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Scraping of a thin layer of viscoplastic fluid
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We analyze the scraping of a thin layer of viscoplastic fluid residing on a horizontal
surface by a translating rigid scraper. This motion generates a mound of fluid upstream
of the scraper and a residual layer behind it, both of which are modelled using a shallow
layer theory for a Bingham or Herschel-Bulkley fluid. The flows ahead of and behind the
scraper are coupled by the motion in the gap under the scraper, which is driven both by
the translation of the scraper and by the induced pressure gradient due to the difference
in flow thickness upstream and downstream. When the gap between the scraper and the
underlying surface is sufficiently small, we find that a steady state emerges after a relatively
long transient and that en route to this state, the unsteady dynamics exhibit a variety of
regimes that are self-similar to leading order. We construct these solutions explicitly and
derive key scalings for the temporal development of the flowing viscoplastic layer, as well
as identifying the timescales at which there are transitions between the regimes. These
predictions are confirmed by comparison with results from the numerical integration of the
full system. Finally, we report results from preliminary laboratory experiments, which are
compared with predictions from the shallow-layer theory, obtaining reasonable agreement
once a slip boundary condition is included in the model, as motivated by experimental
observations.

DOI: 10.1103/PhysRevFluids.9.053301

I. INTRODUCTION

This study investigates the scraping of a thin layer of viscoplastic fluid from a plane surface. The
flow configuration and rheology is relevant to a number of environmental and industrial processes.
For example, the removal of excess plaster from a wall or of a layer of mud from a road following
a mudslide may be carried out by the translation of a vertical scraper, where both of these materials
are known to exhibit viscoplastic rheology [1–3]. A similar flow configuration is also relevant to
blade coating and screen printing processes where the desired result is a uniform residual layer of
fluid behind the scraper [4–7]. Finally, in geophysics, similar flow configurations have been used as
a model for the formation of fold-and-thrust belts and accretionary wedges at converging tectonic
plates, whereby a layer of relatively soft sediment is scraped off a descending plate by the more rigid
overlying plate during plate subduction. Emerman and Turcotte [8] used a Newtonian rheology and
shallow layer theory, identifying a late time similarity solution in which the shape of the wedge is
quasistatic, although they do not explicitly determine the time dependence of the height or length
of the mound in this regime. Similarly, Perazzo and Gratton [9] considered the uplift due to the
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convergence of two shallow layers of Newtonian fluid, identifying an early time similarity solution
in which the height and length of the wedges grow with time, t , as t1/2 and a late time similarity
solution in which the height grows as t1/4 and the length as t3/4 (corresponding to the shape found
by Emerman and Turcotte [8]). Ball et al. [10] considered an extension to the viscous wedge theory
in which the underlying plate is modelled as an elastic beam, which introduces an additional,
elastogravitational, length scale and results in the model exhibiting a number of additional dynamic
regimes. Stockmal [11] and Davis et al. [12] studied the problem for a plastic Coulomb rheology by
using shallow layer theory and slipline theory, respectively, under the assumption that the material is
at failure throughout the wedge. These models result in a self-similar tapered geometry of the wedge.
Fully two-dimensional finite-element simulations accounting for the free surface have also been
carried out for Coulomb plastic [13] and viscoelastic-plastic [14,15] rheologies. These simulations
benefit from being able to resolve heterogeneous deformation and complex surface features that are
otherwise filtered out by the shallow layer approximation; in particular they predict deformation via
a sequence of folds or thrusts along localized shear bands. On the other hand, shallow-layer theory
allows the development of simplified results which can predict average mound shapes and identify
different scaling regimes for the temporal evolution, without the need for intensive computation.

The scraping of a viscoplastic fluid was investigated by Lister and Hinton [16], who studied
the steady-state problem in which fluid entering the mound upstream is balanced by flux under
the scraper or around a finite width scraper under the approximations of shallow-layer theory.
They calculated the steady-state shape of a quasirigid (yield-stress-dominated) mound in front
of both infinite and finite width scrapers, with the latter held perpendicular or obliquely to the
direction of travel. They also showed how the steady state is approached for a Newtonian fluid
and infinite scraper by assuming that the flux under the scraper is proportional to the free-surface
height upstream from the scraper. Maillard et al. [6] carried out experiments for the scraping of a
layer of Carbopol gel with a thin scraper. They observed an instability resulting in undulations of
the free surface upstream of the scraper, and a residual layer of roughly uniform height was left
behind the scraper. They also found that the height of the mound was proportional to the square
root of its length (after correcting for some initial transient), which they justified theoretically by
considering a force balance between the yield stress and hydrostatic pressure, under the assumption
that the mound was predominantly unyielded. This assumption was supported by particle image
velocimetry measurements that indicated that the mound was approximately rigid, being pushed
along by the scraper, and separated from the base by a uniform sheared layer. They did not attempt
to compare the experimental free-surface profiles with predictions from shallow-layer (or other)
theory.

In this paper, we provide predictions from shallow-layer theory for the shape and time evolution
of the free surface of a layer of Bingham or Herschel-Bulkley fluid being scraped from a plane
surface by a vertical rigid scraper. We consider the free surface upstream and downstream of the
scraper and couple the two regions via the leakage flux through a thin gap under the scraper. In
Secs. II–IV, we define the model and provide the governing equations. In Sec. V we compute
numerical solutions to the governing equations and provide similarity solutions at early and late
times, showing how these predictions are affected by leakage under the scraper, which we model
explicitly via a Couette-Poiseuille flow in a narrow rectangular gap under the scraper. In Sec. VI,
the predictions for the free-surface profiles are compared against preliminary experiments using a
commercial hair gel and show reasonable agreement once a slip boundary condition is included in
the model, as motivated by experimental observations of slip. There are also three Appendixes re-
garding details of the numerical and asymptotic methods.

II. PROBLEM DEFINITION

We analyze the scraping of a layer of viscoplastic fluid, of depth h∞ from a horizontal plane
surface by a scraper traveling at a constant velocity, U , parallel to the surface. We assume a planar
flow and that the scraper has infinite width in the out-of-plane direction, so that the motion is purely
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FIG. 1. Schematic of dimensional flow geometry for scraping of a viscoplastic fluid by a scraper of
rectangular cross section in the frame of reference moving with the scraper. The free surface is located at
z = h(x, t ).

two dimensional. Figure 1 shows a schematic of the flow geometry, in the frame of reference moving
with the scraper. The free surface, z = h(x, t ), has height h∞ as x → ∞, and the nose of the mound
is located at x = L(t ); we note that such a position is well defined in the case of a nonzero yield
stress, whereas in the absence of a yield stress, the mound upstream of the scraper approaches the
far-field height continuously as x → ∞ (see Ref. [16]). Lα and hα represent the streamwise length
of the scraper and the height of the gap under the scraper, which is assumed to be small compared
to the far-field fluid height, hα � h∞. We treat the rheology of the fluid as Herschel-Bulkley, with
density, ρ, yield stress, τc, consistency K , and shear index, N . The acceleration due to gravity is
denoted g.

We work under the lubrication approximation (or “shallow-layer theory”), which requires h∞ �
L where L is a horizontal length scale for the flow (defined later). Under this approximation, the
flow is horizontal to leading order and takes the form of an apparently unyielded plug riding on top
of a yielded layer. At higher orders this apparent plug is typically weakly yielded, allowing the plug
velocity to vary with x [17]. In the absence of surface tension, following the derivation of Balmforth
et al. [18] on a horizontal plane and with a change of reference frame to that of the moving scraper,
the governing equation is

∂h

∂t
= ∂

∂x

{
Uh + σ

(ρg

K

)s N

(N + 1)(2N + 1)
[(2N + 1)h − NY ]Y s+1

∣∣∣∣∂h

∂x

∣∣∣∣
s}

, (1)

where σ = sgn(∂h/∂x), s = 1/N , and Y (x, t ) is the location of the apparent yield surface,

Y = max

(
0, h − τc

ρg| ∂h
∂x |

)
. (2)

Equation (1) represents the evolution of the free surface height in response to the divergence of
horizontal volume flux per unit width. This flux has a contribution due to the translating reference
frame [the first term on the right-hand side of (1)], and a contribution from slumping due to gradients
of hydrostatic pressure, arising from gradients of free-surface height (the second term on the right-
hand side). Where the apparent yield surface vanishes, Y = 0, there is no “slumping” since the yield
stress is sufficient to support the free surface gradient (in contrast, a Newtonian fluid would exhibit
“slumping” or “spreading” unless the free surface is precisely horizontal).

We nondimensionalize vertical lengths by h∞, velocities by U , horizontal lengths by L =
ρgh2+N

∞ /(KU N ), a length-scale over which horizontal gradients of hydrostatic pressure balance
vertical gradients in viscous shear stresses, and time by T = L/U . After nondimensionalizing (and
relabelling the variables), and noting that σ = −1 throughout the domain (see Fig. 1 and the results
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below), we obtain the governing equation

∂h

∂t
= ∂

∂x

{
h − N[(2N + 1)h − NY ]

(N + 1)(2N + 1)
Y s+1

∣∣∣∣∂h

∂x

∣∣∣∣
s}

, (3)

where

Y = max

(
0, h − Bi

| ∂h
∂x |

)
, (4)

and the residual nondimensional parameter in (3) and (4) is the Bingham number,

Bi = τc

K (U/h∞)N , (5)

which measures the magnitude of the yield stress relative to viscous stresses developed in the
flowing layer. The geometry of the scraper also provides two further dimensionless parameters,
ĥα = hα/h∞ and L̂α = Lα/L. We denote the dimensionless height of the free-surface at the points
where it meets the scraper on the up-stream and down-stream side as h0(t ) = h(0, t ) and hb(t ) =
h(−L̂α, t ), respectively.

Due to the lubrication approximation, we are unable to enforce no-slip or penetration at the
scraper. Instead, boundary conditions are obtained by imposing a unit layer thickness in the far
field upstream of the scraper and a dimensionless leakage flux at the upstream edge of the scraper,
x = 0. In the case that there is no gap below the scraper, hα = 0, this outgoing flux is 0; otherwise,
there is a leakage flux, Qα . Lister and Hinton [16] explore the steady state that occurs when this
leakage flux approaches unity due to a large jump in hydrostatic pressure between the upstream and
downstream sides of the gap. In this case, the residual unyielded layer left behind the scraper is the
same height as the incoming layer, and no additional volume is being removed from the layer. The
mound of fluid upstream reaches a steady state and is merely advected with the scraper. We will
show that this steady state may take a long time to be reached, and, at least at early times, we might
instead expect the layer behind the scraper to be approximately uniform and comparable to the gap
height hα (particularly for a high value of the yield stress). This has been observed in experiments.
For example, Maillard et al. [6] carried out experiments for a similar configuration using Carbopol
and observed an approximately uniform residual layer height, given approximately by 1.1hα , for
the range of conditions they investigated, corresponding to a constant leakage flux. In Sec. III we
propose a simple model for the leakage flux as a function of the free-surface height in front and
behind the scraper and summarize the full system in Sec. IV. In Sec. V we numerically solve for
the full time-dependent evolution of the layer, under this leakage flux model, noting a number of
different scaling regimes. Motivated by these solutions, we then explore the evolution of the free
surface in the case of a slowly varying leakage flux, for which similarity solutions can be deduced
at early and late times, in the cases of viscously or yield-stress-dominated dynamics.

