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We investigate experimentally the dissolution of an almost spherical butyramide particle
during its sedimentation, in the low Reynolds high Péclet regime. The particle sediments
in a quiescent aqueous solution, and its shape and position are measured simultaneously
by a camera attached to a translation stage. The particle is tracked in real time, and the
translation stage moves accordingly to keep the particle in the field of the camera. The
measurements from the particle image show that the radius shrinking rate is constant
with time, and independent of the initial radius of the particle. We explain this with a
simple model, based on the sedimentation law in the Stokes’ regime and the mass transfer
rate at low Reynolds and high Péclet numbers. The theoretical and experimental results
are consistent within 20%. We introduce two correction factors to take into account the
nonsphericity of the particle and the inclusions of air bubbles inside the particle, and reach
quantitative agreement. With these corrections, the indirect measurement of the radius
shrinking rate deduced from the position measurement is also in agreement with the model.
We discuss other correction factors, and explain why they are negligible in the present
experiment. We also compute the effective Sherwood number as a function of an effective
Péclet number.

DOI: 10.1103/PhysRevFluids.9.044502

I. INTRODUCTION

The mass transfer from a solid soluble particle in a fluid is of major relevance in chemical
engineering [1], for example in food industry [2] and in pharmaceutical industry [3,4]. Mass transfer
from particles associated to phase change also occurs in a geophysical context, for instance the
melting of rocks in magma [5,6], the sublimation of ice drops in the atmosphere [7], or the melting
of snow and hail when reaching a sea [8].

The dynamics of dissolution is different for isolated particle and for a suspension of particles.
In the latter case, the particles interact through the concentration of the solute in the fluid phase,
and due to the hydrodynamic interaction between the particles [9]. Moreover, the dissolution of the
particle can affect the density of the fluid phase, inducing buoyancy effects like the formation of
plumes. In the present article we focus on the case of an isolated particle whose dissolution does
not change the density of the surrounding fluid.

The diverse environments where mass transfer involving soluble particles takes place are catego-
rized into distinct regimes. This classification is based on the two main dimensionless parameters
that predominantly control the mass transfer from a single spherical particle. Following many
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previous studies, we choose to use the Reynolds number Re = ρ f aU/η which characterises the
flow regime, and the Péclet number Pe = aU/D which characterises the mass transfer regime. In
the previous definitions, a is the particle typical size (the radius for a sphere), U its settling velocity,
η is the dynamic viscosity of the fluid, ρ f its mass density, and D is the diffusion coefficient of the
solute composing the particle into the fluid. An alternative to Pe is to use the Schmidt number Sc,
where these three numbers are related by Pe = Re × Sc. The Schmidt number is known to play
an important role in the dissolution process [10]. Both Re and Pe vanish for a motionless particle,
for which the mass transfer is only due to molecular diffusion. In gases, these two numbers are
usually similar, whereas in liquids the Péclet number is several orders of magnitudes higher than the
Reynolds number. The third relevant dimensionless number in this context is the Sherwood number
Sh, which quantifies the mass transfer and is defined as the ratio between the total mass transfer
and its purely diffusive component for the same particle (an expression of the Sherwood number
for our case is given later in Eq. (5). Many past studies have performed experiments, numerical
simulations, or developed models, to relate Sh (the result) to Re and Pe (the control parameters).
This approaches is valid if the chemical kinetic of dissolution is fast, like in the present article.
Otherwise, a new dimensionless number should be taken into account, for example the Damköhler
number which compares the dissolution rate coefficient to a characteristic diffusion velocity [10].
Finally, to better cover the subject, it is also important to consider heat transfer from a particle,
which is analogous to mass transfer within some hypotheses, in particular negligible radiation. It
means that dissolution processes are very similar to melting processes. In the case of heat transfer,
the analog to Pe is the thermal Péclet number defined with the thermal diffusivity, the equivalent to
Sc is the Prandtl number Pr, and the equivalent to Sh is the Nusselt number Nu.

The first regime is when both Re and Pe are small. It has for example been recently investigated
experimentally by Ref. [11], measuring the size of an almost spherical succinic acid particle in
unstirred water as a function of time. The results are compatible with a purely diffusive mass transfer
(i.e., Sh = 1 with our definition). The diffusive mass transfer has also been verified experimentally
in the case of a droplet of hexadecane levitated in an eletrodynamic balance and undergoing a flow
of N2 and helium [12]. Since the fluids are at rest, the expected result is similar for a liquid or a solid
particle in this regime.

