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Viscous rebound of a quasi-two-dimensional cylinder on a solid wall
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The purpose of the present study is to extend the simple concept of apparent coefficient
of restitution, widely approached in the literature for the case of a single contact point
between a sphere and a wall, to the case of bouncing whose complexity is increased
due to the shape of the contacting object. For this purpose, experiments are carried out
with a finite-length cylinder, freely falling in a liquid at rest. A rigid tail is attached to
the cylinder, allowing one to maintain a vertical trajectory and to keep the axis of the
cylinder parallel to the bottom wall down to a small gap between them. Yet, more complex
3D motions of the cylinder with respect to the wall occur during bouncing, including
multiple-contact-point bouncing between the cylinder and the bottom as well as cavitation.
When the Stokes number St (the ratio between characteristic inertial forces experienced by
the particle compared to viscous forces in the fluid) is increased, the experimental results
suggest that the ratio of the apparent coefficient of restitution to the solid one increases
from 0 (at low St) to 1 (at large St) with a critical Stokes number Stc below which
no bouncing is observed, as usually obtained in the literature for a single-contact-point
bouncing sphere. In a conceptual approach to understanding the observed experimental
features using a cutoff length scale prior to contact and a contact timescale, we investigated
numerical modeling of an idealized situation, a 2D infinite cylinder falling parallel to the
wall. To this end, we carried out numerical 2D simulations where the fluid equations of
motion were coupled to the particle equation of motion through an immersed boundary
method. The particle equation of motion was coupled to an elastic force to model bounc-
ing. This numerical model requires parametrization of the cutoff length (interpreted as
a roughness) and the contact time (associated with the contact elasticity) used here to
capture the experimental observations. The simulations confirmed that (1) the departure
of the coefficient of restitution from 0 is strictly dependent on the apparent roughness
and (2) the coefficient of restitution depends on the contact time. Finally, in an effort
to rationalize the experiments and the simulations for such a conceptual approach, we
modeled the coefficient of restitution as the product of two contributions to the mechanical
loss of energy: the collision-to-terminal velocity ratio (Vc/Vt ) of the approach phase and the
rebound-to-collision velocity ratio (−Vr/Vc) of the contact phase. We then interpreted the
experimental measurements in light of this model, showing evidence that the assumption of
a global relationship between the contact time and an apparent roughness (all being linked
to the bouncing complexity including multiple-contact-point and cavitation in experiments)
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leads to a reasonably good prediction of the coefficient of restitution in the intermediate
regime in St. This suggests the relevance of lumping the complex details of physical
phenomena involved during contact into a simple concept based on the contact apparent
roughness and elasticity.

DOI: 10.1103/PhysRevFluids.9.044301

I. INTRODUCTION

The interaction of solid particles evolving in a viscous fluid has been considered in many studies
for its obvious relevance in many geophysical and industrial applications involving multiphase
flows. The related key questions are numerous ranging from the mesoscale dynamics, that is, the
collective motion of the suspended particles, to the microscale dynamics at the scale of the grain. In
particular, if one simplifies such complex systems by considering only two approaching particles,
one handles local processes such as dissipation induced by their interaction. This includes the
viscous dissipation due to fluid motion induced by their relative motion close to contact as well
as the mechanical dissipation during solid contact.

A main issue when dealing with such apparently simple systems is the antagonism between
geometrical and mechanical properties of modeled particles and the ones of real particles. Then two
main aspects are usually modeled, as opposed to solved, which are (1) the local deformation due
to elasticity of the particles and (2) the surface roughness. Otherwise, infinitely rigid and smooth
objects would lead to a complete dissipation of the initial kinetic energy, and no bouncing could
occur. Such dissipation would be due to the lubrication force induced by the viscous flow in the
gap between particles diverging when the gap goes to zero for perfectly smooth and rigid particles
as evidenced in the case of a sphere approaching a wall [1]. However, a full dissipation preventing
bouncing has been shown through several experimental studies to be unlikely, at least above some
given threshold of inertia close to contact [2–7]. Therefore, the singularity of the lubrication force at
zero gap, which would lead only to solid contact on a infinite time scale with zero relative velocity,
should somehow be regularized. This is why modeling the bouncing of a sphere is often sought as a
regularization of the physical system.

The elastohydrodynamic collision model proposed in [8] and [9] is a regularization approach
incorporating (1), which thus allows bouncing while preventing solid contact. This led to several
experimental studies dealing with the bouncing of spherical particle on a rigid wall, for which
the surface roughness of particle could not be disregarded [2]. Then, on the opposite side, the
possibility of rigid grain to bounce only due to surface roughness has been addressed in the literature
[5]. As suggested in [10], (2) proving solid contact required sharp shape roughness, otherwise the
elastohydrodynamic collision is only scaled down to the roughness scale. Trying to separate (1)
from (2), [6] has experimentally highlighted the possibility of solid contact between rough rigid
objects on a finite timescale. An extension of the elastohydrodynamic collision including (2) could
therefore be relevant [11]. Note that additional aspects also can be found in the literature, such as
the liquid-glass transition in the presence of highly viscous liquid films between colliding surfaces
[12,13].

