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Degrees of freedom and the dynamics of fully developed turbulence
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While the degrees of freedom needed to represent the dynamics of high Reynolds
number turbulence are extremely large, we show using well-resolved direct numerical
simulations that one can capture essential physics with only a fraction of modes obeying
the Navier-Stokes equations; the other modes can be modeled with very simple dynamics.
This result suggests that the attractor for the dynamics of fully developed turbulence is
robust to modeling errors and the strongly nonlinear dynamics may reside on fewer degrees
of freedom than traditionally thought. The proposed approach is validated in terms of
dissipation rate, skewness of velocity gradients, the energy and transfer spectrum, and
structure functions. The mixed-dynamics model explored here, which may open different
venues for turbulence modeling, may also be applicable to a broader set of physical
phenomena governed by nonlinear complex dynamics with a wide range of scales.
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I. INTRODUCTION

A distinguishing feature of turbulent flows is their wide range of spatial and temporal scales
present at high Reynolds numbers typically found in natural flows and man-made systems. These
scales, commonly represented by Fourier modes, interact nonlinearly producing energy transfers
from the largest scales where turbulence production typically dominates and most of the energy
resides, to the smallest scales where viscous effects dominate and dissipation converts turbulent
kinetic energy into internal energy. This leads to the important question of determining the number
of degrees of freedom needed to represent accurately the dynamics of the system. The classical
phenomenology of Kolmogorov [1] posits that the ratio of the integral (or correlation) length scale
(L) to the smallest dynamically relevant scales (η, the Kolmogorov scale) is L/η ∼ R3/2

λ where Rλ is
the Reynolds number based on the Taylor microscale. The number of modes needed to represent the
physics faithfully in three dimensions is then N3 ∼ (L/η)3 ∼ Rα

λ where α = 9/2. This steep power
law illustrates the enormous range of modes needed at high Rλ which leads to tremendous difficulties
to understand, model, and simulate these flows. Other estimates of the degrees of freedom have been
made in the literature to account for the so-called intermittency phenomenon, leading to even steeper
exponents: α = 6/(1 + hmin) where hmin is the smallest local exponent for velocity differences [2],
α = 12/(s + 1) where s is the spectral slope [3], α = 5.4 [4], or α = 6 [5]. As pointed out in
Ref. [3], though, most estimates are an upper bound to the degrees of freedoms needed for a general
solution to the Navier-Stokes equations, noting that some flows may in fact need fewer modes. This
issue is also important in a broader context since the main challenge in simulating atmospheric or
astrophysical flows is the massive computational cost incurred in evolving a dynamical system with
an exceedingly large range of nonlinearly interacting scales in a very large attractor. Identifying a
smaller set of modes which contains some of the essential dynamics of turbulent flows not only will

*donzis@tamu.edu

2469-990X/2024/9(4)/044605(11) 044605-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1008-221X
https://orcid.org/0009-0003-1775-444X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.9.044605&domain=pdf&date_stamp=2024-07-08
https://doi.org/10.1103/PhysRevFluids.9.044605


DIEGO DONZIS AND SHILPA SAJEEV

provide a framework to devise less costly computational approaches for these flows but also may
provide a simpler dynamical system over which the fundamental features of turbulent flows may be
more readily understood.

In this paper, we show that one can indeed represent the dynamics of turbulence accurately by
evolving only a subset of modes according to the Navier-Stokes equations at a time. The rest can be
modeled with trivially simple dynamics.

The main idea is to evolve a subset of scales according to Navier-Stokes dynamics (the resolved
modes), but unlike decimation approaches [6], we do not discard modes. Instead, these unresolved
modes are evolved using simple dynamics. Thus, while only a fraction of modes is evolved
according to Navier-Stokes dynamics at an instant of time, over time all modes will obey (at different
instants) the exact governing equations. The subset of unresolved modes is chosen randomly at each
step in the integration procedure. This ensures that all modes will follow Navier-Stokes dynamics
at rates that, as we show, can be changed to capture accurately the different processes. Because
a subset of modes is selected to be resolved at each step, in what follows, this approach will be
called selected-eddy simulations or SES for short, to distinguish it from direct numerical simulations
(DNS).

