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To tackle the challenging near-wall turbulence modeling while preserving low com-
putational cost, the near-wall nonoverlapping domain decomposition (NDD) method is
proposed, incorporating the machine-learning technique. Using recently proposed implicit
NDD (INDD), the solution can be calculated with a Robin-type (slip) wall boundary
condition on a relatively coarse mesh and then corrected in the near-wall region at every
iteration through an estimated turbulent viscosity profile obtained from a neural network.
To maintain a reasonable complexity with acceptable accuracy, only the near-wall field
properties, i.e., wall-normal distance, near-wall velocities, streamwise pressure gradients,
and one near-wall scale parameter, are employed as the input features for the neural
network. The benefit of incorporating machine learning is twofold. First, the near-wall
turbulent viscosity is predicted more accurately than by the traditional algebraic functions
used in the approximate approach. Second, similarly to the conventional NDD, the present
simulations save one order of computational cost over the fully resolved one-block simu-
lations. The accuracy and efficiency of the method are demonstrated on test cases with the
k-ε model, including turbulent flows in a channel and an asymmetric diffuser at different
Reynolds numbers. Results compare favorably with the one-block benchmark solutions
and show a better agreement when compared with approximate NDD predictions. In the
latter case, a variation of diffuser geometry is also considered to test the model performance
on engineering design tasks with another turbulent model (i.e., Spalart-Allmaras), showing
good generalization capability on different turbulence closures.
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I. INTRODUCTION

Developing effective near-wall turbulence modeling methods remains a popular topic in modern
fluid dynamics. Very fine meshes are required to fully resolve the near-wall flow, thus incurring
large computational costs. The thickness of the turbulent boundary layer shrinks as the Reynolds
number (Re) increases, leading to the excessive computational effort of handling wall layers [1].
Specifically, the computing cost for direct numerical simulation (DNS) scales as Re3, and for
large eddy simulation (LES) it is proportional to Re2.4 [2] or to the friction Reynolds number
Re2

τ [3].
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The Reynolds-averaged Navier-Stokes (RANS) models are still widely deployed in the industrial
community, due to their good compromise between accuracy and cost. RANS models that resolve
the entire computational domain, including the near-wall layer, are called low-Reynolds number
(LRN) models (e.g., the LRN k-ε model by Launder and Sharma [4] and by Chien [5], and the
LRN k-ω by Wilcox [6]), where damping functions are commonly introduced into the turbulence
equation to predict the variation of each function in the vicinity of the wall. Although the LRN solu-
tion is often considered as the benchmark result for its high accuracy, LRN corrections significantly
increase the complexity of turbulence models. More importantly, greatly fine meshes are required
to sufficiently resolve the near-wall sublayer.

One of the most common ways to save computational effort is by applying high-Reynolds
number (HRN) models. The near-wall sublayer is deliberately not resolved with this type of
model, but is described via wall functions. Specifically, the wall functions represent an approximate
solution of the near-wall region and formulate Dirichlet-type boundary conditions at the cell nearest
to the wall [7]. However, assuming the logarithmic relationship between the wall distance and
wall-parallel velocity inevitably fails if the near-wall cell center is located outside the log-law
sublayer. Thereafter, the scalable wall function [8] is established to improve the validity of the
logarithmic law and to reduce mesh dependence. The analytical wall function [9] and the later
numerical wall function [10] perform the corresponding analytical and numerical integration of
the simplified boundary-layer equations using a fairly simple formula for the turbulent viscosity.
This class of wall functions reduces the limitation of the cell size nearest to the wall and takes the
buoyancy and pressure gradient into account, but it is difficult to further generalize due to stability
issues [11]. Similarly, the compound wall treatment [12] uses a one-dimensional boundary-layer
equation with the inclusion of source terms. Since the source terms are assumed to be unchanged
across the sublayer, this approach lacks validation and accuracy, especially in complex flows.

Another efficient approach to solve the challenging problem is the near-wall nonoverlapping
domain decomposition (NDD) method [13]. With the NDD approach, the computational domain is
split into two subdomains: inner domain and outer domain. Both domains are related by a common
boundary patch named the interface. The calculation of the near-wall domain with high gradients
can be excluded by exactly transferring the wall boundary condition to an interface boundary [14].
The obtained interface boundary conditions (IBCs) are proved to be mesh-independent and, more
importantly, do not require any free parameters tuned for different cases, which can be generalized to
other turbulence models without significant modification [15]. Compared with the LRN models, the
NDD method drastically reduces the computational cost by one order of magnitude with required
resolutions [16,17], even for complex simulations [18,19]. The computational time reduces as the
distance from the interface to the wall increases, which is mainly because of the utilization of
simplified governing equations, i.e., the thin boundary-layer equations (TBLEs), in the near-wall
region. Another reason is that the variation and its derivative are taken into the Robin-type boundary
conditions at the same iteration, leading to faster convergence. Conversely, when the interface is
sufficiently close to the wall, the interface boundary conditions approach the physical wall boundary
conditions and tend to the LRN solution.

However, mesh generation for cases with complex geometries and optimal problems can be
time-consuming, due to its relative algorithmic complexity and the necessity of splitting the entire
domain explicitly. The implicit NDD is further proposed in [20] to ameliorate this issue and has been
successfully applied to the LRN k-ε turbulence model in the channel flow and 2D asymmetrical
impinging jet cases. Within the framework of implicit NDD, the IBC for the tangential velocity
is transferred back to the wall with frozen coefficients, and subsequently a Robin-type boundary
condition is introduced at the wall to replace the original wall boundary condition. The obtained
Robin boundary condition for velocity is similar in form to the dynamic slip boundary condition for
LES in [21,22], while following considerably different principles and computing procedures.