From a numerical modeling point of view, the scale of regularization, due to either (1) or (2),
is usually too small to be reasonably resolved, in particular for complex systems involving several
particles. Significant advances have been recently made on the numerical modeling of complex
shape and nonrigid particles (see, for instance, [14]). However, these methods still suffer from a
limitation due to the computational cost and the spatial scale of shape complexity, which usually
lead to a locally smooth surface. Accounting for the shape complexity of a body does not necessarily
allow one to capture the required change of scale of surface roughness that would be at the origin
of the regularization at contact mentioned previously. Then a specific attention is still required to
incorporate the small-scale physical processes as closure model into a classical numerical approach
such as the discrete element method (DEM), for which (1) and (2) are not fully resolved. This
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approach has been extensively proposed in the literature using a coupled DEM-DNS solver for
the solid-fluid resolutions [11,15–22]. All these approaches are somehow similar, as the mesh grid
of the fluid solver covers the entire domain including the solid object to prevent a complex and
costly numerical algorithm when dealing with body-fitted grid methods, which would moreover be
incompatible with an objective multibody systems. For these fixed-grid methods, an extra term is
required to enforce the solution within a solid body. Methods can slightly differ but mostly lead
to the same conceptual methodology. In this case, the above mentioned singularity, or lack of
resolution, occurs at the mesh grid of the fluid solver, when the two solid surfaces close to contact
reach a distance of the order of the mesh size. Due to numerical limitations, this length scale can be
quite important compared to the typical diameter of the particles D, i.e., only one order of magnitude
smaller D/10. As this scale is often thought of as large compared with the roughness of real grains, a
subgrid lubrication model is often added when the solids get closer. Moreover, a separation between
a solid contact timescale and a fluid timescale is often considered, assuming strict rigidity of the
solids. These two aspects (lubrication model and rigidity) still require some attention. In particular,
adding a lubrication model allows one to delay the singularity to a smaller scale, and therefore to
obtain a better quantitative agreement with experiments (as the fluid dissipation is increased to a
level closer to real; see, for instance, [20]). However, this remains quite an empirical alternative.
Using the immersed boundary method (IBM) on a fixed grid, [21] attempted to refine the mesh
grid in the gap between solid object (sphere/wall) down to ∼D/1000 using local refinement and
taking advantage of geometrical symmetry. Doing so, a subscale lubrication model is not added,
allowing the capture of most of the dissipation as the mesh reaches a length scale comparable to
real roughness. Then roughness is seen as an apparent roughness based on the mesh grid (see the
supplementary material in [23]). Even if the link between numerical dissipation and real dissipation
remains unclear, the scale issue requiring an additional lubrication model is at least removed with
such an approach.

Quite surprisingly, whatever the “philosophy” of regularization or physical process at the mi-
croscopic scale, a robust observation in particle-particle or particle-wall collision obtained from
experiments and modeling, either numerical or theoretical, is the evolution of an effective coef-
ficient of restitution including both viscous dissipation and mechanical/structural elasticity, with
the dimensionless Stokes number St, measuring the ratio of particle inertia to fluid dissipation as
explicitly defined in Eq. (2). In particular, a critical Stokes number Stc is obtained delineating a
viscous region for which no bouncing is observed (St < Stc) and an inertial region where bouncing
occurs (St > Stc). This robustness allows numerical simulations, as discussed later, to be relevant
to predict this the transition from viscous to inertial regimes, even if the local mechanisms allowing
this bouncing (1 vs 2) remain unclear. Then it would suggest that any complex mechanism at play
during bouncing, due either to the local complex shape of the bouncing particle or to deformation
and/or to phase change (in the liquid) induced by strong local pressure just prior to contact and/or
low local pressure upon motion reversal, respectively, can be captured by simplified modeling
based on effective bouncing characteristics. The terms elasticity and roughness, classically used
in the literature of IBM/DEM modeling, thus refer to the adjustable bouncing parameters which are
actually the timescale of contact and the regularization length prior to contact, to be parameterized
in an IBM/DEM bouncing simulation. Then even if discriminating and modeling elasticity versus
roughness remain uncertain, their conceptual consequences on the effective bouncing are promising
and still deserve attention. One proposes to adopt this approach to extend the bouncing models
developed for the case of a sphere [20] towards a conceptual approach of apparent elasticity and
apparent roughness as a generalization of more complex bouncing configurations.

Let us define the Stokes number of an object falling under gravity in a viscous fluid. This
dimensionless number is intimately related to the settling Reynolds number, defined here as

Re = ρ f DVt

μ
. (1)
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The Stokes number is then built from the ratio between the object relaxation time and the fluid
motion at the scale of the object. Instead of considering different expressions associated with the
cylinder settling in the experiments and numerical simulations (since the shape is not exactly the
same), we use for simplicity the commonly used expression for a falling sphere:

St = 1

9

ρ∗DVt

μ
= 1

9

(
1 + ρ f

ρp
CM

)
ρp

ρ f
Re. (2)

Here ρ f and μ correspond to the fluid density and viscosity. D = 2R indicates the cylinder diameter
and R its radius. ρ∗ = ρp(1 + ρ f

ρp
CM ) is the effective cylinder density taking into account the added

mass effect, and CM represents the added mass coefficient. Vt corresponds to the cylinder terminal
settling velocity, reached when the drag force balances the cylinder apparent weight.

