
PHYSICAL REVIEW FLUIDS 9, 044602 (2024)

Revisiting Taylor’s hypothesis in homogeneous turbulent shear flow

Frank G. Jacobitz 1,* and Kai Schneider 2,†

1Mechanical Engineering Department, Shiley-Marcos School of Engineering, University of San Diego,
5998 Alcalá Park, San Diego, California 92110, USA

2Aix-Marseille Université, CNRS, Institut de Mathématiques de Marseille,
3 place Victor Hugo, 13331 Marseille cedex 3, France

(Received 28 September 2023; accepted 14 March 2024; published 3 April 2024)

Taylor’s hypothesis of frozen flow is revisited in homogeneous turbulent shear flow by
examining the cancellation properties of Eulerian and convective accelerations at different
flow scales. Using results of direct numerical simulations, vector-valued flow quantities,
including the Lagrangian, Eulerian, and convective accelerations, are decomposed into
an orthogonal wavelet series and their alignment properties are quantified through the
introduction of scale-dependent geometrical statistics. Joint-probability density functions
of the Eulerian and convective accelerations show antialignment at small scales of the
turbulent motion, but this observation does not hold at large scales. Similarly, the angles
of the scale-wise contributions of the Eulerian and convective accelerations were found
to prefer an antiparallel orientation at small scales. Such antialignment, however, is not
observed at the largest scales of the turbulent motion. The results suggest that Taylor’s
hypothesis holds at small scales of homogeneous turbulent shear flow, but not for large-
scale motion. The Corrsin scale is proposed as a measure for the applicability of Taylor’s
hypothesis in such flows.
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I. INTRODUCTION

Taylor’s hypothesis of frozen flow [1] has frequently been used to convert temporal experimental
measurements into a spatial domain. Thus Taylor’s hypothesis, also know as frozen turbulence
hypothesis, can similarly be used to infer time dependencies from the spatial descriptions of tur-
bulence. Its validity is of crucial importance for experimental studies and theoretical investigations.

Taylor’s frozen-flow hypothesis supposes that small-scale eddies in turbulent flows move down-
stream with little distortion. Temporal and spatial fluctuations in turbulent flows can thus be
related and, for example, temporal spectra from experimental measurements can be converted
into spatial spectra. Hot-wire measurements in turbulent flows often implicitly assume its validity.
Theoretically, it is also of utmost importance to understand convection in turbulent flows and the
related temporal-to-spatial intermittency. Moreover, both play an important role in two-point closure
turbulence models for space-time correlations in Eulerian and Lagrangian reference frames [2].
However, Taylor’s hypothesis has many limitations, such as the requirements of weak shear rates
and low turbulence intensities.

Discussions on its validity have a long history and are still subject to some controversy in
the recent literature. For example, Del Alamo and Jiménez [3] proposed corrections to Taylor’s
hypothesis in turbulent boundary layers and they show “that Taylor’s approximation not only
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displaces the large scales near the wall to shorter apparent wavelengths but also modifies the shape
of the spectrum, giving rise to spurious peaks similar to those observed in some experiments.” Moin
[4] points out that “clearly, experimental shear flow data based on Taylor’s approximation will now
need to be reconsidered.”

Buchhave and Velte [5] proposed a method for converting time measurements of velocity signals
into spatial information with the use of consecutive convection elements. In this approach, the local
mean velocity is replaced by the instantaneous velocity magnitude, which has to be measured with
its spatial flux. This increases the experimental effort, but it provides a corrected approach to get
insight into spatial structure of the flow from time measurements, while avoiding the use of Taylor’s
hypothesis.

Motivated by the random Taylor hypothesis or sweeping decorrelation hypothesis, stating that
“small eddies in turbulent flow being swept past a stationary Eulerian observer cf. [6],” acceleration
fluctuations and their different contributions have been studied in Pinsky et al. [7] and Tsinober et al.
[8] for isotropic turbulence. Their work is based on the prediction of Tennekes [6], which states that
the Lagrangian acceleration must be small, justified by the consideration of Eulerian and Lagrangian
time scales: “The hypothesis states that the velocity fluctuations at a certain point of the turbulence
are caused mainly by advection, and the full (Lagrangian) accelerations of a fluid parcel turn out to
be zero. In other words, the complete compensation of temporal (local) and inertial accelerations
takes place [7].” The different contributions of the acceleration contributions in isotropic turbulence
have been revisited recently for high-resolution direct numerical simulations [9] and a scaling of the
variance with the Reynolds number has been proposed.

