.

A widely employed metric for assessing the deformation of elastic capsules is the Taylor
deformation factor DT,m defined as follows:

DT,m = rmax − rmin

rmax + rmin
, (9)

where rmax and rmin represent the maximum and minimum distances, respectively, from the capsule
membrane to its centroid. As an illustration of the numerical validation, we present the temporal
evolution of DT,m of an elastic capsule in a simple shear flow at Reynolds number Re = 0.01, shear
rate γ̇ = 1 and capillary number Ca = 0.15 in Fig. 2(a). There is notable consistency between the
numerical results of our adaptive solver and the values documented in the literature [38,49].

In addition, we analyze the convergence behavior of the maximum tension, denoted σ̃2,max, in a
capsule subjected to a simple inertial shear flow at Re = 10, γ̇ = 1, and Ca = 0.15. In Fig. 2(b),
the variables nE and nL represent the refinement levels for the Eulerian and Lagrangian meshes,
respectively. Specifically, the Eulerian grid cell size is given by �̃ = L0/2nE within the fluid phase,
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FIG. 3. (a) Centroid velocity of a capsule at Ca = 0.35 and Re = 50 for two grid resolutions: 32 grid cells
per initial diameter (red dotted line) and 64 grid cells per initial diameter (red solid line). The blue curve
denotes the deviation in the centroid velocities for these two grid resolutions; (b) corresponding shape and grid
resolutions of the capsule and the flow field: blue means zero velocity and red means large velocity.

with L0 is the length of the computational domain; and the capsule membrane is discretized
into 20 × 4nL triangular elements. We denote by Npts the number of grid cells per initial capsule
diameter. As observed in Fig. 2(b), a grid refinement level of nE = 7 (Npts = 16) is insufficient
to accurately capture the transient evolution of σ̃2,max, though it may yield acceptable steady-state
values. When the Eulerian grid size �̃ is reduced, the transient behaviors of the maximum tension
σ̃2,max obtained with different grid size almost supersimpose, converging to a consistent steady state
for nE = 8 and nE = 9 (Npts = 32 and 64, respectively). Upon comparing nL = 3 (comprising 1280
surface elements) and nL = 4 (consisting of 5120 surface elements), it is clear that an increase in
Lagrangian mesh resolution does not significantly impact the convergence of σ̃2,max. For a more
detailed examination of capsule deformation, particularly in corner regions, we will utilize nL = 4
in subsequent computations. Extensive validation of the present numerical method on the curvature
and stress was the focus of our previous study [45] and is therefore not presented here.

In the immersed boundary method, the finite support of the regularized Dirac distributions may
extend outside of the fluid domain if the immersed object of interest becomes very close to the
domain boundaries [9,10,50]. It is important to ensure that none of the supports of the regularized
Dirac distributions extend outside of the fluid domain, i.e., we make sure that there always exist
more than two grid cells between the membrane nodes and the domain boundaries. As such, we
simulate the dynamics of a capsule for two different grid resolutions in the configuration where it is
most deformed and is the closest to the channel wall, as shown in Fig. 3(b). Figure 3(a) shows the
velocity of the capsule Ṽ inside and downstream of the corner for Eulerian resolutions equivalent
to 32 and 64 grid cells per initial capsule diameter, as well as the deviation of the velocities in
these two configurations. The maximum velocity discrepancy is less than 1%, with an average
discrepancy around 0.5% over the observed time frame. Additionally, in both scenarios, the width
of the lubrication layer between the capsule tail and the upper corner wall remains over 3 grid cells.
These observations show that a grid resolution equivalent to 32 cells per initial capsule diameter is
adequate for converged solutions. Furthermore, the simulations are not compromised by immersed
boundary stencils extending beyond the fluid domain, as this scenario does not occur.

Once released, the capsule transitions from a spherical shape to a stable equilibrium state as it
migrates over a sufficient distance. It is crucial to ensure that this steady state is achieved before
the capsule enters the corner. As such, we consider three initial distances Dc = 15, 30, and 60 in
the most challenging configuration at Re = 50 and Ca = 0.35, i.e., the capsule is highly deformable
and placed in a highly inertial flow. The inlet boundary is located at a distance of 90a away from
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FIG. 4. Centroid velocity (a) and normalized surface area (b) of a capsule flowing through a corner from
three distinct normalized release distances Dc = 15, 30, and 60, at Re = 50 and Ca = 0.35.

the corner and is therefore sufficiently far away from the capsule to not alter its response. The norm
of the capsule centroid velocity Ṽ and the reduced capsule surface area A = Ã/4π ã2 are shown in
Fig. 4(a), where the origin of the reduced time t is chosen at the time the capsule reaches a minimum
velocity Ṽmin. In Fig. 4(a) we remark that the capsule velocity Ṽ at Dc = 15 decreases significantly
before entering the corner: this is because the initially spherical capsule is located farther away
from the channel walls and is therefore advected faster than when it has reached a steady shape. We
observe that neither the capsule velocity shown in Fig. 4(a) nor the normalized surface area shown
in Fig. 4(b) present a steady state before the capsule enters the corner in the case Dc = 15. Therefore
a larger initial distance Dc should be used. When considering Dc = 30, both the velocity and the
normalized surface area present steady values before the corner. Interestingly, inside and after the
corner the capsule velocity and surface area almost overlap when the capsule is released 15 and
30 initial radii away from the corner, suggesting that the corner resets the dynamics of the capsule
regardless of its previous state. The fact that steady values for the velocity and the surface area
of the capsule are reached before the corner for Dc = 30 suggests that this initial release distance
is suitable for the rest of this study. Unexpectedly, when the capsule is released from Dc = 60, it
seems to no longer be in a steady motion as its velocity (respectively its normalized surface area) is
slightly decreasing (respectively slightly increasing) before entering the corner. This suggests that in
this challenging configuration, the relaxation of the capsule from a fixed spherical shape to a steady
“parachute” shape occurs over very long time scales. However, the magnitude of the deviations
between the capsule velocity and surface area in the cases Dc = 30 and 60 is at most 3%. As the
capsule has already reached a pseudo-steady state by the time it enters the corner in the case of Dc =
30, and as the aforementioned discrepancies are small, we choose Dc = 30 in the rest of this study.
Again, this short study of the impact of the initial release distance on the capsule dynamics was
performed in our most challenging configuration as we considered our highest Reynolds number and
highest Capillary number. The discrepancy between the cases Dc = 30 and 60 is less pronounced—
sometimes nonexistent—for less deformable membranes and less inertial flows.

