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Fiber suspensions flowing in structured media are encountered in many biological
and industrial systems. Interactions between fibers and the transporting flow as well as
fiber contact with obstacles can lead to complex dynamics. In this work, we combine
microfluidic experiments and numerical simulations to study the interactions of a rigid fiber
with an individual equilateral triangular pillar in a microfluidic channel. Four dominant
fiber dynamics are identified: transport above or below the obstacle, pole vaulting, and
trapping, in excellent agreement between experiments and modeling. The dynamics are
classified as a function of the length, angle, and lateral position of the fibers at the channel
entry. We show that the orientation and lateral position close to the obstacle are responsible
for the fiber dynamics and we link those to the initial conditions of the fibers at the
channel entrance. Direct contact between the fibers and the pillar is required to obtain
strong modification of the fiber trajectories, which is associated to irreversible dynamics.
Longer fibers are found to be more laterally shifted by the pillar than shorter fibers that
rather tend to remain on their initial streamline. Our findings could in the future be used to
design and optimize microfluidic sorting devices to sort rigid fibers by length.

DOI: 10.1103/PhysRevFluids.9.044302

I. INTRODUCTION

Fluids containing small elongated particles play a crucial role in many fields of modern technol-
ogy, such as paper manufacturing [1], drag reduction [2], composite materials fabrication [3], and
pollution control problems [4,5]. In many instances, small fibers must navigate through crowded
environments embedded with obstacles: microplastic fibers can propagate in soils and cause pol-
lution of groundwater [6,7], wood-pulp fibers interact with the fabric mesh underneath during
the formation of paper sheets [1], and pathogenic filaments made of parasites, such as bacterial
biofilm streamers, can clog tortuous capillaries or complex structures such as stents [8,9]. The
motion of elongated particles is much more complex than spherical ones due to their asymmetric
shape. Their dynamics results from the interplay between the surrounding background flow, internal
elastic forces, hydrodynamic interactions and eventually interactions with solid walls and embedded
obstacles [10–12]. Interactions with obstacles are used in microfluidic particle sorting devices based
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on the so-called deterministic lateral displacement (DLD) technique, which was initially developed
for spherical particles [13]. DLD uses successive collisions with pillars in a background flow to sort
particles based on their size or mechanical properties. It has been successfully extended to separate
DNA fragments [14,15], pathogenic bacteria [16], cells [17,18], and blood parasites [19]. However,
the sorting of rigid elongated objects, such as microplastics, with obstacles has not yet been reported.

Indeed, while the motion of elongated particles in unbounded and confined viscous flows has
been widely investigated [10], research on the dynamic interactions between a rigid fiber and an
obstacle is still scarce. When freely transported in a viscous flow, the trajectory of the center of
mass of a rigid fiber will follow the streamlines. Hydrodynamic interactions with bounding channel
walls can additionally lead to rotation, reorientation, and transverse oscillations of the fiber [20,21].
Combining experiments, theory, and numerical simulations, Makanga et al. [12] recently showed
that, in the absence of a background flow, the interactions between a sedimenting fiber and an
obstacle can either induce a large lateral displacement or permanent trapping depending on the
obstacle shape, fiber length and/or deformability. In the presence of an ambient flow field, the 2D
simulations of a semiflexible polymer in a periodic array of circular obstacles by Chakrabarti et al.
[11] show that various modes of transport occur depending on the incidence of the incoming flow in
the lattice. While instructive, this work does not explore the effect of rigidity and lacks experimental
validations.

Studying fluid-structure interactions of fibers in the presence of obstacles is a particularly rich
topic as fiber transport does not only result from the interaction of the finite size slender object
with a complex flow field (created by the presence of the obstacle), but also by possible contact
between the fiber and the obstacle. In theory, such direct contact is prevented by lubrication forces
in vanishing Reynolds number flows. However, direct contact is possible in practice due to surface
roughness or small attractive forces between fibers and surfaces.

Migration of fibers between streamlines can thus result from reversible interactions, induced by
streamline curvature, but also by irreversible interactions induced by direct fiber-obstacle contact.
Modeling direct contact between fibers and obstacles is very challenging as the details of such in-
teractions are often unknown and not fully controlled from experiments. In this paper we overcome
these difficulties by performing a combined experimental and modeling study where a simplified
approach is used in the model to simulate fiber and obstacle contact. Direct comparison between
very well controlled model experiments and simulations allows to adjust the contact parameters in
the simulation and to obtain excellent agreement between experiments and simulations, as far as
fiber trajectories, orientations and time scales are concerned. In this way we effectively capture the
fiber dynamics and the combined role of fluid-structure interactions and fiber-obstacle contact. This
allows us to perform a systematic study of cross-stream migration of rigid fibers interacting with a
triangular pillar in a confined microchannel as a function of their initial orientation and position at
the channel entry and their length, and to evaluate the sorting potential.

This paper is organized as follows. In Sec. II, we briefly introduce the fabrication method of the
rigid fibers and the experimental setup. Section III presents the numerical methods used to compute
the flow field and the motion of the fibers. Section IV describes the flow field and the fiber dynamics,
and Sec. V focuses on the sorting potential. The main conclusions of this study are summarized
in Sec. VI.

II. EXPERIMENTAL METHOD

A. Rigid fiber fabrication and characterization

The elongated rigid fibers used in this study are prepared by shearing an emulsion of SU-8
polymer droplets in a glycerol-ethanol mixture and exposing the stretched droplets to ultraviolet
(UV) light [see Fig. 1(a)]. The UV radiations photo-crosslink the SU-8 and yield chemically highly
stable colloidal SU-8 fibers [22], as shown on the right panel in Fig. 1(a). The fibers are mostly
straight and have high length-to-diameter aspect ratios. The length and radius of the fibers are
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FIG. 1. Experimental method and geometrical parameters. (a) The rigid SU-8 fiber fabrication process. The
right panel is a real image of the SU-8 fibers under the microscope. (b) The length and radius distributions of
the SU-8 fibers. (c) A detailed sketch of the experimental setup showing the microfluidic channel, flow control,
and data acquisition. (d) Zoom in on the region of interest (ROI) showing the main geometrical parameters of
the study (figure not to scale).

controlled by tuning the viscosity of the solvent and the shear stress. In practice, this corresponds to
adjusting the ratio between glycerol and ethanol and the stirring speed. In our experiments, the
solvent consists of 70% glycerol and 30% ethanol by weight, and it is stirred at 300 rpm. As
shown in Fig. 1(b), in the experiments, most of the fibers have a length ranging from 40 to 180
µm and a radius around 2 µm, which corresponds to a length-to-diameter aspect ratio of 10 to 40.
The Young’s modulus of crosslinked SU-8 is found to be E = 0.9–7.4 GPa [23]. The fibers can be
considered undeformable in our experiments due to their high flexural rigidity, which is on the order
of 10−14 Nm2.

B. Experimental setup

We conduct the experiments in a polydimethylsiloxane (PDMS) microchannel of width Wch =
800 µm, height Hch = 40 µm, and length Lch = 20 mm with three inlets and one outlet [see
Fig. 1(c)]. A triangular pillar with the same depth Hch as the channel is placed in the middle of the
microchannel [see Fig. 1(d)]. Its base is aligned with the flow direction and the triangle is of height
hobs = 75 µm and base lobs = 2hobs/

√
3. The experiments are performed on an inverted microscope

(Zeiss Axio Observer A1). The PDMS channel is placed on a motorized stage (ASI MS-2000 XY
automated stage) to precisely control its position in the x and y directions (horizontal plane). An
insert is moved in the z axis via a piezo element with a range of 150 µm with nanometer accuracy.
A syringe pump (CETONI GmbH, neMESYS low-pressure module 290N) drives the experimental
fluids with controlled flow rates. The suspension containing rigid fibers in a glycerol and ethanol
mixture is delivered from the middle inlet with a flow rate Q2 = 1 nL/s. Fiber concentration is very
low to assure that fibers enter the channel and interact with the obstacle one by one. Two lateral
inlets inject the same glycerol and ethanol mixture with the flow rate Q1 = Q3 = 5 nL/s. These
lateral flows focus the fibers into a narrow band in the center of the channel width, increasing the
probability of their interaction with the obstacle. Flow-focusing also aligns the fibers parallel to the
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main flow direction, reducing the range of initial fiber orientations. At the outlet, the flow rate is set
to Q4 = −(Q1 + Q2 + Q3) = −11 nL/s to stabilize the flow. The flow can be reversed to release
fibers that remain trapped on the obstacle. In the experiments, the density ρ and dynamic viscosity
μ of the suspending fluid are, respectively, 1190 kg/m3 and 340 mPa s [24]. Notice that the density
of the raw SU-8 resin is reported to be about 1200 kg/m3, which is very close to the density of the
solvent. Hence, sedimentation of fibers is negligible in the experiments.