For the NDD method, a particular challenge is related to the turbulent viscosity. In the approx-
imate NDD method, the turbulent viscosity across the inner domain is approximated in advance
by semiempirical functions, such as the piecewise linear profile [23], the exponential profile with
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a damping function [24–26] and further improved with dynamic coefficients [27,28], and the
nonlinear profile [29], which largely restricts the range of applications. This issue becomes more
pronounced when solving new problems because of the uncertainty of the obtained results with the
selected profile [30]. Alternatively, in the exact NDD approach, a more accurate profile of turbulent
viscosity can be computed directly from the inner turbulent model, while costing extra computation
time. It is worth noting that, generally, the NDD methods fall into two categories: one is based
on the decomposition method, i.e., explicit or implicit; the second one is according to whether the
governing equations for the inner region are simplified or not, i.e., approximate or exact, respectively
[18,31].

With the recent progress in artificial intelligence, machine-learning (ML) approaches have
been applied to tackle various turbulence problems [32,33], for example flow simulation [34],
shock capturing [35,36], turbulence reconstruction [37,38], etc. Particularly, ML has been utilized
to develop data-driven turbulence models. Promising activities include using neural networks to
improve the Reynolds stress predictions from high-fidelity DNS data [39,40] and introducing the
field inversion approach and ML to infer better functional forms in RANS models [41]. In addition,
gene expression programming (GEP) has been applied to enhance explicit algebraic Reynolds
stress models, showing good performance in practical RANS calculations [42,43]. Different ML
techniques are also proposed for LES closures [44,45]. Given the practical importance, the wall
models for LES are trained using neural networks to achieve an accurate wall shear stress [46,47].
More recently, an advanced wall model was proposed for LES by reinforcement learning to properly
predict key quantities with substantially lower cost in extreme Re flows [48] and by reconstructing
the near-wall field as a collection of simple building-block flows to reproduce the correct wall stress
[49]. Data-driven approaches for developing machine-learning augmented turbulence models in
RANS have been proven to give reliable mapping between the flow features and eddy viscosity
[50,51] and improved prediction of separated flows [52]. Thanks to the rapid growth of ML
techniques, the eddy viscosity profile can apparently be learned from a large set of data in the
near-wall region, instead of calculating from the inner governing equations as in the conventional
NDD method.

The combined technique can properly overcome the limitation induced by the prescribed tur-
bulent viscosity while securing a great reduction in computation time. In particular, the wall
boundary conditions are formally identical to the Robin-type boundary conditions in implicit NDD.
With machine learning, the calculation of the turbulence model can be entirely avoided in the
subgrid region of implicit NDD. This is because the turbulent viscosity is predicted by a pretrained
machine-learning model straightforwardly, to form the Robin boundary conditions at the wall. In
this case, lower computational cost than both the LRN solution and the original implicit NDD
method is expected.

The rest of the paper is organized as follows: In Sec. II, the original NDD method and the slip
wall boundary condition are described and briefly derived. Next, in Sec. III, the machine-learning
technique used in this work is described. The accuracy and efficiency of the new approach are
demonstrated on a one-dimensional channel flow and two-dimensional diffuser flow in Sec. IV,
where the numerical results of the test cases are discussed in detail. This is followed by the
conclusion in Sec. V.

II. NEAR-WALL DOMAIN DECOMPOSITION

A. Derivation of approximate NDD

In NDD, the entire computational domain in the wall-normal direction � := [0, ye] is separated
by the interface at y = y∗, leading to two types of regions: the inner and outer regions. Specifically,
the widely applied LRN k-ε model of Launder-Sharma [4] is chosen to close the governing equa-
tions over the outer region �o := [y∗, ye], where the full equations for turbulent kinetic energy k and
its dissipation rate ε are given in Appendix A. The TBLE utilized in the inner region �i := [0, y∗]
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can be written as follows:

∂

∂y

[
(ν + νt )

∂u

∂y

]
= 1

ρ

∂ p

∂x
,

∂

∂y

[(
ν + νt

σk

)
∂k

∂y

]
= ε̃ + ε0 − νt

(
∂u

∂y

)2

,

∂

∂y

[(
ν + νt

σε

)
∂ε̃

∂y

]
= Cε2 fε2

ε̃2

k
− Cε1 fε1

ε̃

k
νt

(
∂u

∂y

)2

− E .

(1)

Here, u, k, and ε̃ are the wall-parallel velocity component, turbulent kinetic energy, and its
dissipation, respectively; x is the coordinate along the wall; y is the wall-normal coordinate; p is the
pressure; ν denotes the dynamic viscosity coefficient; and νt denotes the eddy viscosity coefficient.
More definitions of model coefficients are given in Appendix A.