In a periodic domain, we can formally introduce this approach by splitting the Fourier represen-
tation of the velocity field into resolved (subscript r) and unresolved (subscript u) modes,

u(x) =
∑
k∈kr

û(k)eιx·k +
∑
k∈ku

û(k)eιx·k, (1)

or simply u(x) = ur (x) + uu(x). Here, ι = √−1, û(k) is the Fourier mode at wave number k, and kr

and ku are the set of wave numbers corresponding to resolved and unresolved modes, respectively.
Note that kr ∩ ku = ∅. The cardinality of kr and ku will be denoted by n(kr ) and n(ku), respectively.
A simulation resolving all modes (that is, DNS) would then correspond to n(ku) = 0. Since the
entire space is kt = kr ∪ ku, we have n(kt ) = n(ku) + n(kr ). We then define the fraction of resolved
modes as Pr ≡ n(kr )/n(kt ).

The set kr is selected randomly with a given probability, p(k) which depends on the magnitude of
the wave-number vector (k = |k|). In other words, each scale of size 1/k in physical space is updated
with Navier-Stokes dynamics with probability p(k). Two distributions are used here: a uniform
probability (denoted by U) with p(k) = pU where pU is a constant, and a variable distribution (V
for short) where p(k) = exp(−pV k) with pV being a constant. The rationale for the latter distribution
is that a U distribution selects more Navier-Stokes dynamics at high wave numbers since the number
of modes with |k| = k grows as k2 (area of a sphere in Fourier space). The exponentially decaying
p(k) provides a comparison case where more (less) modes are resolved at low (high) wave numbers
than the U distribution.

The unresolved modes are modeled here using a zeroth-order extrapolation in time which, by
virtue of being the simplest model, may provide insight on how crudely one can model the dynamics
at different scales and still capture the essential features of the flow.

Formally, the Navier-Stokes equations in Fourier space can be written symbolically as

dû(k)/dt = L(û), (2)

where

L(û) = −iklPim

∫
k′

ûm(k′)ûl (k − k′)dk′ − νk2ûi(k), (3)

with the projection tensor defined as Pim = δim − kikm/k2 and ν being the viscosity. In discretized
form, SES can then be succinctly written as

ûn+1(k) =
{

ûn(k) + �tL(ûn) if γ (k) � p(k),

ûn(k) otherwise,
(4)
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TABLE I. Simulation parameters: Rλ = u′λ/ν is the Taylor Reynolds number (λ and ν are Taylor scale and
viscosity, respectively), Pr = n(kr )/n(kt ) is the percentage of resolved modes, and N3 is the grid resolution.

Rλ range Pr N

40–42 U: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93 64
28–42 V: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93
79–90 U: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93 128
67–90 V: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93
126–143 U: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93 256
90–143 V: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93
191–231 U: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93 512
154–231 U: 0.1, 0.22, 0.44, 0.62, 0.78, 0.93
299–376 U:0.1, 0.22, 0.44, 0.62, 0.78, 0.93 1024
196–376 U:0.1, 0.22, 0.44, 0.62, 0.78, 0.93

where we use a simple one-step temporal discretization for the top equation for simplicity in the
exposition. In this system, ûn(k) is the velocity field at time step n, and γ is a uniformly distributed
random number [γ ∼ U (0, 1)] drawn for every wave number k at every step. In other words, the
probability of a mode û(k) to be evolved according to Navier-Stokes dynamics at a given time step is
p(k). The global fraction of resolved modes is then readily found to be Pr = (3/k3