SU-8 fibers are observed under bright-field microscopy, and a sCMOS camera (ORCA-Flash4.0
V3 Digital CMOS camera, Hamamatsu) records images of their evolution in the channel through
a 10× objective (N-Achroplan 10x/0.25 Ph1 M27, Zeiss). The camera’s exposure time is 10 ms
to avoid image blurring, and the sampling frequency is 100 Hz at best performance with an image
resolution of 2048 × 2048 pixels. The images are processed using a homemade MATLAB code,
which includes background removal, tubular structure enhancement, noise reduction using Gaussian
blurring, binarization, skeletonization, and B-spline reconstruction.

Before the experiments, we perform microparticle image velocimetry (µPIV) (LaVision GmbH)
at different depths in the microchannel with the same suspending fluid and flow rates as in the
experiments to characterize the flow field. The fluid velocity at the channel centerline Ucenter is in
the order of 600 µm/s, which gives a Reynolds number Re = ρUcenterhobs/μ in the order of 10−4.

III. NUMERICAL METHOD

A. Numerical setup

The microfluidic channel used in the numerical simulations has the same width Wch = 800 µm
and height Hch = 40 µm as the one used in the experiments [see Fig. 1(d)], and it has a length
Lch = 2400 µm. An equilateral triangular pillar of height hobs = 75 µm and base lobs = 2hobs/

√
3 is

placed in the middle of the channel with the baseline aligned with the flow direction, again matching
the experimental conditions. The channel is long enough so that the flow at the inlet and outlet of
the domain is not significantly disturbed by the presence of the pillar.

A rigid fiber of length L and cross-section radius a is positioned in the midplane of the channel
far away from the pillar. Its center of mass is initially located at r0 = (x0 = Lch/4, y0, z0 = Hch/2),
which is far enough from the pillar so that the fiber does not feel any flow disturbance. In the
experiments, most of the fibers enter the microfluidic channel close to the center with respect to the
channel width and with a small initial angle θ0 due to the flow-focusing. To explore similar initial
conditions the initial lateral position y0 is varied in the simulations between the base and the apex
of the pillar and the initial angle is varied in the range −10◦ � θ0 � 10◦. The fiber radius is set to
a = 2 µm and the fiber length spans from 0.5lobs to 1.4lobs to match the geometrical properties of
the fibers used in the experiments.

Owing to the low Reynolds number reported in the experiments, the fluid flow in the microfluidic
channel is governed by the Stokes equation

∇p − ρfb = μ∇2u, (1)

where p, ρ, μ, and u are, respectively, the pressure, the density, the dynamic viscosity, and the
velocity of the fluid, and fb = ( fbx, 0, 0) is the constant force parallel to the channel walls that
generates the flow. The value of fbx is adjusted to have the same velocity Ucenter at the channel
centerline as in the experiments. No-slip condition (u = 0) is set on the channel walls and on the
surface of the obstacle, and periodic boundary conditions are set at the channel inlet and outlet.

B. Computation of the flow field

The flow field is computed in three dimensions using the lattice Boltzmann method (LBM)
[25,26]. The LBM is based on the lattice Boltzmann equation

λi(r + ei�t, t + �t ) − λi(r, t ) = −(
λi − λ

eq
i

)
�t/τ + fbi , (2)
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where λi(r, t ) is a distribution function that gives the probability of finding a fluid particle at position
r and time t flowing at the discrete velocity ei, and �t is the time step. Here, the D3Q19 lattice
is used and thus i = 0–18, and the collision term is approximated by the Bhatnagar-Gross-Krook
collision operator [27]. The relaxation time τ is related to the kinematic viscosity of the fluid ν by
τ = 3ν + 1

2 . The equilibrium distribution function λ
eq
i is defined as

λ
eq
i (r, t ) = ωiρ

[
1 + u · ei

c2
s

+ (u · ei )2

2c4
s

− u · u
2c2

s

]
, (3)

where cs = 1/
√

3 is the lattice speed of sound and the ωi’s are weight factors with ω0 = 1/3, ω1−6 =
1/18 and ω7−18 = 1/36. The source term fbi = ωi

c2
s
fb · ei is added to account for the body force that

triggers the flow field. The fluid density ρ and velocity u are, respectively, computed as the zeroth-
and first-order moments of the distribution function λi,

ρ(r, t ) =
18∑

i=0

λi(r, t ), u(r, t ) = 1

ρ

18∑
i=0

λi(r, t )ei. (4)

The no-slip boundary conditions applied on the channel walls and on the surface of the pillar are
achieved using a standard bounce-back scheme. The background flow field is steady and is therefore
computed only once.

C. Computation of the fiber dynamics

The viscous flow transports the fiber within the channel and thus exerts mechanical stress on
it. In addition, the fiber can experience contact forces when it meets the obstacle surface. Internal
bending and tensile forces are imposed on the rigid fiber to keep it straight. The interplay between
the viscous and contact forces and the internal tensile and bending forces determines the fiber
dynamics and trajectories. Below we briefly introduce the bead-spring model used to account for
these elastohydrodynamic couplings and to handle contact of the fiber with the obstacle in the
simulations. The bead-spring model has been widely used, and validated, in the literature to study
the motion of rigid and flexible fibers in viscous flows [12,28–35].

1. Internal elastic forces

The fiber is modeled as a chain of n rigid spherical beads of radius a that are linked together by
internal elastic forces FE [see Fig. 2(a)] to keep the fiber shape unchanged over time. These forces
are derived from an elastic potential H [12,33,36],

FE = −∇H with H =
n∑

i=2

[
S

4a
(|ti| − 2a)2

]
+

n−1∑
i=2

[
B

2a
(1 − t̂i+1 · t̂i )

]
, (5)

where the first sum accounts for stretching (i.e., tensile) forces and the second sum accounts
for bending forces. Here, S = Eπa2 is the stretching coefficient and B = Eπa4/4 is the bending
coefficient, where E is the fiber Young’s modulus. This model can be used to simulate both flexible
and rigid fibers within the same framework. In the simulations we chose E = 26 MPa, which is
smaller than the Young’s modulus of the fibers used in the experiments, but it is large enough to
simulate rigid fibers and prevents making the problem too stiff to be solved numerically. ti is the
vector linking the center of mass of beads i and i − 1 and t̂i = ti/|ti|.

2. Contact with the obstacle

The fiber is immersed in the Eulerian grid used to compute the flow field by LBM, as depicted in
Fig. 2(b), where fluid nodes are represented as blue circles and solid nodes where no-slip boundary
conditions apply are shown as red squares. When the fiber comes close to the obstacle, it will
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FIG. 2. Numerical method. (a) Sketch showing the discretization of the fiber by rigid spherical beads
connected by springs. (b) Representation of the Eulerian grid where the fiber and the obstacle are immersed.
Fluid nodes are shown as blue circles and solid nodes as red squares. (c) Zoom on the contact between the
fiber and the obstacle surface. The resulting repulsive force FR = FR

i j + FR
ik + FR

il is not strictly normal to the
obstacle surface (the red line) because of the discretization using spherical beads.

experience short range contact forces. To model this contact, the surface of the pillar is discretized
with small beads to smooth the stepped shape of the Eulerian grid and to tune the effective pillar
roughness through the bead radius aobs. A repulsive force FR [37] is added to the fiber beads that
are closer than a given cutoff Rref to the pillar beads to prevent the fiber from penetrating inside the
obstacle. The external repulsive force between the fiber bead i and the obstacle bead j is defined as

FR
i j =

⎧⎨
⎩− Fref

a+aobs

[
R2

ref −|ri j |2
R2

ref −(a+aobs )2

]4
ri j if |ri j | < Rref ,

0 otherwise,
(6)

where Fref = 6πμaUcenter and ri j is the vector between the fiber bead i and the obstacle bead j. The
total repulsive force FR acting on the ith fiber bead is the sum of all the repulsive forces FR

i j [see
Fig. 2(c)]. The discretization of the fiber and the pillar using beads leads to a repulsive force that is
not strictly normal to the pillar surface. It can be decomposed as

FR = FR
n n̂ + FR

t t̂, (7)

where n̂ and t̂ are, respectively, the unit vectors normal and tangent to the pillar surface. The normal
component is a repulsive force and the tangential component can be described as a “friction force.”