The regime we are particularly interested in this work is the case of small Re and large Pe, which,
as we already said, is possible in a liquid. A fundamental analytical calculation for a sphere has been
performed by Ref. [13], which gives Sh ∝ Pe1/3. This scaling law has been confirmed by numerical
simulations [14,15] as well as experiments using two rotating cylinders to impose an homogeneous
flow and electrochemical measurements to obtain the mass flux [16]. A similar configuration is
the sinking of small spheres in a turbulent flow, which has been investigated experimentally and
numerically by Ref. [17].

Finally, many experiments and simulations have been performed in the regime where both Re and
Pe are large, for a fixed particle submitted to a uniform flow or a free falling particle. In this case,
one expects the scaling law Sh ∝ Re1/2Sc1/3 [18], and most of the results are effectively compatible
with a correlation Sh ∝ Re1/2Scα , α is in the range 0.3–0.4, plus correction terms. Using numerous
simulations, the authors of Ref. [19] have found α = 0.36 in the case of heat transfer for 3 × 10−3 <

Pr < 101 and 102 < Re < 5 × 104. The experiments include various systems: sedimentation and
dissolution of urea spheres in a vertical glass column [20], dissolution of benzoic acid spheres in
a flow (natural or forced convection) of water or propylene glycol [21], dissolution of ice ball in
a hydrodynamic channel with water flow [22], dissolution of hard candy submitted to a flow [23].
However, some other experimental configurations with a very different flow, like large ice balls
melting in a turbulent von Kármán flow [24], leads to different scalings.

Spherical versus nonspherical particles have also been studied in this large Re-Pe regime. One
can in particular mention experiments on the dissolution of neutrally buoyant particles with rectan-
gular cuboid initial shapes in isotropic turbulent environments [25]. Numerically, simulations of heat
transfer past spheres, cuboids and ellipsoids been performed by Ref. [26], and empirical correlation
for nonspherical ellipsoids have been obtained by Refs. [27–30]. Finally, several correction factor
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TABLE I. Parameters of the experiment at 21 ± 0.5 ◦C. The column about water is given for comparison.

Particle Saturated butyramide solution NaCl solution Water

ρp D c0 ρ f η ρ f η ρ f

g cm−3 m2 s−1 g cm−3 g cm−3 mPa s g cm−3 mPa s g cm−3

1.032 7.2 × 10−10 0.182 0.998 1.853 1.014 1.018 0.9980
±0.4 × 10−10 ±0.005 ±0.001 ±0.002 ±0.001 ±0.006 ±0.0001

to the mass transfer, associated with the aspect ratio of nonspherical particles, the thermal effect due
to dissolution, and the finite solubility effect have been discussed in Refs. [15,31].

In the present work, we investigate the dissolution of an almost spherical particle that sediments
in an aqueous solution at rest. These experiments belong to the low Reynolds and high Péclet regime,
which, in comparison to the high Reynolds regime, has been less studied. In the next Sec. II,
we present the theoretical framework that we need to interpret the results, showing in particular
that we expect a constant reduction rate of the particle size. We describe the experimental setup
in Sec. III which allows us to measure simultaneously the position and the shape of the particle
during its sedimentation. We emphasise the use of particles made of butyramide, a chemical which
does not change the density of water when dissolving, hence preventing any buoyancy effect in the
fluid. Section IV is devoted to the comparison of our experimental results with the model, and we
show that we can make it quantitative accounting for shape and density correction factors. Finally,
conclusions and perspectives are drawn in Sec. V. Technical details such as the fabrication of the
particles, the behavior of their settling velocity, and the measurements of relevant parameters are
comprehensively documented in the Supplemental Material [32] (including Refs. [33–39]).