IV. MOTION AND DEFORMATION OF A SINGLE CAPSULE

We consider the motion of a single capsule through a square duct at Ca = 0.075, 0.15, 0.25, 0.35
and Re = 0.01, 1, 25, 50, extending the investigation carried out in a non-inertial framework by Zhu
and Brandt [38]. To establish the influence of the increasing effect of inertia on the motion and the
deformation of a single capsule, we first recall the overall dynamics of a capsule moving through
a duct corner in the Stokes regime, as detailed in [38]. The capsule once released from its initial
position moves along the center of the channel due to the symmetry of the flow far from the corner.
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FIG. 5. Streamlines and vortex structures identified by isosurfaces of streamwise vorticity ωx = ±0.1 in
the single-phase flow past the corner of a square channel at Re = 25.

While approaching the corner, the capsule velocity decreases until reaching a minimum in the corner
region. The capsule experiences moderate to high deformation (depending on the Capillary number
considered) due to the flow acceleration, and its velocity strongly increases; this phenomenon being
referred to as the overshoot of velocity. Further away from the corner, the capsule moves in the
downstream branch of the duct, relaxing to a steady state (shape and velocity), and moving along
the center of the duct.

We investigate the influence of the Reynolds number Re and the Capillary number Ca on the
dynamics and the deformation of the capsule, reporting the time evolution of its surface area A
scaled by the initial surface area of the capsule Ãsphere = 4π ã2, as well as the velocity V of the
capsule centroid scaled by its equilibrium velocity Veq before the capsule enters the corner region.
In the remainder of this study and unless otherwise stated, the time origin is chosen such that t = 0
when capsule velocity reaches a global minimum, i.e., Vmin = V (t = 0). We borrow this convention
from Zhu and Brandt [38], as it corresponds to setting the time origin when the capsule is located in
the heart of the corner.

A. Flow field through the corner

Recent studies show that the presence of curvature in a channel significantly affects the cross-
streamline migration and focusing of deformable capsules over a wide range of Re [37,51]. When
a fluid moves through a curved channel, the motion of the flow is redirected. Consequently,
a secondary motion overlays the primary flow: a fluid particle initially located on the channel
centerline moves outward, while a fluid particle initially located near the exterior wall flows inward.
This action forms a pair of counterrotating recirculation regions known as Dean vortices.

In Fig. 5, we illustrate the streamlines and vortex structures, identified by isosurfaces of ωx =
±0.1 (ωx = ãω̃x/Ũ0), in the flow past the corner of our channel with square cross-section, with no
capsule. This depiction clearly shows the presence of Dean vortices, which shift from the proximity
of the lateral walls towards the upper wall of the channel as the fluid exits the corner. The counter-
rotating vortices, colored in red (ωx = 0.1) and blue (ωx = −0.1) rapidly diminish in strength and
eventually vanish when the flow stabilizes in the straight section of the secondary (downstream)
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FIG. 6. (a), (c) Temporal evolution of the capsule centroid velocity V at Re = 0.01 and Re = 50; (b), (d)
illustrations of the capsule outline at specific time instants highlighted in panels (a) and (c) at Ca = 0.35,
respectively: onset of the decrease in velocity V ( ), minimal V ( ), maximum V ( ), and relaxation to a
steady state ( ); (e), (f) temporal evolution of the capsule centroid velocity V at Ca = 0.075 and Ca = 0.35;
the velocity evolution is normalized by Veq, hence V = Veq = 1 for t � −3 prior to capsule entering the corner
in the panels (a), (c), (e), and (f).

channel along the x axis. In the sections that follow, we explore how the deformation and dynamics
of the capsules are significantly influenced by the characteristics of the flow structures.

B. Influence of the Reynolds and Capillary numbers

To characterize the dynamics of the capsule, we analyze the temporal evolution of the centroid
velocity V and the surface area A as it flows through the corner. Figures 6(a) and 6(c) present
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the velocity of the capsule centroid at Re = 0.01 and 50 with Ca ranging from 0.075 to 0.35. To
improve clarity, the capsule velocity V is normalized by its equilibrium velocity Veq prior to entering
the corner: V ≡ (Ṽ /Ũ0)/(Ṽeq/Ũ0). We adopt this normalization in our subsequent discussions. We
observe a general trend for the velocity evolution in Fig. 6(a): The capsule approaches the corner
with a steady velocity V = Veq = 1, then reaches a global minimum Vmin and a global maximum
Vmax as it flows through the corner, and relaxes back to Veq downstream of the corner. We illustrate
the outline of the capsule at some critical time instants in Fig. 6(b). The color of the capsule outline
corresponds to that of the highlighted points in Fig. 6(a). We see that the capsule velocity starts
decreasing ( ) when it approaches the corner. The deceleration comes from the deflection of the
streamlines and the blockage of the interior sharp corner. Then, the minimum velocity Vmin ( ) is
reached in the heart of the corner. Subsequently, the capsule velocity is accelerated and it migrates
towards the centerline of the secondary channel. Its velocity reaches its maximum value Vmax ( )
as it exits the corner area. During the acceleration (from capsule to capsule), we see that the
capsule exhibits an elongated shape with its membrane located far away from the channel walls and
is therefore less subject to the confinement effect. Finally, as the Dean vortices diminish, the capsule
velocity also relaxes back to its equilibrium value ( ).

As the Reynolds number is increased to 50 in Fig. 6(c), major deviations from the non-inertial
regime appear. First, as the capsule enters the corner zone, a local maximum appears in the capsule
velocity as depicted in Fig. 6(c), which is independent of the Capillary number and is about 2%
greater than Veq at Re = 50. This local maximum of velocity is not present in the non-inertial case
[Fig. 6(a)] because Dean vortices are the result of inertial conditions. At Re = 50, streamlines are
already disturbed prior to the capsule entering the corner. We postulate that both this local maximum
of velocity ( ) and the acceleration to Vmax ( ) are due to the attractive effects of the Dean vortices
in the inertial regime. Comparing Figs. 6(b) and 6(d), when the velocity begins to decrease, the
capsule is closer to the side wall at Re = 50 than at Re = 0.01 and the capsule is more stretched and
elongated at a higher Re. Additionally, the effects of Ca is more pronounced in the inertial regime.
At Re = 50, the maximum velocity deviation of the capsule at Ca = 0.35 (Vmax − Veq = 0.12) is
up to three times that of the capsule at Ca = 0.075 (Vmax − Veq = 0.04) as depicted in Fig. 6(c).
Interestingly, after reaching the maximum, velocity undershoots are observed in Fig. 6(d) during
the relaxation stage in the inertial regime. This happens when the capsule leaves the region of Dean
vortices. With increasing Ca, the velocity undershoots become less pronounced, damped by the high
deformability of the capsule.