III. LEAKAGE FLUX MODEL

As noted by Lister and Hinton [16], a large mound height at the scraper results in a high
hydrostatic pressure at the gap between the scraper and surface, which may drive additional leakage
flux through this gap. One model for the leakage flux when the gap is small, i.e., hα � Lα (see
Fig. 1), is to assume a Couette-Poiseuille flow in the gap. Assuming hydrostatic pressure ahead
of and behind the scraper, the dimensionless horizontal pressure gradient in the thin gap is given
approximately by

∂ p

∂x
= G = h0 − hb

L̂α

. (6)

As discussed in Appendix A, it is convenient to define a gap-scaled pressure gradient and Bingham
number by P = GĥN+1

α and Big = BiĥN
α , respectively, and report the dimensionless flux under the
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FIG. 2. Schematic of the nondimensional velocity profiles in the gap under the scraper for the three
different regimes of the scaled nondimensional pressure gradient, P = GĥN+1

α . Unyielded plug regions are
shaded gray.

scraper (in the negative x direction), Qα , as a function of P and Big. The algebraic expressions for
the flux can be found in Appendix A and their derivation can be found in Ref. [19, Chapter 7] and,
in a slightly different form, in Ref. [20]. Below we give an overview of the physical context behind
the algebraic results provided in the Appendix.

The complication in deriving the leakage solution lies in the existence of three distinct regimes
under the scraper, depending on the gap-scaled pressure gradient, P. Figure 2 illustrates these three
regimes. First, for sufficiently small pressure gradients, the flow under the scraper is dominated
by the shear arising from the translating boundary and the fluid is yielded throughout the gap.
Increasing the pressure gradient increases the curvature of the velocity profile in the gap and hence
increases the flux. At a critical value, P = P1 (given in Appendix A), the shear rate vanishes at the
bottom boundary and, at larger pressure gradients, this results in an unyielded plug that translates
with the bottom boundary. It is perhaps unintuitive that increasing the driving pressure gradient can
result in the formation of an unyielded plug. This occurs because the increased driving pressure
gradient results in a faster flow of fluid through the gap, so that the translating lower boundary is
no longer the primary driver of the flow. In particular, the driving stress exerted by this boundary
decreases and eventually becomes lower than the yield stress of the fluid. As the pressure gradient
increases further, the stress exerted by the boundary switches from being a driving stress in the
flow direction to a resistive stress opposing the flow, because the pressure gradient would otherwise
act to drive a flow that exceeds the velocity of the bottom boundary. Initially, no change occurs
to the structure of the solution until a second critical pressure gradient, P = P2, is reached, at
which the resistive stress of the lower boundary exceeds the yield stress and the fluid becomes
yielded in a region between the plug and the bottom boundary. The plug is then detached from both
boundaries and travels at a velocity, Up, which exceeds the unit velocity (in dimensionless units) of
the boundary. As the pressure gradient is then increased further, leakage flux increases as a result of
this plug velocity increasing.

Two simplified regimes for the leakage flux can be deduced. First, when the pressure gradient is
small, P � 1, the velocity profile in the gap is approximately linear, and the flux is given to leading
order by

Qα = ĥα

2
, (7)

which is also obtained from the small P regime of the full flux expression [(A3) and (A4)]. Second,
in the final regime, P > P2, the leakage flux can become arbitrarily large with increasing P (via
arbitrarily large plug velocities). Thus, for some P the leakage flux becomes equal to 1 and the
scraper system reaches a steady state since the flux under the scraper matches the incoming flux
from the far field, as envisaged by Lister and Hinton [16]. Since the average velocity in the gap is
at most the plug velocity, this requires Up = O(1/ĥα ) � 1, when the gap is small, ĥα � 1. This, in
turn, requires a large pressure gradient P � 1. Expansion of the flux given in the Appendixes [(A9)–
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(A11)], for large P, then gives

Qα

ĥα

= Ps

2s+1(s + 2)

(
1 − 2Big

P

)s+1[
1 + 2Big

(s + 1)P

]
, (8)

to leading order. Since Qα = O(1) in this regime, provided Big � ĥ−N
α [for example when Bi =

O(1)] we find that P = O(ĥ−N
α ), and (8) reduces to

Qα

ĥα

= Ps

2s+1(s + 2)
+ . . . , (9)

which corresponds to the relationship between flux and pressure gradient for a standard plane-
Poiseuille flow of a power-law fluid.

The scaled pressure gradient at steady state can then be found implicitly by setting Qα = 1 in
(8) [or its approximation (9)]. In this regime, the upstream height of the fluid is much larger than
the downstream height, h0 � hb, and thus the pressure gradient is given to leading order by G =
h0/L̂α . The steady-state height of the mound at the upstream edge of the scraper, denoted H0, is
then determined to leading order from H0 = Pĥ−(N+1)

α L̂α . In particular, under the assumption that
Bi � O(ĥ−2N

α ), we find

H0 = 2N+1(s + 2)N L̂α ĥ−(2N+1)
α + . . . . (10)

Note that, at this stage, it is not clear whether the steady state is reached in finite time or approached
asymptotically; this is determined later, in Sec. V B, where we show that the difference from the
steady state decays exponentially in time.

Figures 3(a)–3(c) shows plots of Qα against G for a Bingham fluid (N = 1) with ĥα = 0.1
and three different values of Bi [see (A12)]. These show how, since ĥα is small, the gradient
dQα/dG = ĥN+1

α dQα/dP = O(ĥN+2
α ), is very small, requiring significant variation in G (and hence

h0) to lead to variation in Qα . Similarly, Figs. 3(d)–3(f) shows the leakage flux calculated by this
model for a Herschel-Bulkley fluid of shear index N = 0.5 at the same values of Bi. Compared
with the Bingham case, for moderate Bingham numbers the steady state, Qα = 1, is reached for
significantly lower (though still relatively large) dimensionless pressure gradients, G. This is to be
expected since the high shear rate in the thin gap under the scraper results in a lower effective
viscosity for the fluid and, thus, a greater leakage flux for the same imposed pressure gradient.

Another notable feature is that, in the regime of a large Bingham number, there is a wide range
of G over which the leakage flux varies even more slowly [this can be deduced from (A6) and seen
in Figs. 3(c) and 3(f)]. This is because the difference between the two critical pressure gradients,
P1 and P2, is O(Big) which implies the second regime occurs over an O(Bi/ĥα ) range of G when
Bi � 1. Throughout much of this regime, the dimensionless leakage flux is approximately given
by the gap size, Qα ≈ ĥα [see (A6)], which can be understood as the sheared region between the
unyielded plug and the underside of the scraper (see Fig. 2) becoming a thin boundary layer when
Bi � 1, and hence the flow under the scraper being given to leading order by a plug flow of height
ĥα and unit velocity (for which the leakage flux is ĥα). This is consistent with the intuition that, for
a large yield-stress fluid, such a scraper would typically “cut” the fluid down to a layer of height
dictated by the gap height.

Regardless of the magnitude of Bi, the steady state requires a large pressure gradient to be
reached and consequently only occurs after a sufficiently high mound [h0 � O(104) for N = 1
and ĥα = 0.1] has built up in front of the scraper. Given the slow variation in Qα , an appropriate
simplification which is valid at early times, is to take the leakage flux as constant to leading order.
Over very large timescales, however, the varying flux becomes relevant, which in particular allows
for a steady state ultimately to be approached. In Sec. V, numerical simulations and similarity
solutions are used to explore the evolution of the free surface in different regimes. First we
summarize the full system in Sec. IV.

053301-6



SCRAPING OF A THIN LAYER OF VISCOPLASTIC …

FIG. 3. Dimensionless leakage flux, Qα , as a function of the dimensionless pressure gradient under the
scraper, G, for [(a)–(c)] a Bingham fluid (N = 1) and [(d)–(f)] a Herschel-Bulkley fluid with N = 0.5. The
additional dimensionless parameters are ĥα = 0.1 and [(a) and (d)] Bi = 1, [(b) and (e)] Bi = 100, and [(c) and
(f)] Bi = 1000. The transitions between different flow regimes under the scraper are marked by vertical dotted
lines (the two transitions are essentially indistinguishable in the first panel), and the approximation for large G
[Eq. (8)] are shown as red dashed lines.

IV. THE FULL SYSTEM OF GOVERNING EQUATIONS

To summarize, given an initial free-surface profile h(x, 0), the Bingham number, Bi, shear index,
N , and the nondimensional height, ĥα , and length, L̂α , of the gap under the scraper, we compute
the nondimensional elevation of the free surface, h(x, t ), and the yield-surface height, Y (x, t ), for
times t > 0, in front (x > 0) and behind (x < −L̂α) the scraper. The yield surface height at any
given moment is determined directly from the free-surface profile, via (4), and the evolution of h is
governed by (3), with boundary conditions,

h = 1 for x → ±∞. (11)

The evolution in the two domains (x > 0 and x < −L̂α) are coupled via the flow under the scraper,
which enforces

h − N[(2N + 1)h − NY ]

(N + 1)(2N + 1)
Y s+1

∣∣∣∣∂h

∂x

∣∣∣∣
s

= Qα (12)

at the edges of the scraper: x = −L̂α and x = 0. Here Qα depends on h0 and hb and is evaluated as
detailed in Sec. III and Appendix A.

As discussed in Sec. III, if we assume ĥα � 1 and L̂α = O(1), then at early times (when h0,

hb ≈ 1) we lie in the first regime of the leakage flux and the constant term, Qα ≈ ĥα/2, dominates its
value. Thus we can assume an initially constant leakage flux of magnitude ĥα/2 to provide an initial
free-surface profile via an early-time similarity solution detailed later in Sec. V A. We then integrate
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numerically from this initial condition, using the method described in Appendix B, with leakage
flux given by (A3)–(A11). In this numerical integration, the treatment of the region downstream of
the scraper requires some care. As discussed in Appendix B, behind the scraper the free surface first
decreases with time before reaching a singular point where hb = Qα . After this point, provided the
leakage flux does not vary sufficiently rapidly for the layer to become yielded again, (12) implies that
the scraper simply leaves an unyielded residual layer behind it, such that hb = Qα at the back of the
scraper at all times. This layer is advected to the left with unit velocity, and so, within this unyielded
layer, we have h(x, t ) = Qα (t − x). As discussed in Sec. III, Qα varies very slowly, and thus the
gradient of the free-surface height, ∂h/∂x, will be small in this region—supporting the assumption
that the layer does not ever become yielded again. Furthermore, since the rate of increase of the
free surface height in front of the scraper, h0, decreases with time, the rate of increase of Qα , and
the slope of the free surface behind the scraper decrease with time, further preventing additional
yielding in the layer.

V. MODEL RESULTS AND SCALING REGIMES

Figure 4 shows results of a numerical simulation with parameters N = 1, ĥα = 0.2, L̂α = 0.5,
and Bi = 5. The first three panels show the dimensionless free surface layer height, h(x), which
demonstrates: the initial development of the mound upstream and depression downstream of the
scraper at early times [Fig. 4(a)], the stage in which the residual layer immediately behind the
scraper is unyielded and we have hb = Qα [Fig. 4(b)], and the increase of the leakage flux to Qα = 1
over a very large timescale and the resulting steady-state mound upstream of the scraper [Fig. 4(c)].
In this third panel, the vertical scale is logarithmic and the horizontal scale is piecewise linear but
differs between the upstream and downstream regions, so that both can be viewed on the same plot.