Homogeneous turbulent shear flow has been investigated as a prototypical example of turbulence
due to the importance of shear production in the geophysical environment and in many engineering
applications. In homogeneous flows, the statistical properties of turbulence do not change in the
spatial directions, but they evolve in time. While this simplification has been used extensively as the
basis of numerical simulations, homogeneous turbulent shear flow was first studied experimentally.
Rose [10] and Champagne et al. [11] are credited with the first experimental studies of homogeneous
turbulent shear flow. Rohr et al. [12] established that the eventual evolution of homogeneous
turbulent shear flow follows an exponential growth law. Using direct numerical simulations, Jacobitz
et al. [13] confirmed the exponential evolution and also investigated the impact of buoyancy forces
on the flow. This prototypical flow has been studied extensively including the effects of buoyancy
and rotation as well as using a variety of statistical methods e.g. [14].

Motivated by and in the continuity of our recent work in Jacobitz and Schneider [15], in
which we studied the Lagrangian and Eulerian acceleration properties of fluid particles in ho-
mogeneous turbulence with uniform shear and uniform stable stratification, we generalize and
extend this approach here to investigate scale dependent geometrical statistics. A wavelet-based
scale-dependent decomposition of the Eulerian and convective accelerations is performed and the
alignment properties are analyzed at different scales of the turbulent motion using an orthogonal
wavelet decomposition e.g. [16]. The aim of this work is to address the applicability of Taylor’s
hypothesis at small scales in homogeneous turbulent shear flow. Lin [17] concluded: “There is,
therefore, no general justification of extending Taylor’s hypothesis to the case of shear flow.” While
this statement remains of course correct for homogeneous turbulent shear flows, Taylor’s hypothesis
may be applicable to a range of scales of the turbulent motion in shear flows. Tennekes [6] suggested
that Taylor’s hypothesis may indeed apply to the small-scale motion advected by larger scales or a
mean-flow component: “In turbulence at high Reynolds numbers, therefore, the dissipative eddies
flow past an Eulerian observer in a time much shorter than the time scale which characterizes their
own dynamics. This suggests that Taylor’s ‘frozen-turbulence’ approximation should be valid for
the analysis of the consequences of large-scale advection of the turbulent microstructure.”

The remainder of the manuscript first presents the computational background, describing the di-
rect numerical simulations approach, the scale-dependent statistics based on an orthogonal wavelet
decomposition, and the scale-dependent alignment of Eulerian and convective accelerations. Then
results on the flow evolution, the alignment properties of the accelerations for the total flow and
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TABLE I. Properties of the flow at St = 4, 7, and 10.

St St = 4 St = 7 St = 10

Reλ 103.43 136.40 156.90
SK/ε 4.40763 5.49498 5.22344
L 0.83337 0.95673 0.99902
λ 0.09090 0.10149 0.09895
η 0.00598 0.00581 0.00528

at different scales of the motion, and scale-dependent geometric statistics are presented. Finally,
conclusions complete the manuscript.

II. COMPUTATIONAL APPROACH

A. Simulation approach

The coordinates x = (x, y, z) = (x1, x2, x3) are directed in the downstream, vertical, and span-
wise directions, respectively. The downstream component of the mean velocity U = (U,V,W ) has
a constant gradient S in the vertical direction y:

U = Sy, V = W = 0. (1)

This study is based on the Navier–Stokes equations for incompressible flow. This results in the
following equation of motion for the fluctuating velocity components u = (u, v,w) = (u1, u2, u3)
and pressure p:

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u + Sy
∂u
∂x

+ Svex = − 1

ρ0
∇p + ν∇2u. (3)

Here, S = ∂U/∂y is the shear rate, ρ0 the density, and ν the kinematic viscosity. The unit vector in
the downstream direction is denoted as ex.

The equations of motion are transformed into a frame of reference moving with the mean
velocity [18]. This transformation enables the application of periodic boundary conditions for the
fluctuating components of velocity and pressure. A spectral collocation method is used for the
spatial discretization and the solution is advanced in time with a fourth-order Runge-Kutta scheme.
The simulations are performed in a cubic computational domain of size L3

0 = (2π )3 using 5123 grid
points.