From another point of view, we present the effects of Re on the capsule velocity at Ca = 0.075
and Ca = 0.35 in Figs. 6(e) and 6(f). For a fixed Ca = 0.075 in Fig. 6(e), we note that the curves
corresponding to Re = 0.01 and Re = 1 practically overlap, indicating that the capsule motion in
low inertial regimes is very similar to that in the non-inertial regime. Interestingly, in Fig. 6(e)
at Ca = 0.075, Vmin is observed to be independent of Re. In contrast, in the case of larger Ca,
the minimum velocity of the capsule increases with Re. A difference of about 4% is observed for
Vmin as Re increases from 0.01 to 50 at Ca = 0.35. At Ca = 0.075, we observe an increase in the
maximum velocity Vmax of 3%, as Re varies from 0.01 to 50, as can be seen in Fig. 6(e). In contrast,
at Ca = 0.35, there is a more pronounced change in Vmax, which escalates from Vmax = 1.04 at
Re = 0.01 to Vmax = 1.12 at Re = 50 in Fig. 6(f), amounting to an increase of 8%. This highlights
the significant impact of Re on Vmax, particularly at higher Ca. Lastly, the relaxation time of the
capsule increases with increasing Re but does not depend as strongly on Ca.

The temporal evolution of the normalized capsule surface area A is shown in Fig. 7. We present
the area evolution at Re = 0.01 and Re = 50 in Figs. 7(a) and 7(c). We observe that the surface
area presents a maximum Amax around t = 1 before relaxing to its equilibrium value Aeq. From
Figs. 7(b) and 7(d), we see that the maximum area is reached when the capsule crosses the centerline
of the secondary channel, and is located within the Dean vortices. The deformation becomes less
important when the capsule exits the corner and decelerates due to the attraction of the vortices.
We can see that the red capsule (which corresponds to the shape of maximum area) has a long tail
at Re = 50 and Ca = 0.35, while the blue capsule (corresponding to the shape of minimum area)
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FIG. 7. (a), (c) Temporal evolution of the capsule surface area A at Re = 0.01 and Re = 50; (b), (d)
Illustrations of the capsule outline at specific time instants highlighted in panels (a) and (c) at Ca = 0.35,
respectively: onset of the increase in area A ( ), maximum A ( ), minimum A ( ), and relaxation to
a steady state ( ); in comparison with the capsule outline with Vmin ( ) and Vmax ( ) (e), (f) Temporal
evolution of the capsule surface area A at Ca = 0.075 and Ca = 0.35.

exhibits a more isotropic shape as it exits the vortical region. Unsurprisingly, Figs. 7(a) and 7(c)
confirm that a large Ca, i.e., a highly deformable capsule, results in a greater surface area than for
lower Ca. The normalized equilibrium area Aeq increases with Re and presents a significant increase
with Ca. The magnitude of Amax also increases with Ca. Moreover, when large Ca is considered, the
time evolution of the capsule surface area presents some undershoots that are more pronounced as
Re is increased in Fig. 7(c). As depicted in Figs. 7(b) and 7(d), the capsule positions with velocity
extrema (Vmin and Vmax ) and the capsule positions with area extrema are staggered. The
capsule shows maximum area Amax during the acceleration from Vmin to Vmax, as a result of the
large velocity difference on the front and back portions of the membrane. Similarly, the capsule
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FIG. 8. Maximum surface area Amax as a function of Re and Ca for a single capsule passing through the
corner.

exhibits its minimal area Amin as a consequence of its deceleration, the membrane tail catching up
with the membrane front. Consequently, the evolution of the capsule surface area is determined by
the presence of vortices and by the velocity gradient within the flow field. These factors are, in turn,
determined by the shape of the channel geometry. Additionally, Figs. 7(e) and 7(f) reveal that Re has
a very strong influence on the deformation of the capsule. At a small capillary number Ca = 0.075,
the ratio of maximum to equilibrium surface area Amax/Aeq exhibits a noticeable increase from
1.02 at Re = 0.01 to 1.09 at Re = 50. In the case of a more deformable capsule, at Ca = 0.35,
the increase in Amax/Aeq is even more pronounced, rising from 1.22 at Re = 1.0 to a substantial
1.4 at Re = 50. These observations underscore the significant changes in the surface area of a
capsule transitioning from non-inertial to highly inertial regimes. Surprisingly, in the stokes regime,
a nonmonotonous behavior of the capsule surface area is observed from Re = 0.01 (Amax = 1.25)
to Re = 1 (Amax = 1.22) in Fig. 7(f). In the following section, we delve deeper into the capsule
deformation.

C. Maximum deformation of the capsule

The maximum surface area Amax of the capsule is presented in Fig. 8, as a function of both the
Reynolds number and the Capillary number. To better analyze the trends in this figure, we also report
the maximum area at intermediate Reynolds numbers, namely at Re = 12.5 and 37.5. The data
reported in Fig. 8 clearly exhibits a double linear scaling of Amax with both Ca and Re as long as Ca
is below 0.35—at Ca = 0.35, the shape of the curve Amax(Re) is slightly concave. The slope of the
scaling is about 0.003 for Amax(Ca) and 1.12 for Amax(Re). This means that the maximum capsule
deformation responds proportionally to the Capillary number, but also to the Reynolds number. To
our knowledge, this is the first time such a trend has been reported and established for low (Re = 1)
to moderate (Re = 12.5, 25, 37.5, 50) inertial regimes. We believe that this result can be used as a
predictive tool for many studies involving single capsules traveling through channel corners, as the
maximum deformation observed for a capsule is a measure of its mechanical integrity, which is of
major interest in many microfluidic applications.

Additionally, we present in Fig. 9 the maximum and minimum velocity of the single capsule
flowing through the corner. In the non-inertial regime, the maximum velocity of the capsule
increases with Ca, as shown in Fig. 9(a). In inertial conditions, we observe that Vmax increases
for Re ranging from 1 to 50. The increase in Vmax between Re = 1 and Re = 50 is significant in
Fig. 9(a), especially for large Ca. For instance, at Ca = 0.35, Vmax increases by about 8% between
the non-inertial and the highly inertial regimes. We then consider the evolution of the minimum
velocity Vmin for a single capsule at various Ca and Re in Fig. 9(b). In general, we observe that the
minimum velocity decreases with Ca in both the non-inertial and the inertial regimes for Re � 25.
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FIG. 9. Maximum (minimum) velocity Vmax (Vmin) as a function of Re and Ca for a single capsule passing
through the corner.

In Fig. 9(b), we also observe a nonmonotonous behavior of Vmin at low inertia and at sufficiently
high Ca: for Ca � 0.15, Vmin first decreases with increasing Re, reaching a minimum for Re = 12.5,
before increasing sharply at Re > 12.5. Overall, we observe from Fig. 9 that the presence of inertia
tends to increase both velocity extrema of the capsule, especially at large Ca.