Figures 4(d)–4(f) show the height, h0, length, L, of the mound, and the leakage flux, Qα , as
functions of time, from the same numerical solution as shown in Figs. 4(a)–4(c). Further time series
for the free surface height, h0, from different numerical solutions are shown in Fig. 5 (for Bingham
fluids, N = 1) and Fig. 6 (for shear-thinning fluids with N = 0.5). These results demonstrate the
key characteristics of solutions with small ĥα . Namely a very large dimensionless time is required
before steady state is reached, and a number of different power-law regimes are observed as the flow
evolves to the steady state. In particular, all results indicate an early-time regime in which the height
and length scale like t1/2, before a transition to an intermediate regime (i.e., t � 1 but before the
steady state is reached) in which a number of different power laws are possible. We will rationalize
the early time behavior via a constant leakage flux similarity solution, while the approach to steady
state (Qα ∼ 1) and intermediate times (namely t � 1 with Qα � 1) can be understood by assuming
a quasisteady shape of the mound upstream of the scraper, similarly to the analysis by Lister and
Hinton [16] for the purely viscous problem.

In particular, we will show that three cases are possible in the evolution to the steady state.
These three cases are demonstrated in Fig. 5. In all cases there is an early-time solution for which
the height and length of the mound scale as t1/2. This regime transitions into a quasistatic regime
for t � 1. The “intermediate,” quasistatic regime may be yield-stress dominated throughout and
transition to the steady state after a yield-stress-dominated timescale, Ty [Fig. 5(a)]. Alternatively, it
can be viscously dominated throughout, transitioning to the steady state after a viscously dominated
timescale, Tv [Fig. 5(c)]. Finally, the intermediate regime can start off as viscously dominated, before
transitioning to a yield-stress-dominated regime on a transition timescale, Tt [Fig. 5(b)]. The steady
state is then again reached on the yield-stress-dominated timescale, Ty. We detail these regimes and
timescales, primarily focusing on the case of a Bingham fluid (N = 1) for clarity of exposition, in
the following sections. In Sec. V C we then briefly discuss the analogous timescales for N �= 1.
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FIG. 4. Results of a numerical solution for the model summarized in Sec. IV with Bi = 5, N = 1, ĥα = 0.2,
and L̂α = 0.5. [(a)–(c)] Profiles of layer height, h(x), at t = 0.01, 1, and 108, with the outline of the scraper
shown in black. Panels (a) and (b) use a uniform linear scale, while panel (c) uses a logarithmic scale for
the vertical axis and a nonuniform linear scale for the horizontal axis. Here the different scales upstream and
downstream of the scraper are indicated on the axis, and the scale is linear between the indicated points.
[(d)–(f)] Time series of the numerical solution: (d) Difference between the free-surface height at the scraper
and in the far field, h0 − 1, on a log-log scale; (e) length of the disturbance upstream of the scraper, L, on a
log-log scale; and (f) the leakage flux, Qα , on a semilog scale with detail on a linear scale (inset). Dotted red
lines show the transition between the different regimes discussed in Sec. III.

A. Early time

As established in Sec. III, when ĥα � 1 and at early times during the evolution, the leakage flux
is constant to leading order, given by Qα = ĥα/2 � 1. We can then find a leading-order similarity
solution for the early time evolution of the mound in the region upstream of the scraper (x > 0)
assuming this constant leakage flux. We seek solutions of the form

h = 1 + t bH(ξ ), Y = t cY (ξ ), (13)
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FIG. 5. Numerical solutions (solid blue) for dimensionless maximum free-surface height, h0, as a function
of time, t , on a log-log scale. Parameters are ĥα = 0.1, L̂α = 0.5, and (a) Bi = 10, (b) Bi = 0.01, and (c) Bi =
0.001. The red dashed line shows the quasistatic prediction given by (26), and the gray dashed lines give the
predicted timescales for the approach to steady state in the yield-stress-dominated regime, Ty (a), the transition
between viscously and yield-stress-dominated behavior, Tt (b), and the approach to steady state in the viscously
dominated regime, Tv (c).

where

ξ ≡ x

L(t )
= x

xNta
, (14)

FIG. 6. Numerical solutions (solid blue) for dimensionless maximum free-surface height, h0, as a function
of time, t , on a log-log scale for a Herschel-Bulkley fluid. Parameters are ĥα = 0.1, L̂α = 0.5, N = 0.5, and
(a) Bi = 10 and (b) Bi = 0.001. The slope indicators show the predicted scalings at early times, t � 1, and
intermediate times, t � 1 with Qα � 1, for the yield-stress and viscously dominated behaviors [in (a) and (b),
respectively].
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L(t ) = xNta is the length of the deformed region, 0 � ξ � 1, and a, b, and c are all non-negative.
The boundary conditions at the nose of the mound are given by

H(1) = Y (1) = 0, (15)

which represent the conditions that the fluid is unyielded and of height 1 at the nose. Note that
unit flux at the nose, where the deformed free surface meets the incoming unyielded layer, is
automatically satisfied by (15), and that the flux condition at the scraper (12) can be replaced by
a global mass conservation condition,

t a+bxN

∫ 1

0
Hdξ = (1 − Qα )t, (16)

which gives a + b = 1 and
∫ 1

0 Hdξ = (1 − Qα )/xN .
On substitution of (13) and (14) into the governing equations (3) and (4), we find that the

divergence of the flux is dominated by variations in the free-surface gradient (i.e., “slumping”),
and we can neglect the advective term in (3) due to variations in the free-surface height. We thus
find that b − 1 = (s + 1)c + sb − (s + 1)a [i.e., (s + 1)c = 2sa − s]. Then, for balance in the yield
equation (4), we find a − b = c = 0 and so a = b = 1/2. Thus we obtain the early-time timescale,
h0 − 1 ∼ t1/2, L ∼ t1/2, as is observed in all numerical solutions shown in Figs. 4–6. We note that
this scaling is independent of the shear index N .

The similarity solution can further be used to obtain the shape of the free-surface profile at early
times. We focus on the case of a Bingham fluid (N = 1) in the following analysis, although the case
of a Herschel-Bulkley fluid could be considered analogously. On substituting the rescaled similarity
variable, H = xN BiĤ , and setting N = 1, the governing equations reduce to the ordinary differential
equation (ODE),

Ĥ − ξ Ĥ ′ = 1

3x2
N

[Y2(3 − Y )Ĥ ′]′, where Y = 1 + 1

Ĥ ′ , (17)

and a prime denotes differentiation with respect to ξ . The boundary conditions are

Ĥ (1) = Y (1) = 0 and x2
N

∫ 1

0
Ĥ dξ = 1 − Qα

Bi
. (18)

This system (17) and (18) can be numerically integrated to determine the similarity profiles, Ĥ and
Y , as well as the front position, xN . The numerical method is described in detail in Appendix C. For a
given value of xN , (17) is integrated from ξ = 1 to ξ = 0 and then (18 c) provides the corresponding
values of Bi/(1 − Qα ). In other words, the front position, xN , is a function of only the ratio Bi/(1 −
Qα ).

In Fig. 7 we plot the variation of xN and Ĥ (0) as a function of the ratio Bi/(1 − Qα ). It is
particularly insightful to consider the behavior when Bi � (1 − Qα ). In this yield-stress-dominated
regime, xN = O{[Bi/(1 − Qα )]−1/2}, while Ĥ remains of order unity. For balance in (17 a), we then
require Y = O{[Bi/(1 − Qα )]−1/2} � 1, which implies that the mound upstream of the scraper is
unyielded to leading order, and the governing equation (17 b) is satisfied by requiring that Y = 0.
Thus

1 + 1

Ĥ ′ = 0, (19)

which has solution

Ĥ = 1 − ξ and xN =
√

2(1 − Qα )

Bi
. (20)

This yield-stress-dominated solution gives a triangular free surface height with O(Bi) slope in the
unscaled variables. In Fig. 7(a), the results for Ĥ (0) and xN are scaled by the predictions of this
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FIG. 7. (a) Height, Ĥ (0) (red), and length [scaled by the yield-stress-dominated result (20)],
xN

√
Bi/2(1 − Qα ) (blue), for the early time similarity solution, as functions of the ratio Bi/(1 − Qα ). The

dashed lines show the asymptotic predictions in the viscously dominated regime, Bi � 1 − Qα . (b) Height
profiles from the early time similarity solution at three values of Bi/(1 − Qα ) (as shown in legend) compared
against the yield-stress-dominated asymptotic solution, (20) (black). (c) Scaled height, Ĥ/Ĥ (0), plotted against
scaled similarity coordinate, xNξ , for three values of Bi/(1 − Qα ) (as shown in legend), compared against the
outer solution in the viscously dominated asymptotic solution, detailed in Appendix C (black).

asymptotic solution, and thus these curves asymptote to 1 as the ratio Bi/(1 − Qα ) becomes large.
The asymptotic prediction for the free surface profile, is also compared with the solution of (17) and
(18) for the cases of Bi/(1 − Qα ) = 10, 100, and 1000 in Fig. 7(b), evidencing the convergence to
the asymptotic solution.

It is also possible to deduce the asymptotic solution in the regime where Bi/(1 − Qα ) is small.
This corresponds to a weak yield stress and the solution is close to the viscous solution [9], modified
only when the front is approached. It is nevertheless possible to deduce leading-order expressions
for xN and Ĥ (0) using a matched asymptotic argument that is presented in Appendix C, and which
are plotted with dashed lines in Fig. 7(a). In general, the mound becomes of lower aspect ratio and
increased convexity in this regime. Again, the asymptotic solution is compared with the solution of
(17) and (18) for the cases of Bi/(1 − Qα ) = 1, 0.1, and 0.01, evidencing the convergence to the
asymptotic solution [see Fig. 7(c)], which is remarkably good, even at the modest value of 0.1.

Early time solutions were also calculated numerically from the full equations (3) and (4). The
numerical method described in Appendix B was used to integrate from t = 0 to t = 10−2, and
the results compared with the similarity solutions (see Fig. 8), showing close agreement which
diverges with increasing time, as anticipated. The similarity solution was derived on the basis that
the divergence of the flux was dominated by variations in the free-surface gradient (i.e., “slumping”),
neglecting the advective term in the equation due to variations in the free-surface height. This
required that |∂ (Y 2∂h/∂x)/∂x| � |∂h/∂x| which implies x/Y 2 � 1. Thus, when Bi/(1 − Qα ) �
O(1), we have Y = O(1) and x ∼ t1/2, and so the similarity solution becomes invalid once t
becomes order unity, when the horizontal length scale of the mound is no longer small compared
to the typical length scale of the problem, L. When the yield stress dominates, Bi/(1 − Qα ) � 1,
the similarity solution becomes invalid at earlier times, since the yield stress inhibits slumping.
Specifically, when Bi/(1 − Qα ) � 1 we have shown that x ∼ xN t1/2 ∼ [t (1 − Qα )/Bi]1/2 and Y ∼
Y ∼ [Bi/(1 − Qα )]−1/2. Hence, the advection term can be neglected in comparison to the slumping
term when x/Y 2 ∼ [tBi/(1 − Qα )]1/2 � 1. Thus, in this regime we anticipate the similarity solution
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FIG. 8. Early time similarity solutions (black solid lines) for the free-surface height (top row) and yield-
surface height (bottom row) compared with numerical solutions at t = 10−4, 10−3, and 10−2 (dashed lines,
see legend) for Qα = 0.05, and Bi = 0.1, 5, and 100 [(a) and (b), (c) and (d), and (e) and (f), respectively].
Solutions are scaled according to the similarity solution derived in Sec. V A.

to become invalid when t = O[(1 − Qα )/Bi]. This is evidenced in Figs. 8(e) and 8(f), where the
discrepancy between the numerical and asymptotic solutions is already significant at t = 10−2.

