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In this study, asymptotic scaling of near-wall streamwise turbulence intensity u′u′/u2
τ (uτ

is the friction velocity) is theoretically explored. The three scalings previously proposed are
first reviewed with their derivation and physical justification: (1) u′u′/u2

τ ∼ ln Reτ (Reτ is
the friction velocity); (2) u′u′/u2

τ ∼ 1/U +
∞ (U +

∞ is the inner-scaled freestream velocity in
boundary layer); (3) u′u′/u2

τ ∼ Re−1/4
τ . A new analysis is subsequently developed based

on velocity spectrum, and two possible scenarios are identified based on the asymptotic
behavior of the outer-scaling part of the near-wall velocity spectrum. In the former case,
the outer-scaling part of the spectrum is assumed to reach a nonzero constant as Reτ → ∞,
and it results in the scaling of u′u′/u2

τ ∼ ln Reτ , both physically and theoretically consistent
with the classical attached eddy model. In the latter case, a sufficiently rapid decay of
the outer-scaling part of the spectrum with Re is assumed due to the effect of viscosity,
such that u′u′/u2

τ < ∞ for all Reτ . The following analysis yields u′u′/u2
τ ∼ 1/ ln Reτ ,

asymptotically consistent with the scaling of u′u′/u2
τ ∼ 1/U +

∞. The scalings are further
verified with the existing simulation and experimental data and those from a quasilinear
approximation [Holford et al. J. Fluid Mech. 980, A12 (2024)], the spectra of which all
appear to favor u′u′/u2

τ ∼ 1/ ln Reτ , although new datasets for Reτ � O(104) would be
necessary to conclude this issue.

DOI: 10.1103/PhysRevFluids.9.044601

I. INTRODUCTION

The first-order moment (mean) of streamwise velocity of wall-bounded turbulence has a well-
established layered structure in the wall-normal direction. In particular, in the near-wall region,
the mean streamwise velocity is expressed in terms of a Reynolds-number-independent universal
function, when normalized by the kinematic viscosity ν and the friction velocity uτ : i.e., the law
of the wall [1]. Early studies speculated that the second-order moment of the near-wall streamwise
velocity would also behave in the same way [e.g., Refs. [2,3]]. However, a large number of datasets,
taken from accurate laboratory experiments and direct numerical simulations (DNS) since the
1990s, have revealed that the near-wall peak streamwise turbulence intensity consistently grows
with Reynolds number. Figure 1 reports the near-wall peak streamwise turbulence intensity in a
range of the friction Reynolds number Reτ from a number of previous experiments and DNSs [e.g.,
Refs. [4–20], and many others]. Although the data are relatively scattered due to different flow
geometry, experimental measurement methods, and numerical simulation methods, it is seen that
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FIG. 1. Peak streamwise turbulence intensities from experiments (open symbols) and DNSs (filled sym-
bols) and their scaling laws: - - - -, AS + BS ln Reτ , with AS = 0.646 and BS = 3.54 [20]; —–, AM − BM/U +

∞,
with AM = 15.2 and BM = 174, where the free stream velocity U∞ is given by U +

∞ = (1/κ ) ln Reτ + 6.5, with
κ = 0.384 (note AM and BM here are different from those proposed in Refs. [21,22], where an error was found
in the description of U +

∞); – - – - –, AC + BC ln Reτ , with AC = 11.5 and BC = 19.32 [23]. The data from pipe,
channel, and boundary layer are denoted by the orange, blue and green colors, respectively. Here, (·) indicates
a time average and the superscript (·)+ denotes the inner-scaling with uτ and ν.

the near-wall peak streamwise turbulence intensity grows slowly at least within the range of Reτ

considered.
The present study concerns the issue of how the growth of the peak intensity asymptotically

scales as Reτ → ∞. There are three different scaling laws that have been proposed so far: (1)
ln Reτ scaling [24]; (2) Inverse of U +

∞ scaling (U∞ is the freestream velocity in boundary layer and
the superscript (·)+ denotes the inner-scaling with uτ and ν) [21]; (3) Re−1/4

τ scaling [23]. As seen
in Fig. 1, the three different scaling laws appear to be all reasonably good with the existing data,
when the fitting constants are appropriately chosen, leading this issue to be unsettled without very
accurate data available at higher Reτ . This paper will therefore begin first by reviewing these scaling
laws with focus on their derivation, supporting evidence, limitations, and physical relevance.

A. ln Reτ scaling

From their experimental data in a turbulent boundary layer, the authors of Ref. [7] observed that
u′u′/u2

τ slowly grows with Reτ in a way that u′u′/uτU∞ remains approximately constant. Given that
U +

∞ ∼ ln Reτ at high Reτ , this also approximately implies the following scaling:

u′u′

u2
τ

∣∣∣
y+=y+

p

= AS + BS ln Reτ , (1)

where y+
p is the peak wall-normal location, and AS and BS are appropriate constants to be chosen.

Reference [24] pointed out that this observation is consistent with the classical attached eddy model
[25–27], when the near-wall streamwise velocity fluctuation is modeled to be

u′u′(y+)

u2
τ

= f1(y+) + f2(y/δ), (2a)

where

f2(y/δ) = A1 − B1 ln
(y

δ

)
, (2b)

with δ being the outer length scale, such as half height of channel, radius of pipe, and thickness of
boundary layer. Here, f1(y+) is a universal inner-scaling function which describes the streamwise
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turbulence intensity only from the viscous inner-scaling motions, and f2(y/δ) depicts the contribu-
tion from the logarithmic and outer regions given by the classical attached eddy model [25], where
B1 has often been referred to as the Townsend-Perry constant [28]. Note that if the peak location
is assumed to be constant (say y+

p = 15), u′u′/u2
τ at the peak would be proportional to ln Reτ with

BS = B1 ln y+
p as in Eq. (1). Given that the Townsend-Perry constant proposed was B1 � 1.26 [e.g.,

Ref. [28]], (2) would yield BS = 3.41, not very far from BS = 3.54 proposed by Ref. [20] from their
measurement of the peak intensity.