A quantity of practical interest to experimentalists is the maximum stress experienced by the
capsule, as it can be used to predict a priori if a given geometry can induce plastic deformation or
even breakup of the capsule membrane [5]. More specifically, it is the largest eigenvalue σ̃2 of the
stress tensor σ̃ that can bring insight into the mechanical integrity of the membrane. In Fig. 10, we
show the maximum and average values of σ̃2 over the membrane surface as the capsule approaches
and flows through the corner at Ca = 0.35 and Re = 1, 25 and 50. We observe that σ̃2, avg follows
a trend very similar to that of the capsule surface area observed in Fig. 7(f): σ̃2, avg varies smoothly
with time, presents a maximum near t = 1 and a local minimum near t = 2.5, and the value of the
maximum deviation from steady state nearly doubles between the low and moderate inertial cases
Re = 1 and Re = 50. We also note that the steady state value of σ̃2, avg prior to entering the corner is

FIG. 10. Left: Maximum and average tensions in the capsule at Ca = 0.35 and Re = 1, 25 and 50. Right:
Capsule shape colored by σ̃2 when σ̃2, max is reached.
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FIG. 11. Sequence of Capsule outlines for different Ca and Re. The time between each frame is t = 1.5.

independent of Re, as was observed in the case of the capsule surface area in Fig. 7(f). In particular,
we find by comparing Figs. 7(f) and 10 that at Ca = 0.35, a nondimensional surface area A of about
1.14 leads to an average nondimensional membrane stress of about 0.4. The steady state of the
maximum stress σ̃2, max, however, increases by about 40% between the low inertial case (Re = 1)
and the moderate inertial cases (Re = 25, 50). Inside the corner, σ̃2, max increases by nearly 75%
between Re = 1 and Re = 50, confirming that a capsule in a moderate inertial regime has a higher
risk of breakup than in a low inertial regime.

It is worth noting that for all Re, the value of the maximum stress σ̃2, max is about double that
of the average stress σ̃2, avg: since we showed previously that σ̃2, avg is closely related to the capsule
surface area—a quantity that is relatively easy to measure experimentally—this observation can be
used by experimentalists as a rule of thumb to estimate the maximum stress in the capsule membrane
and assess the mechanical integrity of the membrane.

D. Evolution of the capsule shape

We now illustrate the temporal evolution of the capsule traveling through the corner. Figure 11
shows the outline of the capsule in the symmetry plane z = 0 for successive discrete times. The
capsule outlines are given for Ca = 0.075 and Ca = 0.35, and for Re = 0.01, 25, and 50. Prior to
entering the corner, the capsule adopts a steady shape that is determined by the confinement of the
walls. In the case of Ca = 0.35, we observe the well-known “parachute” shape. Upstream of the
corner, the trajectory of the capsule coincides with the centerline of the primary (vertical) channel.
As the capsule flows through the corner, the capsule deviates from the channel centerline: in the
non-inertial regime, Zhu and Brandt [38] showed that the capsule trajectory closely matches the flow
streamlines. We obtain the same conclusion in the inertial regime. When inertia is considered, the
capsule trajectory crosses the horizontal centerline of the secondary channel and comes increasingly
close to the upper wall as Re increases, before relaxing to the channel centerline.
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FIG. 12. Outlines of a single capsule passing a corner with (a) maximum surface area A and (b) maximum
velocity V at various Re and Ca.

Figures 11(a) and 11(b) show clear differences in the effects of Ca in the Stokes regime.
Increasing Ca from 0.075 to 0.35 causes the equilibrium shape of the capsule to change from an
slightly deformed spheroid to a concave “parachute” shape. For a small Ca = 0.075, the equilibrium
shapes of the capsule remain similar as Re increases from Re = 0.01 to Re = 50 [see Fig. 11(a)
and 11(c)]. However, the deformation of the capsule becomes more evident inside the corner at
higher Re, particularly in Fig. 11(c). After passing the corner, the capsule shape returns to its
steady spheroid shape observed in the Stokes regime for all values of Re. In the case of a high
Ca = 0.35, we observe that the equilibrium shape of the capsule is more and more concave as Re
increases. Inside the corner, the capsule is highly elongated and presents an increasingly long tail
for increasing Re—e.g., Fig. 11(d) in the case of Re = 50. In the highly inertial regime, strong
lubrication interactions occur between the capsule and the top wall, resulting in a flat top surface.

In Figs. 12(a) and 12(b), we present the single capsule outline with the maximum surface area
Amax and the maximum velocity Vmax inside the corner for all the cases investigated in this section.
Inside the corner, the maximum surface area of the single capsule is reached when it approaches
the upper wall and it is quickly followed by the maximum velocity. From Figs. 12(a) and 12(b), we
observe in particular that a high Re leads to an elongation of the capsule in the streamwise direction,
while a high Ca increases the concavity of the capsule. Moreover, we note that the centroid of the
capsule moves closer to the rim of the outline at high values of Ca: note that the centroid drawn in
figures Figs. 11–12(b) corresponds to the centroid of the three-dimensional capsule, not to that of the
two-dimensional outline. The results shown in Figs. 11–12(b) indicate that Ca has a significant effect
on capsule deformation, while Re has a more pronounced effect on the trajectory of the capsule as
well as its deformation resulting from the lubrication layer against the top wall of the corner. In
particular, at high Re, the capsule undergoes significant stretching, which may cause damage or
even rupture in microfluidic devices. Understanding the effects of Re on capsule deformation and
the resulting damage is crucial in designing efficient and reliable microfluidic devices.

E. Discussion on the Stokes regime

We observe in Fig. 7(f) a surprising, nonmonotonous behavior of the capsule surface area
around Re = 1: at large Ca, the surface area of the capsule is lower at Re = 1 than at Re = 0.01
and Re = 25. Additionally, in Fig. 7(e) the steady surface area of the capsule at Re = 0.01 and
Ca = 0.075 downstream of the corner is about 1% lower than the initial spherical surface area of the
capsule, indicating a small loss of the internal capsule volume. The cause of these observations may
be related to the limitations of the FTM coupled with a sub-optimal choice of numerical parameters
in the case of Re = 0.01 only. Indeed, the immersed boundary method is known to conserve volume
asymptotically rather than to machine precision. In earlier IBM studies involving capsules, the
volume loss is always small, typically below 1% [8–10,23]. Moreover, Stokes conditions are known
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FIG. 13. (a) Trajectory of the two capsules at different Ca and Re. (b) Outlines of the leading and trailing
capsules at Ca = 0.35, Re = 50, d0 = 0.25, with comparison to a single capsule.

to be challenging for PDE-based incompressible Navier-Stokes solvers, as the matrix inverted in the
velocity viscous Poisson problem is less well conditioned at low Re. While it is worth noting that the
capsule surface area in the Stokes regime should be interpreted with caution, these limitations only
affect the capsule surface area and not the centroid velocity. Moreover, our solver was extensively
validated in Stokes conditions in [45] and showed excellent agreement with the BIM as well as
other FTM solvers. As such, while further investigation should be conducted in the Stokes regime,
it cannot be excluded that at high Ca the capsule surface area at Re = 0.01 is physically slightly
greater than that at Re = 1. Finally, the main focus of the present work is to investigate the inertial
motion and deformation of capsules through a sharp corner, i.e., in conditions where our FTM solver
does not suffer from the limitations outlined above.