The initial conditions are taken from a separate simulation of isotropic turbulence, which was
allowed to develop for approximately one eddy turnover time. The initial value of the Taylor-
microscale Reynolds number is Reλ = qλ/ν = 89 and SK/ε = 2 for the shear number. Some
details about the evolution of the flow are shown in Table I. The table includes the evolution
of Reλ, SK/ε, the integral length scale L = 2π

∫
E (k)/kdk/

∫
E (k)dk, the Taylor microscale

λ = (10νK/ε)1/2, and the Kolmogorov scale η = (ν3/ε)1/4. Here q = 〈uiui〉1/2 is the magnitude
of the velocity fluctuations, K = q2/2 the turbulent kinetic energy, and ε = ν〈∂ui/∂uk∂ui/∂uk〉 its
dissipation rate. The brackets 〈·〉 denote a volume average at a fixed time, which is an appropriate
choice for homogeneous flows.

The impact of the shear number SK/ε on the evolution of homogeneous turbulent shear flow
has been studied in a number of previous investigations, often in the context of other parameters,
such as the Reynolds number Reλ, the Richardson number Ri = N2/S2 for stratified shear flows,
or the rotation number f /S for rotating shear flows. Here, N is the Brunt-Väisälä frequency with
N2 = −g/ρ0Sρ , where g is the gravity acceleration, ρ0 the ambient density, and Sρ = ∂ρ/∂y the
stratification rate. The Coriolis parameter f is twice the system rotation. The first comprehensive
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study of the shear number was performed by Jacobitz et al. [13] for homogeneous turbulent stratified
shear flow, but the relevant findings also apply to the unstratified case cf. [19]. Three regimes were
observed: For very low initial values of the shear number [SK/ε < O(1)], turbulence production is
too weak to sustain shear-driven turbulence and the fluctuations decay. For moderate values [O(1) <

SK/ε < O(10)], nonlinear growth of the turbulence is obtained. The simulation in this study falls
into this parameter range. For large values [SK/ε > O(10)], linear effects prevail and the evolution
falls into the linear theory (or rapid distortion) limit. In the moderate regime, a final value of about
five is obtained for the shear number. Shih et al. [20] argue that the final value of the shear number
depends on the Reynolds number for small Reλ, but that it becomes Reynolds-number independent
for sufficiently large Reλ. Linear theory has been applied to such flows by Hanazaki and Hunt [21] or
Salhi et al. [14]. A detailed study of rotating turbulent shear flow has been performed by Brethouwer
[22] at high values of the shear number. His parameter choice was motivated by the high values of
SK/ε observed in the buffer layer close to the solid surface in wall-bounded flows (see Fig. 2 in
Brethouwer [22]).

The Lagrangian and Eulerian accelerations aL = aE + aC , where aC denotes the convective
contribution, are defined as

aL = ∂u
∂t

+ u · ∇u and aE = ∂u
∂t

, (4)

respectively. The pressure-gradient term is given by aP = ∇(p/ρ0). The effect of shear is considered
as an external force.

B. Scale-dependent statistics

A three-dimensional orthogonal vector-valued wavelet decomposition is used for defining scale-
dependent alignment statistics of the acceleration contributions defined above. For reviews on
wavelets in fluid mechanics we refer to Farge [23] as well as Schneider and Vasilyev [24]. We con-
sider a generic vector field a = (a1, a2, a3) at a fixed-time instant and decompose each component
aα (x) into an orthogonal wavelet series

aα (x) =
∑

λ

ãα
λ ψλ(x). (5)

The wavelet coefficients are given by the scalar product ãα = 〈aα, ψλ〉 e.g. [16]. The wavelets
ψλ with the multi-index λ = ( j, i, d ) are well localized in scale L02− j (where L0 corresponds to
the size of the computational domain), around position L0i/2 j , and orientated in one of the seven
directions d = 1, . . . , 7, respectively. The three components aα at scale L02− j can be reconstructed
by summing only over the position i and direction d indices in Eq. (5). The result yields the vector
field a j at scale L02− j . Summing all scale contributions yields the total vector field a = ∑

j a j , as the
a j are mutually orthogonal. Table II provides values for the scale index j, the corresponding mean
wave number k j = k02 j , and the corresponding mean physical scale Lj = L02− j . The normalized
quantities in Table II, using either the Kolmogorov scale η or the Taylor microscale λ, show that the
scale index values j = 3, 4, 5, and 6 are approximately in the inertial range, while the values 7 and
8 are in the dissipation range.