The reduced form of governing Eqs. (1) for a variable 
 can be written compactly:
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Here, the variable 
 can represent the velocity u, turbulent kinetic energy k, and its dissipation
ε̃. Meanwhile, the corresponding source term R
 on the right-hand side is specified according to
the selected equations. �
 represents the effective viscosity, �
 = ν + νt/σ
, where ν and νt are
the laminar viscosity and turbulent viscosity, respectively. The σ
 is the turbulent Prandtl number
for 
.
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The second integration is between the wall (y = 0) and the interface (y = y∗), giving
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Further, we express Eq. (4) compactly via introducing f1, f2 as
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Therefore, recalling the right-hand side of the inner governing equations (1), the source terms for
u, k, and ε̃ are expressed as
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The interface boundary conditions have been formulated in a Robin-type (5), which is applicable
to all key variables, i.e., u, k, and ε̃. The corresponding source terms are presented in Eq. (6), which
is essential for calculating the coefficient f2. The right-hand side Ru is asserted to be unchanged
along the wall-normal direction within the inner region and evaluated at the interface (y = y∗) every
iteration. Unlike in the outer region, the pressure-velocity decoupling or the Poisson equation is not
required in the inner region. Note that k and ε̃ are coupled in terms of the governing equations. Thus,
the solution in the inner region is required to compute every iteration, so as to update the interface
boundary conditions.

It should be noted that an interface condition of Robin-type for the normal component of velocity
is deployed, stemming from the no-flux boundary condition and continuity equation using the Taylor
expansion [18]:

v∗ = y∗

3

∂vc

∂y
, (7)

where v∗ and vc are the values of the normal velocity at the interface boundary and interface-adjacent
cell center in the outer region, respectively.

B. Near-wall turbulent viscosity profile

To close the formulation of approximate NDD, the only parameter required to be imposed is an
approximate profile of νt for the near-wall regions. The popular exponential profile [29] that takes
into account the streamwise pressure gradient is used here:

νt (ξ ) = νκξ+[α + ξ+(1 − α)3/2]β
[

1 − exp

( −ξ+

1 + Aα3

)]2

, (8)

where κ = 0.41, A = 17, β = 0.78, α = u2
τ /u2

τ p, ξ+ = yuτ p/ν, uτ p =
√

u2
τ + u2

p , uτ = √|τw|/ρ,
up = |ν∂ p/∂x/ρ|.

The turbulent viscosity profile (8) obviously depends on the surface friction. The parameter τw

can be updated every iteration via (3) for 
 = u with setting y = 0. This explicit NDD with an
approximate turbulent viscosity profile for the inner regions is termed ENDD-A for brevity hereafter
in this paper.

C. Derivation of slip boundary condition for implicit NDD

With implicit NDD [20], the Robin-type interface boundary condition for velocity is transferred
back to the wall. First, the solution Ũ with the slip boundary condition in the inner region can be
interpreted using the Taylor series,

Ũ (y) ≈ Ũ (0) + y
∂Ũ
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2
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Evaluation at the interface (y = y∗) and replacing the second derivative according to the simplified
momentum equation, we obtain
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The new solution must satisfy the interface boundary condition (5):
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Finally, the Robin-type boundary condition at the wall for variable Ũ can be formulated:
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u
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u
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2 ).

Evidently, the slip wall boundary condition (13) is free of a priori specified coefficients, except
for the turbulent viscosity. In contrast to the approximate NDD approach, in the implicit NDD
we determine the turbulent viscosity from the trained neural network. Additionally, the implicit
NDD is further performed on the Spalart-Allmaras model [53] (refer to Appendix B for a detailed
formulation) in the diffuser turbulent flow to capture the flow separation.

III. CONSTRUCTION OF DATA-DRIVEN NDD METHOD

A. Neural network architecture

Within the framework of the implicit NDD, the neural network acts as a supplement to predict
the turbulent viscosity in the inner region, rather than obtaining it by explicit expression or solving
partial differential equations. Such a model is termed INDD-D (implicit NDD with data-driven
prediction of turbulent viscosity) for brevity hereafter in this paper. A schematic diagram for the
entire algorithm is depicted in Fig. 1. It can be seen that a feed-forward neural network (FNN)
is deployed for predicting the near-wall eddy viscosity of every iteration. The neural network

FIG. 1. Sketch of the data-driven implicit NDD.
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architecture is built based on the mutual connection among brain neurons, which generally contains
one input layer, several hidden layers, and one output layer. Assuming a neural network has L layers,
where each layer has Kn (n = 1, 2, . . . , L) neurons, the output of the mth node in the nth layer
is constructed by taking a weighted sum of the inputs X n−1

m and then transforming them through
nonlinear activation functions as follows:

Y n
m = an

(
Kn∑

i=1

ωn
m(i)X n−1

m (i) + bn
m

)
. (14)

Here, an and ωn
m are the activation function and weights associated with the nth hidden layer,

respectively. bn
m denotes one bias term at the mth neuron in the nth layer. The activation function

utilized in this study is the rectifier linear unit (ReLU), which has been widely used and defined as
a(x) = max(0, x). The loss function is defined as the mean-square error (MSE) between forecast
values Ypr from FNN output and actual values Ytr from the training set:

LNN = 1

Ns

Ns∑
i=1

[Ypr(i) − Ytr(i)]
2, (15)

where Ns is the number of training samples. The optimal hyperparameters, i.e., the number of hidden
layers and neurons, and the value of the learning rate, are chosen to reach the lowest error on the
validation set. Considering the balance of accuracy and generalization, one hidden layer should
be adequate and suitable for the current prediction [50]. Additionally, the results indicate that 40
neurons are enough to reach the optimal solution. In the training process, the node weights were
iteratively tuned using the Adam optimizer [54] to reach the lowest mean-squared error between the
predicted eddy viscosity and the true counterparts.