V. SYSTEM OF TWO CAPSULES

In this section, we consider two identical capsules flowing through the corner as we vary the
normalized interspacing distance d = d̃/2ã − 1 between the capsules as well as the Reynolds and
Capillary numbers. Lu et al. [10] previously considered the binary interaction of capsules flowing
through a T junction: they showed that when d0 � 1.3 the trailing capsule has minimal impact on
the motion of the leading capsule. By contrast, in their T-junction geometry, Lu et al. observed that
the motion of the trailing capsule is significantly affected by the presence of the leading capsule.
To gain insight into the physical features relevant to capsule interactions through a corner in the
inertial and non-inertial regimes, we select small values for the normalized interspacing distance
d0 = 1, 1/2, and 1/4 and we examine phenomena such as migration, dynamics and deformation of
the leading and the trailing capsules.

A. Qualitative analysis: Trajectory and capsule shape

We first analyze the trajectory and the qualitative shapes of the pair of capsules as they flow
through the corner. Figure 13(a) shows the trajectory of the capsules at Re = 0.01, 25, and 50 and
Ca = 0.15 and 0.35. We note that all curves corresponding to the same Ca overlap: Ca has no
impact on the path of either the leading or the trailing capsule. Likewise, we observe no significant
difference in the trajectories of the leading and the trailing capsules, unlike the strikingly different
paths reported in the case of a T junction [10]. In fact, the key parameter that controls the capsule
trajectory is the Reynolds number. As Re increases, the inertia drives the capsule closer to the upper
channel wall, as observed in Sec. IV in the case of a single capsule. We then illustrate the capsule
shape on the symmetry plane z = 0 in Fig. 13(b) for the most deformed capsule configuration
corresponding to Ca = 0.35 and Re = 50 with an initial interspacing distance d0 = 0.25. We
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FIG. 14. Streamlines and vortex structures of the perturbed flow with two capsules past a channel corner
with a square cross-section (a) Re = 0.01, Ca = 0.35, d0 = 0.5; (b) Re = 50, Ca = 0.35, d0 = 0.5.

compare the outlines of the leading and the trailing capsules to those of a single capsule in the
same conditions. Qualitatively, the deformation of interacting capsules is not significantly different
than that observed in the case of a single capsule. Perhaps more surprisingly, the qualitative outlines
of the leading and the trailing capsules are also very similar, almost overlapped, even in the strongly
interacting configuration corresponding to d0 = 0.25. Note that this qualitative shape analysis relies
on the outline of the capsule in the plane of symmetry z = 0, while the actual three-dimensional
shape of the leading and trailing capsules may differ more strongly.

To provide a clearer illustration of the two-capsule system, we present their interaction in the
vicinity of a channel corner, together with the vortex structure of the flow field, as depicted in
Fig. 14. We consider the most deformable capsules at Ca = 0.35 in the Stokes regime Re = 0.01,
shown in Fig. 14(a), and in the inertial regime at Re = 50 in Fig. 14(b). In the secondary channel,
the streamwise flow velocity along the x axis significantly exceeds the magnitudes of the transverse
and the spanwise components. As such, to better highlight the flow dynamics, we subtract the mean
inlet velocity and present the streamlines of the perturbed velocity field u∗ = u − U0 in the plane
z = 0. In Fig. 14(a), we observe that the leading capsule undergoes deceleration while exiting the
corner. In contrast, the trailing capsule is in a phase of acceleration and elongation. The substantial
distance between the two capsules results in a weak interaction at Re = 0.01. With the increase
of Re, the increased strength of the vortices becomes evident, as depicted in Fig. 14(b). Notably,
the vortex located on the bottom wall of the secondary channel is significantly larger at Re = 50
compared to its size at Re = 0.01. In the captured snapshot, the leading capsule leaves a trail along
the top of the channel, which may hinder the motion of the trailing capsule.

B. Quantitative analysis: Velocity and membrane surface area

We now compare the temporal evolution of the velocity of the centroids of the capsules as well
as the time evolution of their surface areas, as plotted in Fig. 15. To simplify the identification of
interaction features, we first focus on the most deformed configuration corresponding to Ca = 0.35,
Re = 50, and d0 = 0.25. For reference, we also plot the evolution of a single capsule under the
same conditions in red. Throughout the remainder of this study, and unless otherwise stated, the
velocity of interacting capsules is normalized by the equilibrium velocity Veq of a single capsule
for the same Capillary and Reynolds numbers. This normalization choice allows for an unbiased
comparison between the velocities of the leading and the trailing capsules. In this section we also
denote the reduced velocity of the single capsule by Vs, that of the leading capsule by Vl , and that
of the trailing capsule by Vt . Similarly, we denote by As, Al , At the normalized surface areas of
respectively the single, leading and trailing capsules.

In Fig. 15(a), we observe that the velocity of the leading capsule is affected by the presence
of the trailing capsule before it reaches the corner, as it is about 1% higher than that of a single
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FIG. 15. Temporal evolution of the velocity V and the surface area A of capsules at Ca = 0.35, Re = 50
with d0 = 0.25: a comparison of the leading, trailing and a single capsules.

capsule. However, the extrema of Vl as it flows through the corner closely match those of Vs.
After the corner, Vl is about 2% larger than Vs but slowly relaxes back to Vs further downstream.
Concerning the trailing capsule, we note that its velocity is more markedly affected by the presence
of the leading capsule. Before reaching the corner, Vt is about 1% lower than Vs, but inside the
corner, its minimum value is 4% lower than Vs. However, the maximum of Vt is identical to that
of both Vl and Vs. Downstream of the corner, Vt quickly relaxes back to Vs and maintains a similar
value thereafter, eventually converging to Veq. The interaction between the two capsules is clearly
visible in Fig. 15(a). Initially separated by a distance of d0 = 0.25, the fluid situated between the
capsules functions akin to a weak spring. This dynamic causes the leading capsule to accelerate
slightly, achieving a marginally higher velocity, while simultaneously exerting a restraining force
on the trailing capsule, resulting in a slightly reduced velocity. In VC, we will demonstrate that
the relaxation period of this spring-like layer of fluid is notably extended. This prolonged relaxation
directly contributes to a persistent discrepancy in velocity between the leading and trailing capsules,
observable both before and after they pass the corner. The low Vmin of the trailing capsule in
Fig. 15(a) results from two primary factors: the blockage of the interior sharp corner and also the
hindrance due to the tail of the leading capsule as illustrated in Fig. 14(b). The time evolution of
the surface areas of the pair of capsules is shown in Fig. 15(b). The normalized surface area of the
leading capsule Al is clearly influenced by the presence of the trailing capsule, as was observed
above in the case of its velocity. The steady and maximum surface areas of the leading capsule are
about 2% lower than that of the single capsule. In contrast, the steady surface area of the trailing
capsule closely matches that of the single capsule upstream and downstream of the corner, while its
maximum value is about 1% higher than that of the single capsule. We hypothesize that the small
interspacing distance between the two capsules disturbs the wake behind the leading capsule, which
tends to mitigate its deformation on the concave rear surface and therefore decreases its surface area.
Conversely, as the wake of the trailing capsule is unaffected, the discrepancies between its surface
area and that of the single capsule are less pronounced.