The scale-dependent statistical moments of the flow fields, including scale-dependent flatness,
and scale-dependent probability distribution functions (pdfs), can thus be computed from a j using
classical statistical estimators. For instance, the qth order moment of a j (x) can be defined by

Mq[a j] = 〈(a j )q〉, (6)

and since the wavelet has vanishing mean, the mean value vanishes with 〈a j〉 = 0. The moments are
thus central moments. These scale-dependent moments are directly related to the qth order structure
functions [25], where the increment size is ∝ 2− j .

044602-4



REVISITING TAYLOR’S HYPOTHESIS IN HOMOGENEOUS …

TABLE II. Comparison of the scale index j, the corresponding mean Fourier wave number k j = k02 j ,
and the corresponding mean physical scale Lj = L02− j for St = 10. Quantities normalized either with the
Kolmogorov scale η or the Taylor microscale λ are also shown.

j k j L j k jη Lj/η k jλ Lj/λ

0 0.77 6.28319 0.00407 1189.34 0.07619 63.49612
1 1.54 3.14159 0.00814 594.67 0.15239 31.74806
2 3.08 1.57080 0.01627 297.33 0.30478 15.87403
3 6.16 0.78540 0.03254 148.67 0.60956 7.93701
4 12.32 0.39270 0.06509 74.33 1.21911 3.96851
5 24.64 0.19635 0.13017 37.17 2.43822 1.98425
6 49.28 0.09817 0.26034 18.58 4.87645 0.99213
7 98.56 0.04909 0.52069 9.29 9.75289 0.49606
8 197.12 0.02454 1.04137 4.65 19.50578 0.24803

The scale-dependent flatness, which measures the intermittency of a j at scale 2− j , is defined by

Fl[a j] = M4[a j]

(M2[a j])2 . (7)

For a Gaussian distribution the flatness equals three at all scales.

C. Accelerations

Tsinober et al. [8] considered the the alignment properties of the Eulerian acceleration
aE , the convective acceleration aC , and, corresponding to its sum, the Lagrangian acceleration
aL = aE + aC .

〈aL, aL〉 = 〈aE + aC, aE + aC〉 = 〈aE , aE 〉 + 〈aC, aC〉
+2 cos(aE , aC ) ||aE || ||aC ||. (8)

This equation allows us to statistically assess the magnitude of the Lagrangian acceleration and it
also formed the starting point of our previous work in Jacobitz and Schneider [26]. In the case of
an antiparallel allignment of the Eulerian acceleration aE and the convective acceleration aC , the
magnitude of the Lagrangian acceleration aL remains small compared to those of the Eulerian and
convective contributions.

Note that Eq. (8) holds not only for the total accelerations, but also for their scalewise contri-
butions. Due to the orthogonality of the wavelet decomposition the mixed terms between different
scales vanish. Hence, an application of the wavelet decomposition to the different accelerations in
Eq. (5) allows us to study the scale-dependent alignment properties of the Eulerian and convective
accelerations, in addition to their total fields, and check the implication for the scale-dependent
Lagrangian acceleration. In the results section, we will present both the scale-dependent joint pdfs
of a j

E and a j
C as well as the cosine of the alignment angles between the two accelerations cos(a j

E , a j
C ).

From Eq. (8) we can directly conclude that, for an antialignment of Eulerian acceleration a j
E and

the convective acceleration a j
C with a resulting negative cosine term, the norm of the Lagrangian

acceleration a j
L becomes minimal. Hence, for a perfect antialignment of a j

E and a j
C , a j

L would vanish,
Taylor’s hypothesis would hold, and temporal variations would thus correspond to the spatial vari-
ations. Hence, the departure of alignment yields a measure for how well Taylor’s “approximation”
holds at different scales of motion, based on the direct numerical simulation results.
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FIG. 1. Evolution of the normalized turbulent kinetic energy K/K0 with normalized time St (left) as well as
the growth rate of the turbulent kinetic energy γ , the normalized production rate P/(SK ), and the normalized
dissipation rate ε/(SK ) (right).