If the fluid layer initially also has h = 1 behind the scraper, then the early time deformation
behind the scraper is a reflection of the free surface in front of the scraper. In particular, if we define

Ĥb(ξ ) = −Ĥ (−ξ ), Yb(ξ ) = Y (−ξ ), (21)

then Ĥb and Yb satisfy (17) in the region −1 � ξ � 0, representing the deformed region behind the
scraper, and Ĥb satisfies

x2
N

∫ 0

−1
Ĥbdξ = − (1 − Qα )

Bi
, (22)

as required behind the scraper by mass conservation.

B. Intermediate-time and approach to steady state

At later times, the dominant balance in the governing equation changes and the unsteady term is
negligible to leading order. The solution upstream of the scraper therefore evolves through a series
of quasistatic states in which the volume flux is unity to match the flux far upstream. Again focusing
on the case of a Bingham fluid (N = 1), we neglect the time derivative in (3) and (4) and integrate
once to obtain

1

6
Y 2(3h − Y )

∂h

∂x
+ h = 1, and Y = h + Bi

∂h/∂x
. (23)
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We can then find the volume of the mound, V , as a function of the free-surface height at the scraper,
h0, by numerical integration of (23a) and 23(b) from the nose of the mound, where h = 1 and Y = 0,
up until reaching h = h0, where we evaluate the volume V (h0).

Additionally, at late times the height of the free surface at the upstream face of the scraper satisfies
h0 � 1, while downstream we have hb � 1. Hence, the hydrostatic pressure gradient under the
scraper, and by implication the leakage flux, is dominated by the variation in the upstream free-
surface height, h0. Hence, we can approximate the leakage flux (A12) by

Qα = Qα[G = (h0 − hb)/L̂α )] ≈ Qα (h0/L̂α ), (24)

which can be interpreted as a function only of h0, since L̂α is a fixed parameter of the problem.
This leads to an ODE for h0, by noting that

d

dt
V (h0) = V ′(h0)

dh0

dt
= 1 − Qα, (25)

where ′ represents differentiation with respect to h0. Integrating the approximation (25) gives (cf.
Ref. [16])

t (h0) =
∫ h0

1

V ′(h)

1 − Qα

dh = V (h0)

1 − Qα

−
∫ h0

1

V (h)

(1 − Qα )2

dQα

dh0
dh, (26)

where integration by parts is used to express the integral in terms of dQα/dh0, which can be derived
analytically from (A12). This gives an implicit relation for the free-surface height, h0, as a function
of t . In deriving this relation two approximations were made, namely that the mound is quasistatic
and that the leakage flux is independent of the height behind the scraper. Both of these approxi-
mations require large time, t � 1, for which we assume the height and the length of the mound
are both large, h, L � 1. Along with the volume constraint, hL ∼ t , this implies h ∼ t/L � t and
L ∼ t/h � t . The quasistatic assumption requires that the dimensionless adjustment timescale, t , is
much larger than the advection timescale, which is given by the time taken for the bottom boundary
to travel the length of the mound, L. Thus, this approximation applies when t � L, which we have
shown is true for t � 1. The use of 1 as the lower limit of the integration in (26) implies the use
of the quasistatic assumption throughout the history of the evolution of the mound, including early
times at which the assumption does not apply. As such, there is a constant of integration missing
from (26) which would account for the initial stages of the evolution of the mound; however, this
constant is asymptotically small at large times and can be neglected to leading order.

During this regime, the quasistatic solution can be yield-stress- or viscously dominated, depend-
ing on which terms balance in (23b). The solution will be yield-stress dominated if the balance is
between the two terms on the right-hand side of (23b), which requires h2/L ∼ Bi. The viscously
dominated regime thus occurs if h2/L � Bi, in which case the balance in (23b) is Y ∼ h. A
consequence is that there can only ever be a transition from the viscously dominated regime to
the yield-stress-dominated regime, because, as will be shown, in the viscously dominated regime,
h2 grows slower than L, while in the yield-stress-dominated regime, these quanitities scale in the
same way (via h2/L ∼ Bi).

We now derive the leading-order solutions in the yield-stress- and viscously dominated regimes
and identify the timescales on which the steady state is reached (Ty or Tv , respectively) and on which
a transition between the regimes can occur (Tt ).

1. Yield-stress-dominated quasistatic regime

In the yield-stress-dominated regime we have Y � h and the leading order of (23b) gives

h + Bi

∂h/∂x
= 0 ⇒ h =

√
2Bi(L − x), (27)
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and

V (h0) = h3
0

3Bi
. (28)

The leading order of (23a) gives

1

2
Y 2h

∂h

∂x
+ h = 0, (29)

and we obtain the height of the yield surface,

Y =
[

8

Bi
(L − x)

]1/4

. (30)

When Qα � 1 and dQα/dh0 � 1, which is applicable for intermediate times when ĥα � 1 (see
Sec. III), we can evaluate (26) to obtain

h0 = (3Bi t )1/3 + . . . , L = h2
0

2Bi
+ . . . = 32/3

2Bi1/3 t2/3 + . . . , (31)

giving a 1/3 power law for h0 and a 2/3 power law for L as a function of t , as observed in the
numerical solution shown in Fig. 4. This solution, (27)–(31), is equivalent to the solution for a
quasistatic mound of viscoplastic fluid extruded at a constant rate from a line source [21]. The
shape of the free surface further corresponds to the quasirigid bow wave constructed by Lister and
Hinton [16] and previously reported in the context of plane plasticity by Nye and Taylor [22]. We
note that the asymptotic solution implied by (27) is not well ordered in the vicinity of the nose
x = L, due to the divergence of the free-surface gradient here. When L − x = O(1) [which is small
compared to the O(t2/3) values of L and x in the bulk solution], we have h and Y both O(1) and
we can no longer neglect Y in the yield condition (23b). Thus there is a boundary layer at x = L
in which Eq. (23) should be solved in its entirety. The derivation of this boundary layer solution
is given in Ref. [19, Chapter 7]; however, the boundary layer has a negligible contribution to the
volume of the mound, V (h0), and thus does not effect the leading-order scalings.

As we approach the steady state, we can no longer assume Qα � 1, but we can instead use an
expression for Qα based on G � 1, (8). Further, assuming Bi � 1/ĥ2

α , we find that, to leading order

Qα = ĥ3
αG

12
+ . . . = h0

H0
+ . . . , (32)

where H0 = 12L̂α/ĥ3
α again denotes the value of h0 which drives a unit leakage flux, resulting in the

steady state. Substituting Qα = h0/H0 and (28), we can integrate (26) to find

Bi t

H3
0

= log

(
1

1 − h0/H0

)
− h0

H0
− 1

2

(
h0

H0

)2

+ . . . , (33)

which again reduces to h0 = (3Bi t )1/3 when h0/H0 is small and additionally implies that the steady
state is approached exponentially as

h0

H0
= 1 − exp

(
−3

2
− Bi

H3
0

t

)
+ . . . . (34)

The assumption that the bow wave is quasirigid at intermediate times, as used for this
yield-stress-dominated regime, may not apply if Bi is very small. Specifically, the quasirigid
approximation is valid provided Y � h, which implies Bi t1/4 � 1 [since h ∼ (Bi t )1/3 and Y ∼
(t/Bi2)1/6]. When Bi t1/4 � 1, we instead have a viscously dominated bow wave. This immediately
determines the timescale on which the viscously dominated regime transitions into the yield-stress-
dominated regime: Tt ∼ Bi−4.
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2. Viscously dominated quasistatic regime

When the quasistatic mound is viscously dominated, we find from (23a) and (23b) that to leading
order

Y = h + . . . and
1

3
h3 ∂h

∂x
+ h = 1, (35)

which can be solved to find an implicit equation for the bow-wave shape, as given by Lister and
Hinton [16]:

x = X(h0) − X (h), (36)

where

X (h) = 1

3

[
1

3
h3 + 1

2
h2 + h + log (h − 1)

]
. (37)

Since h, h0 � 1, this can be approximated by

h = [9(L − x)]1/3 = (
h3

0 − 9x
)1/3

, (38)

and so

V (h0) = 1

12
h4

0. (39)

Repeating the approach used to derive (33) and (34), while the leakage flux is negligible we have

h0 = (12t )1/4 + . . . , L ∼ 1

9
(12t )3/4 + . . . (40)

as found by Lister and Hinton [16], and at later times, the approach to steady state is again
exponential, now with

h0

H0
= 1 − exp

(
−11

6
− 3

H4
0

t

)
+ . . . . (41)

This regime applies as long as h � Bi/|∂h/∂x| which implies Bi t1/4 � 1, i.e., t � Tt as
anticipated.

3. Transitional timescales

As discussed above, for a given Bingham number and gap geometry, we may find only the yield-
stress-dominated or viscously dominated regimes before reaching steady state, or there might be a
transition from viscously to yield-stress-dominated behavior (see Fig. 5). To determine which oc-
curs, we first note that the predicted transition from viscously dominated to yield-stress-dominated
behavior occurs after a time Tt ∼ 1/Bi4, but the quasistatic regime only occurs for t � 1, thus the
quasistatic regime will only exhibit viscously dominated behavior if Bi � 1. Next, we identify
a timescale on which the steady state is approached, when the free-surface height reaches the
critical value, h0 = H0 ≈ 12L̂α/ĥ3

α (provided Bi � 1/ĥ2
α). If we have Bi � O(1), then the behavior

is yield-stress dominated throughout the evolution to the steady state, and hence the timescale
on which the steady state is reached is given from (31) by Ty ≈ H3

0 /(3Bi) ≈ 576L̂3
α/(ĥ9

αBi). If,
on the other hand, we assume that the behavior is viscously dominated throughout the evolution
to the steady state, then this free-surface height is reached on a timescale given from (40) by
Tv ≈ H4

0 /12 ≈ 1728L̂4
α/ĥ12

α . Thus, there will be no transition to yield-stress-dominated behavior
if the time at which the transition occurs is equal to or larger than the time at which steady state
is reached, Tt � Tv , which occurs for Bi � ĥ3

α/(123/4L̂α ). Hence, the quasistatic regime is yield-
stress-dominated throughout the evolution to the steady state if Bi � O(1), is viscously dominated
throughout the evolution to the steady state if Bi � ĥ3

α/(123/4L̂α ), and exhibits a transition from
viscously to yield-stress-dominated behavior if ĥ3

α/(123/4L̂α ) � Bi � 1.
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Figure 5 shows how h0 evolves as a function of time, comparing the full numerics with the
quasisteady prediction given by (26) for the specific case of ĥα = 0.1 and L̂α = 0.5, showing
excellent agreement in the regime of validity, t � 1. The gradient indicators show the appropriate
power law for the yield-stress-dominated (1/3) and viscously dominated (1/4) regimes, and the
predicted timescales on which the steady state is reached are indicated by vertical lines in Figs. 5(a)
and 5(c). Figure 5(b) shows the case of Bi = 0.01, which lies in the regime in which a transition
between viscously dominated and yield-stress-dominated behavior is predicted before the steady
state is reached. The numerics show that such a transition does indeed take place and occurs around
the predicted time t = Tt ∼ 1/Bi4.