max)
∫ kmax

0 p(k)k2dk
where kmax is the highest wave number resolved in the simulations. The simulations are based on the
widely used pseudospectral approach of Ref. [7] with a second-order Runge-Kutta method for time
integration. The time step size was determined from a Courant-Friedrichs-Lewy (CFL) number of
0.6 for all simulations, which has been shown to be adequate for the statistics shown here [8]. From
Eq. (4), we can see that the difference between SES and DNS, i.e., the additional perturbation
introduced at a single step by SES, goes to zero as �t → 0. A stationary state is maintained
by applying a large-scale (or low-wave-number modes, with k � 2) random forcing based on
independent integrated Ornstein-Uhlenbeck processes with a finite-time correlation, which balances
the dissipative effects of viscosity at the smallest scales. This approach has been extensively used to
study a wide range of aspects of turbulence [9–11]. The resolution for all cases satisfies kmaxη � 1.5
which is enough to accurately resolve all dynamics of interest [9]. A summary of simulation
parameters is shown in Table I. The range of Reynolds numbers in the first row indicates simulations
with different Pr , with the lowest Rλ corresponding to the lowest Pr .

II. RESULTS

To assess the SES approach governed by the mixed-dynamics Eq. (4) we compare key variables
characterizing turbulence dynamics with well-resolved DNS (i.e., Pr = 1) along with available
results from the literature [12–22].

A basic result in turbulence is dissipative anomaly, as proposed by Taylor [23], which states that
the rate at which turbulence dissipates fluctuating kinetic energy 〈ε〉 ≡ ν〈s2〉 becomes independent
of viscosity as its value becomes small (or equivalently at high Reynolds numbers). A common
way to assess this property is to plot the normalized dissipation rate Cε ≡ 〈ε〉L/u′3 where u′ is the
root mean square of a component of the velocity field, and observe an asymptote at high Rλ, i.e.,
limRλ→∞ Cε = Cε,∞. This property of turbulence, often known as the “zeroth law of turbulence,”
has been supported experimentally and numerically [17,24–41]. The basis for this result is that,
while dissipation happens at the smallest scales where viscous effects are dominant, the rate at
which this happens is set by the large scales. It is not surprising then that the observed value of Cε,∞
depends on large-scale details of the flow or large-scale forcing used in numerical simulations [27].
This can be seen in Fig. 1 where we show the normalized dissipation rate which indeed tends to
a constant at high Rλ though for different data sets the constant may be slightly different. For the
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FIG. 1. Normalized dissipation rate Cε = 〈ε〉L/u′3. Lines correspond to U (dashed) and V (solid) distribu-
tions for different values of Pr in different colors. Symbols are for other DNS studies.

present results with Pr < 1 [i.e., n(ku) > 0] we can see that both U (dashed lines) and V (solid lines)
distributions satisfy the dissipative anomaly even when the number of degrees of freedom following
Navier-Stokes dynamics is as low as 10%. Differences with other simulation data are within the
observed scatter.

The skewness of the velocity gradient S = 〈(∂xu)3〉/〈(∂xu)2〉3/2 is a measure of the nonlinearity of
Navier-Stokes dynamics which leads to complex non-Gaussian behavior (S = 0 if Gaussian) beyond
some critical Reynolds number [28]. It is also proportional to the rate of enstrophy production
by vortex stretching. Its value is approximately constant at S ≈ −0.5 though it may increase very
slowly with Reynolds number at Rλ beyond O(103) [19,29].

In Fig. 2 we see previous data along with the present simulations. Data from U distributions
follow the expected constant value of −0.5 even for Pr as low as 10%. Data from V distributions,
on the other hand, show increased departures from S = −0.5 as Pr decreases, an effect that is more
pronounced at high Rλ. While still within the experimental scatter, there is a systematic trend with Pr

for V distributions. This is expected given that U distributions inject more Navier-Stokes dynamics
at high wave numbers, which is where most of the contribution to S comes from. Note that the lower
value of p(k) at high k for V distributions implies not only that there will be fewer resolved modes
in that shell of radius k, but also that a particular mode in that shell will be resolved less frequently

10 1 10 2 10 3
10 -1

10 0

FIG. 2. Skewness of velocity gradients. Lines correspond to U (dashed) and V (solid) distributions for
different values of Pr in different colors. Symbols except (♦) are for other DNS studies. The (♦) symbol
corresponds to experimental data and are taken from Ref. [20].
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FIG. 3. Flatness of velocity gradients. Lines are for U (dashed) and V (solid) distributions. Symbols except
(♦) are for other DNS studies. The (♦) symbol corresponds to experimental data and are taken from Ref. [19].

in time than another mode in a lower-k shell. We thus conclude that 10% of resolved modes seems
sufficient for S as long as there is enough Navier-Stokes dynamics close to dissipative scales.