Perhaps, the scaling in Eq. (1) has been employed most commonly, as there is a considerable
amount of evidence supporting the attached eddy hypothesis: i.e., the existence of the self-similar
energy-containing motions, the size of which is proportional to the distance from the wall in the
logarithmic region (see also the recent review in Ref. [29]). The attached eddy hypothesis itself
has recently been demonstrated theoretically in terms of energetics [30], and there has been firm
evidence on the existence of self-similar energy-containing eddies [31–40] as well as supporting
mathematical structure from the Navier-Stokes equations [41–47].

The existence of the self-similar energy-containing motions in the logarithmic layer does not,
however, necessarily imply that Eq. (2) is without any issues. Note that Eq. (2b) is supposed to be
valid in the logarithmic layer in the limit of Reτ → ∞. It is also obtained by assuming that each of
the self-similar energy-containing motions satisfies slip boundary condition (i.e., an inviscid theory),
the key mathematical feature required to have the logarithmic term in Eq. (2b) [25]. However, any
fluid motions in a viscous fluid must satisfy no-slip boundary condition, and the viscous effect is
important in the near-wall region, where the scaling of interest concerns. In fact, Ref. [48] showed
that there is nontrivial Reynolds-number dependent viscous effect on the spectra of the footprint
of self-similar energy-containing motions (i.e., the near-wall part of the motions). Even in the
entire logarithmic layer, the viscous effect is not negligible as long as Reτ is finite. In the upper
logarithmic layer (or inertial sublayer), it was recently shown that both A1 and B1 must vary with
Reτ theoretically [49]. In the lower logarithmic layer (or mesolayer) [42,50], an expression different
from Eq. (2b) is needed to incorporate the viscous effect: for example, see Eq. (4.6) in Ref. [49].

B. Inverse of U+
∞ scaling

Reference [21] proposed a scaling of near-wall peak streamwise turbulence with Reτ different
from Eq. (1). The proposed scaling reads as

u′u′

u2
τ

∣∣∣
y+=y+

p

= AM + BM

U +∞
+ O

(
1

U +∞
2

)
, (3)

where AM and BM are constants. The scaling Eq. (3) is obtained by an asymptotic analysis of
streamwise mean momentum equation of turbulent boundary layer combining with the existing
DNS data. Using the von Kármán integral momentum equation, Ref. [21] showed that the small
parameter required for the asymptotic balance would be 1/U +

∞. The resulting u′u′/u2
τ is then finite

at Reτ → ∞ and proportional to 1/U +
∞ for sufficiently high Reτ .

The scaling Eq. (3) provides a good fit for the existing dataset (solid line in Fig. 1) (see also
Ref. [51]). It is also obtained by a direct analysis of the Navier-Stokes equations using DNS
data unlike the one in Ref. [24], where a model for flow field is employed (i.e., the attached
eddy model). It is, however, strictly applicable to boundary layers, where the mean momentum
equation contains nonvanishing u′u′; for example, u′u′ does not appear in the streamwise mean
momentum equation in internal parallel shear flows, such as channel and pipe, thereby not being
able to straightforwardly justify Eq. (3) for such flows. Nevertheless, recent studies, which applied
quasilinear approximations to the Navier-Stokes equations in channel flow [52–54], have also shown
that their peak streamwise turbulence intensity consistently follows the scaling in Eq. (3), although
the underlying mathematical reason remains not understood.
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C. Re−1/4
τ scaling

The final scaling of interest in this study has recently been proposed by Ref. [23]:

u′u′

u2
τ

∣∣∣
y+=y+

p

= AC + BCRe−1/4
τ + O(y+3), (4)

where AC and BC are constants to be determined with the measured data. The starting point of Eq. (4)
is from the following equation, obtained by applying a Taylor expansion about the wall:

u′u′(y)

u2
τ

= ε+
W y+2 + O(y+3), (5)

where ε+
W is inner-scaled turbulence dissipation at the wall. Two key conjectures are subsequently

made to estimate the scaling behavior of u′u′/u2
τ in the near-wall region. First, from the well-known

fact that the inner-scaled turbulence production is bounded by 1/4 as Reτ → ∞, Ref. [23] argued
that ε+

W is also expected to be bounded by ε+
∞(= 1/4). The defect dissipation from this bound, εd ,

may be defined as

ε+
d = 1/4 − ε+

W . (6a)

Second, it was also argued that the defect dissipation may be related to bursting in the near-wall
region [e.g., Ref. [55]], which transports some of the turbulent kinetic energy to the outer region
without being dissipated locally. The timescale of this process is subsequently hypothesized to be
ηo/uτ , where ηo is the Kolmogorov length scale in the outer region: i.e., η0 = ν3/4/ε1/4

o , where
εo = u3

τ /δ. If this is so, then ε+
d ∼ Re−1/4. Combining with Eq. (8), this leads to

ε+
W = 1/4 − βRe−1/4

τ , (6b)

where β is a constant to be determined.
The scaling Eq. (5) provides a good fit for the existing dataset (dash-dotted line in Fig. 1).

However, apart from the influence of the higher-order term in Eq. (5), unfortunately, the two
conjectures made to derive Eq. (5) in Ref. [23] do not have supporting evidence. First, there is
no physical reason for ε+

W to be bounded by the peak near-wall production, 1/4. Wall-bounded
turbulence is largely nonlocal in the wall-normal direction, and there is a large amount of evidence
that the near-wall region is subject to influence of the structures originating from the logarithmic and
the outer regions [see Refs. [56–61], and many others]. Importantly, the turbulent energy transport
caused by the resulting near-wall inner-outer interaction is directly balanced with dissipation in
the near-wall region [62]. In other words, unlike the production only affected by inner scale [see
the Reynolds shear stress spectra (Fig. 10(e)) in Ref. 48], dissipation in the near-wall region is
increasingly influenced by the wall-attached part of the energy-containing motions from the log-
and outer regions upon increasing Reτ . This implies that ε+

W needs not to be bounded by the peak
production value 1/4 in the limit of Reτ → ∞—it is possible for the near-wall region to dissipate
out the near-wall part of structures associated with infinitely many scales varying from δν (≡ν/uτ )
to δ, given that Reτ = δ/δν by definition. In fact, we shall see in Sec. II that the increase of the
near-wall peak intensity with Reτ is because there is an increasing contribution of the wall-attached
part of the motions originating from the log- and outer regions (Fig. 3), a physical picture rather
consistent with attached eddy hypothesis [25].