C. The intermediate regime for a Herschel-Bulkley fluid

Finally, while the full analysis in the sections above could be carried out for the Herschel-Bulkley
model, we instead choose to present only the key predicted scalings in the early and intermediate
regime. As noted in Sec. V A, the early-time scaling does not depend on N , and thus we again have
h − 1 ∼ L ∼ t1/2.

At the intermediate times for which t � 1 but the leakage flux is still small, Qα � 1, we have
the possibility of viscously dominated and yield-stress-dominated regimes. For the former we have
Y ∼ h and the balance between slumping and advection terms in (3) requires

h2+2/N/L1/N ∼ h, (42)

which, combined with the volume condition, hL ∼ t , implies

h ∼ t1/(N+3) and L ∼ t (N+2)/(N+3). (43)

On the other hand, if the behavior is yield-stress dominated, then the yield condition implies

h ∼ Bi

h/L
, (44)

and the predicted scaling is the same as for the Bingham fluid, namely

h ∼ (Bi t )1/3 and L ∼ (t2/Bi)1/3. (45)

These scalings [Eq. (45)] are to be expected since any shear thinning (or thickening) should not
enter the leading-order solution when the yield stress dominates the viscous stresses. As with the
Bingham case, the viscously dominated behavior can only be observed for Bi � 1 and only before
a transition to yield-stress-dominated behavior occurs due to the surface slope becoming sufficiently
shallow, which occurs when Bi tN/(N+3) ∼ 1 (unless the steady state is reached on a shorter timescale
than the timescale implied by this condition).

These scaling predictions are illustrated by comparison with numerical computations for the
complete system (Sec. IV) with N = 0.5. In Fig. 6 we plot the difference between the dimensionless
height of fluid at the scraper and in the far field, h0 − 1, as a function time. In the first case with
Bi = 10 [Fig. 6(a)], we observe the early time dependence (∼ t1/2) transitions to the yield-stress-
dominated regime (∼ t1/3) and the system approaches a steady state. When the dimensionless yield
stress is much lower [Bi = 0.001, Fig. 6(b)] the initial evolution exhibits the same time dependence
(∼ t1/2) but it transitions to a viscously dominated state (∼ t1/3.5) which then subsequently evolves
to a steady state.

VI. COMPARISON TO EXPERIMENTS

To investigate the validity of our shallow-layer theory for scraping of a layer of viscoplastic
fluid, we have conducted experiments with a model yield-stress fluid. The methodology and results
of these experiments are detailed in the following sections.
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FIG. 9. Schematic of experiment configuration. The cuboidal scraper is fixed to the stationary milling
machine head, while the tank containing a layer of hair gel is fixed to the bed of the machine, which can
translate at uniform velocity, U . The scraper fits snugly in the channel, with the gaps on either side being
approximately 0.1 mm.

A. Methodology

1. Experimental configuration

The configuration of the experiments is shown in Fig. 9. The channel (clear acrylic) was mounted
on the table of a Bridgeport milling machine, while the scraper was attached to the milling machine
head. The machine has a motorized bed, allowing for linear translation of the table at a range of
speeds (≈0.4–8.5 mm/s) while the head (and hence scraper) remains stationary. The bed can also
be raised vertically, allowing for control over the size of the gap under the scraper. To prepare
the initial uniform layer thickness, a hand-held scraper was used to remove fluid above a fixed
height. Still images were taken at fixed time intervals using a Canon EOS 250D camera with a
timer-controlled automatic shutter trigger. The camera was positioned on a tripod in front of the
scraper, which is stationary during the experiments, at a distance of approximately 70 cm from the
tank. Finally, for one of the experiments, a dial indicator was mounted at the back of the scraper
(see Fig. 13) to check for any deflection of the scraper. This dial indicated a maximum deflection of
less than 0.05 mm and so the scraper is well represented by a static vertical boundary as assumed in
the shallow-layer theory.

2. Materials

For our model yield-stress fluid we used a commercially available hair gel (Enliven Hair Gel
Extreme, hold 4). Tests were carried out in a Kinexus ultra+ rotational rheometer (Malvern
Instruments, Worcestershire, United Kingdom) using parallel plates of diameter 40 mm and gap
1 mm to measure the steady-state flow curve of the material. Shear-rate controlled tests were carried
out for shear rates stepped up and down between 10−4 s−1 and 30 s−1 and amplitude controlled
oscillatory measurements were taken for strains between 10−4 and 5 at a fixed frequency of 1 Hz.
To mitigate the effects of slip on the measurements, P400 grit sandpaper was glued to the surfaces
of the parallel plates. Figure 10(a) shows results for two separate up- and down-stepped shear-rate
controlled tests, separated by a 100-s rest period, demonstrating that the rheology of the material is
well fitted by a Herschel-Bulkley constitutive rule, with τc = 70 Pa, K = 80 Pa sN , and N = 0.25.
Apart from at very low strain rates, the results show excellent agreement both between the up- and
down-stepped tests, and between the two tests separated by the period of rest, indicating that the
material does not exhibit any significant thixotropy. The large yield stress of the hair gel poses a
challenge for measuring an accurate volume, and hence density, of the material. The density was
found to be close to that of water, namely in the range 1000 ± 50 kg m−3, and hence we take the
value of 1000 kg m−3 in the absence of more precise volume measurements. Figure 10(b) shows the
storage modulus, G′, and the loss modulus, G′′, as a function of strain. At low strains the material
behaves like a linear viscoelastic solid, as evidenced by approximately constant values of both G′
and G′′. At higher strains, the storage modulus decreases dramatically, and eventually falls below
the loss modulus, indicating a transition to a fluid regime. The beginning of this transition roughly
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(a) (b)

FIG. 10. Hair gel rheometry. (a) Steady-state flow curve for the commercial hair gel used in the ex-
periments. Data (symbols) is shown for two up- and down-, shear-rate stepped tests, separated by a 100-s
rest period. The solid black line indicates the flow curve for a Herschel-Bulkley constitutive law with τc =
70 Pa, K = 80 PasN , and N = 0.25. (b) Storage modulus, G′ (blue stars), and loss modulus, G′′ (red circles),
as functions of strain. The dashed blue and red lines indicate the values 813 Pa and 52.5 Pa, respectively,
obtained by averaging G′ and G′′ over low strains (γ < 10−2). The vertical gray line indicates the critical strain,
γ = 0.12, at which the stress attains the yield stress, G′γ = τc = 70 Pa, as obtained from the Herschel-Bulkley
fit.

corresponds to the critical strain, γ = 0.12, where the stress is equal to the yield stress, τc = 70 Pa.
The average value of the storage modulus, G′, over the linear viscoelastic regime (averaged over
γ < 10−2) is 813 Pa, while at the critical strain (i.e., at yielding) it takes the value of 578 Pa. We
will discuss the relative significance of elastic effects in Sec. VI C.

To reduce the number of bubbles present in the sample, each bottle of hair gel was spun in a
lathe at 2000 rpm, resulting in the bubbles converging to the center of the bottle. Inevitably some
bubbles were reintroduced to the fluid in the depositing and scraping of the layer. These were seen
as a convenience for visualizing the flow within the layer, and represent a sufficiently small volume
fraction that we do not anticipate they had a significant impact on the rheology or dynamics of
the flow.

B. Accounting for slip

Wall slip is a feature commonly reported for yield-stress fluids [23–26] and was identified in our
experiments through two observations. First, the thickness of the residual layer behind the scraper
(in the absence of an instability we detail in Sec. VI D) was typically uniform and equal to the gap
height (see Fig. 11), which is consistent with the fluid being unyielded under the scraper, translating
with the bottom boundary and slipping against the underside of the scraper. Second, small bubbles
which are close to the bottom of the tank can be seen to move relative to the tank while not moving
significantly relative to one another (see Fig. 11), indicating slip against the bottom of the tank. We
thus introduce the effects of slip into the theory detailed in Secs. II–V.

Among experimental studies of wall slip of viscoplastic fluids, of particular relevance to our
experiments are the studies of Piau [24] and Daneshi et al. [26], who characterize the slip of
Carbopol solutions (a key ingredient in commercial hair gels) against glass and plexiglass surfaces,
for different concentrations and yield stresses of solution. In both cases the data is well charaterized
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FIG. 11. Evidence of wall slip in the scraping experiments. Two images from Test IV, taken 50 s apart.
The residual layer behind the scraper has a uniform thickness set by the gap height, suggesting that the fluid is
slipping against the underside of the scraper. The red circles indicate two bubbles that are close to the bottom
of the tank but have moved relative to the tank (the red arrows indicate the distance of the bubbles to the bolts,
which are moving with the tank), indicative of slip at the base.

by a slip velocity law of the form

Us = β max(τ − τs, 0)m, (46)

where Us is the slip velocity of the fluid relative to the boundary, τ is the shear stress at the boundary,
τs is a slip yield stress, and β and m are parameters which, along with τs, can depend on the
concentration of the Carbopol solution. Such a slip law has been considered for shallow flows of
viscoplastic fluids in Refs. [27,28]. Daneshi et al. [26] found the exponent, m, to be 1.04 ± 0.06, and
hence well represented by a linear relationship, m = 1. Piau [24] also found that the exponent was
close to one for smooth surfaces such as plexiglass but could be greater than 2 for rougher surfaces
(machined chromium). Given this evidence, and for simplicity, we choose a linear relationship,
m = 1, for our model. For the slip yield stress, τs, both studies found a strong dependence on the
yield stress of the fluid, with larger yield stresses resulting in larger slip yield stresses. However,
the specific relationship varied significantly between the studies. Daneshi et al. [26] found that
the behavior was well characterized by a linear relationship, τs = (0.18 ± 0.02)τc, while Piau [24]
found that the ratio τs/τc varied between 0.009 and 0.24. We choose to use a value at the lower
end of this range, τs = 0.01τc, for two reasons. First, Piau [24] reports a value of τs = 0.07 Pa
for a sample with τc = 75 Pa, which is close to the yield stress of our fluid (while the samples
used by Daneshi et al. [26] reach a maximum yield stress of 32 Pa). Second, we observe slip
occurring at relatively shallow free surface slopes (and hence low basal shear stresses). The constant
of proportionality, β, also varies significantly with concentration and between studies. Combining
the results of Daneshi et al. [26] and Piau [24], we find a range of between 2.2 × 10−6 m s−1Pa−1

and 6.0 × 10−1 m s−1Pa−1, with the upper limit corresponding to low concentrations (� 0.1%) of
Carbopol, reported by Daneshi et al. [26], and the lower limit corresponding to high concentrations,
reported by Piau [24]. We choose to use the value β = 1.6 × 10−5 m s−1Pa−1, which approximately
corresponds to the value reported by Piau [24] for the 75 Pa yield-stress sample.
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FIG. 12. (a) Free-surface profiles, h (solid), and yield-surface profiles, Y (dashed), from numerical solu-
tions at t = 20 with Bi = 1, N = 0.25, ĥα = 0, and a selection of dimensionless slip-lengths, Ls (see legend).
The yield surface for Ls = 1 and Ls = 1.5 are both at Y = 0. (b) Increase in height immediately upstream of
the scraper, h0 − 1, as a function of time, t , for the same parameters shown in (a).