II. THEORY FOR A SPHERICAL PARTICLE

We present in this section the theory of a spherical particle of radius a falling in a quiescent fluid.
We focus on the regime for which the particle Reynolds number is low—this is consistent with our
experiments for which Re in the range 0.3–0.8. It means that the fluid motion around the particle
are well described by the Stokes equations, where the fluid inertia can be neglected. The particle
velocity then results from the balance of the three relevant forces: the downward force of gravity Fg,
the upward buoyant force Fb, and the drag force Fd , which classically express as

Fg = 4
3πa3ρpg, (1)

Fb = 4
3πa3ρ f g, (2)

Fd = 6πηaU . (3)

ρp is density of the particle and g is gravity acceleration. The resulting settling velocity of the particle
is

U = 2

9

(ρp − ρ f )g

η
a2. (4)

This particle can dissolve in the fluid, and we assume that it does so in the regime where its
Péclet number is large (in the range 300–1000 in our experiment). Both small Re and large Pe are
encountered for small soluble particles in liquids as one typically has D � η/ρ f (Parameters can
be found in Table I). In this regime, we follow the analytical calculations derived by Ref. [13]
for a perfect sphere with the approximation of a thin concentration boundary layer around the
particle. It yields the mass transfer equation predominated by convection as ṁ � 8Dac0Pe1/3, where
c0 represents the concentration (in kg/m3) of the dissolved matter closest to the particle, which is
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the saturated concentration of the solute. The derivation also assumes no change of fluid density,
small solute concentration, isothermal dissolution, hypotheses which will be discussed later in the
text. Moreover, the viscosity in this model is assumed to be the one of the solution far from the
particle. Given the large Schmidt number, the size of the concentration boundary layer (∝ D/U )
where the concentration of solute is significant is indeed much smaller than the size over which the
velocity field varies (radius size ∝ a).

Given that pure diffusion mass transfer rate for sphere is represented by ṁ = 4πDac0, the total
mass transfer rate ṁ of the particle in our experiments, i.e., the mass the particle losses per unit time
when is dissolves, can be expressed in terms of the Sherwood number as

Sh = − ṁ

4πDac0
� 2

π
Pe1/3, (5)

where the dot denotes time derivative.
Relating the mass of the sphere to its radius m = 4

3πρpa3, the mass transfer rate can also be
written as

ṁ = 4πρpa2ȧ. (6)

Equating ṁ in Eqs. (5) and (6), while making explicit the expression of the Péclet number and
substituting U from Eq. (4), we finally obtain

ȧ = − 2

π

(
2

9

) 1
3 D

2
3 c0

ρp

(
(ρp − ρ f )g

η

) 1
3

. (7)

All factors on the right-hand side of the above expression only depend on the characteristics of the
fluid and the particle. The rate at which the particle size decreases over time is thus constant, i.e.,
independent of the radius of the particle, resulting in a linear relationship between a and t . We will
test this remarkably simple behavior experimentally in the present article.

III. EXPERIMENTAL SETUP

We have built an experiment to investigate the dynamics of such a particle that sediments and
continuously dissolves, resulting in a reduction of its size and mass. The setup consists in an
elongated tank and a particle tracking system, as illustrated in Fig. 1. The tank has a square
cross-section, with an inner width of 10 mm and an inner length of 150 mm. As the particles we
consider are rather small (on the order of 100 µm), and thus easily disturbed by small velocity
fluctuations, the tank is placed in a larger water bath, also with a square cross-section (internal width
of 30 mm), to avoid convective disturbances inevitably caused by small temperature differences
between the two sides of the experiment. The transparency of the two tanks allows for visual
observation of the particle sedimentation process. The reliability of the entire experimental device
has been verified through the sedimentation of plastic beads in distilled water. The two tanks are
joined at the top by a detachable connector to ensure the verticality of the inner tank and prevent
temperature fluctuations in the water bath caused by evaporation. In the present study, a camera
with a resolution of 1936 × 1216 pixels, manufactured by IDS industrial camera company, was
used. Prior to the experiments, careful scale calibration was performed, with a typical resolution
of 5 pixels/ µm. The particle tracking was controlled by a self-written Labview program, inspired
by Ref. [40]. The camera was connected to a computer to measure in real-time the position of the
particle in the image, enabling to move the linear stage from physical instrument and therefore the
camera to follow the particle. Thus, synchronous position information and images of the particle
were obtained from the tracking system.