B. Training data

For each test case, the one-block LRN RANS simulations are performed first at various Reynolds
numbers to generate the training data set. Generally, 80% of training data are used for the training
data set, and the remaining 20% are used as the validation data set. The flow boundary conditions of
training and validation cases are identical to those in the test cases. Specifically in this work, only
the flow data in the near-wall regions with wall-normal distance smaller than the chosen interface
position y∗ are further processed for training the data-driven model.

For each point in the fine subgrid, the wall-normal distance η, the velocity components U in the
wall-tangential direction, the streamwise pressure gradient ∂ p/∂x, and the near-wall scale parameter
α = u2

τ /u2
τ p are employed as the input features. Physically, the nondimensional parameter α qualifies

the predominant effect of shear stress and streamwise pressure gradient near the wall [55], where
uτ p =

√
u2

τ + u2
p , uτ = √

(τw/ρ) with an additional velocity based on streamwise pressure gradient
up = |ν∂ p/∂x/ρ|1/3. Obviously, the eddy viscosity νt is required to be the unique output feature.
Following the near-wall treatments of NDD, the streamwise pressure gradient is assumed to be
constant at the wall-normal direction and evaluated instantly along the interface position y∗ from
the outer region. For the wall-tangential velocity component, we can easily solve the momentum
equation in (1), or obtain straightforwardly

U (y) = ∂U

∂y

∣∣∣∣
y∗

∫ y

0

�u(y∗)

�u(y)
dy −

∫ y

0

∫ y∗

y Rudy′

�u(y)
dy + U (0). (16)
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FIG. 2. Sketch of the solution obtained in two stages of implicit NDD.

To generalize the capacity of the trained profile and take into account the classical dimensionless
parameters [29,55], the wall-normal distance is normalized using the near-wall scale and written
as y+, where y+ = ηuτ p/ν. The pressure gradient along the wall is multiplied by η/h as utilized in
[47]. The output label νt is treated as νt/ν to improve training efficiency. Moreover, all the input and
output features are normalized using the min-max scaling,

Xscale = X − Xmin

Xmax − Xmin
. (17)

The training results of the mapping function between input and output features, includ-
ing the selection of different features, are shown in Appendix C for different turbulence
models.

C. Numerical implementation of implicit NDD

The Robin boundary condition (13) is imposed for the tangential velocity at the wall, while the
no-flux wall boundary condition remains for the normal velocity component. At the first stage, the
solution of the original full governing equations in the entire region can be obtained on a relatively
coarse mesh with the slip boundary condition at the wall. This can be achieved because the slip
boundary condition is imposed at the wall, resulting in a smaller velocity gradient near the wall.
At the next stage, the TBLE model on a very fine subgrid, tailored to the underresolved region of
the first stage, is designed to recalculate immediately with the original wall boundary condition and
instantaneous interface boundary condition. Then, the inner solution can be corrected accordingly.
The final composite solution from inner TBLE and outer RANS is smooth up to the first derivative
[20]. These two stages are schematically shown in Fig. 2, where the red dotted line corresponds to
the solution at the preliminary stage with the slip wall boundary, and the blue solid line represents
the composite solution.

The implicit NDD approach has been implemented within the framework of OPENFOAM
[56], advanced open-source software for computational fluid dynamics based on the finite volume
method. Spatial discretization uses the second-order central difference scheme for solving incom-
pressible flows on collocated grids. The velocity-pressure coupling is handled by the SIMPLEC
algorithm [57,58], with a variant of the Rhie-Chow interpolation to avoid checkerboard oscillations.
The sequentially algebraic equations have been solved using the Gauss-Seidel iterative method.
The Poisson equation for pressure was solved using a geometric-algebraic multigrid (GAMG)
solver. With the help of the popular machine-learning library PyTorch [59] for approximating the
cell-centered fields, i.e., turbulent viscosity field, the original and simplified governing equations are
separately solved within the framework of multiregion functionality in OPENFOAM.
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The proposed implicit NDD algorithm with machine learning is summarized in Algorithm 1.

ALGORITHM 1. The implicit NDD algorithm with neural network.

Initialize the flow fields for both the main (coarse) grid and sub-grid, see Fig. 1;

for each time step do
1: Compute the coefficients fw1 and fw2 based on the sub-grid solution to impose the

slip boundary condition at the wall;

2: Solve the full governing equations on the main grid with the updated slip wall

boundary condition;

3: Recalculate the solution in the inner region on the sub-grid region with the interface

boundary value obtained from the main grid;

4: Obtain the turbulent viscosity from the trained neural network model based on the

corrected flow features;

end

IV. TEST CASES

Next, the proposed algorithm is assessed on the one-dimensional channel flow and two-
dimensional diffuser flow. In each simulation, mesh independence is first achieved on a grid for the
benchmark one-block solution to verify the numerical results. The one-block simulation represents
the solution of the governing equations in the entire single domain without decomposition. Mean-
while, the first layer height of the grid in boundary layer y+ < 1 is satisfied for the LRN turbulent
model. In the outer region, the same mesh strategy is retained for both explicit NDD (ENDD-A)
and implicit NDD (INDD-D). The same grid distribution is deployed for the inner region of the
ENDD-A. In contrast, a very coarse mesh, along with slip boundary conditions, is used in the inner
region of the INDD at the first stage. Then, a local fine mesh is utilized to recalculate the inner
solution [20].