Experiments (Sec. II) and simulations (Sec. III) are used to investigate the coefficient of resti-
tution e of a cylinder bouncing on a “smooth” wall, as a function of its inertia characterized by
the Stokes number. Experiments are designed to provide the bouncing of a finite-length cylinder
onto a horizontal surface, while simulations are designed to provide a twin 2D situation of a 2D
cylinder bouncing along a horizontal line, in which roughness and elasticity are therefore subscale
models which could mimic the complexity of finite-length 3D bouncing. Despite the apparent
simplicity of the experimental setup, it is shown that the values of the coefficient of restitution
as a function of the Stokes number are not easily rationalized onto a master curve, but a shift
remains between the reported curves. In order to interpret the data, we postulate that (1) the scatter is
mainly associated with the cylinder pitching at the onset of the collision process and the generation
of cavitation bubble at contact and (2) the physical phenomena at play during the contact can be
interpreted in terms of a cutoff length at contact and a contact time. In the numerical simulations,
as the configuration remains 2D all along the particle trajectory (collision along a contact line), the
contact roughness parameter η (associated with the cutoff lengthscale) appears to influence mainly
the value of the critical Stokes number, while the contact elasticity parameter α (that allows one
to tune the characteristic collision time) is shown to lead to different levels of the e-St curves.
Section IV discusses a general reduced-order model for the restitution coefficient, which involves
a dimensionless apparent roughness parameter η (which sets a critical Stokes number above which
rebound occurs) and where the contact elasticity is expressed in terms of a finite contact timescale
(which decreases when the Stokes number increases). The paper ends with a discussion in Sec. V,
where we show that using the numerically and experimentally measured contact time, we capture
the different levels of e-St curves in a reasonable way. This confirms the importance of measuring
contact time along the process of characterization of the complex collision process.

II. 3D BOUNCING: EXPERIMENTS

A. Experimental setup

To model an idealized rebound in a laboratory setup, we consider the controlled settling of a
finite width cylinder of diameter D and length L (larger than D), being constrained to fall between
two vertical walls separated by a distance L(1 + ε) with ε very small compared to 1. This setup is
aimed to be designed to be close enough to a 2D cylinder bouncing as characterized in the previous
section, anticipating an effective 2D description of the experimental rebound. For this purpose, the
motion of the cylinder is imposed to take place in a plane perpendicular to its long axis and along the
vertical direction. In practice, 3D motion is unavoidable, due to both the finite length of the cylinder
and wake instabilities in the vertical plane. These 3D motions require to be controlled enough. For
this purpose, the gap between the cylinder and the lateral walls (Lε) is always sufficient to allow
the cylinder falling but small enough to reduce 3D rotational to a range of small angles (typically
Lε � 0.1 cm). Moreover, to minimize 3D motion, the cylinder is provided with a long thin tail of
dimension � � D and with a similar length L.
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FIG. 1. (a) Design and picture of the four cylinders used. (b) Schematic of the experiment; the delimited
area in red is the field of view of the camera. Schematic and definitions of the extracted quantities in the (c)
(x-y) plane and (d) (y-z) plane, and (e) from real images.

In order to vary the Stokes number St in the experiments, several cylinders and fluids have been
used. The different cylinders are shown in Fig. 1(a), all of them having an outer core of PVC,
but their inner part can be replaced by another material to modify the object density but not its
surface/contact properties. The tail is a plate made of PVC as well. The cylinder properties are
summarized in Table I. The rebound of the cylinders have been studied in four different fluids
at room temperature (∼20◦): air, salt water, and a mixture of salt water with UCON oil (Dow,
75H900000) at 10% and 15% in mass. Their densities and kinematic viscosities are summarized in
Table II.

As shown in Fig. 1(b), the glass tank horizontal dimensions are 18.0×4.0 cm2, and its vertical
extent of 74.0 cm allows for a falling distance of approximately 70 cm. The cylinder, almost fully
immersed, is released at the top of the tank by opening a gate (fast mechanical aperture using a
compressed air piston) and falls due to gravity in a fluid at rest until reaching the bottom of the tank
where it encounters a fixed flat surface made of PVC (the same material as the outer part of the
cylinder). We follow its dynamics with a high-speed camera connected to a telecentric lens to avoid
parallax effects, the sampling frequency chosen is 2 kHz, and the field of view is 1000×2000 px2

with a resolution of ∼0.1 mm/px observing the (x, y) plane as shown in Figs. 1(b) and 1(c). The
gray levels due to the back lighting of the tank allows one to precisely extract the contour of the
object and even its orientation with respect to the (x, y) plane. A series of experiments have also
been investigated using a Phantom high-speed camera, with the sampling frequency at 130 kHz (in
salt water only).

TABLE I. Properties of the cylinders shown in Fig. 1(a).

A B C D

Inner material PMMA PVC Steel Steel
Inner diameter (cm) 1.9 N.A. 1.0 1.8
D (cm) 2.074 2.071 2.072 2.072
L (cm) 3.95 3.96 3.91 3.96
� (cm) 9.0 9.0 9.0 9.0
ρp (g/cm3) 1.36 1.43 2.17 3.19
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TABLE II. Properties of the fluids used. Mixture ratios are percentage in mass.