A similar observation can be made for the flatness of the velocity gradient F =
〈(∂xu)4〉/〈(∂xu)2〉2 which has also been extensively documented as a variable that can quantify
the so-called intermittency (the tendency of turbulent flows to form extreme gradients which are
localized in space and time [19]). A result of this phenomenon is the observed increase of F
with the Reynolds number. This is seen in Fig. 3 where we show DNS and experimental data
from the literature (gray symbols) along with results from U (dashed lines) and V (solid lines)
distributions. As with the skewness, SES leads to results consistent with the literature even for very
low values of Pr , especially for V distributions. It is interesting to note that SES does not lead to the
almost-singular reduction of intermittency observed with decimation approaches where the removal
of even a very small fraction of modes results in the virtual disappearance of intermittent behavior
with approximately Gaussian statistics for high-order moments of velocity gradients and increments
[30]. In contrast, we see in Fig. 3, a classical power-law increase of F with Reynolds numbers for
V distributions even when only 10–20% of modes are resolved.

The energy spectrum is defined as E (k) = (1/2)
∫

S(k) |û(k)|2dS(k) where S(k) is the surface on

a shell of radius k in Fourier space, such that
∫ ∞

0 E (k)dk is equal to the turbulent kinetic energy.
In Fig. 4 we show the energy spectrum normalized according to Kolmogorov’s similarity theory [1]
for decreasing values of Pr for both U and V distributions (dashed and solid blue lines, respectively)
along with a fully resolved DNS (solid red line). At Pr ≈ 78% the spectrum for both U and V
distributions follows closely the DNS spectrum which shows the classical Kolmogorov universality
at small scales (collapse for all Reynolds numbers) with a bottleneck at kη ≈ 0.1 and an inertial
range (1/L � k � 1/η) with a Kolmogorov constant at ≈1.6 [10]. The lowest wave numbers,
where forcing is applied (k � 3), are not expected to be universal and given their longer timescales,
are more susceptible to stronger statistical variability which can explain the small variations across
Reynolds numbers observed for the lowest wave numbers.

For U distributions (dashed blue lines) the dynamics at the smallest dissipative scales are
accurately captured even at Pr ≈ 10%. At low wave numbers some differences with DNS are
observed which are greater for U. This is not surprising given that V distributions contain more
large-scale Navier-Stokes dynamics. However, for both cases, the general known features of the
spectral distributions are clearly seen. Interestingly, all cases exhibit an inertial range seen as a
plateau in Fig. 4 at intermediate wave numbers even when only 10% of modes are resolved in that
range for the U case. The V case with Pr ≈ 10%, on the other hand, resolves 80%–90% of the
modes in the inertial range, showing a weaker sensitivity to modeled dynamics than in other ranges
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FIG. 4. Compensated energy spectrum [left panels, (a)–(c)] and transfer spectrum [right panels, (d)–(f)]
vs kη for different Reynolds numbers (indicated). Lines correspond to DNS (red solid), U distribution (blue
dashed), and V distribution (blue solid).

of scales. For both cases we do observe a smaller Kolmogorov constant in the inertial range which,
as we argue below, may be the result of a distributed forcing across all scales stemming from the
mixed-dynamics model.

The total energy transfer through wave number k is given by W (k) = ∫ ∞
k T (k)dk where T (k) is

the dot product of û(k) with the first term on the right-hand side of Eq. (3). In the inertial range,
where both forcing and viscous effects are negligible, the energy transfer W (k) is constant and equal
to the rate of energy dissipation 〈ε〉. This can be seen for the DNS data in Figs. 4(d)–4(f) where
W (k)/〈ε〉 ≈ 1 in the inertial range. As Pr decreases though, this ratio decreases too, implying a
transfer in the inertial range that is smaller than the rate at which energy is dissipated into heat at
the small scales. These scales (beyond kη ≈ 0.1 [10]) are better represented by a U distribution, not
surprisingly given that it resolves more modes in the dissipative range.