The density of the aqueous solution containing the dissolved matter from the solid particle
is usually larger than that of the pure water—this is the case for NaCl for example. Here we
use particles of butyramide, a chemical whose saturated solution has a density very close to
that of pure water, which minimise the effect of density increase around the particle during its
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FIG. 1. Schematic diagram of the experimental setup. In the tank, the upper layer I is saturated butyramide
and the lower layer III is the NaCl aqueous solution. The transition layer is numbered II.

sedimentation-dissolution motion. At 21 ◦C, the typical temperature at which experiments were
run, we indeed measured with a pycnometer and a precision scale that the density of the saturated
butyramide is 0.998 ± 0.001 g cm−3, i.e., similar to the density of water at the same temperature
(see Table I). Butyramide is also very soluble in water [36], and the crystals have a bulk density of
1.032 g cm−3. The theory is simple for perfect spheres only. However, preparing spherical particles
for this experiment is a challenge because butyramide crystals naturally tend to form plate-like
shapes when cristallisation occurs in solution. To reproducibly get butyramide particles with an
aspect ratio close to unity, we extract them from a layer of solid butyramide obtained by melting
the crystals in a beaker, forming a homogeneous solid layer once cooled back to room temperature.
As discussed below, this protocole also allows us to minimize the presence of air bubbles inside the
particles. Using a stainless steel tip with an inner diameter of around 1 mm provide particles in the
right range of size for our experiment, whose shape are typically like rounded cylinders. Additional
details on the particle fabrication process are available in Sec. I of the Supplemental Material [32].

Before the experiment is started, two different fluid layers are prepared in the tank. The upper
layer labeled layer I in schematics of Fig. 1 is a saturated butyramide solution in which the particle
cannot dissolve. The lower layer (layer III) is water with a bit of dissolved NaCl, to make it slightly
heavier than the upper layer, for stability. The amount of NaCl is such that the density of this
lower layer is 1.014 g cm−3. The upper layer thus does not contain NaCl, and the lower layer
does not contain butyramide. We assume that this moderate presence of NaCl does not influence
the dissolution process of butyramide in water. Once prepared, the two solutions are first put in a
vacuum pump to remove air bubbles before being placed in the experimental tank. At the beginning
of the experiment, pure water at room temperature is injected into the water bath. The sedimentation
tank is then carefully placed and attached by the detachable connector. After the NaCl solution is
poured at the bottom of the tank, the saturated butyramide is carefully injected using a syringe with
a small-sized tip, providing a more stable flow. This process results in a thin middle transition
layer (layer II in Fig. 1) of intermediate concentration of butyramide and NaCl that appears due to
diffusion, and the interface between the upper and lower layers can be visually distinguished. The
vertical thickness of the lower layer solution is 95 mm, and that of the upper layer solution is 45 mm.
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FIG. 2. Dissolving process of the particle over time. The top line shows the original pictures, as captured by
the camera during the experiment. The bottom line shows the corresponding processed images, where the white
area A, obtained after convex closure of the binarized picture, represents the projected surface of the particle.
On each of these bottom images, the blue-star point indicates the centroid of the white area, and the red circle,
centered on that point, has the same surface as the white area, i.e., gives the equivalent radius a = √

A/π of
the particle.

Butyramide particles that have been pre-stocked in a saturated solution are drawn into a syringe
without a tip, and this syringe is then placed vertically on top of the tank. At this point, the saturated
solutions in the syringe and in the tank are connected and the particles can start to sediment. Once a
particle is in the field of view of the camera, the tracking system captures it immediately, and track
it until its size becomes smaller than �3 µm.

Moreover, the different physical parameters involved in this experiment have been carefully
measured or determined. Their values are shown in Table I. The dynamic viscosities of the saturated
butyramide and NaCl solutions were measured with high precision using a rheometer Anton Paar
specifically for liquids with a viscosity similar to water. The saturated butyramide concentration
c0 is well calibrated as a function of temperature in Ref. [36]. For the diffusivity D, we recorded
with a camera the refraction angle of the interface of a stratified solution consisting of a saturated
butyramide solution and still water over time. D was deduced from the square relationship between
the maximum reflected angle and time. More details about these measurements can be found in the
Supplemental Material [32].

IV. RESULTS AND DISCUSSION

A. Simultaneous measurements of radius and position of the particle

Figure 2 illustrates the dissolution process of the particle during its sedimentation. We observe
that the particle shrinks over time, gradually rounding off into a shape slightly elongated in the
vertical direction. We can also notice a slight rotation of the particle. More quantitatively, we
estimated the volume change of the particle by image analysis: binarising the picture of the particle
with a suitable gray threshold and finding boundaries after convex hull, which fills the holes inside
of binarized image, we could extract a projected area of the particle. From that surface, a centroid,
which we take as the effective location z of the particle, and an equivalent radius a can be defined
(Fig. 2, bottom line). Following these quantities picture after picture, we could this way measure z
and a as functions of time, as displayed in Fig. 3.