Fluid ρ (kg/m3) ν (10−6 m2/s)

Air 1.17 15.7
Salt water 1050 1.1
UCON/salt water (10/90) 1050 8.4
UCON/salt water (15/85) 1050 17.7

For each gray-level image, we extract the contour and the center (P1) of the cylinder, as well
as the contour and the barycenter (P2) of the whole object. From the temporal evolution of those
two points, we can follow the orientation in the (x, y) plane of the tail φ(t ) which corresponds to
the angle of the line (P1, P2) with the vertical; the velocity for the trajectories of P1 and P2 and
their angle with the horizontal are found by computing a linear fit of the trajectory over ∼20 time
steps. We define more specifically ψin and ψout the angles of the trajectory of the center (P1) with
the horizontal, just before and after rebound, and θ = |ψout − ψin| the difference between these two
angles. The coefficient of restitution in the vertical direction, denoted ey in the following, will be
computed by making the ratio of the velocity of P1 just before and after contact. As illustrated in
Fig. 1(d), by using the gray level to discriminate the front (black) and rear (lighter gray) faces of the
cylinder, we can extract the difference in height δz of their centers which relates to the orientation
out of plane of the cylinder [sin−1(δz/L)].

The release of the cylinder is always done in a fluid at rest for several minutes, with the initial
position of its tail as vertical as possible. Nevertheless, residual perturbations in the fluid or at release
can generate a small rotation of the tail angle with the vertical (φ), which can stay almost constant in
viscous fluids, but might generate lift and some rotational motions in general. A precise monitoring
of all these angles is done for each experiment.

B. Results

1. Contact time and out-of-plane inclination at rebound

The rebound on the bottom wall observed with this experimental setup was shown to be nearly
2D. However, a deeper investigation indicates a slightly more complex bouncing feature, highlight-
ing a 3D contribution in the out-of-plane direction. The complexity of the bouncing is associated
with the out-of-plane orientation of the cylinder with respect to the horizontal, as discussed in the
previous section and quantified by the length δz. This leads to a contact point of the cylinder (either
the front or rear section touching the bottom plate) instead of an idealized contact line along the
entire cylinder, as would be obtained for a purely 2D bouncing. The full bouncing process of
such apparent 2D bouncing can be characterized by a succession of bouncing of the front and
rear sections of the cylinder on a very short timescale, prior to a significant take off of the object
indicating the end of the apparent 2D bouncing. Such complex bouncing can be classified by the
number of visible contacts between the cylinder and the plate. It can have one (front or rear part
depending on its out-of-plane inclination), two (front and rear), or even three (front/rear/front or
vice versa) contacts with the PVC plate before going away from it. Accordingly, we can also define
an apparent contact time tC that corresponds to the delay between the first and last images showing
contact, with a lower bound being the frame rate of the camera (0.5 ms) for the one-contact cases.
Two examples are illustrated in Figs. 2(a) and 2(b), and corresponding movies are given in the
Supplemental Material [24]. We have also registered the out-of-plane inclination at the rebound,
or equivalently δz/R, to relate it to the nature of the rebound. On average, image analysis led to
estimates of δz/R smaller than 0.1, which corresponds to inclinations smaller than 5◦. Even if the
nondimensional apparent contact time tCVt/D roughly increases with δz/R, dispersion of the results
does not allow us to ensure that they are strongly correlated, as illustrated in Fig. 2(c). One can
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FIG. 2. Series of images to illustrate rebounds with (a) one contact (front contact) for cylinder A in salt
water, and (b) three-contact (rear/front/rear front contact) case for cylinder B in salt water. The frames with
contacts are indicated in red; a dashed-dot white circle shows the front face of the cylinder. (c) Sorting of
rebound cases based on δz/R, the nondimensional contact time, and number of contacts for cases in UCON/salt
water (blue) and salt water (red). Cylinders are sorted by symbols.

notice, however, that it is more likely to have two or three contacts at rebound when the out-of-plane
inclination is important, e.g., for increasing δz/R.

2. Influence of cavitation at rebound

For some of our experiments, the estimated values for tC are at the limit of the sampling frequency
of the camera (2 kHz). To better resolve those values, a series of experiments have been repeated
with a camera working at very high speed (130 kHz). As can be seen in Fig. 3(a) for a cylinder
(type D) in water, the overall vertical dynamics is well represented by two branches of trajectories
at constant speed, although some out-of-plane inclination is visible after the rebound. If we focus
on the instants around the rebound defined as the origin of time, illustrated in the inset in Fig. 3(a),
we notice that the cylinder is staying almost steady very near the bottom for almost 600 μs after the
contact before starting to move away from it. Some images every 200 μs of the rebound are shown
in Fig. 3(b), with symbols indicating the corresponding times in Fig. 3(a); a short movie of this
dynamics is also provided in Supplemental Material as well [24]. One can observe the formation
of a cavitation bubble at the location of contact, between the cylinder and the bottom, as indicated
by red arrows in three of the images. Its maximum horizontal extent is almost half the diameter

FIG. 3. Cylinder D in water. (a) Position of the front and rear faces of the cylinder (as well as the average
of the two) with time, with the inset zooming on the 1 ms around the rebound. (b) Series of images from
the camera (every 200 μs) with symbols indicating the corresponding times in the inset in (a); the red arrow
indicates the cavitation bubble when visible.
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FIG. 4. (a) Distribution of the observed angles in air and in salt water at rebound of the cylinder itself φin,
the initial orientation ψin, and the change in the orientation of its trajectory with respect to a perfect rebound
with no friction ψin − θ/2. (b) Coefficient of restitution ey in air, as a function of the rotation at rebound, sorted
by the nature of the cylinder (symbols); the filled red symbols with error bars are the estimates of ey0 since
St > 105 for all cases.

of the cylinder. The nucleation of this bubble originates from very small bubbles at the surface of
the cylinder and of the flat surface (visible in the image with the disk, for t = 0 μs). This is in good
agreement with the crevice model for heterogeneous nucleation of bubbles in water [25], with nuclei
trapped at the plastic surfaces being destabilized at rebound by pressure variations.