Second, there is no evidence that bursting transports the near-wall turbulence all the way up to
the outer region especially for Reτ → ∞. In fact, it is quite possible that the near-wall turbulence
transported upwards by bursting may well be dissipated in the logarithmic region, where most of
dissipation should take place at high Reτ [63]: see also data from Refs. [18,64]. Let us assume
that the transport process takes place at the timescale of ηo/uτ , as conjectured by Ref. [23]. Given
that v ∼ O(uτ ) throughout the entire wall-normal location (v is the wall-normal velocity), the wall-
normal turbulent transport (or the wall-normal advective flux for turbulent fluctuation) can take place
only with the speed of O(uτ ). The distance that the near-wall turbulence can travel upwards is then
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only O(ηo) over the timescale of O(ηo/uτ ). Given ηo/δ = Re−3/4
τ , it is evident that the near-wall

turbulence is increasingly unable to reach the outer region as Reτ → ∞. It will remain at best in
the lower logarithmic region (or mesolayer), given that δm/δ ∼ Re−1/2

τ (δm is the upper boundary of
the mesolayer [50,65]). This suggests that the second conjecture of Ref. [23] is self-contradictory.
More importantly, in the spanwise minimal channel [66], where the bursting is allowed to transport
near-wall turbulence from the wall in the absence of the motions from the logarithmic and outer
regions, the near-wall streamwise turbulence intensity does not change with Reτ , not supporting the
second conjecture of Ref. [23].

D. Scope of the present study

Thus far, the relevance of the three scalings of the near-wall peak streamwise turbulence intensity
has been reviewed. The scaling in Eq. (1) has a good physical grounds as a large number of recent
investigations have confirmed the existence of statistically and dynamically self-similar energy-
containing motions in the logarithmic layer (i.e., attached eddies). However, it remains unclear
if the simple extension of the classical attached eddy model described in Eq. (2) would accurately
incorporate the near-wall viscous effect into streamnwise turbulence intensity. The scaling in Eq. (3)
is rigorous and self-consistent at least for boundary layer, as Eq. (3) is directly derived from an
asymptotic analysis of the Naiver-Stokes equations [21]. Nevertheless, the physical implication of
this scaling is unclear especially in relation to the dynamics of the flow (e.g., coherent structures,
energy balance, etc). Last, the scaling Eq. (5) does not appear to have strong physical grounds, as
the two main hypotheses set up are too speculative and allow for some critical counter-arguments
with a room for a further debate.

Given the discussion above on the three different scaling laws, the objective of the present
study is to theoretically explore the possible asymptotic scaling behaviors of near-wall streamwise
turbulence intensity as Reτ → ∞. In Sec. II, some observations will first be made on the near-wall
streamwise velocity and corresponding spectrum with DNS [18] and experimental [20] data. Based
on this observation, an exact form of the near-wall streamwise turbulence intensity is formulated
using a dimensional analysis of the corresponding velocity spectra. In Sec. III, it will be seen that
the near-wall spectrum for kxδ ∼ O(1) (kx is the streamwise wave number) has a crucial importance
in the prediction of scaling. Depending on its behavior, two scaling behaviors will be shown to be
possible: (1) u′u′/u2

τ ∼ ln Reτ ; (2) u′u′/u2
τ ∼ (ln Reτ )−1. The near-wall spectra from the existing

DNS [18] and experimental data [20] will be seen to favor the latter case at least within the range
of Reτ currently available. In Sec. IV, a summary will first be given and the relevance of the latter
scaling will be discussed further using the data generated by a quasilinear approximation of the
Navier-Stokes equations for channel flow up to Reτ = 105 [54].

II. PROBLEM FORMULATION

A. Some observations on near-wall turbulence intensity

Before exploring the possible scaling behavior, it would be useful to start by making some
observations on the features of near-wall turbulence intensity. Figure 2 shows the behavior of
near-wall streamwise turbulence intensity in channel flow from Ref. [18] on increasing Reτ . The
growth of the near-wall turbulence intensity is evident over the entire near-wall region, as seen
in Fig. 2(a). The peak wall-normal location appears at y+

peak � 15, but there is also a very weak
dependence on Reτ , the feature also pointed out by some previous studies [e.g., Refs. [19,52]]. Note
that all the three scalings discussed in Sec. I assume the inner-scaled peak location is not a function
of Reτ . Although the derivation of Eq. (3) could suitably be modified without change in its form (see
Sec. III B), Fig. 2(a) implies that, in principle, comparing the peak streamwise turbulence intensity
from DNS/experimental data with all the three scalings discussed in Sec. I is not precisely valid,
especially when a wide range of Reτ encompassing several decades is to be considered. Instead,
the streamwise turbulence intensity at a fixed inner-scaled wall-normal location must be considered
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(a) (b)

FIG. 2. Near-wall streamwise turbulence intensity in channel for Reτ = 544, 1000, 1995, 5186 [18]:
(a) near-wall profile of u′u′(y+)/u2

τ ; (b) values of u′u′(y+)/u2
τ at y+ = y+

peak, 25, 30 with y+
peak � 15. In panel

(b), the solid black lines indicate fits in the form of A log Reτ + B, where A and B are determined by the data
at two lowest Reynolds numbers.

to be directly compared with the scalings given in Sec. I. Figure 2(b) shows the scaling behavior
of near-wall turbulence intensity at a few more locations in the near-wall region. It becomes more
evident even at relatively low Reτ (�5200) that the near-wall turbulence intensity deviates from
Eq. (1), indicating that the DNS data favors the alternative scalings, Eq. (3) or Eq. (4).