3. Hydrodynamic interactions and equations of motion

Once the internal and external forces are obtained, the velocity of the fiber elements is computed
from the mobility relation [38]

Ui = ui +
n∑

j=1

Mi jF j, (8)

where Ui is the total velocity of bead i, ui is the velocity induced by the background flow u∞
(computed with LBM, see Sec. III B) and

∑n
j=1 Mi jF j is the velocity induced by the nonhydro-

dynamic forces F = FE + FR acting on the n fiber beads. M is the so-called mobility matrix that
contains all hydrodynamic interactions between the fiber beads, i.e. their velocity induced by the
flow disturbances generated by the nonhydrodynamic forces. The computation of ui is similar to
the approach used in the immersed boundary method to impose no-slip boundary conditions on the
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particle surface [26,39]:

ui(t ) =
∑

x

�x3u∞(x, t )d (ri(t ) − x), (9)

where �x is the spacing of the Eulerian grid used to compute the flow by LBM at each node x, ri(t )
is the position of the ith fiber bead at time t , and d is the kernel function. The kernel function is
factorized in 3D as

d (x) = φ(x)φ(y)φ(z)/�x3, (10)

with

φ(x) =
{

1
4

(
1 + cos πx

2

)
if |x| � 2�x,

0 else.
(11)

We simulated the sedimentation of a single bead in an unbounded domain, and, by equating the
gravity force and the Stokes drag, we verified this stencil function approximates well the no-slip
condition for a bead of radius a = �x.

In this work we use the Rotne-Prager-Yamakawa mobility matrix defined as [40]

Mi j =
⎧⎨
⎩

(
I + a2

3 ∇2
)
T (ri j ) i �= j,

1
6πμaI i = j,

(12)

where I is the 3 × 3 identity matrix, T is the Oseen tensor, and ri j the vector between fiber beads i
and j.

The new position of the fiber beads r is then computed by integrating dr/dt = U with an
implicit second-order backward differentiation formula (BDF2) method to handle the stiffness of
the system. The time step is set to 10−7s, which is about 3 times smaller than the characteristic
bending time tb = μ(2a)4/B ≈ 2.7 × 10−7s and 1.6 times smaller than the characteristic stretching
time ts = 6πμa/(S/2a) = 12μ/E ≈ 1.6 × 10−7s, and thus ensures numerical stability.

The mobility matrix M accounts for the disturbances induced by the fiber on the flow, and for
its drag anisotropy, through the hydrodynamic interactions (HI) between the fiber segments; but
it neglects the corrections of these HI due to the channel walls and obstacle surface. However, as
discussed in Appendix A these corrections are small compared to the fiber velocity induced by the
ambient flow. The fiber nevertheless slows down at the approach of the obstacle due to the no-slip
boundary condition leading to a vanishing velocity at the obstacle surface. However, lubrication
forces are not taken into account and the obstacle-fiber interaction is solely modeled by repulsive
forces between the fiber and the object corresponding to direct fiber-obstacle contact. This is a
strong simplification since for perfectly smooth surfaces, lubrication forces prevent direct contact
at vanishing Reynolds number. In the experiments, of course, surfaces are never perfectly smooth
allowing for direct contact even at low Reynolds numbers, but the exact contact conditions are
difficult to quantify or to control.

We thus chose here to model the fiber-obstacle interactions using the simplified approach of
a short range repulsive force. Careful comparison between simulations and experimental results
obtained with very well controlled model experiments allows us to adjust the parameters of the
simulations. By conducting a sensitivity analysis we found that a cutoff distance Rref = 1.54 µm
and an obstacle bead radius aobs = 0.6 µm were optimal to prevent artificial overlapping between the
fiber and the obstacle surface and also provide excellent quantitative agreement for all comparisons
between experiments and simulations (see Secs. IV and V). This proves that our “effective”
approach captures correctly the role of the complicated fiber-obstacle interactions on the fiber
dynamics. We would like to stress that such agreement is surprisingly good given the fact that
our model neglects near-field hydrodynamic interactions between the fiber and the obstacle. But as
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FIG. 3. Velocity fields in the vicinity of the pillar in the experiments and simulations. (a) Normalized
velocity magnitude and streamlines obtained experimentally by µPIV (left) and computed by LBM simulation
(right). The thick red line is the flow separatrix. (b) Velocity profiles along the x axis [horizontal lines in panel
(a)]. (c) Velocity profiles along the y axis [vertical lines in panel (a)]. Ucenter is the velocity magnitude at the
channel centerline.

mentioned above, solving the exact flow in the thin gap separating the two objects is out of reach
due to their unknown surface topography, and our adjustable model offers a robust alternative.

IV. FLOW DISTURBANCE AND FIBER DYNAMICS

A. Disturbance flow field

We first characterize the flow disturbance created by the presence of the obstacle. The flow field
computed by the LBM is shown in Fig. 3 and compared to the µPIV measurements in the midplane
of the experimental channel. Note that in the Hele-Shaw configuration of our channel a Poiseuille
flow develops in the z direction. The flow velocity is maximal at the midplane where the velocity
gradient in the z direction is zero. We thus concentrate both in the experiments and in the simulations
on the fiber dynamics at the midplane, where they are solely given by the flow properties in the x and
y directions and where the out of plane shear can be neglected. Figure 3(a) gives the streamlines and
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the normalized velocity magnitude in the neighborhood of the pillar (only a portion of the channel is
represented here). The main features of the experimental flow are well captured by the simulation.
The velocity is zero along the bounding walls (y = 0 and 800 µm) and on the pillar surface. The
fluid is sharply accelerated right above and below the pillar and it is almost uniform far away from
the pillar. The confinement of the flow in the shallow Hele-Shaw like channel leads to a localization
of the flow disturbance close to the obstacle and to a strong acceleration zone at the apex of the
triangle. The lateral extent of the flow disturbance scales with the channel height [41] as shown in
Appendix B and gets more and more localized with decreasing channel height. At the same time
the velocity gradients close to the obstacle increase. The red thick line is the flow separatrix which
separates the streamlines going above and below the obstacle. The velocity profiles along the x and
y axes [horizontal and vertical lines in Fig. 3(a)] are, respectively, reported in Figs. 3(b) and 3(c).
The flow fields in the experiment and the simulation are in excellent quantitative agreement. Note
that all streamlines are symmetric due to the symmetry of the obstacle and the fact that the Reynolds
number is small.

B. Fiber dynamics

The dynamics of rigid fibers is investigated as a function of their length L, initial angle θ0 and
lateral position y0 at the channel entry. A lateral position of y0 = 0 corresponds to the position of
the base of the triangle. We thus refer to increasing y0 as positioning the fiber “higher” whereas
decreasing y0 corresponds to positioning the fiber “lower” along the triangle. More than 200
experiments and 1300 numerical simulations have been performed with a single isolated fiber for
various initial conditions. Four different fiber dynamics have been observed both experimentally
and numerically depending on θ0, y0, and L. Typical examples from experiments and simulations
are shown in Fig. 4. For these examples the exact initial conditions from the experiments have
been used as a starting point for the simulations. In Fig. 4(a), the fiber is initially parallel to the
flow (θ0 = 0) and almost aligned with the base of the pillar (y0 ≈ 0). It simply follows a mostly
symmetric trajectory and goes below the pillar. This dynamics is referred to as “below” in the
following. For Fig. 4(b), the fiber has initially a larger y0 positioning it “higher” with respect to the
base of the triangle. It also follows a mostly symmetric trajectory which, here, goes above the pillar.
This dynamics is referred to as “above”. For these two cases, the fiber does not approach the obstacle
closely and nearly goes back to its initial lateral position and angle far away downstream. However,
for intermediate initial lateral positions the fiber seems to establish contact with the pillar before
passing either below or above it. The fiber in Fig. 4(c) has such an intermediate initial position and
a slightly negative angle. In this case, the fiber strongly interacts with the pillar. Its front remains
blocked at the left edge of the obstacle for a short period of time, resulting in the rotation of the
fiber around the front followed by a switch of its front and rear. This dynamics is referred to as
“pole-vaulting” motion. Here, the fiber does not go back to its initial configuration (θ0, y0) far away
downstream. It migrates across streamlines and remains laterally shifted as indicated in Fig. 4(c).
Finally for Fig. 4(d) the fiber has a positive initial angle and an intermediate initial lateral position.
It gets trapped at the left tip of the pillar and finds an equilibrium position there, which is referred
to as “trapping” in the following.