Similar observations have been obtained for all the rebounds with a cylinder of type C or D,
in salt water and in UCON/water mixtures as well. The cavitation process seems to be related to
the pressure drop generated at the rebound for sufficiently dense cylinders. The velocity at rebound
is not the key element since no cavitation has been observed with cylinders of type B in water
(falling faster than C in UCON/salt water). Some tests on the influence of degassing the water of
the tank before the experiments have been done without noticing a difference in the process. Further
investigations are needed, although they are out of the scope of this paper.

To conclude, the cavitation bubble holds for about 200 μs to 600 μs (depending on the cases
studied), and it is reproducible for similar conditions. It is found here that cavitation is a process
that is also controlling the apparent time of contact tC for some cylinders (C and D), preventing it
to be shorter. Altogether, it is thus found that the concept of contact time can be associated with
several complex mechanisms.

3. Non-normal rebound

The other parameters that can influence the rebound are related to the orientation in the (x-y)
plane of the cylinder and its trajectory. For all experiments in air and salt water, we represent the
distribution of the orientation of the object at contact (φin), the orientation (ψin) of its trajectory, and
the change in orientation with respect to a perfect rebound with no friction ψin − θ/2 in Fig. 4(a).
One can notice that the orientation at contact φin is peaked near [0,1] degree indicating that in most
cases the cylinder tail remains nearly vertical, although some nonvertical orientation can occur. The
evolution of this orientation after rebound is almost unnoticeable for most cases, and there is no
correlation of φin with the coefficient of restitution or other angles discussed below (not shown).
The distribution of angle of the trajectory of the cylinder before rebound is also peaked near [0,1]
degree. Nevertheless, some perturbations in the fluid tank or at release can induce some fluctuations
in the fluid resulting in larger values of ψin. Although some mechanisms could relate the inclination
of the object with the one of the trajectory (such as a lift force, for instance), we did not find the
values of ψin and φin to be correlated.
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Finally, the most important quantity to measure the non-normal aspect of the rebound is the
distribution of the change in the orientation of the trajectory of the cylinder, |ψin − θ/2|. The pdf
shown is nearly flat for values between 0◦ and 10◦, with few cases larger than 10◦. This quantity
measures the importance of friction in the x direction that can induce not trivial trajectories at
rebound as discussed in [26].

4. Rebound in air

In Fig. 4(b) we focus on the experiments done in air. They correspond to very large values of
the Stokes number and are used to define a reference coefficient of restitution ey0 solely controlled
by elasticity (red symbols). The estimates for ey0 are indicated with error bars to account for the
influence of the rotation of the trajectory at rebound. The values are slightly different for each object
(decreasing from A to D), indicating that the inner core might play a part on the elastic response of
each object. More specifically, the value of e0

y decreases with increasing mass of the object, which
can also be explained by the dissipation increasing in the fixed plate at the bottom.

Finally, it is worth emphasizing that the order of magnitude for ey0 of 0.3 is quite small for
this regime with little dissipation in air. Although some complex solid-body dynamics could be
considered to estimate the upper bound for a rebound with translational/rotational energy transfer
but no dissipation, here we consider this value to be mainly due to the energy dissipation in the solid
bottom that was made of a large PVC block, rigidly maintained at the bottom of the tank with metal
rods, as described in Sec. II A. The unnoticeable vibrations of this structure are certainly the best
explanation.

5. Synthesis

All the specificity of the apparent rebound of a cylinder discussed above can influence the
coefficient of restitution in the vertical direction and generate an important dispersion of the
experimental observations. Nevertheless, we have not clearly identified a correlation between ey

and the contact time, out-of-plane orientation, or number of contacts at rebound, except for three
contacts that always correspond to weaker values of ey. In the following, to compare with idealized
numerical simulations, we will consider only observations for which ψin − θ/2 is strictly smaller
than 6◦, and with one or two contacts eventually. We could label these cases “nearly normal”
rebounds of a cylinder.

The coefficient of restitution ey obtained in these selected experiments, according to the above
discussion, is shown as a function of St in Fig. 5, the shape and color of symbols indicating the
cylinder and fluid properties as listed in Tables I and II. Error bars in e0

y are discussed in the previous
section, but we can also notice some dispersion of the results in salt water and in UCON/salt water.
for which each symbol is a given experiment, a signature of the many (uncontrollable) parameters
in play (cylinder inclination, pitching, cavitation, etc.). The main result here is the estimation of
a threshold Stc above which rebound actually occurs. Above Stc = 75 ± 25, ey increases with
St until reaching e0

y for high enough values. Furthermore, it can be noticed that the ”S shape”
that has been already evidenced in the past studies on spheres bouncing on a wall [3,4,8] is still
observed in the experiments on the falling cylinder. This suggests a possible applicability of the
concept of previous established models, provided that those models are extended to take into
account the specificity of the contact in the actual problem, compared to the contact occurring
between a sphere and a plane. We will show in the following section that it is sufficient to use the
apparent (measured) contact time in order to predict the coefficient of restitution as a function of the
Stokes number.