To understand the behavior of near-wall streamwise turbulence intensity in Fig. 2 better, we
consider its power spectral density with respect to the streamwise wave number kx, defined with

u′u′(y) =
∫ ∞

0
	uu(kx, y)dkx =

∫ ∞

−∞
kx	uu(kx, y)d (ln kx ). (7)

Figure 3 visualizes premultiplied power spectral density of streamwise velocity at y+ = 15 with
respect to inner- and outer-scaled streamwise wave number. Here, the data are from Ref. [18] for
channel [Figs. 3(a) and 3(b)] and from Ref. [20] for boundary layer [Figs. 3(c) and 3(d)]. When
each spectrum from different Reτ is scaled with inner units [Figs. 3(a) and 3(c)], all of them
collapse into a single curve with the maximum intensity of k+

x 	+
uu(k+

x ) � 2.2 for k+
x � O(10−3)

[λ+
x � O(103) where λx = 2π/kx]. In particular, the peak occurs at k+

x � 0.007 (λ+
x � 1000), close

to the streamwise length of near-wall streaks [66]. As Reτ is increased, the spectrum gradually
extends to smaller k+

x , forming a long tail at k+
x � O(10−3) for Reτ considered here. The presence of

the spectral tail for small kx (or large λx) is evidently the reason why the peak streamwise turbulence
intensity grows with Reτ .

Given that the largest length scale of the flow is δ, the spectra with respect to the outer-scaled
streamwise wave number are further plotted in Figs. 3(c) and 3(d). Both DNS and experimental data
show that there is a considerable amount of spectral energy at kxδ � 1 (λx/δ � 2π ). As discussed in
Sec. I, this is associated with the penetration of very large-scale motions (or δ-scaling long streaky
motions) into the near-wall region [56–61]. Note that the spectral energy at this wave number range
decays with Reτ , suggesting that the near-wall influence (or footprint) of δ-scaling long streaky
motions appears to diminish. This is the nontrivial viscous wall effect on the footprint of δ-scaling
structures [48], and its origin currently remains not understood. Assuming a gradual diminishment
of energy for kxδ � 1 on increasing Reτ , most of the spectral energy related to the growth of u′u′/u2

τ

with Reτ is expected to originate from O(1/δ) � kx � O(1/δν ), as Reτ → ∞. By definition, these
streamwise wave numbers (or length scales) are associated with the logarithmic layer (i.e., the
overlap region). Indeed, the near-wall spectral energy for O(1/δ) � kx � O(1/δν ) has consistently
been understood to be the contribution of “inactive” motions of self-similar attached eddies of
Ref. [25] [for a detailed discussion, see also Refs. [35,48,67,68]]. It is worth mentioning that the
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(a) (b)

(c) (d)

FIG. 3. Premultiplied streamwise wave number spectra of streamwise velocity at y+ = 15 in panels (a),
(b) channel [DNS from [18]] and in panels (c), (d) boundary layer [experiment from Ref. [20]]: (a), (c)
inner scaling; (b), (d) outer scaling. In panels (a), (b), Reτ = 1000, 1995, 5186, and, in panels (c), (d),
Reτ = 6123, 10 100, 19 680.

logarithmic term in the scaling of Eq. (1) theoretically originates from such inactive motions, the
consequence of allowing for wall-parallel fluid motions near the wall through the slip boundary
condition [25]. In this respect, the scaling in Eq. (1) is still sound with DNS and experimental
data at least from a physical viewpoint, although the poorly understood viscous effect presumably
undermines its precise relevance to viscous fluids.

B. Near-wall turbulence intensity

Given the discussion in Sec. II A, the behavior of the streamwise velocity spectrum in the near-
wall region is crucial to understand the peak scaling of u′u′/u2

τ with Reτ . Here, a further analysis
will be presented for the streamwise wave number velocity spectrum, a function of uτ , ν and δ, kx,
and y. A schematic diagram of the spectrum is first considered at a fixed inner-scaled wall-normal
location (i.e., y+ = c) close to the peak location of u′u′/u2

τ , as in Fig. 4. The structure of spectrum is
set to be divided into three regions, depending on the value of kx: (1) Region I, where kx � O(1/δ);
(2) Region II, where kx � O(1/δν ); (3) Region III, where O(1/δ) � kx � O(1/δν ).

Region I is defined to be kxδ � a (a is an appropriate constant to be chosen from data) at a fixed
inner-scaled wall-normal location (say y+ = c), leading to kx ∼ O(1/δ) and y ∼ O(δν ). Combining
this with the Buckingham � theorem and Eq. (7), the spectrum is given by

	uu(kx, y; δ, δν )

u2
τ

= δ	uu(kxδ, y+; Reτ )

u2
τ

= δg1(kxδ, y+; Reτ ). (8a)
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FIG. 4. A schematic diagram of the premultiplied one-dimensional spectrum of near-wall streamwise
velocity at a fixed inner-scaled wall-normal location (y+ = c).

At y+ = c, the corresponding dimensionless premultiplied spectrum is then written as
kx	uu(kx; δ, δν )

u2
τ

= kxδ	uu(kxδ; Reτ )

u2
τ

= kxδg1(kxδ; Reτ ) = h1(kxδ; Reτ ). (8b)

Now, it becomes evident that the dimensionless premultiplied spectrum for kxδ ∼ O(1) must be a
function of Reτ in general, consistent with the DNS and experimental data shown in Figs. 3(a) and
3(b).