After the particle is released from the syringe, it first sediments in the upper layer composed
of a saturated butyramide solution. During this period (stage I), as the particle does not dissolve,
its equivalent radius remains constant. Slight fluctuations can however be observed, caused by the
rotation of the particle. By taking the average particle radius during this stage, the initial particle
radius, denoted as a0, can be obtained. The settling velocity of the particle also remains constant,
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FIG. 3. Time evolution of the equivalent radius a (a) and the vertical displacement z (b) of the particle.
Blue circles: experimental data. The vertical dashed lines show the times separating the different stages: t0 end
of the saturated layer, t1 end of the transition layer, tup motion reversal. Those times were determined using the
velocity deduced from the derivative of the displacement (b); see Fig. B in Supplemental Material [32]. Solid
black line: time before which the volume of the air bubbles attached to the particle is less than 1%. Red line:
linear fit in stage III of the radius decrease to deduce ȧ1. Yellow line: linear fit in stage I of the particle position
to deduce U0. Green curve: fit of z(t ) in stage III with Eq. (9), from which another estimate ȧ2 of the radius
shrinking rate is obtained.

and an initial value U0 can be similarly computed from the average slope of the particle vertical
displacement z(t ). With these initial values a0 and U0, which are the maximal radius and velocity
of the particle during the sedimentation, we can evaluate the maximal Reynolds number of the
particle by Re = a0U0ρ f /η. Across all experimental runs, the average value of Re is found to be 0.5
(in the range 0.3–0.8).

At time t = t0 the particle enters the transition layer where the upper-layer butyramide and lower-
layer NaCl solutions are mixing by diffusion. In this thin transition layer the stratification causes
a significant drop of the particle settling velocity associated with an enhanced drag [33]. During
this stage II, the particle begins to dissolve, and it does so with an almost constant radius shrinking
rate. At time t = t1 the particle has reached the lower layer and its velocity corresponds again to
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sedimentation in homogeneous solution (additional details on velocity are provided in Fig. B of the
Supplemental Material [32]). As shown in Fig. 3(a), throughout its sedimentation in this lower layer
(stage III) the particle equivalent radius continues to decrease at a constant rate, which is consistent
with the theoretical expectation (7). A linear fitting of the data a(t ) in this stage gives a direct
measurement of the radius shrinking rate, denoted as ȧ1. We shall see below that this shrinking rate
can be also estimated in another way, and will be denoted as ȧ2.

Simultaneously, the particle velocity continuously decreases and notably reaches zero at some
time tup, after which the particle motion is reversed; see Fig. 3(b). This is due to some air bubbles
trapped inside the particle during its preparation. As we detail in the following analysis, we will
need to account for the fact that the effective density of the particle must be corrected by a factor
βb, associated with the presence of these bubbles. As the density difference ρp − ρ f is small,
even a value of βb close to unity has a significant quantitative effect. Of course, such a constant
correction factor cannot reproduce the particle motion reversal. Instead, close to that moment tup,
the volume of the bubbles Vb inside the particle can be assumed constant, so that, as the particle
matter further dissolves, its effective density becomes less than that of the surrounding fluid solution
and it eventually rises. One can one then can compute Vb at that reversing time with

Vb(ρp − ρg) = 4
3π (ρp − ρ f )a3(t = tup), (8)

where ρg = 1.2 × 10−3 g cm−3 is the air density. Notice that, interestingly, the value of the rate
ȧ remains unchanged during the rising stage. We define the time t2 at which Vb represents 1% of
the overall particle volume. Later analysis will then be restricted to times between t1 and t2, so that
the effect of these bubbles in the particle sedimentation is small, a part a corrective factor for the
particle bulk density.