III. RESULTS AND DISCUSSION

A. Flow evolution

Figure 1 (left) provides the evolution of the turbulent kinetic energy K normalized by its initial
value K0. The turbulent kinetic energy initially decays due to the isotropic initial conditions, starts
to grow at about St = 2, and eventually grows exponentially starting at about St = 4. The evolution
equation for K can be written in the following nondimensional form:

γ = 1

SK

dK

dt
= P

SK
− ε

SK
. (9)

Here, γ is the growth rate of the turbulent kinetic energy, P/(SK ) = −2b12 its normalized produc-
tion rate, and ε/(SK ) the normalized dissipation rate. The normalized production rate is directly
related to the b12 component of the Reynolds stress anisotropy tensor bi j = 〈uiu j〉/〈ukuk〉 − δi j

and hence directly related to the anisotropy features of the flow. The evolution of γ , P/(SK ), and
−ε/(SK ) is shown in Fig. 1 (right) and the three terms are approximately constant for St � 4. Once
the normalized production and dissipation rates have reached constant values, resulting in a constant
growth rate γ , Eq. (9) can be integrated to obtain

K = Ceγ St , (10)

where C is a constant. In the following, the flow is analyzed in the exponential growth regime with
St � 4 to assess the applicability of Taylor’s hypothesis in homogeneous turbulent shear flow.

Figure 2 provides the joint probability distribution function (pdf) of the Eulerian acceleration
aE and the convective acceleration aC at nondimensional time St = 10. Note that for St = 4 and
7 a very similar behavior is observed and the figures are thus omitted. The joint pdf shows an
anticorrelation, which can be further quantified using the Pearson product-moment correlation
coefficient r. The Pearson product-moment correlation coefficient for vector-valued quantities is
defined [27] as

r[X,Y ] =
∑M

i=1(Xi − X )(Yi − Y )√∑M
i=1(Xi − X )2

∑M
i=1(Yi − Y )2

, (11)

where X and Y are the mean values of the corresponding variables and M = 5123 denotes the total
number of grid points. The Pearson coefficient r[·, ·] ranges between −1 and 1. Values of 1 and −1
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FIG. 2. Joint probability distribution functions (pdf) of the the Eulerian acceleration aE and the convective
acceleration aC at nondimensional time St = 10 for the total fields.

indicate, respectively, perfect positive and negative linear correlation between the two variables. A
vanishing r value signifies that there is no linear correlation between the variables.

Pearson product-moment correlation coefficient of the Eulerian acceleration aE and the con-
vective acceleration aC is −0.79612. This indicates that Taylor’s hypothesis cannot be applied to
homogeneous turbulent shear flows in general.

B. Scale-dependent statistics

While the joint pdf for the total Eulerian acceleration aE and the total convective acceleration aC

shows some level of anticorrelation as discussed above, a more detailed analysis is now provided
for decomposed fields at different scales of the turbulent motion.

Figure 3 provides the pdfs of the Eulerian acceleration aE and the convective acceleration aC for
the decomposed fields as a function of scale index j at nondimensional time St = 10. The joint pdfs
clearly become more and more negatively correlated as the scale index j increases and the scale L of
the motion decreases. For the large scale for j = 2 no strong correlation is obtained, in the inertial
range ( j = 4 and 6) the correlation becomes more pronounced, and in the dissipation ( j = 8) strong
correlation is observed.

Table III shows the Pearson correlation coefficient r between the Eulerian acceleration aE and the
convective acceleration aC as a function of scale index j and nondimensional time St . For all times,
a negative value of about r = −0.8 is found for the total fields. For a given time St , the value of r
decreases with increasing scale index j or decreasing scale of the turbulent motion. For the smaller
scales of the turbulent motion with scale index j � 4, the results obtained for r at different times
St remain approximately the same. For the larger scales of the turbulent motion with scale indices
1 � j � 3, the results for r decrease with time St and a stronger antialignment is observed for later
times. Only the results for j = 0 show a different trend, but only few wavelet modes contribute to
this value for r. Table III also gives the Taylor-microscale Reynolds number corresponding to the
different times in the flow’s evolution with later times corresponding to higher Reynolds numbers
due to the exponential evolution of the flow.