Under the lubrication model, the magnitude of the basal shear stress, τ , is given by

τ = ρgh

∣∣∣∣∂h

∂x

∣∣∣∣. (47)

Thus, to introduce slip into our model, we replace the bottom no-slip boundary condition, u = −U ,
with

u = −U + β max

(
ρgh

∣∣∣∣∂h

∂x

∣∣∣∣ − 0.01τc, 0

)
. (48)

After nondimensionalization, and dropping hats from the new variables, this can be written as

u = −1 + Us = −1 + Ls max

(
h

∣∣∣∣∂h

∂x

∣∣∣∣ − 0.01Bi, 0

)
at z = 0, (49)

where Us is the dimensionless slip velocity and Ls is the dimensionless slip length, given by

Ls = βμ

h∞
= βK (U/h∞)N−1

h∞
. (50)

The parameter μ = K (U/h∞)N−1 is the typical viscosity for the Herschel-Bulkley model, and we
use the terminology “slip length” to reflect the fact that βμ is a length, which becomes nondimen-
sionalized by h∞ in the definition of Ls. With this alteration to the basal boundary condition, the
evolution equation for h [Eq. (3)] gains a term, becoming

∂h

∂t
= ∂

∂x

{
(1 − Us)h − N[(2N + 1)h − NY ]

(N + 1)(2N + 1)
Y 1+s

∣∣∣∣∂h

∂x

∣∣∣∣
s}

, (51)

with Y defined as before. The effect of slip on the shape of the predicted free-surface profile and on
the evolution of the height of the mound is shown in Fig. 12 for the particular case of Bi = 1,
N = 0.25, and no leakage flux, ĥα = 0. In Fig. 12(a) we see that the inclusion of slip reduces
the gradient of the free surface at the nose [although the gradient discontinuity remains, due to
the nonsmoothness of the maximum function in (49)]. The horizontal extent is thus increased
and the height decreased. Figure 12(b) indicates that the excess height of the mound follows the
same trend with time but is reduced as the slip length is increased. Another feature we observe is
that the yield surface, Y , can vanish over the entirety of the mound for sufficiently large slip lengths.
This may seem contradictory since it suggests the mound is deforming despite being unyielded
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TABLE I. Dimensionless parameters and typical length and timescales for the five scraping experiments.
The dimensionless parameters are the Bingham number, Bi, the dimensionless gap height, ĥα , the dimension-
less slip length, Ls, and the aspect ratio, ε = h∞/L.

Test Bi ĥα Ls ε L (cm) T (s)

Test I 0.91 0.07 0.15 0.78 1.30 1.5
Test II 1.93 0.30 1.40 0.37 2.70 63.9
Test III 1.82 0.03 0.58 0.20 10.2 96.6
Test IV 2.29 0.30 1.20 0.16 12.9 303.8
Test V 2.29 0.03 1.20 0.16 12.9 303.8

everywhere; however, this can be rationalized as in Refs. [17,27] by showing that the fluid remains
above the yield stress when higher orders are included in the asymptotic expansion.

When ĥα �= 0 we should also include slip in the model of leakage flux under the scraper. This
can be done (e.g., see Lawal et al. [20]), in principle, by including further regimes in the analysis of
Sec. III, dependent on whether, and in which direction, the fluid is slipping at the top and bottom of
the thin gap. However, this results in a large number of possible regimes and a rather complicated
model for the flux under the scraper. Rather than taking this approach, we instead appeal to the
experimental observation that the residual layer is typically uniform and of thickness given by
the gap height (see Fig. 11). Since the dimensionless thickness of the residual layer sufficiently
far downstream of the scraper is equal to the dimensionless leakage flux, this is consistent with
a particular regime in which the fluid is unyielded in the gap, and slipping only on the upper
surface (giving a dimensionless flux equal to the gap height). Thus, when computing shallow-layer
solutions to compare to the experiments, we use the constant value Qα = ĥα for the dimensionless
leakage flux.

C. Dimensionless parameters

To summarize, for the material parameters of the fluid, we take τc = 70 Pa, K = 80 Pa sN ,
N = 0.25, and ρ = 1000 kg m−3. The storage modulus was measured to be 813 Pa in the linear-
viscoelastic regime and 578 Pa at yielding. For the model of slip, we take τs = 0.7 Pa and
β = 1.6 × 10−5 m s−1 Pa−1. The initial layer thickness was set as 1 cm (Tests I and II) and 2 cm
(Tests III–V). The scraper velocity was varied between approximately 0.4 mm s−1 and 8.5 mm s−1,
and the gap height between approximately 0.6 and 6 mm. After nondimensionalizing according to
Sec. II we obtain the dimensionless parameters shown in Table I for the five experiment runs. Also
shown are the typical length and timescales, L and T .

The significance of inertia in the shallow-layer governing equations is measured by a modified
Reynolds number [1], εRe, where

Re = ρU 2

K (U/h∞)N , and ε = h∞/L. (52)

For the parameters of our experiments, this quantity varies between a minimum of 9.1 × 10−7

for Tests IV and V, and a maximum of 7.3 × 10−4 for Test I, indicating that our experiments are
conducted in a regime for which inertia can be safely neglected.

To determine the significance of elasticity in the experiments, we wish to compare an elastic
relaxation time, te, to the typical timescale of the flow, T , defining a Deborah number, De = te/T .
When the Deborah number is small, elastic stresses relax quickly, relative to the timescale of the
experiment, and can be neglected. There are multiple ways of defining such an elastic timescale
[29, p.234] although there is no clear consensus in the scientific literature. One choice which has
been used for power-law and Herschel-Bulkley fluids [29–31] is given by (K/G′)1/N where G′ is
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FIG. 13. Typical images from a scraping experiment (Test I). The dial indicator behind the scraper is used
to test for any deflection of the scraper.

either measured in the linear-elastic regime [30] or near yielding [31]. For our material properties
this gives an elastic timescale in the range 9.4 × 10−5 s < te < 3.7 × 10−4 s, which is significantly
smaller than the timescales of our experiments (see Table I), resulting in Deborah numbers smaller
than 2.4 × 10−4. Another way to define an elastic timescale is te = μ/G′ [29, p. 351]. In this case, te
depends on the experimental parameters and, using the value of G′ at yielding, the Deborah number
is found to vary between 8 × 10−3 (for Tests IV and V) and 0.1 (for Test I). Thus we anticipate that
our experiments are carried out in a regime in which elastic effects are largely negligible.

Finally, due to the presence of a free surface in our flow, surface tension effects could also
be present in the experiments. To determine the significance of these effects we consider the
capillary length, lc = (σt/ρg)1/2, where σt is the surface tension of the fluid. For length scales,
L, below the capillary length we anticipate surface tension effects to be significant, while on
significantly larger length scales they will be negligible. Alternatively, we can define the Bond
number, Bo = ρgL2/σt = L2/l2

c , which measures the relative sizes of gravitational and capillary
stresses. Like the elastic timescale, surface tension is difficult to define and measure for a yield-stress
fluid [31–34]. These previous studies have typically reported a value for Carbopol slightly below the
surface tension of water (0.072 Nm−1), in the range ≈0.05–0.07 Nm−1. However, our commercial
hair gel contains a number of other ingredients such as polyvinylpyrrolidone and triethanolamine,
which could act to alter the surface tension significantly. Both of these ingredients reduce the
surface tension of water when in solution [35,36], thus we report the typical capillary length and
corresponding Bond numbers for a value of σt = 0.07 Nm−1, noting that these correspond to a
generous upper limit for the significance of surface tension effects in our experiments. This gives a
capillary length of lc ≈ 2.7 mm and thus a Bond number that varies between 23 (Test I) and 2300
(Tests IV and V), indicating that surface tension is not a significant factor upstream of the scraper
in our experiments.

D. Results and discussion

Figure 13 shows a selection of three typical images obtained from an experiment (Test I shown).
We note that the experiments are qualitatively consistent with those reported by Maillard et al.
[6]. Namely, upstream of the scraper, a mound of growing volume forms which has a roughly
triangular shape, is approximately uniform across the channel, and exhibits undulations on the
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FIG. 14. Comparison of surface profiles from experiments (red) and shallow-layer theory (blue). The
panels show profiles at a selection of times from four different experiments, for which the dimensionless
parameters are given in Table I. The profiles shown correspond to the following dimensionless times (increasing
from bottom to top as indicated for Test II): (Test I) t = 1.4, 4.1, 9.4, 20; (Test II) t = 0.55, 2.5, 5.1, 10; (Test
III) t = 0.041, 0.21, 0.50, 0.99; and (Test IV) t = 0.045, 0.11, 0.24, 0.60. The vertical dashed line indicates
x = 2h∞, to the left of which we anticipate the shallow-layer theory to fail.

upper surface. In the absence of an instability discussed later, the residual layer downstream of
the scraper is uniform and equal to the gap height. We do not observe the 10% increase in the
residual layer compared to the gap height reported by Maillard et al. [6]. They attributed this to
elastic effects, though in the theory of this paper it could potentially result from enhanced flux
under the scraper due to the hydrostatic pressure difference between the front and back of the
scraper. Notably, however, their experiments used a short scraper (Lα � hα) and relatively large
gaps between it and the underlying plane, meaning that our theory may not be directly applied. To
compare with the predictions of shallow-layer theory, we extract the free-surface profiles from these
raw images by first cropping the image to a 3000 × 1000 pixel region containing the hair-gel layer
before performing a sequence of transformations to adjust for perspective and lens distortion effects
and extracting the free surface as a contour of saturation level (at a value of 0.8). Further details of
this methodology can be found in Ref. [19, Chapter 7].

Figure 14 shows free-surface profiles at a selection of four times from Tests I–IV, compared
against the corresponding shallow-layer predictions. These show reasonable agreement, particularly
given that we have not introduced any fitted parameters and the aspect ratio, ε, is not especially small
in any of the examples, ranging between 0.16 and 0.78 (see Table I). By comparison to Figure 12(a)
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we can see that the agreement would be significantly worse without the inclusion of slip in the
model. For Tests II–IV, the model without slip (Ls = 0) would fail to capture the convexity at the
front of the mound, and in Tests II and IV (Ls = 1.4 and 1.2, respectively), the length of the mound
would be significantly underestimated. Excluding a region close to the scraper, which we discuss
later, the weakest agreement is for Test I, which corresponds to the experiment with the largest
aspect ratio, ε = 0.78, smallest Bond number, Bo = 23, and largest Deborah number, De = 0.1.
Hence this experiment could be being more strongly effected by nonshallow, elastic, or surface
tension effects.