Despite slight differences observed, that may be attributed to experimental imperfections and
to the fact that fiber-wall hydrodynamic interactions are neglected, we always obtain a very
good agreement in both space and time between experiments and simulations whenever initial
conditions are identical. Movies of the four cases presented in Fig. 4 are provided in Supplemental
Material [42].

C. Effect of the initial conditions on the fiber dynamics

As illustrated in Fig. 4, the dynamics of the fibers is dependent on their initial angle θ0 and
lateral position y0 when they enter the channel. This is shown more broadly in Fig. 5 where
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FIG. 4. The four different fiber dynamics observed experimentally and accurately reproduced by sim-
ulations. The first line of each panel shows images from the experiments, the second line represents the
chronophotograph of the simulation and the third line compares the trajectories of the fiber center of mass
in the experiment (dots) and in the simulation (solid line). (a) The fiber goes below the pillar. Initial conditions
are: θ0 = 0◦, y0/hobs = 0.197, and L/lobs = 0.94 both in the experiment and simulation. (b) The fiber goes
above the pillar. Initial conditions are: θ0 = 0◦, y0/hobs = 0.678, and L/lobs = 0.64 both in the experiment
and simulation. (c) Pole-vaulting. Vertical black double-arrow indicates the lateral shift that results from the
interaction with the obstacle. Initial conditions are: θ0 = −3.7◦, y0/hobs = 0.373, and L/lobs = 0.82 both in
the experiment and simulation. (d) Permanent trapping. Initial conditions are: θ0 = 8◦, y0/hobs = 0.351, and
L/lobs = 0.75 both in the experiment and simulation. The colors in the two last rows of each panel indicate the
time with the color-code indicated at the bottom of the figure. All figures share the same scale bar (100 µm).

Fig. 5(a) is a comparison of the fiber dynamics observed experimentally (open symbols) and
obtained numerically (closed symbols) for a large number of initial configurations (θ0, y0), and for
fiber length 0.5lobs � L � 1.5lobs in the experiments and L = 0.8lobs in the simulations, which is
the average length of the fibers in the experiments. The different dynamics are determined visually
from the trajectories, with the exception of the “pole-vaulting” dynamics. As the velocity of the fiber
head is not always strictly zero during the rotation phase both in the experiments and simulations
we consider the head of the fiber to be “blocked” if Uhead < 0.01Ucenter in the simulations, and
if it has no perceptible motion in the experiments. In the experiments, most of the fibers enter
the channel with a small initial angle (θ0 ≈ 0) due to the flow-focusing, and very few of them
have an initial angle |θ0| > 5. The black dashed line indicates the position of the flow separatrix
far away from the pillar. It separates the “below” and “above” dynamics well. The fibers that
are initially located at a certain distance below the separatrix go below the obstacle (red circles),
and those that are initially located above the separatrix pass above the obstacle (green squares)
regardless of their initial angle. Most of these fibers exhibit a mostly symmetric trajectory and do
not approach the pillar very closely. The situation is more complex close to the separatrix, where
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FIG. 5. Effect of the fiber initial configuration on the resulting dynamics. (a) Comparison between exper-
iments (open symbols) and simulations (closed symbols). The fiber lengths are 0.5lobs � L � 1.5lobs in the
experiments and L = 0.8lobs in the simulations, which is the average length of the fibers in the experiments.
The dashed line represents the position of the flow separatrix at the entrance of the channel. (b) Simulated
dynamics for different fiber lengths ranging in 0.5lobs < L < 1.4lobs. Red circles: the fiber goes below the
pillar; green squares: the fiber goes above the pillar; blue triangles: pole-vaulting; yellow diamonds: permanent
trapping.

the fibers may interact directly with the pillar. Here, the four dynamics coexist and the behavior
of the fibers is strongly dependent on their initial angle. For negative initial angles, fibers above
the separatrix are more likely to have a pole-vaulting motion (blue triangles), while for positive
angles they generally slide over the pillar and pass above it. However, some pole-vaulting events
also happen for positive angles. For these rare cases, the fiber front reaches the left vertex of the
pillar, rotates counterclockwise and passes below the pillar. The fibers that are initially located very
close to the flow separatrix may also remain trapped for both positive and negative initial angles
(yellow diamonds). These events occur slightly above the separatrix for negative angles and slightly
below the separatrix for positive angles. Trapping events result from a balance of the hydrodynamic
forces exerted on the fiber on both sides of the contact point (see Appendix C). Since the flow
is stronger below the point of contact than above, the fiber chooses an asymmetric configuration
toward the top to balance the forces on the two sides [see Fig. 4(d)]. Trapping events are thus very
sensitive to the position of this contact point and can only occur in a very narrow range of initial
conditions.

The dynamics observed for the experiments and the simulations are in excellent agreement. In
both cases, all the trapping events are located very close to the separatrix and the pole-vaulting
events are observed for the same range of values of (θ0, y0). As trapping results from a very fine
balance of the hydrodynamic forces acting on the fiber, it is very sensitive to experimental noise
such as disturbances of the flow field which could explain why there are fewer trapping events
observed in the experiments than in the simulations.

The length of the fibers also influences the resulting dynamics in some cases. Figure 5(b) shows
the fiber dynamics obtained from simulations while varying (θ0, y0) as well as the fiber length L.
We recover the same regions as in Fig. 5(a), with the “below” and “above” dynamics, respectively,
for low and high y0, the diagonal of pole-vaulting for θ0 < 0, and all the trapping events around
the flow separatrix. The fiber length does not affect the resulting dynamics when y0/hobs < 0.2 or
y0/hobs > 0.5 because for these initial lateral positions the fiber only weakly interacts with the pillar.
It passes either below or above the pillar depending only on the value of y0. On the contrary, for
y0/hobs ∈ [0.2; 0.5] the fiber interacts closely with the pillar and the resulting dynamics also depends
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FIG. 6. Effect of the fiber contact configuration on the dynamics. (a) Definitions of the contact angle θc

and the contact position yc. (b) Phase diagram showing the dynamics of the fiber as a function of θc and yc in
simulations where the fiber is initially in contact with the pillar at a well-controlled position (θc = θ0, yc = y0 ).
The fiber length is L/lobs = 1. Red circles: the fiber goes below the pillar; green squares: the fiber goes above
the pillar; blue triangles: pole-vaulting; yellow diamonds: permanent trapping. (c) Sketch showing the motion
of fibers starting at a contact position yc/hobs = 0.4 and θc = −45◦, −15◦, 15◦, and 45◦. Same color code as in
panel (b) is used to represent the fiber dynamics, light colors correspond to the contact position while darker
colors to subsequent moment. Black streamline: flow separatrix.

on the fiber length. At a given (θ0, y0), long fibers are more likely to pole-vault or get trapped than
short fibers, that generally follow the “above” or “below” dynamics.

D. Fiber-obstacle interactions

So far, we have shown how the configuration at the channel entry governs the dynamics of the
fiber when passing the obstacle. At the inlet, the streamlines are almost straight because the flow
disturbances from the obstacle are weak. Closer to the obstacle the flow becomes more intricate and
curved (see Fig. 3). Due to its finite size and elongated shape, the fiber will not necessarily follow
these streamlines or maintain its initial orientation as it approaches the obstacle and it is the fiber
configuration near the obstacle that ultimately determines its subsequent dynamics. For instance,
direct contact with obstacle is evidently involved in the “trapping” and “pole-vaulting” dynamics,
but the effect of close interactions on the “below” and “above” dynamics is less clear. This is why
it is useful to analyze the fiber conditions close to the obstacle, correlate them with the different
dynamics and link them to the initial conditions at the inlet.

We will specifically analyze fibers in direct contact with the obstacle in this section. We define
direct contact to take place when the repulsive force FR becomes non zero in the simulations. In the
experiments we use visual observations and define contact when no visible gap between fiber and
pillar can be observed. The contact conditions between the fiber and the pillar are characterized by
the angle θc and the lateral position yc of the fiber when it first touches the pillar [see Fig. 6(a)].
Their influence on the motion of the fiber is discussed in what follows.