Similarly to Region I, Region II is defined at y+ = c for k+
x � b, where b is an appropriate

constant, yielding kx ∼ O(1/δν ) and y ∼ O(δν ). It is therefore expected that δ would no longer be
relevant in Region II. It is also worth noting that δν is the Kolmogorov length scale in the near-wall
region, as the dissipation rate is given by ε = u3

τ /δν . This implies that the smallest possible length
scale of the spectrum is δν and that turbulence production and dissipation takes place at the same
length scale in the near-wall region, like in typical transitional flows. Therefore, it is expected that
there is no spectrum developed for energy cascade (i.e., the k−5/3

x law) in Region II. The Buckingham
� theorem and Eq. (7) subsequently lead the spectrum to take the following form:

	uu(kx, y; δν )

u2
τ

= δν	uu(k+
x , y+)

u2
τ

= δg2(kxδ, y+). (9a)

The corresponding dimensionless premultiplied spectrum at y+ = c is given by

kx	uu(kx )

u2
τ

= k+
x 	uu(k+

x )

u2
τ

= k+
x g2(k+

x ) = h2(k+
x ). (9b)

Unlike Eq. (8b), the spectrum in Region II does not have any dependence on Reτ , since δ is a length
no longer relevant scale here. This is consistent with the DNS and experimental data in Figs. 3(a)
and 3(c), where the spectra from different Reτ are collapsed into a single curve.

Region III is defined for a/δ � kx � b/δν . If h1(kxδ; Reτ ) and h2(k+
x ) are known, then an

asymptotic matching may be proceeded to understand the form of the spectrum for O(1/δ) �
kx � O(1/δν ) as in Ref. [27] for the logarithmic layer. It will be seen in Sec. III A that such an
analytical progress is possible for a particular case without knowing the full details of h1(kxδ; Reτ )
and h2(k+

x ). However, in general, the dimensionless premultiplied spectrum in Region III is expected
to be a function of Reτ , given that the spectrum in Region I is a function of Reτ ; i.e.,

kx	uu(kx )

u2
τ

= h3(kxl; Reτ ), (10)

where l is an appropriate length scale given by δν < l < δ.
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Using Eq. (7) and the features of the spectra from Eqs. (8) to (10), the streamwise turbulence
intensity at y+ = c may be written as follows:

u′u′

u2
τ

∣∣∣
y+=c

=
∫ ln(a/δ)

−∞

kx	uu(kx, cδν )

u2
τ

d (ln kx )︸ ︷︷ ︸
Region I

+
∫ ∞

ln(b/δν )
kx	uu(kx, cδν )d (ln kx )︸ ︷︷ ︸

Region II

+
∫ ln(b/δν )

ln(a/δ)

kx	uu(kx, cδν )

u2
τ

d (ln kx )︸ ︷︷ ︸
Region III

= A(Reτ ) + C + B(Reτ )

[
ln Reτ + ln

(
b

a

)]
, (11a)

where

A(Reτ ) =
∫ ln a

−∞
h1(kxδ; Reτ )d (ln(kxδ)) (11b)

from Region I,

C =
∫ ∞

ln b
h2(k+

x )d (ln k+
x ) (11c)

from Region II, and

B(Reτ ) =
[

ln

(
bl

δν

)
− ln

(
al

δ

)]−1 ∫ ln(bl/δν )

ln(al/δ)
h3(kxl; Reτ )d (ln(kxl )) (11d)

from Region III. Here, the value of B(Reτ ) must be comparable to a typical value of dimensionless
premultiplied power-spectral intensity for a/δ � kx � b/δν , because the mean value theorem for
integral indicates the existence of B(Reτ ), satisfying

B(Reτ ) = h3(k∗
x l; Reτ ), (11e)

where k∗
x is a streamwise wave number given in the range of a/δ � k∗

x � b/δν .
It is also worth noting that a and b are appropriate constants to be chosen. While the choice for b

must ensure C in Eq. (11c) to be a constant, the choice for a is rather arbitrary as long as a � O(1).
In fact, choosing a sufficiently small a(� 1) can further simplify (11) into

u′u′

u2
τ

∣∣∣
y+=c

= C + B(Reτ )

[
ln Reτ + ln

(
b

a

)]
+ O(a2), (12a)

where the contribution from Region I [i.e., A(Reτ )] is estimated to be

A(Reτ ) =
∫ a/δ

0

	uu(kx )

u2
τ

d (kx ) =
∫ a

0

	uu(kxδ)

u2
τ

d (kxδ) ∼ O(a2) (12b)

from 	uu(kxδ) ∼ kxδ for kxδ � 1. For example, if a = 0.01 is chosen for the experimental data of
Ref. [20], then A(Reτ ) ∼ O(10−4) and this is seen to be negligibly small [Fig. 3(d)]. However, such
a small choice of a does not lead to any singular behavior of ln(b/a) in Eq. (12a) because of its
logarithm. Indeed, if b = 10−3 is chosen with a = 0.01 from the data in Figs. 3(a) and 3(c), then
ln(b/a) ∼ O(1).

III. TWO POSSIBLE SCENARIOS

The formulation in Sec. II B suggests that the increase of u′u′/u2
τ in the near-wall region is due

to the increasing contribution of the motions, the streamwise length scale of which varies from δν
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to δ. From a physical viewpoint, this is consistent with the underlying rationale in the derivation
of Eq. (1). In this section, a further progress from Eq. (11) or alternatively from Eq. (12) will be
sought by considering two scenarios associated with the Reτ -dependent behavior of the spectrum
in Region I. In particular, it will be shown that the two scenarios establish theoretical links with the
scaling laws in Eqs. (1) [24] and (3) [21], respectively.

A. Scenario 1: h1(kxδ; Reτ ) > 0 for all Reτ

The first scenario assumes that the premultiplied spectrum in Region I, h1(kxδ; Reτ ), stops to
decay to zero above a certain Reτ , and it eventually loses the Reτ dependence, making A(Reτ )
nonzero constant as Reτ → ∞ [see also Eq. (11b)]. This scenario is not yet supported by the DNS
and experimental data in Fig. 3, as they do not show such a behavior up to Reτ = 20 000. However,
here I shall assume that this may happen for very high Reτ for the purpose of understanding its
theoretical consequences. In particular, this will lead to the result directly connected to the scaling
law of Eq. (1).