One notable discrepancy is that the areas under the curves do not agree between experiments
and theory, typically being larger in the experiments than the theoretical profiles. This could be due
to discrepancies between the leakage flux used in the model and occurring in the experiment, but
we anticipate this effect to be minor, since we are able to observe the uniform layer behind the
scraper in the experiments (except for Test II which features an instability behind the scraper as
discussed below). Rather, we believe this disagreement arises primarily due to nonplanarity of the
experiments and the image processing method used to distinguish the free surface. First, as can be
seen in the second panel of Fig. 13, the free surface may dip at the center of the tank, resulting in
the free surface at the tank sides being larger than the average value across the tank, causing the
area under the extracted experimental free surface to be larger than expected through conservation
of mass. Second, even where the free surface does not dip at the center of the tank, as the mound
grows, regions of the upper surface visible in the images can become darker and eventually reach the
saturation threshold required to be identified with the free surface in the image processing method.
Again this would result in an overestimation of the free-surface height and hence an exaggeration
of the area under the curve.

The discrepancy between the theoretical and experimental profiles is generally greatest in a
region close to the scraper. This is to be anticipated since, in the shallow-layer theory, vertical
velocities are assumed small relative to the horizontal velocities, whereas they must become of the
same magnitude at the scraper where there is a stagnation flow against the no-penetration boundary.
The horizontal extent of the region where the vertical velocity becomes non-negligible is O(ε)
in the scaled shallow-layer theory or O(h∞) in dimensional coordinates. We hence indicate the
horizontal positions corresponding to x = 2h∞ by dashed lines in Fig. 14, demonstrating that much
of the discrepancy between experiments and theory can be attributed to this O(h∞) region from the
scraper, where shallow-layer theory fails.

We note two further interesting observations from the experiments. First, the free surface
upstream of the scraper undergoes a buckling or wrinkling instability also observed by Maillard
et al. [6]. These can be seen in the extracted surface profiles in Fig. 14 but perhaps are more
clearly seen in the raw images in Figs. 11 and 13. This instability cannot be described through
shallow-layer theory, since the wavelength of the resulting wrinkles is on the order of the height
of the layer and perhaps arises through elastic or plastic buckling of an unyielded layer of fluid
at the free surface. Indeed, similar surface features are seen in fully two-dimensional numerical
simulations of a slumping slender vertical block of viscoplastic fluid under gravity with a small
but finite Reynolds number [37], suggesting the instability can plausibly be understood as an effect
of nonshallowness, without the need for additional physics such as surface tension or elasticity. A
second instability can be observed in the layer downstream of the scraper for sufficiently slow speeds
and thin gaps under the scraper, resulting in a periodic ripple pattern of a reasonably well defined
wavelength behind the scraper (see Fig. 15). The pattern formed is reminiscent of the washboard
instability where an inclined plate towed over a layer of viscoplastic fluid can become unstable to
vertical oscillations, resulting in a periodic pattern behind the scraper [7]; however, this mechanism
is not applicable to our instability, since the scraper is rigid and not free to lift vertically or deflect
horizontally. It appears the wavelength of the pattern is set by the gap size, with the two panels
in Fig. 15 corresponding to a factor of 5 difference in gap size and exhibiting a similar scaling
between the resulting wavelengths. We do not believe the upstream and downstream instabilities
are connected since the wavelength of the pattern downstream does not appear to be related to the
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FIG. 15. The instability observed behind the scraper for slow speeds and narrow gaps. The images are
from Tests II (top) and V (bottom), with dimensional gap sizes, hα = 3 and 0.6 mm, respectively, and speed,
U ≈ 0.4 mm/s, for both. The red lines and text indicate a typical scale for the wavelength of the instability.

wavelength upstream, and because the pattern upstream of the scraper is approximately stationary
in the frame of the scraper, thereby not producing any periodic behavior at the leading edge. We
are not currently able to provide a definite mechanism for this instability, which would warrant
further experiments to detail the dependence on scraper velocity and gap size more fully, as well as
an exploration of the further effects of material properties notably including yield stress and slip.
An observed pinching-off of a slightly reduced layer height behind the scraper, and the eventual
dewetting of the base between the ripples suggests that surface tension could be important in the
process downstream of the scraper.

VII. CONCLUSIONS

We have used lubrication theory to predict the evolution of the free surface of a layer of
viscoplastic fluid when scraped by an infinitely wide scraper with a small gap underneath. The
motion of the scraper leads to a buildup of fluid upstream forming a deepening mound, while a thin
layer flows under the scraper. At early times the depression of the free surface behind the scraper is a
reflection of the elevation ahead of the scraper, which grows as t1/2 in height and length. The leakage
flux varies according to the hydrostatic pressure difference between the upstream and downstream
edges of the scraper, so that a steady state is eventually reached, though only after very large times
when the gap under the scraper is small. On the approach to this steady state there are three regimes,
the initial early-time adjustment, followed by a quasisteady intermediate-time regime, before an
exponential approach to the steady state. At intermediate times, the mound can exhibit a viscously
dominated solution, for which the height and length grow as t1/(3+N ) and t (2+N )/(3+N ), respectively
(for shear index, N), or a yield-stress-dominated regime, for which the height and length grow as
t1/3 and t2/3, respectively. It can also start in the viscously dominated regime and transition to the
yield-stress-dominated regime, before reaching steady state. After the initial adjustment of the free
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surface behind the scraper, the residual layer becomes unyielded and varies very slowly in height
with the slowly varying leakage flux.

To test the predictions of the shallow-layer theory, we carried out preliminary experiments using
a commercial hair gel. These indicated a need to include slip into the model, after which the
free-surface profiles agreed reasonably well with the theory, except for in a region close to the
scraper which is not well described by shallow-layer theory due to significant vertical velocities. We
observed a previously reported buckling instability of the free surface as well as a novel instability
associated with the thin gap under the scraper. The results of these preliminary experiments indicate
the need for additional experimental investigation, in particular to better understand the instability
downstream of the scraper and to further explore the effects of material properties including yield
stress and slip. Future theoretical work on the problem could involve extending the time-dependent
theory given in this paper to a scraper of finite width to determine the transient dynamics of
the mound in three dimensions, as it evolves to the steady-state solution given by Lister and
Hinton [16].
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APPENDIX A: FLOW UNDER THE SCRAPER

Under the lubrication approximation, the dimensionless shear stress under the scraper is given
by

τ = Bi + G[z − ĥα (1 − λ1)], (A1)

where λ1 is a constant of integration, chosen such that there is a yield surface at z = ĥα (1 − λ1),
and the fluid is yielded between this position and the underside of the scraper. Expressions for λ1

are given below. In combination with the constitutive law,

τ = Bi + (∂u/∂z)N (where ∂u/∂z > 0), (A2)

this motivates the choice of gap-scaled variables, P = GĥN+1
α and Big = BiĥN

α . The gap-scaled
leakage flux, Qα/ĥα , then depends only on P, Big, and N , not on ĥα .

As discussed in Sec. III, depending on the size of the pressure gradient, P, we have three different
flow regimes in the gap (see Fig. 2). Below we detail the ranges of validity for each regime and report
the corresponding expression for the leakage flux under the scraper. For the detailed derivation of
these results see Refs. [19,20].

Regime 1:
The first regime applies for 0 < P � P1, where P1 = [(N + 1)/N]N . For this regime, the leakage

flux is given by

Qα

ĥα

= Ps

(s + 1)(s + 2)

{
(s + 2)λs+1

1 − [
λs+2

1 − (λ1 − 1)s+2
]}

, (A3)

where λ1 is the solution to the equation

λs+1
1 − (λ1 − 1)s+1 = s + 1

Ps
. (A4)
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Regime 2:
The second regime applies for P1 < P � P2, where P2 is given implicitly by

P2 − [(s + 1)P2]
1

s+1 = 2Big. (A5)

In this regime the leakage flux is

Qα

ĥα

= 1 − Ps

(s + 1)(s + 2)
λs+2

1 , (A6)

with λ1 satisfying

λs+1
1 = s + 1

Ps
. (A7)

Regime 3:
The third regime applies for P > P2. In this regime, there is a second yielded region, and so we

can define λ2 as the gap-scaled distance from the bottom boundary to the plug. Thus the shear stress
under the gap can also be written in terms of λ2 as

ĥN
α τ = −Big + P

(
z

ĥα

− λ2

)
= Big + P

[
z

ĥα

− (1 − λ1)

]
. (A8)

The leakage flux is given by

Qα

ĥα

= Up − Ps

(s + 1)(s + 2)

(
λs+2

1 + λs+2
2

)
, (A9)

where Up is the plug velocity:

Up = Ps

s + 1
λs+1

1 = 1 + Ps

s + 1
λs+1

2 , (A10)

and λ1 and λ2 are determined from

λ1 + λ2 = 1 − 2Big

P
and λs+1

1 − λs+1
2 = s + 1

Ps
. (A11)

It is insightful to report the results for a Bingham fluid (N = s = 1), because in this case the
expressions for the flux are available explicitly in terms of the scaled pressure gradient, P, and
Bingham number, Big:

Qα

ĥα

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
+ P

12
for 0 < P � P1,

1 − 1

3

√
2

P
for P1 < P � P2,

Up − Up

3

√
2Up

P
− Up − 1

3

√
2
(
Up − 1

)
P

for P > P2.

(A12)

In these expressions, the nondimensional plug velocity, Up, is given by

Up = 1

4

(
R + 1

R

)2

, with R =
√

P

2

(
1 − 2Big

P

)
, (A13)

while the critical values of the scaled nondimensional pressure gradient are given by

P1 = 2, P2 = 1 + 2Big + √
1 + 4Big. (A14)

From the stress under the scraper, (A1), we can immediately determine the drag force per unit
width on the scraper due to the shear in the gap for any shear index. This is given, in the original
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dimensionless variables, by

Fd = L̂α (Bi + ĥαλ1G), (A15)

where λ1 is given for each of the three regimes by (A4), (A7), and (A11). In particular, in the steady
state, the flow under the scraper is in the third regime and P � 1. In this case, from (A11) we have

λ1 = 1

2
− Big

P
+ . . . ⇒ Fd = L̂α ĥαG

2
+ . . . = ĥαh0

2
+ . . . , (A16)

where we have used G = h0/L̂α + . . ., since h0 � hb at steady state. This is much smaller than the
force per unit width acting on the scraper due to hydrostatic pressure in the mound upstream of the
scraper,

Fp =
∫ h0

ĥα

h0 − z dz = h2
0

2
+ . . . . (A17)

Thus the force required to push the scraper in steady state, F = Fd + Fp, is dominated by the
hydrostatic contribution.