A. Plane channel flow

The fully developed channel flow with various friction Reynolds numbers Reτ is considered
as the first test case. Here, Reτ is defined in terms of the friction velocity uτ and the half of the
channel height h: Reτ = uτ h/ν. The periodic boundary conditions are deployed at the inlet and
outlet boundaries to exactly map the variations at the outlet back to the inlet, eventually reaching
a fully developed flow. The pressure gradient along the streamwise direction is fixed as a constant
driving force.

The fully developed channel flows with the friction Reynolds number Reτ = 395, 1000, 3950,
and 8000 are utilized for the neural network training. Then, the simulations of Reτ = 590, 1995,
5186, and 9000 are tested and compared with the corresponding one-block LRN data in Fig. 3,
where ν+

t = νt/(uτ )2 and u+ = u/uτ . Note that the last test case is the extrapolation state. The
interface is located at y∗+ = 100 for all test cases. The predicted velocities at different Reτ are
shifted along the vertical axis for clarity. The lowest curves are the results of Reτ = 590, while
the highest curves are for the results of Reτ = 9000. The prediction of turbulent viscosity νt agrees
well with the one-block solutions in the inner region. Subsequently, the velocity profiles in subfigure
(b) are observed to have an overall good agreement with the benchmark solutions. The discrepancy
between INDD-D and one-block solutions does not vary too much for different Reτ for two reasons:
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FIG. 3. Channel flow, interface position y∗+ = 100. Comparison of nondimensional turbulent viscosity ν+
t

(a) and streamwise velocity u+ (b) between the results from implicit NDD (Reτ = 590 in the red line, 1995 in
the blue line, 5180 in the green line, and 9000 in the magenta line) and the one-block LRN solution.

(i) the strong physics relations between νt and mean flow features within the near-wall region; (ii)
the truncated TBLE model does not introduce any essential error for one-dimensional channel flow.

B. Two-dimensional diffuser flow with the k-ε model

The geometry of the 2D asymmetric diffuser, according to the layout in [60], is portrayed in
Fig. 4. The inlet is located at x/h = −10 and the outlet at x/h = 75. The corners of the diffuser
situated at x/h = 0 and 21 are smoothed with the radius of curvature equal to 9.7H . The expansion

FIG. 4. Geometry of asymmetric diffuser.
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FIG. 5. Diffuser flow, Re = 1.8 × 104, interface position y∗+ = 40. (a) Comparison of mean streamwise
velocities vx between the results from experiment [60], one-block solution, explicit (approximate), and implicit
NDD. (b) Enlargement of the region from the straight wall to y/H = 0.06. (c) Enlargement of the shaded
region in (a).

ratio of the diffuser is 4.7, and its opening angle θ is 10◦. The inlet boundary condition is imposed
as the fully developed channel flow corresponding to Reynolds number Re = UbH/ν, where Ub is
the bulk velocity and H is the channel height.

The one-block solutions of diffuser flow with the LRN k-ε model at Reynolds numbers Re = 2 ×
104 and 4 × 104 are utilized for the neural network training. After training, the neural network model
for eddy viscosity is further applied to diffuser flows with the same geometry at Re = 1.8 × 104 and
3.6 × 104.

As plotted in Fig. 5, the predictions of the streamwise velocity component vx with the explicit
and implicit NDD are compared with the one-block LRN results and experimental data [60] at
x/H = −5.87, 2.59, 5.98, 13.56, 16.93, 20.32, and 23.71. The near-wall regions close to straight
and inclined walls are enlarged in Figs. 5(b) and 5(c), respectively. The interface boundary for NDD
methods is located at y∗/H = 0.04, corresponding to y∗+ = 40. The velocity profiles obtained with
the INDD-D are in overall good agreement with the benchmark LRN solutions. This means that
using this TBLE model in the near-wall region of the diffuser flow is satisfied with good accuracy. A
slight difference is near the interface area at x/H = 2.59 and 5.98 of the straight wall. This happens
because the current NN model, which directly takes the streamwise pressure gradient as an input
feature, is more sensitive to the larger pressure gradient in this region. Conversely, a relatively larger
discrepancy exists between the ENDD-A predictions and the benchmark ones, which is mainly
driven by the inaccurate turbulent viscosity approximation.

The velocity component along the y-axis vy is shown in Fig. 6, where the sampling positions
are in conformity with vx. Similarly to the streamwise velocity, the velocity vy obtained from
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FIG. 6. Diffuser flow, Re = 1.8 × 104, interface position y∗+ = 40. Comparison of spanwise velocities vy

between the results from the one-block solution, explicit and implicit NDD.

the implicit NDD has a noticeably better match with the one-block curves than the ENDD-A
ones.