Theorem 1. If h1(kxδ; Reτ ) → h̃1(kxδ) > 0 as Reτ → ∞, then

u′u′

u2
τ

→ ∞ at y+ = c, (13)

with a lower bound proportional to ln Reτ .
Since Reτ dependence of the spectrum originates from Region I, the given assumption ef-

fectively removes Reτ dependence of the spectrum not only in Region I but also in Region
III; i.e., h3(kxl; Reτ ) → h̃3(kxl ) > 0 for a/δ � kx � b/δν . Note that a can be chosen arbitrarily.
Therefore, suppose a sufficiently small a is chosen for all Reτ , such that h̃1(kxδ = a) = D where
D � infkx h̃3(kxl ) for a/δ � kx � b/δν . In this case, the contribution of the spectrum to u′u′/uτ in
Region III must satisfy the following inequality (see also Fig. 4 for a schematic sketch):∫ ln(bl/δν )

ln(al/δ)
h̃3(kxl )d (ln(kxl )) � D ln Reτ + ln

(
b

a

)
. (14)

This indicates that u′u′/uτ is unbounded as Reτ → ∞ and it has a lower bound proportional to
ln Reτ as stated above.

A stronger result can further be obtained, if the result of the classical theory of Ref. [27] is
combined.

Remark 1. If h1(kxδ; Reτ ) → h̃1(kxδ) > 0 as Reτ → ∞, then

u′u′

u2
τ

∼ ln Reτ at y+ = c. (15)

If h1(kxδ; Reτ ) → h̃1(kxδ)(>0), then one can choose a so that A(Reτ ) = A0 from Eq. (11b), where
A0 is a positive nonzero constant. Importantly, in this case, the entire theoretical setting here
becomes identical to that of Ref. [27] for the logarithmic layer, if their wall-normal coordinate
(z in Eq. (7) in Ref. [27]) is replaced with δν . Following the result of Ref. [27], the asymptotic form
of the premultiplied spectrum in Region III for 1/δ � kx � b/δν is then given by the wall-known
k−1

x spectrum: i.e.,

kx	uu(kx )

u2
τ

= h3(kxl; Reτ ) = h̃3(kxl ) = B0, (16)

where B0 is a positive nonzero constant. Since A(Reτ ) = A0 and B(Reτ ) � B0 from Eq. (11d), this
finally yields

u′u′

u2
τ

∣∣∣
y+=c

� A0 + C + B0

[
ln Reτ + ln

(
b

a

)]
. (17)
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Now, it is evident that the consequence of assuming non-Reynolds-number dependence of the
spectrum in Region I yields the scaling in Eq. (1): comparing Eq. (1) with Eq. (17) leads to Bs = B0

and As = A0 + B0 + C ln(b/a). Furthermore, C in Eq. (17) (i.e., contribution from Region II in
Fig. 4) is equivalent to the contribution of f1 in Eq. (2a) and the rest in Eq. (17) corresponds to
the contribution of f2 in Eq. (2a) in the form of Eq. (2b). It is important to note that removing the
Reτ -dependence of the spectrum in Region I is identical to ignoring the viscosity in Regions I and
III, resulting in an inviscid assumption for the motions associated with the logarithmic and outer
regions, as in the theory based on attached eddy hypothesis [24].

B. Scenario 2: u′u′/u2
τ < ∞ as Reτ → ∞

Although Scenario 1 in Sec. III A gives a result identical to the classical theory, the DNS and
experimental data in Fig. 3 do not appear to strongly support it. Indeed, the premulitplied spectrum
in Region I appears to decay slowly on increasing Reτ , and it does not show any k−1

x behavior in
Region III. This is more evident, given that the spectra from DNS and experimental data (Fig. 3)
rather clearly show a Reτ -independence in Region II. It rather deems possible that the premultiplied
spectrum reaches zero as Reτ → 0; i.e., h1(kxδ; Reτ ) → 0. However, this condition alone does
not provide a further insight into the scaling. This is because the scaling of u′u′/u2

τ essentially
depends on how quickly the unknown premultiplied spectrum h3(kxl; Reτ ) in Region III decays: see
Eq. (11). A stronger assumption would therefore be needed in order to make a further theoretical
progress. Fortunately, the asymptotic analysis in Ref. [21] previously showed that it is possible to
have u′u′/uτ < ∞ in boundary layers, as Reτ → ∞. This condition provides a useful guideline on
how quickly h3(kxl; Reτ ) in Region III would have to decay. If this condition is employed, then the
following result is obtained.

Theorem 2. Suppose B(σ ) ∈ C∞ at σ = 0 with σ = 1/ ln Reτ . If u′u′/uτ < ∞ as Reτ → ∞
and either dB/dσ or d2B/dσ 2 is nonzero at σ = 0, then

u′u′

u2
τ

∼ 1

ln Reτ

at y+ = c. (18)

From Eq. (12a), if u′u′/u2
τ < ∞ is to be satisfied as Reτ → ∞, then it must be that B(Reτ ) →

1/(ln Reτ )n with n � 1. Therefore, 1/ ln Reτ now naturally emerges as a physically relevant small
parameter for Reτ → ∞. Since B(σ ) ∈ C∞ is assumed at σ = 0, taking σ as the small parameter
of interest yields

B(σ ) = B′(0)σ + B′′(0)

2
σ 2 + O(σ 3), (19)

where (·)′ for B indicates differentiation with respect to σ . As B′(σ ) and B′′(σ ) were assumed to be
nonzero, this ultimately leads to the following scaling law:

u′u′

u2
τ

∣∣∣
y+=c

= E + F

ln Reτ

+ O(σ 2), (20a)

where

E = C + B′(0), (20b)

F = B′′(0)

2
+ B′(0) ln

(
b

a

)
. (20c)

Note that the assumption of B′(0) �= 0 here is equivalent to assuming that B(Reτ ) → 0 as Reτ → ∞
with the slowest possible rate to satisfy u′u′/u2

τ < ∞; i.e., B(Reτ ) → 1/ ln Reτ . In this case, it must
be that B′(0) > 0, because the B(Reτ ) > 0 for all Reτ by definition. Since E is expected be the least
upper bound of u′u′/u2

τ as Reτ → ∞, this implies F < 0, resulting in the following condition for
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B′′(0) to satisfy

B′′(0) < −B′(0) ln

(
b

a

)
. (21)

Furthermore, since U +
∞ ∼ ln Reτ for Reτ → ∞, Eq. (20a) is asymptotically equivalent to the

result from Ref. [21] given in Eq. (3). However, unlike their analysis applicable only to boundary
layers, the 1/ ln Reτ scaling derived here is based on the structure of near-wall spectrum of
streamwise velocity. Therefore, it is applicable to other flows, such as channel and pipe. Importantly,
the framework introduced here unifies Eq. (1) from the classical attached eddy model with Eq. (3)
from an asymptotic analysis. The former is a consequence of not accounting for the viscous effect
of the motions from the log and outer regions. The latter is the scaling law obtained by assuming
the outer-scaling part of the spectrum decays with the slowest possible rate to satisfy u′u′/u2

τ < ∞
for all Reτ .