Results of the second-order moments of the Eulerian, Langrangian, and convective accelerations
as well as their ratios is provided in Table IV for nondimensional time St = 10. The second-order
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FIG. 3. Joint probability distribution functions (pdfs) of the the Eulerian acceleration aE and the convective
acceleration aC at nondimensional time St = 10 for the decomposed fields at scale indices j = 2 (top, left),
j = 4 (top, right), j = 6 (bottom, left), and j = 8 (bottom, right).

TABLE III. Pearson correlation coefficient between the Eulerian acceleration aE and the convective
acceleration aC as a function of scale index j and nondimensional time St = 4, 7, and 10 or Taylor-microscale
Reynolds number Reλ.

St St = 4 St = 7 St = 10
Reλ 103.43 136.40 156.90

total −0.79688 −0.79152 −0.79612
r( j = 0) −0.20819 −0.48831 0.22471
r( j = 1) −0.01186 −0.17431 −0.23597
r( j = 2) −0.23966 −0.34748 −0.36848
r( j = 3) −0.52569 −0.55758 −0.58615
r( j = 4) −0.67770 −0.68890 −0.69352
r( j = 5) −0.75734 −0.75537 −0.75556
r( j = 6) −0.81143 −0.80741 −0.80288
r( j = 7) −0.86320 −0.86073 −0.85560
r( j = 8) −0.89679 −0.90279 −0.90486
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TABLE IV. Scale-dependent normalized second-order moments of the acceleration (a j
E/aE )2, (a j

L/aL )2,
and (a j

C/aC )2 as well as ratios (a j
L/a j

E )2 and (a j
C/a j

E )2 at nondimensional time St = 10.

j (a j
E/aE )2 (a j

L/aL )2 (a j
C/aC )2 (a j

L/a j
E )2 (a j

C/a j
E )2

0 0.00004 0.00012 0.00001 1.82584 0.50608
1 0.00064 0.00127 0.00017 1.10789 0.41017
2 0.00289 0.00706 0.00218 1.35471 1.14237
3 0.01485 0.03253 0.01744 1.21347 1.77558
4 0.07358 0.12109 0.08483 0.91177 1.74292
5 0.22530 0.29025 0.24764 0.71373 1.66164
6 0.36185 0.35401 0.36503 0.54201 1.52498
7 0.25306 0.16645 0.22764 0.36440 1.35991
8 0.06780 0.02722 0.05505 0.22244 1.22740

moments of each acceleration at scale index j is normalized with its corresponding second-order
moment of the total acceleration. All three normalized accelerations (a j

E/aE )2, (a j
L/aL )2, and

(a j
C/aC )2 show the same trend. Their values first increase with scale index j � 6 for the large-scale

motion and in the inertial range. They then decrease again in the dissipation range with j = 7
and 8.

Their ratios, however, show different trends. The ratio of the second-order moments of
Lagrangian to Eulerian acceleration (a j

L/a j
E )2 are larger than 1 for scale indices j � 3. They then

decrease for j � 4, eventually by almost an order of magnitude. This result reflects the cancellation
of aE and aC . The ratio of the second-order moments of convective to Eulerian acceleration
(a j

C/a j
E )2, however, is smallest for the largest scales of turbulent motion at scale indices j = 0 and

1. In this range, the Lagrangian and Eulerian accelerations show alignment [15]. For the remaining
range of turbulent scales in the inertial and dissipation ranges with j � 2, the ratio (a j

C/a j
E )2 remains

between 1 and 2, allowing for a cancellation of the Eulerian and convective accelerations.
Tables V and VI provide the flatness values for the Lagrangian and Eulerian accelerations,

respectively. Both the values for the total accelerations and for their scale dependence are shown.
The results are presented at three nondimensional times St = 4, 7, and 10, corresponding to three
different Reynolds numbers Reλ = 103.43, 136.40, and 156.90. Except for the flatness values at
the largest scale of motion ( j = 0), the flatness values increase with decreasing scale of motion (or
increasing j). For a given scale, the flatness values of both accelerations increase with increasing

TABLE V. Scale-dependent flatness of the Lagrangian acceleration FlaL as a function of scale index j and
nondimensional time St or Taylor-microscale Reynolds number Reλ.