Two dimensionless parameters (the pressure coefficient Cp and the skin friction coefficient Cf )
are used to quantify the near-wall results between ENDD-A and INDD-D. The corresponding
definitions are

Cp = p − pref
1
2ρU 2

b

,

Cf = τw

1
2ρU 2

b

,

(18)

where pref is the pressure at the midpoint of the inlet channel, and τw represents the wall shear stress.
As can be seen from Figs. 7(a) and 7(b), the skin friction profiles with implicit NDD for both

straight and inclined walls are well improved compared to the predictions obtained with ENDD-A.
The reason for the improvement is that imposing the turbulent viscosity through a pretrained neural
network model is superior to the traditional exponential estimations. According to the experimental
data, there is a secondary peak of Cf along the straight wall in subfigure (a) and a recirculation
region along the inclined wall in subfigure (b). However, due to the limitation that the original LRN
k-ε model is generally deficient in capturing the flow recirculation in the near-wall region, as also
noted in [61], the current INDD-D and ENDD-A fail to predict any of them. For this reason, the
current implicit NDD method is further extended to the Spalart-Allmaras model in the next section.

As for the Cp curves in Figs. 7(c) and 7(d), the value of Cp shows less discrepancy among the
two NDD solutions and LRN solution, in contrast to Cf . This is because the pressure is computed
only in the outer region, and the pressure gradient does not vary considerably near the wall, making
the form of Cp analogous between NDD and LRN solutions. The figures show that the pressure
gradient reduces as x increases, leading to another collapse of the wall shear stress downstream of
the secondary peak point around x/H = 22 in subfigure (b).

Figures 8(a) and 8(b) demonstrate the prediction of velocity component vx and vy at Re = 3.6 ×
104, respectively. With larger y∗+, the results with ENDD-A deviate noticeably from the LRN one-
block solutions, while the distributions computed from implicit NDD are in overall better agreement
with reference LRN data than the counterparts from the ENDD-A. The reason for this improvement
is that the superior prediction of wall shear stress and turbulent viscosity provides more accurate
mean velocity profiles.
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FIG. 7. Diffuser flow, Re = 1.8 × 104, interface position y∗+ = 40. Comparison of Cf and Cp between
the results from experiment [60], one-block solution, explicit and implicit NDD. The subfigures (b), (c), and
(d) share the same legend as (a).

Note that the data-driven INDD has been implemented straightforwardly to the LRN k-ε model
by solely solving the momentum equation in the inner region. However, in the original INDD [20],
the simplified turbulent equations corresponding to k and ε are additionally implemented inside
numerical code and concurrently solved along with the momentum equation. That is to say, the
implementation of data-driven INDD is independent of the specific turbulent model, as long as a
pretrained viscosity profile based on an accurate data set is given. Thus, the data-driven INDD is
relatively easier to implement and extend to different turbulent models. The comparisons of accuracy
and efficiency between the original INDD [20] and the data-driven INDD are briefly demonstrated
in Appendix D.

C. Two-dimensional diffuser flows with Spalart-Allmaras model

To demonstrate the generalization and capability of the proposed framework, the aforementioned
diffuser flow with the Spalart-Allmaras (written as SA for brevity hereafter) model is further
investigated, corresponding to various Reynolds numbers and opening angles. It is highly desirable
to efficiently predict the separation of diffuser flows under different conditions [62]. The variation
in geometry (as shown in Fig. 9) keeps the ratio of the width between the outlet and inlet the same.
Three training cases of diffuser flows were sampled through the Latin hypercube sampling (LHS)
method with the Reynolds number (Re) from 2 × 104 to 8 × 104 and the angle of the inclined wall
(θ ) from 8◦ to 14◦. The predicted cases were chosen as the circumcenter of the three training sets and
three points around the circumcircle; see Fig. 10. The predicted examples include both interpolation
and extrapolation, by which the generalization of the proposed model is demonstrated.

The skin friction and pressure coefficients on the inclined wall with the SA model for different
Re and θ are shown in Fig. 11. For Cp, all of the cases are identical with the one-block solutions. The
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FIG. 8. Diffuser flow, Re = 3.6 × 104, interface position y∗+ = 60. (a) Comparison of mean stream-wise
velocities vx between the results from one-block solution, explicit (approximate), and implicit NDD. (b) Com-
parison of velocity component vy between the results from one-block solution, explicit and implicit NDD.

pressure gradient does not change considerably in the vicinity of the solid wall. The one equation SA
model provides improved performance relative to the LRN k-ε models for the diffuser flows with
adverse pressure gradients. Notably, data-driven INDD successfully predicts flow separation, albeit
over a smaller region than the benchmark solution. As expected, the flow separation grows from
mild to vast, as the opening angle increases. However, a relatively larger discrepancy exists between
the predicted Cf and the benchmark ones, especially for the largest opening angle θ = 15◦. The
reason for this is twofold: one is because of the simplifications in TBLE, and the other is due to

FIG. 9. The variation in opening angle θ of the diffuser flow cases.
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FIG. 10. The adopted training and predictive cases.

FIG. 11. Comparison of Cf and Cp on the inclined wall of the diffuser flow for different cases with Re and
θ specified at the left bottom of respective subfigures. Subfigures (c) and (d) share the same legend as (b).
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FIG. 12. Diffuser flow, Re = 1.8 × 104, interface position y∗+ = 40. (a) Comparison of mean stream-wise
velocities vx between the results from experiment [60], one-block solution, and implicit NDD with Spalart-
Allmaras model. (b) Comparison of velocity component vy between the results from one-block solution and
implicit NDD with Spalart-Allmaras model. (c) Enlargement of the shaded region in (a).

the larger opening angle of the diffuser that requires extrapolation of the training model. Moreover,
with the increase of the interface locations y∗+, the TBLE assumptions become less strictly valid.
Eventually, it almost fails to capture the flow recirculation when the interface is far from the wall
until y∗+ = 100, as can be seen in subfigure (a). It is clear that the accuracy of the INDD, even with
more accurate eddy viscosity profiles from the NN model, is largely determined by the aptitude of
the thin-layer model in the inner region.