Figure 6(b) gives the resulting dynamics in simulations for which the fiber is initially placed
directly in contact with the pillar at a well controlled contact configuration θ0 = θc and y0 = yc. In
these simulations, the fiber length is set to L/lobs = 1. The four fiber dynamics occupy well distinct
regions in the (θc, yc) space. Pole-vaulting events occur when θc < 0 and 0.1 � yc/hobs � 0.4. The
“below” dynamics is obtained for both positive and negative contact angles, and up to yc/hobs = 0.5.
The “above” and “below” domains are well separated by a thin region of trapping events, which
reveals the existence of an equilibrium contact configuration between these two dynamics. There
are also some trapping events for yc/hobs = 0 and θc � −30◦. For those cases, the fiber rotates and
slides around the left apex of the pillar, and it finds an equilibrium position where it remains trapped.
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FIG. 7. Influence of the fiber initial position on the contact configuration. (a) Phase diagram representing
the dynamics of fibers initially located far away from the pillar as a function of their contact configuration
θc and yc. Open symbols: experiments; closed symbols: simulations at L/lobs = 1. (b) Typical examples of
chronophotographs illustrating the high sensitivity of the contact configuration on y0 (top), θ0 (middle), and L
(bottom). Red line: flow separatrix.

The motion of the fiber just after the contact, and thus its direction of rotation, results from the
complex interplay between the flow and the repulsive force. The angular velocity of the fiber ω can
be decomposed as the sum of the rotation induced by the contact and the rotation induced by the
flow. It depends on both the orientation of the fiber and its position along the edge of the pillar,
which, themselves, vary over time. This is illustrated in Fig. 6(c) on an example where the same
lateral contact position leads to the four different dynamics when the contact angle is varied. This
sketch shows the evolution of four fibers starting at yc/hobs = 0.4 at t = t0 (light fibers), but with
different contact angles θc. The blue and red fibers have a high |θc| and therefore sample many
streamlines and feel a high velocity gradient. The rotation of these fibers is mainly due to the flow
which strongly pushes the blue one clockwise (ω < 0) and the red one counterclockwise (ω > 0).
As a result, the blue fiber will have a pole-vaulting motion while the red one will pass below the
pillar at a later time. For intermediate contact angles, the fibers feel a lower velocity gradient and so
the contact force also plays a role in their rotation. The green and yellow fibers thus have a lower
angular velocity than the blue and red ones. They both rotate counterclockwise, but the green one
is pushed up by the flow and slides over the edge of the pillar, and the yellow one rotates around its
head and will find an equilibrium position and remain trapped on the left apex of the pillar.

To investigate whether all contact conditions shown in Fig. 6(b) can be reached when the
fiber transported by the flow approaches the obstacle, we report in Fig. 7(a) the range of contact
conditions obtained for experiments (open symbols) and simulations (closed symbols) when fibers
are released at the channel entry within the range of initial conditions: −10◦ � θ0 � 10◦ and
0 � y0/hobs � 1. There is an overall good agreement between the dynamics obtained experimentally
and numerically in Fig. 7(a). Some pole-vaulting events and one trapping event are observed
experimentally at higher yc/hobs compared to the simulations, which can be attributed to roughness
effects and local disturbances of the flow field. The fiber dynamics at a given (θc, yc) is the same in
both Figs. 6(b) and 7(a). This means the fiber dynamics is uniquely determined by the configuration
at contact θc and yc at a given fiber length. Interestingly, several contact configurations cannot be
reached and no data is observed in the top left and bottom right corners of the plot.

It is therefore interesting to relate the contact configurations to the initial conditions. The
mapping between the contact configurations and the initial conditions

(θc, yc) = f (θ0, y0, L) (13)

044302-13



ZHIBO LI et al.

is complex due to the triangular obstacle that disturbs the flow field in its vicinity and the coupling
of the fiber orientation and position due to its elongated shape. A thorough sensitivity analysis of
the mapping is carried out in Appendix D whereas we here briefly showcase the sensitivity of the
function f with respect to its parameters. We perturb each of these parameters independently in
Fig. 7(b). In the first panel, a small lateral shift above the separatrix (δy0 = 0.15hobs) leads to a
significantly higher contact point (δyc = 0.7hobs) and opposite orientations at contact. This is due to
the opposite curvature of the streamlines above and below the separatrix. Similarly, a small change in
the initial orientation leads to contact configurations with opposite orientations (see second panel).
Finally, the fiber length also affects the contact configuration: the longest fiber reaches the obstacle
earlier than the shortest one, and has therefore less time to rotate before contact (see third panel).

In this section we have analyzed the dynamics of fibers getting very close to the obstacle,
corresponding to fibers released close to the separatrix. In this range, small differences in the initial
conditions lead to strong differences in the fiber trajectories and orientation close to the obstacle due
to the finite size effects in the complex disturbance flow field around the obstacle. This explains why
in the region close to the flow separatrix very different fiber dynamics can be observed. Trajectories
that do not enter into contact with the pillar just pass above or below the obstacle. Only a limited
range of initial conditions leads to fiber contact with the obstacle where all four dynamics are
observed. “Trapping” separates the “above” and “below” dynamics and “pole-vaulting” is observed
for specific contact conditions.

To conclude this section, we briefly investigate the effect of obstacle roughness on the different
dynamics, and more particularly on the “pole-vaulting” and “trapping” cases. In Appendix E we
use numerical simulations to compare the fiber dynamics obtained in Fig. 5(a) for a rough obstacle,
i.e., exerting tangential “friction” forces on the fiber at contact, with a perfectly smooth obstacle,
for which contact forces are strictly normal to the obstacle surface. Our simulations show that
trapping and pole-vaulting still occur in the absence of roughness, but over a smaller range of initial
conditions. These results confirm that roughness is not needed but promotes these two dynamics by
increasing their likelihood at contact.

The last aspect we want to investigate in this study is the influence of fiber dynamics and contact
with obstacles on their lateral drift.

V. LATERAL DISPLACEMENT

The trajectories of the fibers are significantly affected by the presence of the pillar and many
of them do not remain on their initial streamline. They thus do not return to their initial lateral
position far away downstream, after the obstacle [e.g., Fig. 4(c)]. Such lateral displacement could
be used for fiber sorting applications and needs to be understood to be leveraged. In this section,
we first quantify the lateral displacement both in simulations and experiments, then investigate the
mechanisms at play and show that contact with the pillar enhances this effect.

A. Cross-stream migration

The lateral displacement is quantified by

δ = yf − y0

hobs
, (14)

where y0 and yf are, respectively, the initial (upstream) and final (downstream) lateral positions of
the fiber center of mass at equilibrium far away from the pillar, and hobs is the pillar height. Note
that due to the symmetry of the streamlines, lateral displacement is only observed in the case of
cross-stream migration.

Figure 8 shows the influence of the initial condition and the fiber length on the lateral dis-
placement. Figure 8(a) is a comparison of experimental data (thin edges) and simulated data (thick
edges) at L = 0.8lobs (the mean fiber length in the experiments), varying θ0 and y0, and Fig. 8(b)
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FIG. 8. Effect of the fiber initial configuration and length on the lateral displacement δ. (a) Comparison
between experiments (thin edges) and simulations (thick edges). The fiber lengths are 0.5lobs � L � 1.5lobs in
the experiments and L = 0.8lobs in the simulations, which is the average fiber length in the experiments. The
dashed line represents the position of the flow separatrix at the entrance of the channel. (b) Lateral displacement
computed by numerical simulations while varying the initial angle θ0, the initial lateral position y0 and the fiber
length L. (c, d) Typical examples of chronophotographs and trajectories showing the influence of the fiber
length and initial configuration on the lateral displacement.The black streamline is the flow separatrix.

represents data extracted from the simulations while varying θ0, y0 and L. The fiber dynamics are
coded by the same symbols as in Fig. 5, with trapping states represented as hollow diamonds as in
this case no lateral displacement can be observed. In both panels, the darker the color, the larger
the deviation. This figure provides a link between the fiber dynamics and the lateral displacement.
The “pole-vaulting” dynamics leads to strong lateral deviations, while the “above” and “below”
dynamics result in very small deviations, with the exception of initial conditions close to the
flow separatrix [indicated by the dashed line in Fig. 8(a)]. Most lateral displacements are positive
meaning that the fiber will be deviated towards larger y positions, but some negative (and rather
small) lateral deviations are observed in particular for negative initial angles θ0.