St St = 4 St = 7 St = 10
Reλ 103.43 136.40 156.90

total 13.47 20.77 27.81
Fl ( j = 0) 3.77 6.35 6.72
Fl ( j = 1) 3.26 3.63 3.75
Fl ( j = 2) 4.30 4.55 4.63
Fl ( j = 3) 4.79 5.38 5.93
Fl ( j = 4) 5.91 6.29 7.25
Fl ( j = 5) 8.17 10.35 12.44
Fl ( j = 6) 16.55 25.42 30.54
Fl ( j = 7) 45.81 107.90 111.72
Fl ( j = 8) 82.07 298.47 327.36
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TABLE VI. Scale-dependent flatness of the Eulerian acceleration FlaE as a function of scale index j and
nondimensional time St = 4, 7 and 10 or Taylor-microscale Reynolds number Reλ.

St St = 4 St = 7 St = 10
Reλ 103.43 136.40 156.90

total 10.10 11.96 14.41
Fl ( j = 0) 3.71 5.51 5.22
Fl ( j = 1) 3.54 3.47 4.09
Fl ( j = 2) 4.35 4.36 4.72
Fl ( j = 3) 4.70 5.43 5.53
Fl ( j = 4) 5.86 6.01 6.55
Fl ( j = 5) 7.30 7.70 8.22
Fl ( j = 6) 9.69 11.35 12.45
Fl ( j = 7) 16.63 22.57 25.92
Fl ( j = 8) 32.88 47.88 56.43

nondimensional time St and increasing Reynolds number Reλ. While the flatness values of the total
Lagragian acceleration are always larger than those of the corresponding total Eulerian acceleration,
this result does not hold at all scales of motion. For the larger scales of the motion (0 � j � 4), the
flatness values of the two accelerations are similar. For the smaller scales of the motion (5 � j � 8),
the flatness values of the Lagrangian acceleration are in some cases substantially larger than the
corresponding values for the Eulerian acceleration.

These observations are consistent with previous work by Yoshimatsu et al. [28] considering
homogeneous isotropic turbulence at a Reynolds number Reλ = 732. It was observed that the
flatness values of the Lagrangian and Eulerian accelerations “increase with scale [index] for the
turbulent flow, but the flatness of the Lagrangian acceleration is one order of magnitude larger than
the flatness of the Eulerian acceleration, which shows the extreme intermittency of the former.”
In a comparison to random fields with phase randomization, it was found that “the flatness remains
almost constant, around 5 for the Lagrangian acceleration and around 6 for the Eulerian acceleration,
which confirms that the latter yields a Laplace distribution whose flatness is 6. This proves that the
random fields are non intermittent, as no scale dependence can be observed, even if their pdfs of
acceleration are strongly non-Gaussian.”

C. Proposed cutoff scale

A cutoff scale (in spectral space) between the scales of the turbulent motion suitable and
unsuitable for an application of Taylor’s hypothesis can be introduced by a consideration of the
typical wave number kS for delineating the penetration of anisotropy towards small scales [14]. For
turbulent shear flows, this scale is called the Corrsin scale [29]:

kS =
√

S3

ε
. (12)

Table VII shows the Corrsin scale as a wave number kS , scale index jS , and length scale LS at times
St = 4, 7, and 10 during the eventual evolution of the flow. As time evolves and the Reynolds
number Reλ increases, the Corrsin scale shifts to a smaller wave number, smaller scale index,
and therefore larger scale of the turbulent motion. Hence, an application of Taylor’s hypothesis
is possible over a larger range of scales. The largest physical scales, however, remain inaccessible
to an application of Taylor’s hypothesis.

The Corrsin scale also delineates the regimes of flatness values observed for the Lagrangian and
Eulerian accelerations reported in Tables V and VI, respectively. For the largest scales of the motion
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TABLE VII. Corrsin scales expressed in wave number, as scale index, and in physical space for St = 4, 7,
and 10.

St St = 4 St = 7 St = 10
Reλ 103.43 136.40 156.90

kS 13.916 13.156 10.872
kSη 0.08318 0.07646 0.05744
kSλ 1.26498 1.33526 1.07583
jS 4.1758 4.0947 3.8196
LS 0.34765 0.36774 0.44500
LS/η 58.165 63.279 84.234
LS/λ 3.8246 3.6233 4.4971

with scale indices j � jS , the flatness values of both accelerations remain relatively small, while
they increase for smaller scales of the turbulent motion with scale indices j > jS .