Finally, in Fig. 5 we show the longitudinal structure functions Sn(r) ≡ 〈[u(x + r) − u(x)]n〉 for
n = 2, 3, and 4 from DNS (red lines) as well as SES (U distribution with blue dashed lines and
V distributions with blue solid lines) with different probabilities Pr . The structure functions are
compensated with (〈ε〉r)n/3 to show an inertial range as a plateau. The third-order structure function,
in particular, should plateau at 4/5 following Kolmogorov’s 4/5th law (horizontal black line) at high
enough Reynolds number. In Fig. 5(d) we indeed see −S3(r)/(〈ε〉r) from DNS approaching 4/5 in a
manner completely consistent with the trends reported in the literature [31]. Results from SES with
U and V distributions also exhibit a trend towards 4/5 albeit more slowly than DNS. Part of the
reason for this behavior is that as Pr decreases, we observe a decrease in Rλ in the stationary state
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FIG. 5. Normalized longitudinal structure functions of order 2 (left), 3 (middle), and 4 (right) vs r/η for
different Reynolds numbers (indicated). Lines correspond to DNS (red solid), U distribution (blue dashed),
and V distribution (blue solid). The horizontal solid black line on the middle panels corresponds to 4/5 for
reference.

when all other parameters are fixed (see Table I). However, as discussed below, the main reason for
this behavior is related to the mixed dynamics [Eq. (4)] whose effects can be cast as a distributed
forcing which, as shown in the literature [32], leads to the differences seen in Figs. 5(d)–5(f). These
trends are also observed for the second-order [Figs. 5(a)–5(c)] and fourth-order [Figs. 5(g)–5(i)]
structure functions. From the latter, we again see that a rather large fraction of unresolved modes
does not lead to the steep reduction of intermittency and consequent approach to Gaussian behavior
for structure functions observed when modes are completely removed [30]. This observation suggest
that while the overall number of modes that need to be included in the dynamics of the flow is similar
to that required for DNS, in order to capture the intermittent structure of the small scales, only a
fraction of them need to be evolved according to complex Navier-Stokes dynamics. The rest can be
modeled using trivial dynamics. As with the spectra, structure functions exhibit greater departures
from DNS at large scales for U distributions.

III. DISCUSSION

We have shown that important dynamical features of the Navier-Stokes solutions emerge even
when only 10% of the modes traditionally thought to be critical to reproduce the behavior of high
Reynolds number turbulence, are evolved using the exact governing equations. The rest of the
modes, which are chosen randomly across wave numbers and time, can be easily modeled with
simple dynamics. In this work, they were evolved according to a zeroth-order temporal extrapolation
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as a worst case scenario. A further reduction in the percentage of resolved modes could be possible
with the use of a higher-order temporal extrapolation. To quantify the gains this approach can attain,
though, further studies will be needed.

A potential reason for the success of SES is that, unlike other widespread used approaches such
as large-eddy simulations, the mixed-dynamics system proposed here allows for triadic interactions
and transfers between all modes across the entire spectrum. It is well known [33–36] that distant
transfers do occur though on average the cascade is in one direction (from large to small scales) and
local (across scales of similar size). The availability of all modes (which is not the case for decimated
approaches) allows for energy exchanges between all scales and thus more realistic dynamics.