The radius shrinking rate can be alternatively obtained from the particle position. As ȧ is a
constant [Eq. (7)], a in the expression of the settling velocity U (Eq. 4) can then be replaced by
a = a1 + ȧ(t − t1), where a1 = a(t1). Integrated once, the vertical position of the particle thus writes

z =
∫ t

t1

Udt ′ = 2

9

(ρp − ρ f )g

η

[
1

3
ȧ2(t − t1)3 + a1ȧ(t − t1)2 + a2

1(t − t1)

]
+ z1, (9)

where the z1 is particle vertical position at the beginning of stage III (time t1). Fitting this expression
to the data z(t ) allows us to get a value of ȧ, which we denote as ȧ2 to distinguish with the more
direct estimate ȧ1. Both values are presented in Fig. 4. Importantly, in this fitting process, two
other parameters are determined by fit: a1 and z1. The precision on fitting parameters is good (the
maximal error bar for ȧ2 is ±0.05 µm s−1), and we have for instance checked that imposing a1 from
the measurement a(t ) in the fitting of z(t ) leads to consistent results.

B. Radius shrinking rate ȧ

As theoretically expected and showed in Fig. 4, we find both ȧ1 and ȧ2 constant, i.e., independent
of the initial size a0 of the particle. The prediction from Eq. (7) is above the ȧ1 measurements
by 20%. Moreover, although on the same order, ȧ2 is systematically smaller than ȧ1 by a factor
of � 2. These discrepancies prompt us to revisit the above theoretical expressions to understand
where the idealised case of a homogeneous spherical particle we have considered must be corrected.
We have already mentioned in the previous section that the presence of trapped air bubbles must
be accounted for with an effective particle density corrected by a factor βb. Another important
aspect is the geometry of the particle. Since we have only access to a projection of the particle
shape, it is unlikely that the effective radius a we have introduced quantitatively works for the
particle volume. However, this volume is key for the computation of the gravity and buoyancy
forces. To account for this volume uncertainty, we introduce a correction factor βa that will multiply
the radius in the expression of these forces. We discuss later in Sec. IV C why we do not introduce
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FIG. 4. Reduction rate of the particle radius ȧ from theory and data analyses for various initial particle size
a0. Red dots: direct measurement from the linear fitting of a(t ) [see Fig. 3(a)]. These are what we denoted
as ȧ1. Green dots: indirect values obtained from the fitting of z(t ) [see Fig. 3(b)]. These are what we denoted
as ȧ2. Light green points: fitting without any correction factors, i.e., using Eq. (9). Dark green points: fitting
accounting for correction factors, i.e., using Eq. (12). Gray dash line: uncorrected theory (7). Black solid line:
corrected theory (11). Circles with plus and cross symbols represent the experimental cases where the particle
aspect ratio E , respectively, averages around 1.7 and 1 over t1 − t2; see also Sec. IV C. These values correspond
to the cases illustrated in Figs. H(b) and H(c) of the Supplemental Material [32]. Data dispersion shows the
overall precision we can reach, but from the fitting process of a single experimental run, error bars are smaller
than the symbol size.

additional correction factors for the other variables. With these two correction factors βa and βb, the
expressions for U , ȧ, and z rewrite

U = 2

9

(βbρp − ρ f )g

η
β3

a a2, (10)

ȧ = − 2

π

(
2

9

) 1
3 D

2
3 c0

β2
aβbρp

(
(βbρp − ρ f )g

η

) 1
3

, (11)

z =
∫ t

t1

Udt ′ = 2

9

(βbρp − ρ f )g

η
β3

a

[
1

3
ȧ2(t − t1)3 + a1ȧ(t − t1)2 + a2

1(t − t1)

]
+ z1. (12)

Using the data in stage I (upper layer), where U0 and a0 are measured accurately and for which the
density as well as the viscosity of saturated butyramide are known, Eq. (10) gives a first relationship
between the correction factors βa and βb. Similarly, with the linear fit of the radius reduction in stage
III (lower layer) giving the rate ȧ1, layer in which the density, the viscosity as well as the diffusivity
of butyramide in water are known, Eq. (11) gives a second relationship linking βa and βb. They
can be solved numerically, and, upon ensemble averaging over 13 independent experimental runs,
we obtained βa = 0.921 ± 0.002 and βb = 0.988 ± 0.002. With these values, the fit of the curve
z(t ) in stage III with Eq. (12) allows us to deduce a new value of ȧ2. As shown in Fig. 4, the
theoretical prediction of ȧ now fits the direct measurements ȧ1 as it should, and the corrected ȧ2 are
now quantitatively consistent with ȧ1. Importantly, these corrections assume that these factors can
be taken constant over the whole sedimentation process (in fact, until time t2).