Note that the Corrsin scale kS is part of a family of similarly-defined scales, including the Zeman
scale k =

√
f 3/ε, where f = 2 is the Coriolis parameter or the Ozmidov scale kO =

√
N3/ε,

where N = −gρ0∂ρ/∂y is the Brunt-Väisälä frequency. These two scales may help to delineate the
applicability of Taylor’s hypothesis in turbulent flows with rotation or stratification, respectively.

D. Scale-dependent geometric statistics

In this section, the relative orientation of vector-valued quantities is considered to strengthen
the arguments made with joint pdfs above. Figure 4 shows the pdf of the cosine of the angle
between different vector-valued quantities for the total and scale-dependent fields for j = 2, 4, 6,
and 8 (from large to small scales). The following observations can be made. The Eulerian and
convective accelerations have the tendency of being strongly antialigned, reflected in a peak at −1
in the pdf of cos(aE , ac) (top, left). The peak is more strongly pronounced at small scales, and weak
or no alignment is found at large scales. The reason for this observation is that the advection term
is essentially a small-scale quantity. This finding supports that Taylor’s hypothesis holds at small
scales in homogeneous turbulent shear flow. In contrast, for the pdf of cos(aL, aC ) (top, right), we
observe a slight probability for alignment, which becomes weaker at small scales. Consequently,
the Langrangian and Eulerian accelerations are somewhat aligned (center, left), corresponding to a
peak at +1 in the pdf of cos(aL, aE ). This behavior becomes stronger for large scales. The reason is
again that the convective term is a small-scale quantity and thus supports Taylor’s hypothesis.

In the pdf for cos(aL, ap) we find likewise strong antialignment, which is most pronounced at
intermediate scales and weakens at the largest and smallest scales (center, right). The alignment of
the Lagrangian acceleration and the pressure-gradient confirms the results in Jacobitz and Schneider
[15] that the pressure gradient is the dominant term contributing to the Lagrangian acceleration. The
pdf of cos(aE , aP ) shows some antialignment, which is stronger at large scales, and no alignment is
observed at small scales (bottom, left). A similar weak antialignment behavior is found for the pdf
of cos(aC, ap) (bottom, right).

IV. CONCLUSIONS

Direct numerical simulations of homogeneous turbulent shear flow are analyzed in order to
assess Taylor’s hypothesis in such flows. A scale-dependent analysis using a wavelet-based ap-
proach is performed. Taylor’s hypothesis is revisited by consideration of the correlation of the
Eulerian acceleration with the convective acceleration. Based on the joint pdfs and the Pearson
correlation coefficients, the two accelerations show strong antialignment at small scales, indicating
a cancellation of the two accelerations. However, this result does not hold for the largest scales of the
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FIG. 4. Probability distribution functions (pdfs) of the cosine of the angle between the Eulerian acceleration
aE and the convective acceleration aC (top, left), the Lagrangian acceleration aL and the convective acceleration
aC (top, right), Lagrangian and Eulerian accelerations (center, left), Lagrangian acceleration and the pressure-
gradient term (center, right), Eulerian acceleration and the pressure-gradient term (bottom, left), as well as the
advection term and the pressure gradient term (bottom, right) at time St = 10. Note that the pdfs are shown for
the total flow fields (dashed lines), and the flow fields at the scale indices j = 2 (large scale), 4, 6, and 8 (small
scale).
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motion, where only weak alignment of the two accelerations is observed. Hence, Taylor’s hypothesis
appears to hold at small scales in homogeneous turbulent shear flow, but not so at large scales of
the motion with possible implications for instrumentalists for the turbulent kinetic energy spectra.
The Corrsin scale is proposed to delineate between the two regimes. In summary, our results are in
agreement with Lin [17] that there is “no general justification of extending Taylor’s hypothesis to the
case of shear flow.” However, our results also show that, in agreement with Tennekes [6], Taylor’s
hypothesis is applicable to small-scale motion in homogeneous turbulent shear flow. Future work
may include an expansion of the study to a larger range of shear number values and a scaling analysis
with Reynolds number.
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