III. NUMERICAL SIMULATIONS OF 2D EFFECTIVE BOUNCING

The numerical setup is sketched in Fig. 6(a). It consists of a 2D closed vessel of dimension
(Lx, Ly) = (20R, 100R) along the vertical y direction and the horizontal x direction, respectively,
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FIG. 5. Coefficient of restitution as a function of the Stokes number for experiments corresponding to
nearly normal rebound. Colors of symbols indicate the fluid considered, while the shape refers to the properties
of the cylinders. The critical value for rebound, Stc = 75 ± 25, is indicated by the black dashed line with gray
shaded area.

filled with a viscous fluid. No-slip velocity is imposed on three boundaries considered as solid
walls. The fourth boundary x = 0 (along the y direction) is a line of symmetry [see Fig. 6(a)
for details]. A 2D cylinder of radius R is freely settling under an imposed force g along the
negative y direction. The cylinder center (xp, yp) initially placed at the line of symmetry is
constrained to move along y and thus remains at x = 0. The position of the center of the 2D
cylinder is therefore denoted (0, yp), with yp depending on t . Note that using advantage of
the properties of symmetry of this configuration, only half of the cylinder is represented and
simulated here.

The coupling between fluid and 2D cylinder equations of motion is based on the IBM, which
we previously used to study the rebound on a wall of (1) a sphere settling under a constant force
[20] and (2) a sphere carried by a wall-normal flow toward the stagnation point [21,27]. However,
in the present work, unlike our work on the settling sphere [20], we do not include any lubrication
correction when the cylinder is close to the wall, as the motion of the fluid squeezed between the
cylinder surface and the wall is resolved down to a scale relatively small compared with the cylinder
radius R as explained in [21,27]. In particular, near the contact region, (x, y) ≈ (0, 0), a fine grid
resolution is used: almost 20 grid points are employed in the region y < 0.01R. This limits the
minimal apparent roughness scale of the particle to a small fraction of the particle radius, as will be
explained later. Elsewhere, nonuniform Cartesian grid is used for computational efficiency. The size
of the grid elements increases smoothly along positive x and y directions. At large distance from the
wall, the spatial discretization ensures 30 grid points per cylinder diameter in the y direction, and
slightly more in the x direction.

Simulations are carried out with constant cylinder diameter, and constant fluid and cylinder
densities. Cylinder inertia is varied by changing the fluid viscosity, and thus the Reynolds number
while the density ratio is kept constant. The Reynolds and Stokes numbers defined from (1) and (2)
are varied in the range [1–500]. Note that using a symmetrical domain leads to a symmetric wake
behind the cylinder. Even if wake instability should be expected at the highest Re, this assumption
remains acceptable as the settling timescale of interest for the bouncing is much smaller than the
timescale required for the wake instability to take place, and therefore to affect the results presented
here. During the settling stage, and after rebound, the time step is set to a small fraction of the
settling time dt ≈ 0.001d/|Vt |. During the collision stage, a smaller time step, equal to 1/40 of the
collision time, is estimated from Eq. (4) as explained later.
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FIG. 6. (a) 2D numerical simulation setup, including the grid distribution and boundary conditions. Evo-
lution in time of (b) the separation gap between the cylinder surface and the wall and (c) the cylinder velocity.
The inset in (b) shows a zoom at small gaps. The colors correspond to different Stokes numbers indicated in
(c). The black dots indicate the collision velocity Vc. The elasticity parameter used for those simulations is
α = 4.

The 2D cylinder settles from rest, its center being initially located at y = 90R. It accelerates until
the velocity reaches a terminal velocity Vt , balancing drag and apparent weight, prior to sudden
deceleration due to a large hydrodynamic resistance close to the bottom wall [see the temporal
evolution of the cylinder velocity in Fig. 6(b)]. From the simulations, the cylinder terminal velocity
Vt is obtained from the temporal signal of the cylinder velocity [as shown in Fig. 6(b)]. The plateau
corresponding to the balance between drag and apparent weight is clearly observed for St < 100,
between the acceleration and deceleration stages. At larger St, the cylinder falling time is not
sufficient to reach the plateau. In this case, the terminal velocity is then defined as the maximum
(negative) velocity before the cylinder starts to decelerate.