We then present the time evolution of the velocity and surface area of the leading and the trailing
capsules at various Ca, Re, and d0. We first focus on the velocity of the capsules, displayed in
Fig. 16(a) for Ca = 0.15 and 0.35 and for d0 = 0.5 and 1. The velocity of both capsules displays
a minimum at t = 0 and a maximum at t ≈ 2 at Ca = 0.15 and Ca = 0.35. The extrema of the
velocity are more pronounced as Ca increases. The effects of the initial interspacing distance d0

on these extrema are less evident but still present: the velocity maxima of both the leading and
the trailing capsules are increased by about 1% as d0 is halved from 1 to 0.5. Interestingly, the
relaxation time of Vt to Veq is significantly reduced when compared to that of Vl : about 4 time units
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FIG. 16. Temporal evolution of V of the leading and trailing capsules at different Ca, Re, and d0.

in the case of Vt with respect to more than 10 time units in the case of Vl . Capsule velocities in the
inertial regimes at Re = 25 and 50 and at Ca = 0.15 and Ca = 0.35 are plotted in Figs. 16(b) and
16(c) for d0 = 1 and 0.25, respectively. The results are similar to that of the non-inertial regime: Ca
enhances the velocity deviations and the extrema are more pronounced in the case of the trailing
capsule. Surprisingly, we note that Figs. 16(b) and 16(c) are almost identical: we conclude that
the interspacing distance does not to impact the capsule maximum velocities inside the corner. A
plausible explanation is that the capsule acceleration is predominantly determined by the strength of
the Dean vortices. In comparison, the effects of the capsule deformation and interaction on the fluid
motion are of minor importance. With the same Re and Ca, the acceleration process is similar for
the capsule pair with different initial distances leading to the similar Vmax values. As discussed in
Fig. 15(a), the short interspacing creates a layer of fluid analogous to a spring between the capsule
pair and leads to a faster leading and a slower trailing capsule upstream and downstream from the
corner. Within the corner, the interplay between the capsules [as shown in Fig. 14(b)] can lead to
a larger difference on Vmin in Figs. 16(b) and 16(c). More discussions about the interspacing of the
capsule pair are provided in Sec. V C.

When analyzing the capsule surface areas for varying Re, Ca and d0, a similar behavior is found:
the surface area of the trailing capsule is consistently greater than that of the leading capsule, and
increasing Capillary and Reynolds numbers and decreasing the initial interspacing distance enhance
this phenomenon. In particular we report in Table I the maximum surface areas of the leading
capsule and in Table II that of the trailing capsule. As can be seen from Tables I and II, the maximum
surface area of the leading capsule exceeds that of the trailing capsule by up to 5%. The full time-
dependant data is provided in Appendix A.
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TABLE I. Maximum surface area Amax of the leading capsule at different Ca, Re, and d0.

d0 Re = 0.01 Re = 25 Re = 50

Ca = 0.15 1.065 1.138 1.193
1

Ca = 0.35 1.263 1.334 1.399

Ca = 0.15 1.065 1.135 1.186
0.5

Ca = 0.35 1.247 1.323 1.383

Ca = 0.15 1.068 1.129 1.180
0.25

Ca = 0.35 1.236 1.308 1.379

C. Time evolution of the interspacing distance

We now analyze the time evolution of the interspacing distance between the two confined
capsules considered in this section. Figure 17 shows the time-dependent interspacing distance for
Ca = 0.15 and 0.35, Re = 25 and 50, and d0 = 1, 0.5, and 0.25. In this figure, we note that in all
cases, the interspacing distance decrease immediately after the trailing capsule is released. This is
due to the fact that upon release, the trailing capsule is spherical and therefore located farther away
from the channel walls than is the leading capsule, resulting in its initial acceleration before a steady
shape is found - typically within less than five time units. In the case of d0 = 1, the time-dependent
interspacing distance d is steady until the leading capsule approaches the corner, then reaches a
minimum and a maximum inside the corner and becomes steady again as the trailing capsule leaves
the corner region. Interestingly, the steady interspacing distance downstream of the corner is up to
10% greater than its steady value prior to the corner, suggesting that the corner separates the two
capsules. Moreover, the initial interspacing distance is greater in the case Re = 25 than in the case
Re = 50: this is only an artifact of our release mechanism. Indeed, the steady “parachute” shape of
the capsule is deployed faster at Re = 50 than at Re = 25, leading to a shorter initial acceleration
phase of the trailing capsule towards the leading capsule at Re = 50 than at Re = 25. When d0 = 0.5
and d0 = 0.25, we observe that the interspacing distance steadily increases until the capsules reach
the corner region where it displays the same behavior as in the case of d0 = 1, and continues to
increase downstream of the corner. While a steady value of d is not clearly reached within the
considered time range, we can extrapolate the trend and conclude that the interspacing distance
seems to saturate to values ranging from 0.6 to 0.8 depending on Re, Ca, and d0. Therefore, the pair
of confined capsules we consider exhibit a minimum stable interspacing distance dmin. Moreover,
we note that the slope of d is greater in the case of lower initial interspacing distances, showing that
the relative velocity of the capsules is a function of their interspacing distance.

TABLE II. Maximum surface area Amax of the trailing capsule at different Ca, Re and d0.

d0 Re = 0.01 Re = 25 Re = 50

Ca = 0.15 1.068 1.143 1.201
1

Ca = 0.35 1.271 1.342 1.417

Ca = 0.15 1.070 1.144 1.204
0.5

Ca = 0.35 1.277 1.345 1.414

Ca = 0.15 1.069 1.148 1.204
0.25

Ca = 0.35 1.277 1.344 1.41
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FIG. 17. Temporal evolution of d for different initial interspacing distance d0 and Reynolds number Re.

The present analysis of the binary interaction of capsules through a corner reveals that the
two considered capsules do interact in this geometry, affecting their motion and deformation. In
particular, the trailing capsule tends to be more deformed than the leading capsule, and the corner
tends to separate the pair of capsules. A natural question that arises is that of the accumulation of
such effects if more than two capsules are considered.