APPENDIX B: NUMERICAL SCHEME FOR INTEGRATING (3) AND (4)

For efficient numerical resolution of the evolving mound of fluid upstream of the scraper, we
choose to restrict the computational domain to the upstream extent of the mound, L(t ), and scale
the x coordinate by the length of the mound

ζ = x

L(t )
. (B1)

This introduces an advection term to the equation, which becomes (taking the Bingham case, N = 1,
for clarity)

ht = 1

L

[
1

6L
Y 2(3h − Y )hζ + h

]
ζ

+ ζ L̇

L
hζ ≡ 1

L
qζ + r, (B2)

Y = max

(
0, h − LBi

|hζ |
)

, (B3)

where subscripts represent partial differentiation, dot represents differentiation with respect to time,
and q and r are the flux and advection terms. We solve this equation numerically using the numerical
scheme proposed by Balmforth et al. [38]. We construct an (in general) nonuniform spatial grid, ζ =
{ζ (i), i = 0, . . . , M}, where ζ (0) = 0 and ζ (M ) = 1. This grid could be chosen to be uniform, ζ (i) =
i/M, but, to improve resolution at the nose, we typically use the grid ζ (i) = (i/M )1/p where p > 1
is a constant, and is chosen as p = 3 for the majority of the results presented in this paper. Results
were compared for a number of different values of M to ensure the solutions were independent of
the grid resolution, and M = 200 was found to give well converged and resolved solutions. The
one exception to the above is for the lowest value of the Bingham number, Bi = 0.001. In this case
the low yield stress results in a much shallower front of the mound and the higher resolution is not
needed here. In fact, the strong concentration of grid points at the front for p = 3 was found to
cause numerical difficulties in the time integration of this case. For this case we therefore used a
uniform mesh (p = 1) with a larger number of points, M = 500. Again the solution was compared
to solutions with different values of M to ensure independence of the grid choice.

Discretization of (B2) provides ODEs for h(i), i = 1, . . . , M − 1, given by

ḣ(i) = 2

L

q(i+1/2) − q(i−1/2)

ζ (i+1) − ζ (i−1)
+ ζ (i+1) − ζ (i)

ζ (i+1) − ζ (i−1)
r (i+1/2) + ζ (i) − ζ (i−1)

ζ (i+1) − ζ (i−1)
r (i−1/2), (B4)
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FIG. 16. Diagram showing the three different solution regions used in the numerical method.

where q(i+1/2) and r (i+1/2) are the flux and advection terms in (B2) evaluated at ζ (i+1/2) = (ζ (i) +
ζ (i+1))/2. We have ḣ(M ) = 0 [with initial condition satisfying h(M ) = 1], and the flux boundary
conditions provide ODEs for h(0) and L, via

ḣ(0) = 2
q(1/2) − Qα

Lζ (1)
, L̇ = 2

q(M−1/2) − 1

1 − h(M−1)
, (B5)

where Qα is the leakage flux. These coupled ODEs are solved using a backward differentiation
formula, as implemented in SciPy’s “solve_ivp” function [39].

When integrating from t = 0 with an initially uniform layer of fluid, the approach above fails
since L(0) = 0 and the transformation to the stretched variable (B1) is singular. Instead, we
implement the method above on an unscaled horizontal grid (i.e., L = 1, dL/dt = 0) and a domain
size chosen sufficiently large to encompass the disturbed region throughout the time period under
consideration. It is then possible to use the resulting solution as an initial profile to commence
further time-stepping using the method detailed above with a rescaled grid.

It is also possible to solve for the free-surface height behind the scraper, using an equivalent
scheme to above. The length of the disturbed region downstream of the scraper is denoted Ld and is
solved for in the same manner as L in front of the scraper. Behind the scraper there is an additional
complication that occurs when the fluid behind the scraper drops to a level at which it is unyielded.
The boundary condition immediately behind the scraper is given (for the Bingham case, N = 1) by

1

6
Y 2(3h − Y )

∂h

∂x
+ h = Qα at x = −L̂α, (B6)

thus, as long as hb �= Qα , we require Y �= 0 and the layer to be yielded, but when hb equals Qα

the layer must be unyielded. Thus hb = Qα constitutes a singular point of the equations which per-
mits discontinuous derivatives, presenting numerical difficulty. Rather than attempting to integrate
through this singular point, the integration is interrupted when hb first equals Qα . Provided the layer
does not become reyielded immediately behind the scraper, after this time there are three distinct
regions to the free surface (see Fig. 16): the growing mound in front of the scraper (region I); an
unyielded layer behind the scraper that, in the frame of the scraper, is purely advected to the left and
satisfies hb = Qα at the scraper boundary (region II); and the region downstream of the scraper that
deformed in the initial stages of the problem (region III). In region I we use the numerical scheme
as detailed above. In region II we define

ζm = x + L̂α

Lm(t )
+ 1, (B7)

such that ζm varies between 0, at the boundary between regions II and III, and 1, at the back of the
scraper. The governing equation is then given by (B2) with ζ → ζm, L → Lm and q = h (since the
layer is unyielded throughout this region). In region III we define

ζd = x + L̂α + Lm(t )

Ld (t )
+ 1, (B8)
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which varies between 0, where region III meets the undisturbed uniform layer downstream of the
scraper, and 1, at the boundary between regions II and III. The governing equation is then given by

ht = 1

Ld
qζd + (ζd − 1)L̇d − L̇m

Ld
hζd . (B9)

We write h(i)
d , q(i)

d . . ., for the values of the variables at the grid points in region III, ζ = ζ
(i)
d

(where 0 � i � Md ), and likewise for region II with subscript m. We then discretize the governing
equation in region III exactly analogously to (B4). The equation in region II is discretized using an
upwinding scheme as

ḣ(i)
m = 1 + (ζm − 1)L̇m

Lm

h(i+1)
m − h(i)

m

ζ
(i+1)
m − ζ

(i)
m

. (B10)

The conditions at the boundaries of each region then provide a set of equations analogous to (B5),
providing the evolution equations for Ld , Lm, h(Md )

d , h(0)
m , and h(Mm )

m :

L̇d + L̇m = 2
q(1/2)

d − 1

h(1)
d − 1

, ḣ(Mm )
m = 2

Qα − h(Mm )
m

Lm
[
1 − ζ

(Mm−1)
m

] , (B11)

ḣ(Md )
d = ḣ(0)

m = 2

Ld

h(Md )
d − q(Md −1/2)

d

1 − ζ
(Md −1)
d

− L̇m

Ld

h(Md )
d − h(Md −1)

d

1 − ζ
(Md −1)
d

= 1 − L̇m

Lm

h(1)
m − h(0)

m

ζ
(1)
m

. (B12)

These ODEs supplement the ODEs derived from discretization of the governing equations on
the interior of each region and the full system of ODEs is again solved using the backward
differentiation formula implements in SciPy’s “solve_ivp” function [39].

Eventually the fluid becomes unyielded throughout regions II and III. We treat this as having
occurred if the value of the yield height, Y , drops below a threshold value at all points in these
downstream regions. After this point, we stop solving in region III and stop rescaling region II,
instead allowing the solution to advect out of the numerical domain. Specifically, we continue to
solve in region I as before, but in region II we set L̇m = 0 and

ḣ(0)
m = h(1)

m − h(0)
m

Lmζ
(1)
m

, (B13)

in the scheme above. We are mostly not interested in the slow slumping of the fluid in region III,
since it has no effect on the evolution of the mound upstream of the scraper. Hence, to speed up
the numerical solution, we take the threshold value of Y to be not particularly small (for example
Y = 0.1). Provided the fluid in region II is unyielded, this has no impact on the calculation of the
evolution of the upstream mound, and simply means we stop solving for the slow evolution of the
layer in region III slightly before this region has become completely rigid. Indeed it has previously
been shown that the shallow layer model for a viscoplastic fluid can exhibit infinite stopping times
[40], and so it may not even be possible to continue solving until this region becomes completely
rigid.

APPENDIX C: EARLY TIME ODE

We solve the ODE (17) using a shooting method. We first write it as the system

d

dξ

(
Ĥ , Ĥ ′,Y

) =
[

Ĥ ′,
3x2

N (Ĥ − ξ Ĥ ′)
2Y (3 − 3Y + Y2)

,− 3x2
N (Ĥ − ξ Ĥ ′)

2Y (3 − 3Y + Y2)Ĥ ′2

]
. (C1)

This system is singular at the point ξ = 1, and so for a given value of xN , we integrate from ξ =
1 − δ with δ � 1 to ξ = 0. Then global mass conservation x2

N

∫ 1
0 Ĥ dξ = (1 − Qα )/Bi provides the

connection between the chosen value of xN and the ratio Bi/(1 − Qα ). It is then straightforward to
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iteratively adjust xN until the required value of this ratio is obtained. The leading-order forms of the
dependent variables at ξ = 1 − δ are given by

Ĥ = δ + . . . , Ĥ ′ = −1 + . . . , and Y = xN

√
δ + . . . . (C2)

The numerical solutions are found to be essentially independent of δ � 1 by comparing solutions
for δ = 10−6, 10−8, and 10−10. A value of δ = 10−8 is taken for all calculations shown in this study.

When Bi/(1 − Qα ) � 1 the yield surface elevation, Y = 1 to leading order, and we anticipate
that xN � 1. The governing equation (17) for Ĥ = Ĥ0 + . . . simplifies to

Ĥ0 − ξ Ĥ ′
0 = 1

3x2
N

Ĥ ′′
0 . (C3)

This equation has a solution which decays when xNξ � 1, given by

Ĥ0 = c1

[
2
√

3πe−3x2
N ξ 2/4 − 3πxNξerfc

(
xNξ

√
3

2

)]
, (C4)

where c1 is a constant and erfc(·) is the complementary error function. This solution does not,
however, satisfy the boundary conditions at the front (ξ = 1), and instead must be asymptotically
matched to a solution valid in a region close to the front. This matching determines the otherwise
unknown constant c1.

The expansion close to the front (C2) illustrates that when δ ∼ x−2
N , the height Ĥ ∼ x−2

N . Thus
we introduce variables Ĥ = H̃/x2

N and ζ = x2
N (1 − ξ ) to investigate the dependence in that region.

Since xN � 1, we expand H̃ = H̃0 + . . ., Y = Y0 + . . ., and find that at leading order

H̃0 = Y2
0 (3 − Y0)

3

dH̃0

dζ
, where Y0 = 1 − 1

dH̃0/dζ
. (C5)

This equation may be integrated numerically and we determine that H̃0 → 0.9304 exp(3ζ/2) as
ζ → ∞. It is this expression that provides the functional form that the solution (C4) must match as
the front is approached.

To perform the matching we substitute ξ = 1 − ζ/x2
N into (C4) and expand on the basis that

xN � 1. In this way we find that

Ĥ0 = 4c1

√
3πe−3x2

N /4

3x2
N

e3ζ/2 + . . . = 0.9304

x2
N

e3ζ/2 + . . . . (C6)

To complete the asymptotic description we must impose the global mass balance (18 c). The
dominant contribution is provided by the solution Ĥ0 and thus we find that

1 − Qα

Bi
= x2

N

∫ 1

0
Ĥ dξ = x2

N

∫ ∞

0
Ĥ0 dξ + . . . = πxN c1. (C7)

Hence we may implicitly determine the leading-order expressions for length of the current in
similarity variable, xN , and the scaled depth of the flow at the origin, Ĥ (0), in the regime
Bi/(1 − Qα ) � 1

0.9304
√

3π

4
xN exp

(
3x2

N

4

)
= (1 − Qα )

Bi
and Ĥ (0) = 3 × 0.9304

2
exp

(
3x2

N

4

)
. (C8)

These dependencies are plotted in Fig. 7, and shown to represent the numerical solution accurately.
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