Further, we can rewrite the Navier-Stokes equations in semidiscrete form (using a first-order
discretization for simplicity, as before) as ûn+1 = ûn + �tL(û). Now, when a mode is randomly
selected to be modeled, we see that the last term in this expression vanishes according to Eq. (4).
The result can then be written as ûn+1 = ûn + �tL(û) + FSES where FSES is an additional force
that takes the specific form −�tL(û) leading to ûn+1 = ûn. That is to say, the mixed-dynamics
system can be thought of as the true Navier-Stokes equations with a random forcing distributed over
modes across the entire spectrum. This observation allows us to explain the behavior of structure
functions noted in the previous section. Lundgren [32] has shown that a distributed forcing produces
structure functions that possess a much slower trend towards 4/5 as the range of scales being forced
increases. This is precisely what is observed in Fig. 5 for second- and third-order structure functions.
The essence of the different approach towards the 4/5 asymptote is the extra forcing term I in the
Karman-Howarth equation [31]

S3(r) = −4

5
〈ε〉r + 6ν

∂S2(r)

∂r
+ I. (5)

Here, I depends on the correlation between the velocity and forcing fields, i.e., 〈u(x) · F(x + r)〉
and 〈u(x + r) · F(x)〉. For a Gaussian forcing which is also delta correlated in time, for example, it
is possible to obtain a closed form for I [13,37]. For SES, as argued above, the forcing mechanism
will be comprised of two components, namely, the low-wave-number externally imposed stochastic
driving force to keep turbulence in a statistical steady state, and the resulting forcing term stemming
for the mixed dynamics of Eq. (4), FSES. Regardless of the details of forcing, however, the important
observation here is that even in the limit of vanishing viscosity, the term I does not vanish.

Further, in the case of forcing acting on all scales, one expects and indeed observes [31,38,39]
flow- and forcing-dependent Reynolds number scaling as in Fig. 5. The general conclusion is thus
that the SES approach introduced here can reproduce the physics at all scales while resolving only
10% of the modes according to Navier-Stokes dynamics with a distributed forcing. Note that this
type of distributed forcing represents more closely the physics of flows with mean shear. This is so
because in those flows, the production mechanism is proportional to the velocity field itself, that
is, the forcing term is Sû (where S is the mean shear rate) and thus spans all scales. In classical
phenomenology, at high enough Reynolds numbers, it is expected that turbulence would exhibit
universal behavior regardless of forcing mechanism.

A related interesting observation is on the local effects of modeled modes. The skewness of
velocity gradients, for example, is accurately computed when modeled modes cluster towards small
scales (U distribution) which is expected given that the dominant contribution to gradients come
from high wave numbers. However, dissipative anomaly seems to be largely unaffected by the
distribution of modes. The implication seems to be that capturing local dynamics (in Fourier space)
is important for the computation of statistics at those scales and less dependent on the dynamics
at other scales. Because the frequency of updates is important at different scales, it will also be
interesting to assess the effect of freezing a mode for multiple time steps (instead of a single step)
or equivalently for a given time window. This would help inform appropriate switching schemes for
Eq. (4) to capture accurately different processes with even smaller resolved modes.

We conclude by pointing out that the results presented here could also provide a venue for a
computationally accessible approach to simulate other phenomena involving a massive range of
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scales. The computational advantage of SES is severalfold. First, SES reduces the computational
cost by reducing the number of modes that need to be advanced according to complex Navier-Stokes
dynamics and replacing them by a much cheaper calculation based on a low-order temporal
extrapolation. Second, in widely used pseudospectral implementations, transforms are completed
as a series of one-dimensional fast Fourier transforms (FFTs) followed by transposes requiring
collective communication across all processors. These communication operations, in fact, constitute
the most expensive overhead associated with simulations at extreme levels of parallelism [40]. SES
could potentially reduce significantly this cost by reducing the number of modes that need to be
communicated at each time step. Finally, for very small values of Pr , it may be possible to take
advantage of high-performance “pruned” FFTs [41]. These gains are important in a number of
situations involving turbulent flows where critical processes appear at small scales (e.g., shock
waves, reacting or weakly diffusive species) while turbulent production is mainly a large-scale
nonuniversal phenomenon.

More broadly, our observations may be also applicable to other complex systems with large
attractors and which may be accurately represented by sampling the attractor stochastically in phase
space and time. The key in such a modeling effort would then revolve around understanding how
to select and model those modes, and to what degree this approach can reduce the exponent α

mentioned in the Introduction to obtain accurate simulations of all scales. The efforts here are a step
in that direction.
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