VI. TRAIN OF TEN CAPSULES

In this last section, we investigate the behavior of a train of ten capsules flowing through the
corner. We insert each capsule using the same procedure employed in the previous section: a
new initially spherical capsule appears at a distance Dc = 30 radii from the corner as soon as the
preceding capsule has advanced by a distance d̃ = 2ã(1 + d0). The capsules are removed from the
computational domain when they are less than one initial diameter away from the outflow boundary.
Our goal is to determine if the findings of the previous binary capsule analysis accumulate when
more than two capsules are considered, especially with regard to the increased surface area of the
capsules and the separating effect reported in Sec. V. As such, we plot in Fig. 18 the normalized
surface area and velocity of each capsule of the train at Re = 50, d0 = 0.125 and Ca ranging from
0.15 to 0.35. The same figure obtained in the case of d0 = 1 is provided in Appendix B. In this
section, we define the time origin as the time instant the first capsule reaches its lowest velocity
(t1,min). This approach allows for a clear depiction of the temporal progression of each capsule
as it flows through the corner. In the same manner as in the previous section, the velocity of
the capsules within the train is normalized by the equilibrium velocity Veq of the single capsule
experiencing the same Ca and Re. In Fig. 18, the darkness of the color corresponds to the position
of the capsule in the train: darker means increasing capsule number, i.e., further downstream along
the capsule train. As mentioned in Sec. V, the initial peaks in the surface area and velocity of
the capsule are insertion artifacts and do not contribute to the physics that is the focus of this
section. We observe in Fig. 18 that the behavior of the last capsule is significantly different than
that of the rest of the train. In Sec. V we hypothesized that the difference in surface areas of the
leading and the trailing capsules is since the wake of the leading capsule is significantly affected by
the presence of the trailing capsule. The present observation in Fig. 18 corroborates this statement:
All of the capsules in the train see their wake affected by a trailing capsule, except in the case
of the last capsule. As discussed previously, the interaction between two successive capsules can
effectively reduce the Vmin of the trailing capsule, as depicted in Fig. 16(c). This effect accumulates
as the number of capsules increases in the train in Fig. 18. When only two capsules are considered,
we saw that they exhibit similar Vmax values. However, when a train of capsules is considered, the
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FIG. 18. Time evolution of the reduced surface areas and velocities of a train of ten capsules at Re = 50
and d0 = 0.125 for Ca = 0.15, 0.25, and 0.35.

Dean vortices are continuously affected by the flow of capsules and we observe a decrease in Vmax

in Fig. 18. As the last capsule flows through the corner, Vmax rises within the corner in a similar
fashion as the first capsule of the train. As noted in Figs. 7(b) and 7(d), the maximum area of the
capsule flowing through a corner is reached during the acceleration phase. With a small Vmin and a
relatively high Vmax, the last capsule exhibits an exceptionally high Amax. We also remark in Fig. 18
that this effect is enhanced with increasing Ca. While noteworthy in the case of a pair of capsules,
the behavior specific to the last capsule is less pertinent to the study of a train of capsules, as only the
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FIG. 19. Temporal evolution of d for a train of 10 capsules at Re = 50 and d0 = 0.125 for (a) Ca = 0.15,
(b) Ca = 0.25, and (c) Ca = 0.35.

core of the capsule train is relevant to typical microfluidic applications. As such, in the remainder
of this section, our analysis is focused on the first nine capsules of the train.

As expected, we confirm in Fig. 18 that a steady state is reached in the straight channel prior
to the corner for each capsule and for all Ca. While the steady surface area remains constant with
increasing capsule number, i.e., as we move further downstream along the train of capsules, we
observe that the velocity of the capsules decreases. In particular, the difference between the steady
velocity of the first and ninth capsules increases with increasing Ca. As the capsules enter the corner
region, they display the familiar pattern previously described in Secs. IV and V, before relaxing to
steady values. The shape of the deviation pattern is strikingly similar across different capsules of the
train, regarding both the velocity and the surface area of the capsules, except that they are shifted
in time and magnitude. More precisely, the surface area curves are shifted upwards with increasing
capsule number while the velocity curves are shifted downwards with increasing capsule number.
As a result, the maximum surface area of the capsule increases and the velocity extrema decreases
with increasing capsule number. This behavior is more pronounced as Ca increases. Additionally,
we compare in Fig. 19 the normalized interspacing distance d between each pair of capsules in the
train. In Fig. 19, each curve is shifted in time such that t = 0 corresponds to d (t = 0) = dmin inside
the corner. For all Ca, we observe that the interspacing distance d (1, 2) between the first and the
second capsules increases to a steady value close to 0.5, and that the corner has marginal effects on
the downstream evolution of d (1, 2): this behavior is identical to the case of two capsules studied
in the previous section. However, as we move downstream along the train of capsules, d increases
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FIG. 20. Amax as a function of the capsule number.

slower and slower prior to the corner until it remains constant for capsule numbers greater than 7,
at a steady value d ≈ 0.07 that decreases only marginally with increasing Ca. After the transient
regime due to the corner, d (i, i + 1) for capsule numbers i greater than 7 reaches a steady state that
is slightly higher than before entering the corner. In other words, the corner tends to increase the
interspacing distance and therefore exhibits a separating effect. This separating effect is observed
regardless of the initial interspacing distance d0, as was the case in the previous section when only
two capsules were considered.

Finally, to investigate further the influence of the capsule number on the capsule dynamics,
we plot in Figs. 20 and 21 the maximum surface area as well as the maximum and minimum
velocities of each capsule of the train for varying Capillary numbers and interspacing distances.
Again, the Vmax and Vmin are normalized by the equilibrium velocity Veq of the single capsule at the
same Re and Ca. The difference in minimum velocity (respectively, maximum velocity) between
the first and the ninth capsule is about 14% (respectively, about 5%) at Ca = 0.35 while it is
about 11% (respectively, 2%) at Ca = 0.15. Similarly, the difference in maximum surface area
between the first and the ninth capsule is about 4% at Ca = 0.35 and less than 1% at Ca = 0.15.

FIG. 21. (a) Vmax and (b) Vmin as a function of the capsule number.
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These results correspond to d0 = 0.125, while in the case of d0 = 1 only deviations lower than
1% are observed in the extrema of the capsule surface area and velocity (except in the case of
Vmin for which velocity deviations of 2% are observed). The very small deviations observed in
the case d0 = 1 indicate that for this interspacing distance, the capsules interact very weakly. As
such, there exists a critical interspacing distance dc below which capsule interactions are observed,
with 0.125 < dc < 1.

The fact that dc is less than 1 can be surprising, as a normalized interspacing distance of d0 = 1
would typically be classified as a strongly interacting regime in other geometries, e.g., in the T
junction investigated by Lu et al. [10]. The main reason for the low interaction we observed is likely
due to the short residence time of the capsules in the corner region. Indeed, Lu et al. showed that the
residence time is determinant in the path selected by the capsules in a T junction geometry. Another
reason for such a low critical interspacing distance is related to the very confined configuration we
study: the capsule shape and behavior is primarily due to the presence of the walls, while the small
disturbances of the flow field due to the other capsules only marginally contribute to each capsule
dynamics. Future studies could explore the dynamics of a train of capsules in a wider channel,
i.e., in a less confined configuration, where each capsule could be more influenced by the wake
disturbances of their preceding neighbor.