A value of βb so close to unity may seem surprising, but because we are dealing with a small
density difference between particle and fluid, these numerical adjustments are very sensitive. In fact,
trying to impose βb = 1 (respectively, βa = 1), we were not able to reach a quantitative matching of

044502-9



NAN HE et al.

ȧ1, ȧ2 and theory as in Fig. 4 playing with βa ( respectively, βb) only. Furthermore, the value we got
for βa corresponds to an actual volume of the particle about 3/4 times smaller than deduced from
the surface-induced effective radius a. This is consistent with particles in the form of an ellipsoid
with its major axis parallel to the vertical, as observed in the experiments (see the Supplemental
Material [32]).

C. Other correction factors

Other correcting factors could of course be considered. First of all, if ellipsoid-shaped particles
are at play, then the drag force is modified by the particle aspect ratio E , defined as the ratio between
the major and the minor axes lengths. Following the work of Ref. [39] for spheroids, the Stokes drag
correction factor for a motion parallel to the major axis follows the relation

βdrag =
(

4

5
+ E

5

)
E−1/3. (13)

The analysis of the pictures of the sedimenting particles shows aspect ratios typically between 1
and 2, with an average around 1.3 (see Supplemental Material [32]). This corresponds to a drag
correction factor βdrag � 0.97. Accounting for it in the force balance, the above analysis of the
particle’s dynamics is not significantly affected: variations by less than a percent are found for βa

and βb, and around 1% for ȧ. At the first order, this shape effect on the drag can then be ignored
for the present problem. Furthermore, as observed in Fig. 4, the cases with E � 1.7 and E � 1.0
exhibit nearly identical ȧ values, whether it is the direct measurement ȧ1 or the indirectly derived
value ȧ2. This further substantiates that the impact of shape variation during the dissolution process
on the ȧ is of second order in importance.

The shape of the particle influences its mass and heat transfer processes as well. The heat transfer
from a particle is analogous to mass transfer within some hypotheses, in particular when radiation
is negligible. We use the work of Ref. [29] that provides Nusselt numbers for ellipsoids across a
wide range of aspect ratios, E . Here with Re � 0.5 and Sc � 1300, which are typical values of
these experiments, we obtain a correction factor βm � 1.008 for the Sherwood number Sh when
the particle aspect ratio is between E = 1.3 and E = 1. Including this correction factor into the
theoretical framework has a negligible impact on the results. Similarly to the case addressed in the
previous paragraph, we find deviations of less than 1% in βa, βb, and ȧ.

The theory of Ref. [13] which gives Eq. (5) for the scaling law relating the Sherwood number to
the Péclet number, relies on the hypotheses that the concentration of the solute is infinitesimal, and
that there is no thermal effects during the dissolution. These two assumptions are not verified for
butyramide: the solubility of butyramide is large, and its dissolution in water is endothermic [36].
We can evaluate the corresponding correction factor βsol using the results of Ref. [31]. These results
are valid in the case of high Péclet and Schmidt numbers, which is the regime of the present
experiments. The actual Sherwood number is then the one given by Eq. (5) multiplied by the
factor:

βsol = 1

γ −1 − J2/3/K
. (14)

In this expression γ is a correction factor introduced by Ref. [31] to take into account the finite
solubility and J2/3/K accounts for the nonisothermal effects during the dissolution. We estimate
γ = 1.09 for butyramide using a linear fit from the data of table 2 in Ref. [31]. J is ratio of the
molecular diffusivity D of the solute by the thermal diffusivity of the liquid α. Its value for water is
α = 1.45 × 10−7 m2 s−1 [41]. K = cp/dL is a dimensionless number involving the specific heat of
the liquid cp, the latent heat of absorption L and a coefficient d , which is the slope of the relationship
of the concentration and temperature. For water, the specific heat is cp = 4.15 kJ kg−1 K−1, d =
0.01 K−1, and L = −400 kJ kg−1, as reported from the measurements by Ref. [36]. The positive
value of d implies that heat absorbed during butyramide dissolution results in a decrease of the
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FIG. 5. Effective Sherwood number vs effective Péclet number. The inset displays the data in a log-log
format. Symbols: experimental data, corrected by their factors βa and βb computed as explained in the text
after Eqs. (10)–(12). The colors correspond to different runs. Gray dash line: uncorrected theory. Black solid
line: theory accounting for averaged correction factors.

interfacial temperature and equilibrium concentration. The value of the correction factor βsol only
slightly changes from 1.057 to 1.062 when evaluated based for a NaCl solution, so that we can take
βsol � 1.06. Incorporating this value into our theoretical analysis does not affect much the results,
with, as in the above paragraph, variations by less than a percent are found for βa and βb, and around
1% for ȧ. This correction can thus be neglected at first order for the present analysis.