At the end of the deceleration stage the cylinder comes to rest at low inertia, i.e., small St.
However, at high inertia, larger St, the cylinder surface becomes critically close to the wall while
the cylinder settling velocity remains finite. When the gap between the cylinder surface and the
wall becomes smaller than a cutoff length ηR, referred to as the apparent roughness length (η is the
contact roughness parameter), solid contact is assumed to occur. The finite velocity of the particle at
the contact onset, called Vc hereafter, will be taken as the particle velocity when δn = yp − (1 + η)R
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becomes negative. While the value of η is set to a few percent in the numerical simulations, we
carefully verified that the fluid motion in the separation gap is fully resolved with more than 20
grid points during solid contact, in a way to capture correctly the lubrication effect without using
subgrid models. Solid collision is then accounted for in the numerical simulation by adding a contact
force to the cylinder equation of motion (in the wall-normal direction), as soon as δn becomes
negative. The contact force is modeled as a linear elastic force Fc,n = −knδn with spring stiffness
kn. The solid dissipation during the contact is neglected in order to maintain viscous lubrication
as a unique source of energy dissipation. We use δn to represent the solid apparent overlapping
during the contact which mimics elastic deformation. The spring stiffness per unit length is thus
modeled as

kn = m π2

L(αTH )2 , (3)

where m/L denotes the cylinder mass per unit length. This relation between the spring stiffness, the
object mass, and the contact time results from the simple modeling of collision of objects with a
harmonic oscillator assuming energy dissipation is negligible during the collision process. With this
definition, αTH sets the characteristic timescale for the collision. We were inspired by the Hertzian
collision timescale used to interpret the experimental results for spherical particles colliding with a
wall [28] (based on [29]) and adapted TH to a cylindrical particle written as

TH =
[(

m

L

1

Eel

)2 R

2Vc

]0.2

, (4)

where Eel denotes the Young modulus of the cylinder, assumed equal to that of the wall. Note that
we could have considered constant values for TH . This does not impact significantly the results and
the main message that we would like to draw in the following.

If the collision between the cylinder and the wall were taking place in dry conditions (in the
absence of viscous liquid), the contact duration would have been equal to αTH . However, in viscous
liquid, the contact duration is larger than this value, the difference being a decaying function with
the Stokes number. The real collision time is measured a posteriori, and we found that it is not very
different from αTH , as will be shown later. The so-called contact elasticity parameter α allows us to
tune the contact elasticity (or in other terms the solid softness) in a practical way in the simulations.
Thus, the effective Young modulus is equal to Eel

α2.5 . Softer (resp. stiffer) collisions occur for larger

(resp. smaller) α. A dimensionless number, S = μVc/(ηR)
Eel /α2.5 , is built in a way to compare the shear

stress of the flow in the separation gap during the collision process [estimated by μVc/(ηR) and
varies with the Stokes number] and the solid elasticity. The meaning of this dimensionless number
is similar to that defined in the elastohydrodynamic theory of [8]. Figure 7 shows the contour plot of
S corresponding to the conditions where numerical simulations have been carried out. The range of S
obtained here is close by construction to the capillary number corresponding to slightly deformable
drops. Figure 7 suggests that S depends weakly on the Stokes number at small α, which means that
the contact softness is mainly tuned by the elasticity parameter α.

From the simulations we extract the terminal velocity Vt , the velocity Vc at the onset of collision
process (at the instant where δn becomes negative) and the velocity Vr at the end of the collision
process (at the instant when δn becomes positive again). In the simulations, the “dry” coefficient of
restitution is equal to one (the contact force Fc,n does not contain any damping term). The effective
coefficient of restitution is defined as the ratio e = −Vr/Vt , which can be written as the product of
two contributions, prior to solid contact Vc/Vt and during contact −Vr/Vc. These two contributions
are plotted as a function of St in Fig. 8. Figure 8(a) shows that Vc/Vt increases with St, which
suggests that, at the onset of rebound, the cylinder kinetic energy increases with St. Figure 8(b)
shows that −Vr/Vc is close to 1 and almost independent of St when the elasticity parameter
is small. The magnitude of −Vr/Vc is significantly decreased when the elasticity parameter is
increased (softer contact). Figure 9 shows the separate effect of the cutoff length ηR [Fig. 9(a)]
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FIG. 7. Contour plot (in natural log scale) of the softness dimensionless number S = μVc/(ηR)
Eel /α

2.5 for all

numerical simulations used for this study. The value of this parameter ranges between 10−3 (the darkest color)
and O(10) (the lightest color). The dots indicate the parameters used in the different simulations carried out
with η = 0.01.

and elasticity parameter α [Fig. 9(b)] on the coefficient of restitution, when the Stokes number is
varied. This figure allows showing that the coefficient of restitution depends on both parameters
that are linked to two different physical processes: the contact elasticity parameter α which mainly
controls the effective contact time of the collision and therefore the contact softness/rigidity, and the
contact roughness parameter η that sets the collision onset, akin an apparent roughness. The larger
the apparent roughness, the earlier the no-rebound to rebound transition takes place (the contact

FIG. 8. (a) Collision-to-terminal velocity ratio Vc/Vt and (b) rebound-to-collision velocity ratio −Vr/Vc as
a function of the Stokes number. Vc is the particle velocity at the collision onset, for η = 0.01. The symbols
correspond to numerical simulations. The solid line in panel (a) predicts Vc

Vt
from Eq. (7). In panel (b) different

symbols correspond to different α: stars, plus signs, up triangles, down triangles, and squares correspond to
α = 0.5, 1, 4, 7, and 10, respectively (from rigid to soft cylinder). The solid lines in the inset correspond to