VII. CONCLUSION

In the present work, the inertial and non-inertial dynamics of three-dimensional elastic capsules
flowing through a sharp corner are investigated. The capsule trajectory, surface area, velocity
and membrane stress are analyzed in the cases of one, two and a train of ten capsules released
upstream of the corner. The channel Reynolds number ranges from 0.01 to 50, the Capillary number
representing the ratio of viscous stresses over elastic stresses ranges from 0.075 to 0.35 and the
initial normalized interspacing distance between two capsules is varied from 0.125 to 1. The goal
of this study is to help provide practical guidelines to anticipate capsule breakup and estimate
throughput in inertial microchannels.

The case of a single capsule with no inertia was previously studied by Zhu and Brandt [38],
who reported that the capsule follows the flow streamlines closely regardless of the Capillary
number. In inertial flows, we found that this statement is still valid for all considered Reynolds
and Capillary numbers. As the streamlines of the inertial flow cross the centerline of the secondary
channel—the horizontal channel downstream of the corner—the capsule position is increasingly
close to the top wall for increasing Reynolds number, especially in the case of large Capillary
numbers. However no collision between the capsule and the wall of the secondary channel was
observed thanks to strong lubrication forces. In their study, Zhu and Brandt also analyzed the
velocity of the capsule centroid and the surface area of the capsule membrane: they found that
the capsule velocity decreases in the corner and increases immediately after the corner, with an
overshoot increasing with membrane deformability. The surface area of the capsule was also found
to reach a maximum slightly shifted in time with respect to the minimum of velocity. In the inertial
regime, we observed that this behavior is enhanced as the Reynolds number increases. However our
results at Re = 1 do not differ significantly from results obtained in the non-inertial regime, which
corroborates the same observation made by Wang et al. [8,9]. Moreover, at sufficiently high inertia,
capsule surface areas lower to equilibrium surface areas are observed as the capsule relaxes to its
steady state. In other words, immediately after the corner the capsule oscillates around its steady
shape. This phenomenon is enhanced as the Capillary number increases. Additionally, we reported
that the relationship between the maximum surface area Amax of the capsule and the Reynolds
number is linear as long as the Capillary number is kept below 0.35. At Ca = 0.35, the relationship
between Amax and Re is not perfectly linear and the curve Amax(Re) is slightly concave. Moreover,
from Re = 1 to Re = 50, the maximum surface area increases nearly linearly over the full range
of Ca. At Ca = 0.35, we compared the membrane stress to the capsule surface area and found that
(i) the time evolution of the average stress presents a strong correlation to that of the membrane
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surface area, and (ii) in our configuration, the value of the maximum stress is double that of the
average stress. As a result, observing the capsule surface area experimentally can provide reliable
insight into the average stress as well as an estimate of the capsule maximum stress. This finding is
of primary importance in the design of microfluidic devices where capsule breakup is to be avoided,
as well as in the development of targeted drug delivery methods for which a controlled capsule
breakup is sought.

We then investigated the interaction of several capsules in the corner geometry. First, two
capsules are considered with varying initial interspacing distances. Similar to the case of a single
capsule, neither the trajectory of the leading nor of the trailing capsules is observed to significantly
deviate from the flow streamlines. In the considered range of initial interspacing distances, the
velocity of the trailing capsule is found to be generally lower than that of the leading capsule
as well as that of a single capsule at the same Reynolds and Capillary numbers. Similarly, the
velocity of the leading capsule is greater than that of a single capsule in the same conditions. This
velocity difference is also visible in the time evolution of the interspacing distance d between the
pair of capsules. In particular, we found that capsules initially located at d0 � 0.5 tend to separate.
This suggests that there exists a minimum stable gap dmin > 0.5 between two confined capsules. A
systematic analysis of this effect is left for future studies. In contrast, inside the corner the surface
area of the trailing capsule is found to be larger than that of the leading capsule and of the single
capsule in the same conditions. However, in the configuration we consider where confinement is
strong, the magnitude of these effects is small even for capsules located very close to each other:
the velocity of the leading and trailing capsules only deviates by a few percents from that of a single
capsule. Next, we examined the case of a train of capsules and sought to determine whether the
effects observed with a pair of capsule accumulate. While no interaction occurs for a large initial
interspacing distance d0 = 1, we found that in the case d0 = 1/8, the steady and extremum surface
areas of the trailing capsules increase by up to 5% and eventually saturate at the tail of the train,
around the ninth capsule. In all cases for which d < dmin, the corner is found to separate the pair of
capsules as well as the capsule train, which can be further evidenced from the analysis of the time
evolution of the capsule velocity inside the corner region.

We believe that the present work is a step forward towards providing practical guidelines to avoid
capsule breakup in inertial and non-inertial microfluidic experiments. Inertial particle microfluidics,
a technique of increasing interest in the field of biotechnologies, is influenced by several critical
factors, including confinement ratio, viscosity ratio, capsule shape, and membrane properties.
The current study narrows its focus to the study of spherical capsules, specifically those with a
unity viscosity ratio flowing in a small confinement ratio channel. This targeted approach allows
for an in-depth exploration of these key parameters under controlled conditions, laying a solid
foundation for understanding fundamental microfluidic dynamics. Future works could study capsule
membranes exhibiting a strain-hardening elastic behavior, e.g., as described by the Skalak law [52],
as well as vary the confinement ratio β = 2ã/W̃ to consider high-throughput microfluidic devices.
In the case of lower confinement ratios in particular, we expect to see stronger capsule interactions
along with cross-stream capsule migration inside and downstream of the corner. Finally, the present
work could also be useful to develop membrane characterization techniques, where viscoelastic
membrane properties could be inferred from the time-dependant evolution of a capsule of interest
through a corner.
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interspacings d0 and various Capillary and Reynolds numbers Ca and Re.
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APPENDIX A: TIME EVOLUTION OF CAPSULE SURFACE AREAS
IN THE CASE OF TWO INTERACTING CAPSULES

Figure 22 shows the evolution of the surface area of the leading and the trailing capsules in the
non-inertial regime [Fig. 22(a)], as well as at Re = 25 and Re = 50 where the initial interspacing
d0 is 1 [Fig. 22(b)] and 0.25 [Fig. 22(c)].

APPENDIX B: TRAIN OF CAPSULES AT LARGE INITIAL INTERSPACINGS

We provide in Fig. 23 the time evolution of the surface area and velocity of each capsule in a train
of 10 capsules flowing through a corner at Re = 50, Ca = 0.35 and a reduced initial interspacing
distance between each capsule d0 = 0.125. As can be noted in this figure, the capsules in this regime
do not interact as the surface area and velocity evolution of each capsule is almost identical.
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FIG. 23. Time evolution of the reduced surface areas and velocities of a train of ten capsules at Re = 50
and d0 = 1 for Ca = 0.15, 0.25, and 0.35.
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