In Fig. 12, a noticeable recirculation region is present near the inclined wall of the diffuser with
the SA model, which is not predicted by the LRN k-ε model under the same flow condition and
diffuser geometry, thus giving a better agreement with the experimental data. This is basically
because data-driven INDD is determined from the corresponding turbulence model and pretrained
from their one-block data. The curves of velocity component vx and vy are consistent with the LRN
results in subfigures (a) and (b), respectively.

D. Comparison of computation time

Apart from accuracy, high efficiency is also one of the targets in this work. We listed the
computing time of diffuser flow cases with two turbulence models at Re = 1.8 × 104 and θ = 10◦
in Fig. 13. In particular, the error evolution of Cf along both walls with INDD-D at y∗+ = 40 is
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FIG. 13. Relative computational times with the explicit (approximate) and implicit NDD for both k-ε and
Spalart-Allmaras models. The times are normalized by that of companion one-block solution.

compared with those with one-block solutions; see Appendix E. It should be noted that the model
training time is not included. It can be seen that the computational cost of both ENDD-A and
INDD-D is significantly lower than that of one-block simulations. This is because the proposed and
conventional NDD have inherited the advantages of the NDD technique. In contrast to the full RANS
equations for the outer layer, the computational cost for solving the boundary-layer equations in the
wall vicinity is insignificant, where the Poisson equation for pressure is excluded. More importantly,
the remaining momentum equations are highly simplified in the locally orthogonal wall-layer
coordinates. In the data-driven implicit NDD, there is no need to solve k and ε equations or ν̃

equation in the subgrid, which saves extra time. On the other hand, additional time is required
to obtain the inner viscosity coefficient from the trained neural network model at every iteration.
Overall, the INDD-D requires slightly more time than the approximate NDD with an algebraic
function for eddy viscosity.

In addition, the maximum errors in Cf for the NDD simulations are calculated in terms of the
LRN solutions and normalized by the skin friction at the inlet channel as

e = max
∣∣CNDD

f − CLRN
f

∣∣∣∣Cinlet
f

∣∣ . (19)

A smaller e indicates a closer agreement with the benchmark one-block data. It is observed that
the accuracy of the NDD solution increases as the y∗+ decreases. This is because errors by the
simplification of equations and by the estimation of the turbulent viscosity are reduced, making the
NDD solution converge to the LRN solution.

V. CONCLUSIONS

In this work, we developed a machine-learning-augmented implicit NDD method for near-wall
turbulence modeling based on the feed-forward neural networks and the LRN data at selected
conditions. The proposed algorithm has several advantages: (i) it benefits from the theoretical
background of a well-established domain decomposition method; (ii) the machine-learning intrusion
into the numerical scheme is kept to a minimum, thus guaranteeing a physics-informed scheme that
provides comprehensible and interpretable results.
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The prediction accuracy and generalization capacity of the proposed method were examined by
comparing the predicted wall shear stresses with the corresponding one-block LRN data. For the test
case of turbulent channel flow, overall good agreement is observed for the mean streamwise velocity
and the wall shear stress. For the flow through the asymmetric diffuser, key flow quantities are
reproduced with acceptable accuracy for both the k-ε model and the Spalart-Allmaras model. Using
limited training data, the proposed method with the Spalart-Allmaras model can be generalized to
different Reynolds numbers and geometries, even for the extrapolation states. Furthermore, with
the NDD technique, the near-wall region can be efficiently decoupled from the outer main region,
which, in return, strongly reduces the overall computational cost. The tradeoff between accuracy
and computational time still remains.

This paper presents work to explore the feasibility of combining the NDD with data-driven
methods. In principle, the proposed approaches can be easily extended to other turbulent models
and more complex turbulent flows. A possible improvement of the method would be to include
more high-fidelity data, like LES and DNS, during the training to generate a universal eddy viscosity
profile for the specific flow. These topics will be investigated in future studies.

ACKNOWLEDGMENTS

S.L. acknowledges the China Scholarship Council (Grant No. 201708060474) for funding his
Ph.D. study. J.K. would like to gratefully acknowledge the support of the Alexander von Humboldt
Foundation (Ref. 3.5-CHN-1227287-HFST-P).

APPENDIX A: THE LAUNDER-SHARMA k-ε MODEL

The k-ε model by Launder and Sharma [4] is a two-equation low-Re (LRN) turbulence model,
where the damping functions ( fν , fε1, fε2) and extra source terms (ε0, E ) are introduced to properly
solve k and ε equations down to the viscous sublayer. For a steady and incompressible turbulent
flow, the k and ε equations can be written as

∇ · (Uk) − ∇ ·
[(

ν + νt

σk

)
∇k

]
= Pk − (ε̃ + ε0),

∇ · (U ε̃) − ∇ ·
[(

ν + νt

σε

)
∇ε̃

]
= Cε1 fε1

ε̃

k
Pk − Cε2 fε2

ε̃2

k
+ E ,

(A1)

where

νt = Cμ fμk2/ε̃, fμ = e
( −3.4

(1+Reτ /50)2
)
, Reτ = k2

ε̃ν
, fε2 = 1 − 0.3e−Re2

t ,

ε0 = 2ν

(
∂
√

k

∂y

)2

, E = −2ννt

(
∂2u

∂y2

)2

, Pk = −u′
iu

′
j

∂u j

∂xi
.