Finally, given the formulation introduced here, Eq. (20) is supposed to be valid strictly at a fixed
inner-scaling wall-normal location; i.e., y+ = c. However, the slow change of the peak wall-normal
location with Reτ [19,52] can further be taken into account. Taking σ (= 1/ ln Reτ ) as the small
parameter of physical relevance, the peak streamwise turbulence intensity is written further as

u′u′

u2
τ

∣∣∣
y+=y+

p

= u′u′

u2
τ

∣∣∣
y+=c

+ G

ln Reτ

+ O(σ 2), (22a)

where

G = 1

u2
τ

∂u′u′

∂y+

∣∣∣
y+=c

dy+

dσ

∣∣∣
σ=0

. (22b)

Combining with Eq. (20a), this ultimately gives

u′u′

u2
τ

∣∣∣
y+=y+

p

= E + H

ln Reτ

+ O(σ 2), (23)

where H = F + G, and it still retains in the form of Eq. (20a).

IV. SUMMARY AND DISCUSSIONS

Thus far, the asymptotic behavior of u′u′/u2
τ has been explored. The three scalings previously

proposed [21,23,24] have been reviewed with their derivation process and physical justification.
A new analysis has subsequently been introduced based on velocity spectrum, and two possible
scenarios have been identified. Scenario 1 assumes that the outer-scaling part of the near-wall
velocity spectrum reaches a nonzero constant as Reτ → ∞. The resulting scaling law was the
classical ln Reτ scaling of Ref. [24], physically consistent with the classical attached eddy model
[25,27]. Scenario 2 assumes a sufficiently rapid decay of the outer-scaling part of the near-wall
velocity spectrum with Reτ due to the effect of viscosity, such that u′u′/u2

τ < ∞ for all Reτ . In this
case, an 1/ ln Reτ law has been obtained, and this is consistent with the result of the asymptotic
analysis for the streamwise mean momentum equation in a boundary layer [21]. From now on, the
theoretical results from Sec. III will further be verified using data from a high fidelity experimental
measurement in Ref. [20] up to Reτ = 2 × 104 and from a quasilinear approximation [54] up to
Reτ = 105.

A. Validation of theory

Here, we justify the theoretical results obtained in Sec. III. However, as shown in Fig. 1, all
the existing data do not provide a clear idea on which of the scalings would fit best. Given that
all the asymptotic scalings introduced in Sec. I, it is therefore necessary to have another dataset of
physical relevance at higher Reτ . Reference [52] recently introduced a self-consistent quasilinear
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(a) (b)

FIG. 5. Premultiplied streamwise wave number spectra of streamwise velocity at y+ = 20 in chan-
nel (from a quasilinear approximation by Ref. [54]): (a) inner scaling; (b) outer scaling. Here, Reτ =
10 000, 20 000, 50 000, 100 000.

approximation of the Navier-Stokes equations for channel flow. In this model, the full nonlinear
mean equation is considered, while the fluctuation equations is modeled using the linearized
Navier-Stokes equations where the original self-interacting nonlinear term is modeled using an eddy
viscosity and stochastic forcing. The quasilinear approximation is computationally very cheap, and
has been significantly extended [53,54]. It is also able to reproduce all the known scaling behaviors
in a qualitative manner [53]. In this study, the data from Ref. [54] is further introduced, where
streamwise wave number spectra and the corresponding turbulence intensity are computed up to
Reτ = 105. For the further details on the quasilinear model, the reader may refer to Ref. [54].

Figure 5 shows the premultiplied spectra of streamwise velocity at y+ = 20 from the quasilinear
approximation of Ref. [54]. It is evident that all the key scaling behaviors of the streamwise velocity
spectra in with Fig. 4 are reproduced by the quasilinear approximation: For k+

x � 10−4, the spectra
remain universal, while for kxδ ∼ O(1), they show a decaying behavior with Reτ , consistent with
those from DNS and experiment in Fig. 3. The difference between the spectra from the quasilinear
model and DNS/experiment is merely quantitative; for example, the peak value of the spectra from
DNS and experiment is about 2.2, while that from the quasilinear approximation is about 2.8.
However, as seen in the theoretical analysis in Sec. III, this is not important for the purpose of
discussing the relevant scaling of data.

In Fig. 6, the scaling of the near-wall streamwise turbulence intensity from the quasilinear
approximation at y+ = 20 is reported. The intensity appears to follow a ln Reτ scaling at least
approximately up to Reτ � 2 × 104, consistent with the experimental data including [20] [Fig. 6(a)].
However, similarly to the observation of Ref. [19] from the CICLoPE facility of the University of
Bologna, it is seen that the intensity begins to deviate from the ln Reτ scaling from Reτ � 2 × 104

and this deviation becomes gradually larger, clearly visible at Reτ = 1 × 105. Interestingly, it
appears that the same data begin to follow an 1/ ln Reτ scaling for Reτ � 2 × 104 [Fig. 6(b)]. Note
that exactly the same behavior has been observed from a computational more economical variant of
the quasilinear approximation [53], where the near-wall streamwise turbulence intensity is obtained
up to Reτ = 1 × 106.