The lateral displacements obtained in the simulations are in rather good agreement with those
observed experimentally. In the experiments, δ is also larger close to the flow separatrix, i.e. in the
range 0.3 � y0/hobs � 0.55 where the fibers strongly interact with the pillar, and it is rather small
outside this range, where the fibers do not or weakly interact with the pillar.

Figure 8(b) shows the additional effect of the fiber length on δ. The lateral displacement increases
with the fiber length within the window 0.3 � y0/hobs � 0.55, which means that long fibers are
more laterally shifted than short fibers. This is illustrated in Fig. 8(c) which represents a typical
example of chronophotographs and trajectories of a short and a long fiber following the “pole-
vaulting” dynamics. Both fibers have the same initial configuration (θ0, y0) and thus they follow the
same trajectory until they approach the pillar. Close to the pillar, the flow is highly disturbed and
because the fibers have different lengths they sample different streamlines and their trajectories start
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to separate. Indeed, during the rotation around its tip, the short fiber’s center of mass is closer to the
obstacle than the center of mass of the long one. The two fibers thus follow different streamlines after
rotating around their tip during “pole-vaulting.” At the apex of the pillar, the short fiber is horizontal
and feels streamlines that are close to the obstacle and descend abruptly behind the pillar, while the
long fiber is oblique and samples streamlines with a smaller vertical speed further downstream. As
a result, the long fiber has a lateral displacement δ = 0.36 and the short fiber δ = 0.07, and the two
fibers end up well separated by a gap of about 0.29hobs far away downstream. This indicates that
under certain conditions (0.3 � y0/hobs � 0.55) it is therefore possible to sort fibers by length. Such
a sorting effect can occur regardless of the fiber dynamics, but is strongest for “pole-vaulting” [see
Fig. 8(b)].

The lateral displacement is also highly sensitive on the initial configuration of the fiber (θ0, y0).
Slight variations of the initial configuration can lead to very different lateral displacements, as
illustrated in Fig. 8(d). Both fibers have the same length and the same initial angle, but they have
a slightly different initial lateral position y0. The uppermost fiber (orange, y0 = 0.525hobs) slides
perpendicularly along the pillar and reorients only once it reaches the apex, so that it remains in a
higher lateral position, while the lowest one (purple, y0 = 0.5hobs) also slides but reorients earlier,
thus reaching the apex with a horizontal orientation and diving back down with the streamlines
downstream. This results in two very different lateral displacements (δ = 0.01 for the purple fiber,
and δ = 0.19 for the orange one), and thus a large gap between both fibers downstream.

B. Contact enhances lateral displacement

We have seen that significant lateral displacement is only observed for fibers released close to the
separatrix that thus pass very close to the obstacle. We now analyze the nature of the interactions
between the fiber and the pillar under these conditions. From the simulations we can identify fiber
trajectories where direct contact between the fibers and the pillar occurs. We recall that, in the
simulations, contact is defined as the repulsive force between the fiber and the pillar surface, FR

becoming non zero. In the experiments, contact is assumed when no visible gap between fiber and
pillar can be observed.

Figure 9(a) shows whether contact has taken place (stars) or not (pointing-down triangles) and
the corresponding lateral displacement in our experiments and simulations at L/lobs = 0.8. When
y0/hobs < 0.2 or y0/hobs > 0.55 the fibers do not enter in direct contact with the pillar. In most
cases, without contact, fibers nearly go back to their initial lateral position with no or very small
deviation (|δ| < 0.07). On the contrary when 0.2 � y0/hobs � 0.55 the fibers touch the pillar and
their deviation is nonnegligible. Direct contact with the pillar therefore significantly enhances the
lateral displacement.

This enhancement is quantified in Fig. 9(b) showing the probability distribution of lateral
displacements with and without contact. In the absence of contact, both simulations and experi-
ments exhibit a peaked distribution around δ = 0. When contact occurs, the distributions widen
significantly: the standard deviation σδ increases by a factor 13 in the simulations (from σδ ≈ 0.0085
to ≈0.11) and by a factor 3.5 in the experiments (from σδ ≈ 0.026 to ≈0.092).

By reversing the flow after the fiber has passed the obstacle in the simulations we have tested the
reversibility of the trajectories. The trajectories where no contact between the fiber and the obstacle
occurs remain reversible [Fig. 9(c)] as required for flows at vanishing Reynolds numbers whereas
trajectories with contact [Fig. 9(d)] are not reversible. Contact thus strongly modifies the nature of
the trajectories. The good agreement between experimental and simulated trajectories in the case of
contact confirms that contact properties but also the occurrence of contact are correctly captured by
the effective approach of the simulations and reasonably well detected by our visual observations.

Altogether, these results confirm that contact strongly enhances lateral displacements. However,
we would like to stress that contact is not necessary to induce asymmetric fiber trajectories and
cross-stream migration. As shown above and in Fig. 9(c), δ can reach nonzero, yet small, values in
the absence of contact, without breaking the reversibility of the Stokes equations. It is well-known
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FIG. 9. Influence of contact on the fiber trajectory. (a) Phase diagram showing a close link between
direct contact and high lateral deviation. The dashed line represents the position of the flow separatrix at
the entrance of the channel. (b) Probability of δ with and without contact in the simulations. Inset shows the
experimental probabilities. Initial conditions are: −10◦ < θ0 < 10◦, 0 < y0/hobs < 1, and 0.5 < L/lobs < 1.5
both in the experiments and simulations. (c) Typical example of chronophotographs and trajectories in the
absence of contact (blue: flow from left to right, yellow: flow from right to left). Reversibility of the fiber
motion is shown by the superimposition of blue and yellow trajectories. Small lateral deviation, δ, is obtained
(this case corresponds to the highest observed value of δ in the absence of contact). (d) Typical example of
chronophotographs and trajectories in case of contact, showing irreversibility of the fiber motion (blue and
yellow trajectories do not superimpose), and larger lateral displacement is observed.

from Faxen’s laws that a finite object can migrate across streamlines in the presence of a shear
gradient if the flow has some curvature in the direction normal to the streamlines [43]. For instance,
the trajectory of a sphere transported by a uniform flow around a spherical obstacle is fore-aft
symmetric, but deviates from the streamlines as it approaches the obstacle, where the flow is curved,
and follows them back as it moves away. The situation is more complex for fibers whose orientation
also strongly influences the flow sampled by the object. Changes in orientation allow the fiber to
jump streamlines asymmetrically with respect to the obstacle but the trajectory remains reversible.
When direct contact occurs between fiber and obstacle, as shown in Fig. 9(d), stronger cross-stream
migration is observed, leading to larger deviations, and the trajectory becomes irreversible.

VI. CONCLUSIONS

In this work, we have presented a joint experimental and numerical investigation of the inter-
action between a rigid fiber and a triangular obstacle in confined microchannel flow. One major
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output of this study is the identification and classification of four dynamics based on the initial fiber
conditions at the channel entry: lateral position y0, orientation θ0, and length L.

When the lateral position is far enough from the flow separatrix, separating streamlines going
above and below the obstacle, y0/hobs > 0.55 or y0/hobs < 0.2, the fibers simply follow the stream-
lines, situations which are referred to as the “above” and “below” dynamics. When the fibers are
initially close to the separatrix, 0.2 � y0/hobs � 0.55, they approach the obstacle very closely and
two more interesting dynamics, “pole-vaulting” and “trapping”, appear. The primary mechanism
of the dynamics in this region is the competition between the rotation induced by the strong flow
disturbances around the obstacle and the contact force if the fiber directly touches the obstacle.
Because of the low Reynolds number flow, the initial condition of the fiber (θ0, y0, L) determines its
configuration in the vicinity of the obstacle (θc, yc) determining the dynamics of the fiber.

Another important finding of the present study is the sorting potential of an individual trian-
gular pillar for a rigid fiber. Sorting occurs when fibers with different properties exhibit different
cross-stream migration for identical initial conditions. Such migration can have two origins, the
interaction of the slender object with the complex disturbance flow or direct fiber-obstacle contact.
We show that reversible interactions with the disturbance flow can indeed lead to small lateral
deviations. However, in our situation such reversible lateral displacements remain very small and
negligible compared to displacements induced by direct fiber-obstacle contact. Such contact leads
to irreversible trajectories and strong lateral displacement.