D. Effective Péclet and Sherwood numbers

These experimental data finally allow us to assess the scaling law relating the Sherwood to the
Péclet numbers (5). Because we do not directly measure ṁ but the grain size reduction rate ȧ instead,
we rather define an effective Sherwood-like number as

S̃h = βaβb
ρpaȧ

Dc0
. (15)

For a spherical particle, for which ṁ and ȧ are simply related [Eq. (6)], and setting the corrective
factors βa,b to unity, both definitions of Sh and S̃h coincide. Here, we not only wish to express this
number with quantities we have direct access to, but also aim at accounting for the corrections we
have discussed above. Consequently, we write the effective Péclet number as

P̃e = βa
Ua

D
. (16)

It can be directly estimated along each experimental run, also accounting for the radius correction.
Plotting S̃h as a function of P̃e for all of our data clearly provides the expected increasing trend
(Fig. 5). The inset of Fig. 5 where the same data are displayed in log-log scale confirms that they
verified the power law of Eq. (5) with a 1/3 exponent. Data scattering is important, on the order of
30%, which is similar to what is displayed in Fig. 4. For comparison to theory, S̃h is computed with
U and ȧ from their corrected expressions (10) and (11), setting the factors to the experimentally
determined averaged values βa = 0.921 and βb = 0.988, and where a is deduced from P̃e with
Eq. (16). The agreement is quantitative, showing self-consistency with the fit of the theory in Fig. 4.
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V. CONCLUSION

We have investigated the dissolution of an almost spherical particle during its sedimentation,
in the low Reynolds and high Péclet regime. We use butyramide particles sedimenting in aqueous
solution so that the density contrast between the particle and the solution is small, and thus the
sedimentation velocity. The advantage of butyramide is that the density of its saturated solution is
very close to the one of water, i.e., the dissolution does not affect the density of the solution.

The particle sediments in a squared tube, where a saturated butyramide layer is placed on top
of a NaCl layer. The role of the top layer is to measure the sedimentation of the particle without
dissolution and to have time to focus on the particle. The shape and the position of the particle are
measured simultaneously by a camera attached to a translation stage. The particle is tracked in real
time, and the translation stage moves accordingly to keep the particle in the field of the camera.

We develop a simple model for a perfect sphere based on Stokes’ law (hypothesis of low
Reynolds number) and the mass transfer at low Reynolds and high Péclet derived in Ref. [13].
We obtain a radius shrinking rate ȧ which is constant in time, and only depends on the properties
of the solid and the aqueous solution. The position of the particle is a third order polynomial of the
time t . In the experiment, we define an equivalent radius from the image of the particle. We find as
expected by the simple model that ȧ is constant in time, and independent of the initial radius of the
particle. Moreover, the theoretical and experimental results are consistent within 20% without any
adjustable parameter.

To obtain an even more quantitative agreement, we introduce two correction factors: one to take
into account the nonsphericity of the particle in the evaluation of its volume and weight (βa), and
a correction of the density of the particle due to the inclusions of air bubbles inside the particle
(βb). The nonsphericity of the particle and the inclusion of air bubbles are visible on the images.
These two correction factors are close to one (βa = 0.921 ± 0.002 and βb = 0.988 ± 0.002). With
these corrections, both the radius shrinking rate deduced from the equivalent radius and the one
deduced from the particle trajectory are in quantitative agreement with the corrected model. We
discuss other correction factors, such as the correction of the drag due to the nonsphericity of
the particle, the correction of the mass transfer due to the nonsphericity, the finite solubility and
nonisothermal effects in the dissolution of butyramide. We have shown that these corrections factors
have a negligible effect in the present experiment, in contrast with βa and βb. Finally, we have
defined an effective Sherwood number S̃h and an effective Péclet number P̃e, and we have displayed
the corresponding curve, which shows the S̃h ∝ P̃e

1/3
scaling.
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