The data shown in Figs. 1 and 6 suggest that there may be a transition in the behavior of u′u′/u2
τ

at Reτ ∼ O(104). To understand this behavior better, B(Reτ ) [or B(σ ) with σ = 1/ ln(Reτ )] in
Eq. (12a) is further calculated using the velocity spectra from both the quasilinear approximation
and the experiment of Ref. [20]. Note that B(Reτ ) is the Reynolds-number dependent part of the
turbulence intensity obtained in Eq. (12a), when a sufficiently small value of a is chosen. Figure 7
shows B(Reτ ) with respect to Reτ and σ . Both quasilinear approximation and experimental data
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(a) (b)

FIG. 6. Scaling of streamwise turbulence intensity at y+ = 20 for the quasilinear approximation of
Ref. [54] (Reτ = 5200, 10 000, 20 000, 50 000, 100 000): (a) ln Reτ scaling; (b) 1/ ln Reτ scaling.

show that B(Reτ ) slowly grows with Reτ up to Reτ � 2 × 104 [Fig. 7(a)]. It is unfortunate that
the experimental data above Reτ � 2 × 104 is not available, but in B(Reτ ) from the quasilinear
approximation stops growing around Reτ � 2 × 104. For Reτ � 5 × 104, the B(Reτ ) begins to
decay. This behavior is more clearly seen when B(σ ) is plotted [Fig. 7(b)]. It is worth reminding that
if u′u′/u2

τ < ∞ as Reτ → ∞, it must be that B(σ ) → 0 as σ → 0. The B(σ ) from the quasilinear
approximation begins to exhibit this behavior around Reτ � 2 × 104, where u′u′/u2

τ is approxi-
mately deviated from the ln Reτ scaling. Furthermore, the form of B(σ ) around Reτ � 2 × 104

suggests that it is possible to have B′′(0) < 0. Since ln(b/a) < 0 [from the choice of a(=0.1) and
b � 10−4 in Fig. 7] and B′(0) is likely to be positive from the data, this also satisfies the condition
in Eq. (21).

The examination of the quasilinear approximation data suggests that the 1/ ln Reτ scaling
discussed in Sec. III B is a certainly plausible scenario. However, it is seen that the experimental
data [20] do not appear to cover the regime of Reτ , in which the possible transition in the behavior
of B(Reτ ) might take place. That being said, it is important to note that the existing experimental data
do not exclude the classical ln Reτ scaling yet. Unlike the quasilinear approximation data, it is still
possible that the outer-scaling part of the premultiplied spectrum, h1(kxδ; Reτ ), may be converged
to nonzero values around a certain Reτ > O(104). In this case, the classical attached model is truly

(a) (b)

FIG. 7. Reτ dependence of B(Reτ ) in Eq. (11a): (a) B(Reτ ) vs σ (= (1/ ln Reτ )−1); (b) B(σ ) vs Reτ . Here,
data are from quasilinear approximation of Ref. [68] (orange) with a = 0.1 and b � 1 × 10−4 and experiment
of Ref. [20] (green) with a = 0.2 and b � 3 × 10−4. Here, Reτ = 5200, 10 000, 20 000, 50 000, 100 000 for
the quasilinear approximation and Reτ = 6123, 10 100, 19 680 for the experiment.
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FIG. 8. Peak streamwise turbulence intensities from experiments (open symbols) and DNSs (filled sym-
bols) with the 1/ ln Reτ scaling. The curve here is given by 13.8–40/ ln Reτ .

applicable as demonstrated in Sec. III A, resulting in an indefinite logarithmic growth of turbulence
intensity as Reτ → ∞. From this viewpoint, high fidelity experimental or numerical simulation data
for Re > O(104) would still be required to resolve this on-going debate, although the overall trend of
the existing data appears to favor the 1/ ln Reτ scaling. Given the discussion above, it would finally
be worth plotting all the DNS and experimental data with respect to 1/ ln(Reτ ), and this is shown in
Fig. 8. The collapse of data with a linear fit of 1/ ln(Reτ ) is as good as that with the ln(Reτ ) scaling
shown in Fig. 1, indicating the difficulty in identifying the correct asymptotic scaling behavior using
the existing data.

B. Inverse log law and power law

Finally, it is worth making some remarks on the Re−1/4
τ scaling by Ref. [23]. As discussed in

Sec. I C, this scaling is based on two hypotheses which do not have strong supporting evidence yet.
In particular, the specific power of −1/4 is derived by the timescale argument associated with the
outer energy transport by the near-wall bursting, but this does not have any supporting evidence
yet. We note that a similar issue has also been raised by Ref. [51], who pointed out that the Re−1/4

τ

scaling does not naturally emerge in the Reynolds stress transport equation for u′u′/u2
τ , whereas

1/ ln(Reτ ) appears naturally from the velocity spectrum and from the streamwise mean momentum
equation in boundary layer [21].

In any case, here we start by assuming a power-law scaling, such that u′u′/u2
τ ∼ Re−m

τ where
m > 0 is a positive real number, including m = 1/4 of Ref. [23]. From Eq. (12a) in the present
study, this case may be considered by setting B(Reτ ) = Re−1/4

τ / ln(Reτ ). Then, this implies B(Reτ )
admits a particular form given below:

B(σ ) = σe− m
σ , (24)

as σ → 0. Since e−m/σ in Eq. (24) shall decay zero much more slowly than σ as σ → 0, it
would be difficult to find any numerical difference between B(σ ) ∼ σ (i.e., 1/ ln Reτ scaling)
and B(σ ) = σe−1/(4σ ) (i.e., Re−1/4

τ scaling) in practice. This unfortunately implies that taking new
experimental data at higher Reτ would not simply clarify the on-going issue between the different
scaling laws proposed. It appears that this issue will ultimately boil down to the supporting evidence
especially through advanced statistics of turbulence (e.g., full energy spectral energy balance such as
Refs. [62,64] or direct examination of the bursting timescale), which can directly test the formulated
hypotheses for each of the scaling arguments. In this respect, it is finally worth mentioning that
the only hypothesis for the inverse log law in this study is B(σ ) ∈ C∞ at σ = 0, a mathematical
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regularity for the solution to the Navier-Stokes equations in the limit of Reτ → ∞, and this is not a
physical argument.
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