The fact that direct contact is the primary mechanism for cross-stream migration might seem
surprising for transport at small Reynolds number. The confined channel geometry we are working
with concentrates the flow disturbance very close to the obstacle and enhances velocity gradients
there. Fiber trajectories are thus only affected when passing very close to the pillar. However, the
concentration of streamlines near the obstacle also promotes fibers to get very close to the obstacle.
Together with the finite length of the fiber, which is larger or comparable to the scale of the flow
disturbance, this increases the probability of fiber-obstacle contact.

Longer fibers tend to have larger lateral deviations after passing the pillar than shorter fibers
when the initial positions are in the range of 0.2 � y0/hobs � 0.55. However, the obtained lateral
displacement with a single pillar remains overall rather small with a maximum of 60% of the
obstacle height and leads to a limited sorting efficiency. We have also shown that small variations of
the initial condition within this range can have a large influence on the lateral displacement, masking
the effect of the fiber length. To obtain fiber sorting, a very precise control of the initial condition is
thus necessary, a condition that is difficult to fulfill in the experiments.

To increase the sorting potential one could in the future optimize the shape of an individual pillar
to tune different fiber dynamics and trajectories. Optimizing the microchannel for fiber sorting
could also be possible by considering more pillars and by arranging their layout. The sorting
efficiency of such pillar arrays has been shown before in DLD devices for spherical particles
[13,44], red blood cells [17,45], and bacteria [16,19]. And finally, as fiber-obstacle contact is crucial
for large lateral displacements one could for example modify the obstacle roughness to induce
more direct contacts. However, the range of initial conditions where trapping occurs increases
with increasing fiber-obstacle frictions as would occur for rougher pillars. Trapping could lead to
clogging, preventing fiber sorting. Modifying the direct fiber-obstacle interactions would thus have
to be done very carefully.
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FIG. 10. Effect of fiber-obstacle HI on fiber motion. (a) Chronophotographs and comparison of the trajec-
tories of the fiber COM between the simulations with and without fiber-obstacle HI. Fiber velocity (b) and
orientation (c) as a function of the horizontal distance from the obstacle x/lobs. Blue line: with fiber-obstacle
HI. Red dashed line: without fiber-obstacle HI.

APPENDIX A: DISCUSSION ON FIBER-WALLS AND FIBER-OBSTACLE
HYDRODYNAMIC INTERACTIONS

In this Appendix we discuss the role of hydrodynamic interactions (HI) between the fiber and
the channel walls and obstacle surface, and show that they can be neglected in the model.

First, it has been shown previously that the small confinement in the vertical (2a/Hch ≈ 0.1) and
lateral (L/Wch ≈ 0.1) direction weakly affects the fiber velocity [20]. HI with the channel walls can
therefore be neglected. In addition the fiber remains in the midplane at z = Hch/2 so that HI with
the upper and bottom walls cancel each other by symmetry.

To quantify the effect of HI with the obstacle, we have ran two identical simulations (same initial
conditions, contact forces, incident flow U ∞, etc...): one with fiber-obstacle HI (using a regularized
version of the boundary element method (see Refs. [12,46,47]) and one without fiber-obstacle
HI. In both simulations HI with the channel walls are neglected. We chose an initial condition
that favored fiber-obstacle interactions, which is a critical configuration. Figure 10(a) shows the
chronophotographs and the trajectories of the fiber center of mass (COM) for both cases. Even
though the fiber without HI is slowed down less near the obstacle, the trajectories match closely,
which is the most important feature to quantify the lateral displacement δ (see Sec. V), and the
agreement in time is also very good. Figures 10(b) and 10(c) compare the fiber speed and angle
as a function of horizontal distance from the center of the obstacle. We see that the velocity
correction due to fiber-obstacle HI slightly slows down the fiber near the obstacle (≈10% slower
near contact), and the reorientation is larger. However, the angle is recovered almost exactly in
the wake of the pillar. This quantitative comparison shows that neglecting fiber-obstacle HI does
not change appreciably the fiber trajectory, as expected from the very good quantitative agreement
with experiments. Furthermore, neglecting fiber-obstacle HI significantly reduces the computing
time (simulations are about 100 times faster without HI) which was necessary to perform a large
parametric study with 1300 simulations.
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FIG. 11. Velocity fields and profiles around the triangular pillar computed by LBM for different channel
heights: (a) Hch = 40 µm, (b) Hch = 80 µm, (c) Hch = 120 µm. Panels (d) and (e), respectively, show the
velocity profiles along the x and y axes. Ucenter is the velocity magnitude at the channel centerline.

APPENDIX B: EFFECT OF THE CHANNEL DEPTH ON THE FLOW FIELD

The dimensions of the channel significantly alter the flow field around the pillar. Figure 11 shows
the velocity fields and the velocity profiles computed by the lattice Boltzmann method (LBM)
in the neighborhood of the pillar for three different channel heights: Hch = 40 µm, 80 µm and
120 µm. The perturbation of the flow field induced by the presence of the obstacle enlarges with
the channel height, resulting in a lower velocity magnitude and lower gradients in the vicinity of
the pillar. Shallower channels are thus expected to promote interactions between the fibers and the
pillar. However, further decreasing the height of the channel below Hch = 40 µm would also make
more difficult to focus the fibers in the midplane. This would result in many fibers flowing and
aggregating close to the channel walls, which is highly undesirable. In this work we chose a channel
height Hch = 40 µm, which is shallow enough to have strong interactions between the fibers and the
pillar, and deep enough so that the lateral walls do not affect the fibers trajectories.

APPENDIX C: HYDRODYNAMIC FORCES IN THE “TRAPPING” CASE

Trapping events result from a balance of the hydrodynamic forces, and more precisely of the
moment of the hydrodynamic forces on both sides of the contact point between the fiber and the
pillar. The hydrodynamic forces FH and their moments MH are computed as

FH = −M−1(U − u), MH =
n∑

i=1

(ri − rCP) × FH
i , (C1)

with M the mobility matrix, U the velocity of the fiber beads (U = 0 in case of trapping), u the
velocity of the beads induced by the background flow, ri the position of the ith fiber bead and rCP the
position of the contact point. They are represented in Fig. 12 along three permanently trapped fibers
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FIG. 12. Hydrodynamic forces along three permanently trapped fibers. Blue and red arrows, respectively,
show the hydrodynamic forces above and below the contact point (yellow dot). Their moment Mu and
Ml on both sides of the contact point counterbalances, which prevents the rotation of the fiber. The fiber
length is L/lobs = 1 and the initial conditions are: (a) y0/hobs = 0.35, θ0 = 2.5◦, (b) y0/hobs = 0.325, θ0 = 5◦,
(c) y0/hobs = 0.375, θ0 = −10◦.

of length L/lobs = 1 starting at three different initial conditions. Blue and red arrows, respectively,
show the hydrodynamic forces above and below the contact point (yellow dot), and Mu and Ml are,
respectively, the moments of the hydrodynamic forces on the upper and lower parts of the fiber with
respect to the contact point. As the velocity magnitude is stronger below the pillar, the equilibrium
position of the fiber is asymmetric to verify MH = Ml + Mu = 0, which prevents the rotation of
the fiber.

APPENDIX D: INFLUENCE OF THE FIBER INITIAL POSITION AND LENGTH
ON THE CONTACT CONFIGURATION

In this Appendix we carry out a sensitivity analysis of the mapping between the fiber initial
position (θ0, y0) and length L on the contact configuration (θc, yc) when the fiber first touches the
pillar. The relation

(θc, yc) = f (θ0, y0, L)

is complex due to the strong disturbances of the flow field in the vicinity of the pillar and the
elongated asymmetrical shape of the fiber. Figure 13 provides insights of this complex mapping
based on data extracted from numerical simulations for which direct fiber-obstacle contact occurs.