The k-ε model constants are shown in Table I.

TABLE I. The constants for the Launder-Sharma k-ε model.

σk σε fε1 Cμ Cε1 Cε2

1.0 1.3 1.0 0.09 1.44 1.92
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TABLE II. The constants for the Spalart-Allmaras model.

σν κ Cb1 Cb2 Cw1 Cw2 Cw3 Cν1

2/3 0.41 0.1355 0.622 Cb1
κ2 + 1+Cb2

σνt
0.3 2 7.1

APPENDIX B: THE SPALART-ALLMARAS MODEL

The Spalart-Allmaras model [53] is a one-equation turbulence model that solves for a variable
ν̃ and sequentially uses this quantity to modulate the turbulent viscosity νt . It should be noted
that the implemented equation within the framework of OPENFOAM is identical to the standard
version, except that trip ft1 and ft2 terms are dropped. The equation that solves ν̃ for steady and
incompressible flows is

∇ · (U ν̃) − 1

σν

[∇ · (ν + ν̃)∇ν̃ + Cb2|∇ν̃|2] = Cb1S̃ν̃ − Cw1 fw
ν̃2

d̃2
, (B1)

where

S̃ = � + ν̃

κ2d̃2
, � = √

2Wi jWi j, Wi j = 1

2

(
∂u j

∂xi
− ∂ui

∂x j

)
,

fv2 = 1 − χ

1 + χ fv1
, fv1 = χ3

χ3 + C3
v1

, χ = ν̃

ν
,

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r6 − r), r = min

(
ν̃

S̃κ2d̃2
, 10

)
,

and d̃ is the distance to the closest wall.
After that, the turbulence viscosity is obtained via

νt = ν̃ fv1. (B2)

The model constants are given in Table II.

APPENDIX C: DETAILS OF THE NEURAL NETWORKS

Figure 14 shows the loss variations with the training epochs for training and validation data
sets for the two turbulence models, i.e., the k-ε and SA model in subfigures (a) and (b), re-
spectively. During the training, the weight and bias coefficients are progressively adjusted, and
consequently the loss dramatically decreases during the first 1000 training epochs and then ap-
proaches a steady small value. Three different types of input features, i.e., NN-1, NN-2, and NN-3,
in Table III, which include classical near-wall scale parameters α = u2

τ /u2
τ p and damping function

D = 1 − exp(−y+/17), are further investigated. It should be noted that the flow characteristics that
can be used as input features are limited, as the governing equations in the near-wall flow field
are reduced to the truncated TBLE. The discrepancy among the three NN models in Figs. 14(a) and
14(b) indicates the NN-3 with additional α predicts slightly better, which is further applied to the test

TABLE III. Details of the neural networks. The tabulated hidden layer (HL) size contains the number of
hidden layers and the number of neurons within each hidden layer.

NN HL size Input Output

NN-1 1(40) y+, u+, Px νt/ν

NN-2 1(40) y+, u+, Px , D νt/ν

NN-3 1(40) y+, u+, Px , α νt/ν
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FIG. 14. The variations of training and validation loss with training epochs for different cases with the k-ε
model (a) and the Spalart-Allmaras model (b).

cases in this study. The mapping performance between input and output features is markedly good
in subfigure (a), as the test flow geometry is consistent with the training one. However, for the SA
model, both the inlet flow condition (Re) and the flow geometry (opening angle θ ) vary for different
cases. More prominently, there exists a recirculation flow region near the inclined wall. Thus, the
training process is more challenging, providing a relatively larger loss value in subfigure (b).

APPENDIX D: COMPARISON BETWEEN ORIGINAL INDD [20]
AND THE PROPOSED DATA-DRIVEN INDD

The comparison of skin friction coefficient Cf and pressure coefficient Cp along the inclined wall
of the diffuser (Re = 1.8 × 104, interface position y∗+ = 40), obtained from a one-block solution,
original INDD, and data-driven INDD, can be seen in Fig. 15. The overall solutions with data-driven

FIG. 15. Diffuser flow, Re = 1.8 × 104, interface position y∗+ = 40. Comparison of Cf and Cp along the
inclined wall between the results from the one-block solution, original INDD [20], and data-driven INDD.
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FIG. 16. Error evolution of the cases (Re = 1.8 × 104, θ = 10o) at y∗+ = 40 with the k-ε model and the
Spalart-Allmaras model.

INDD have a slightly better agreement with the one-block solutions than the counterparts with
original INDD (based on solving the turbulent equations in a TBLE form). This is because, in the
proposed data-driven INDD, the one-block results with the corresponding LRN k-ε turbulent model
have been used as the training data set. In addition, compared to the one-block solution, the reduction
of computation time with data-driven INDD is similar to that with original INDD. Although there
is no need to solve the k and ε equations in the inner regions of data-driven INDD, additional time
is required for the viscosity profiles output from the neural network at every iteration.

APPENDIX E: ERROR EVOLUTION

The convergence is evaluated by the mean-square relative error of key parameter Cf along the
walls:

Jmse = 1

N

N∑
i=1

[
Cf (i) − Cfinal

f (i)

Cfinal
f (i)

]2

, (E1)

where Cfinal
f is the final converged values of Cf (Fig. 16).
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