Figure 13(a) explores the influence of θ0 and y0 on θc and yc at a given fiber length L/lobs = 1. The
color and angle of the lines, respectively, indicate the difference of lateral position, (yc − y0)/hobs,
and orientation, θc − θ0, between the initial and contact configurations. It shows that both (yc −
y0)/hobs and θc − θ0 increase with the initial position y0 for a given initial angle. This is due to the
curvature of the streamlines in the vicinity of the obstacle. Streamlines above the flow separatrix are
curved upwards to pass above the obstacle, while those below the separatrix are curved downwards
to pass below the obstacle. As the fibers overall follow the streamlines, those that are initially located
at a higher lateral position are transported by the upward-curved streamlines resulting in a higher
(yc − y0)/hobs. It is the opposite scenario for the fibers starting at a lower lateral position. This is
illustrated in Fig. 7 (top) that displays snapshots of the fibers framed in black (θ0 = −5◦, y0 = 0.35)
and magenta (θ0 = −5◦, y0 = 0.5). The uppermost fiber follows upward-curved streamlines, it is
thus transported upwards (yc − y0 > 0) and rotated counterclockwise (θc − θ0 > 0) by the flow. It
is the opposite for the black fiber which initially lies on the flow separatrix (that bends downwards).
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FIG. 13. Influence of the fiber initial position, initial orientation and length on the contact configuration.
(a) Angle and lateral position differences between the initial and first contact configurations as a function of
(θ0, y0) for a fiber length L/lobs = 1. The colors and angle of the lines, respectively, indicate (yc − y0 )/hobs

and θc − θ0. (b) Influence of the fiber length L and initial condition (θ0, y0) on the contact angle θc. (c) Fiber
orientation difference with respect to the initial angle, �θ = θ (x) − θ0, as a function of the x position of the
fiber’s center of mass for y0/hobs = 0.425 and θ0 = −7.5◦. The triangular symbols and dashed lines are the
positions of the first contact with obstacle surface. The inset shows snapshots of two fibers of length L/lobs =
0.6 and L/lobs = 1.4 approaching the obstacle. When the longer fiber hits the obstacle at t = t1 + 0.16 s, the
shorter fiber is still transported and rotated by the flow until it first touches the pillar at t = t1 + 0.28 s, leading
to very different contact angles between the two fibers.

The difference of initial position (yc − y0)/hobs and orientation θc − θ0 also increases with the
initial position θ0 at a given y0. This is again illustrated in Fig. 7 (middle) showing snapshots of
the same fiber framed in black (θ0 = −5◦, y0 = 0.35), and the one framed in green (θ0 = 2.5◦,
y0 = 0.35). Both fibers are initially located on the flow separatrix, but they sample different
streamlines as they have different initial orientations. When the green fiber approaches the obstacle,
its head feels streamlines above the separatrix that bend upwards, while the head of the black
fiber feels streamlines that bend downwards. As a result, the green fiber rotates counterclock-
wise (θc − θ0 > 0) and has yc − y0 > 0, while the black fiber rotates clockwise (θc − θ0 < 0) and
has yc − y0 < 0.

Figures 13(b) and 13(c) show the additional effect of the fiber length on the contact configuration.
The lighter the color, the longer the fiber. They reveal that shorter fibers rotate more (either
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FIG. 14. Effect of the pillar roughness on the fiber dynamics. (a) Discretization of the pillar using beads
(top) and six quadratic Bézier curves (bottom). (b) Phase diagram showing the fiber dynamics computed with
the rough pillar discretized using spherical beads. (c) Phase diagram showing the fiber dynamics computed
with the perfectly smooth pillar described by Bézier curves. The fiber length in the simulations is L = 0.8lobs.
Data are only shown in the range 0.3 � y0/hobs � 0.5 for which direct fiber-pillar contact occurs. The dashed
line in (b) and (c) represents the position of the flow separatrix at the channel entrance. Circles: below; squares:
above; triangles: pole-vaulting; diamonds: trapping.

clockwise or counterclockwise) than longer ones before touching the pillar. This is due to geometry
effects, as illustrated in Fig. 13(c) which shows the difference of orientation of the fiber with respect
to the initial angle, �θ = θ (x) − θ0, during its transport by the flow. This figure indicates that longer
fibers reach the obstacle earlier than shorter ones which continue rotating until they touch the pillar.
The inset in Fig. 13(c) gives the trajectories of two fibers of length L/lobs = 0.6 and L/lobs = 1.4
starting at the same initial configuration θ0 = −7.5◦ and y0/hobs = 0.425. When the longer fiber
first hits the obstacle, the shorter one is still carried and rotated by the flow, leading to two very
different contact angles between both fibers.

Additionally, fibers which start from a higher y0 with θ0 > 0 or a lower y0 with θ0 < 0 have the
same tendency to follow the direction of the streamlines close to the obstacle. So, it is easier for
them to bypass the obstacle without contact, which explains why the data in Figs. 13(a) and 13(b)
distributes into a parallelogram shape, with no data in the bottom left and top right corners.

APPENDIX E: ROLE OF OBSTACLE ROUGHNESS ON THE FIBER DYNAMICS

1. Simulations with a perfectly smooth pillar

In all the simulations presented in Secs. IV and V, the fiber and the obstacle are discretized by
spherical beads of radius a = 2 µm and aobs = 0.6 µm, respectively. As discussed in Sec. III, this
discretization using beads leads to a repulsive force which is not strictly normal to the pillar surface,
and therefore generates friction. To investigate the role of obstacle roughness on the fiber dynamics,
we also performed simulations with a perfectly smooth pillar described by quadratic Bézier curves
[48], and having the same shape as the pillar used in Secs. IV and V [see Fig. 14(a)]. This perfectly
smooth pillar allows us to model contact with a purely normal repulsive force between the fiber and
the pillar, in contrast to the pillar discretized by beads. More technical details on the computation
of the repulsive force between the fiber and the perfectly smooth pillar are provided in the next
subsection.

Figures 14(b) and 14(c), respectively, represent the phase diagrams of the fiber dynamics
computed with roughness (pillar discretized using beads) and without roughness (smooth pillar
described by Bézier curves). As can be seen in panel 14(c), pole-vaulting and trapping events are
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FIG. 15. Sketch showing the computation of the repulsive force between a fiber bead and a quadratic Bézier
curve.

also observed in the absence of roughness. However, the number of pole-vaulting and trapping
events is much smaller without roughness. This means friction is not needed for the fiber to
pole-vault or to remain trapped on the pillar, but it promotes pole-vaulting and trapping by increasing
the range of initial conditions leading to those events.

2. Computation of the repulsive force

The smooth pillar used in the simulations presented in Fig. 14(c) consists of six adjacent
quadratic Bézier curves B(s) = (X (s),Y (s)). Each of them is defined by three control points
P0 = (x0, y0), P1 = (x1, y1), and P2 = (x2, y2) (see Fig. 15), such as

B(s) = (1 − s)2P0 + 2(1 − s)sP1 + s2P2, 0 � s � 1.

Rearranging terms gives second-order polynomials for X (s) and Y (s),{
X (s) = axs2 + bxs + cx

Y (s) = ays2 + bys + cy
0 � s � 1,

with

ax = x0 − 2x1 + x2 ay = y0 − 2y1 + y2,

bx = 2(x1 − x0) and by = 2(y1 − y0),

cx = x0 cy = y0.

Computing the repulsive force applied on a given fiber bead requires to compute the shortest
distance between this bead and each of the six Bézier curves. Let di j (s) be the distance between the
center of mass of the ith fiber bead ri = (x, y) and a given point X = (X (s),Y (s)) belonging to the
jth Bézier curve of the pillar:

di j (s) =
√

(x − X (s))2 + (y − Y (s))2.

The shortest distance between the ith fiber bead and the jth Bézier curve is obtained by solving for
d ′

i j (s) = 0 in the range 0 � s � 1, with

d ′
i j (s) = X ′X + Y ′Y√

(x − X )2 + (y − Y )2
.

Solving for d ′
i j (s) = 0 is equivalent to computing the roots of the third-order polynomial P(s)

defined as

P(s) = X ′X + Y ′Y = as3 + bs2 + cs + d,
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with

a = 2
(
a2

x + a2
y

)
,

b = 3(axbx + ayby),

c = 2
[
ax(cx − x) + ay(cy − y) + b2

x + b2
y

]
,

d = bx(cx − x) + by(cy − y).

Let s0 be the root of P(s) minimizing di j (s), and Ri j = di j (s0). The repulsive force FR
i j acting on the

ith fiber bead due to the jth Bézier curve is then computed as

FR
i j =

⎧⎨
⎩−Fref

a

[
R2

ref −R2
i j

R2
ref −a2

]4
Ri j n̂ if Ri j < Rref ,

0 otherwise,

where a is the bead radius, Rref the cutoff distance at which the repulsive force is activated, and n̂ =
n/|n| with n = (−Y ′(s0), X ′(s0)) the unit vector normal to the Bézier curve at X0 = (X (s0),Y (s0)).
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