−Vr
Vc

obtained from Eq. (9) using a collision time τ = π
√

m∗
kn

and α = 1, 4, 7, and 10 (from top to bottom).
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FIG. 9. Coefficient of restitution as a function of the Stokes number; the symbols are from numerical
simulations and the dashed lines correspond to eRB [Eq. (11)] assuming that the cylinder is infinitely rigid and
that the near-wall hydrodynamic force during settling is dominated by lubrication. Panel (a) shows evidence
of the role of apparent surface roughness: the blue plus and empty red circles correspond to η = 0.01 and 0.1,
respectively, obtained with the contact elasticity parameter α = 1. Panel (b) evidences the role of elasticity: the
stars, plus signs, up triangles, down triangles, and squares correspond to simulations carried out with α = 0.5,
1, 4, 7, and 10, respectively and contact roughness parameter η = 0.01. The dashed line is reported from panel
(a). The solid line corresponds to eIz [Eq. (16)] assuming a balance between elastic deformation and lubrication
forces during contact. The dotted lines are calculated from e = −Vc

Vt
×Vr

Vc
, where Vr

Vc
is obtained from Eq. (9) with

τ = π
√

m∗
kn

like in Fig. 8(b). These dotted lines correspond to α = 1, 4, 7, and 10, from top to bottom (from

rigid to soft contact).

roughness parameter η mostly affects the critical Stokes Stc). The larger the elasticity parameter, the
longer is the contact time, and the smaller is the restitution coefficient for a given Stokes number.

IV. MODEL FOR THE RESTITUTION COEFFICIENT

This section explains the basis of a simple model constructed to allow the prediction of both the
cylinder velocity at the onset of collision Vc and the rebound velocity Vr when the solid contact is
completed. This model follows closely the one outlined in the work of Izard et al. [20] (considering
the rebound of a sphere on a wall).

First, let us attempt to estimate the ratio between the collision velocity Vc and terminal velocity
Vt by writing the equation of motion of the cylinder during the deceleration stage. While unsteady
forces that the cylinder might experience during the deceleration stage are not readily available in the
regime of interest (Stokes number ranging between 10 and 100), we write a simplified equation of
motion of the cylinder in a way to predict the motion at the leading order. For this, we assume that
the hydrodynamic force experienced by the particle is the superposition of the drag experienced
by a cylinder moving in an unbounded fluid, the viscous lubrication associated with the pressure
divergence as the gap between the cylinder surface and the wall ζ = (yp − R) → 0, and an added
mass contribution

m∗ dV

dt
= Flub. (5)

In Eq. (5), V denotes the cylinder velocity and m∗ = ρ∗πR2 corresponds to the cylinder mass
per unit length accounting for the added mass effect. ρ∗ = ρp(1 + CMρ f /ρp) corresponds to the
cylinder apparent density accounting for the added mass effect (CM refers to the added mass
coefficient). Here the gravity force and steady drag corresponding to a cylindrical body moving in
an unbounded fluid are omitted, assuming that their balance is independent of the cylinder position.
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In other words, Eq. (5) describes the departure from the equilibrium (where the settling velocity
equals the terminal velocity Vt ) due to the presence of the wall. The lubrication force (per unit
length) experienced by a 2D cylinder moving toward a wall with a given velocity and assuming the
flow motion is quasisteady follows (see the Appendix 1 and [30])

Flub = − 6√
2
πμ

(
R

ζ

)3/2 dζ

dt
, (6)

where dζ/dt corresponds to the particle instantaneous velocity in an Eulerian frame of reference,
i.e., dζ/dt = V . Although this expression is strictly valid at ζ << R, we assume that it applies con-
tinuously from a distance ζ = O(10R) (where Flub tends to zero) until very small ζ . Of course, in the
region ζ = O(R) where the particle decelerates, this approximation is not valid. An accurate force
balance on a cylindrical particle approaching a wall, where unsteady contributions are accounted
for, would be necessary, but not available currently.

Integration of (5) and (6) from a distance where the cylinder starts to decelerate (V ≈ Vt at ζ ≈ R)
to the wall where collision occurs (V = Vc at ζ = ηR) assuming η 
 1 leads to (see the Appendix 2
and in a similar way the work of Davis et al. [8]):

Vc

Vt
=

(
1 − Stc

St

)
, Stc = 8

3
√

2
η−1/2. (7)

Stc is a critical Stokes number for bouncing, i.e., over which Vc �= 0. Then, when St < Stc, the
cylinder energy is entirely damped away before it reaches the wall, Vc/Vt → 0 when ζ → ηR.
However, above the rebound onset, St > Stc, the ratio Vc/Vt increases with particle inertia. Its
value extracted from the numerical simulations is compared with the solution of Eq. (7) for varying
St > Stc in Fig. 8(a) [symbols correspond to numerical simulation, and the solution of (7) is plotted
as solid line]. Despite its obvious simplicity to obtain a theoretical solution, the estimation of Vc

Vt
by

the model (7) is acceptable.
Above the rebound onset, the cylinder velocity at the end of the collision Vr is obtained from

the equation of motion of the cylinder, accounting for viscous lubrication and contact force. For
the latter, we consider the elastic force Fc,n identical to the one used in the numerical simulations.
Again, dissipation in the solid is neglected. This leads to the damped oscillator equation, written in
terms of the overlapping distance with respect to the contact cutoff length scale δn = ζ − ηR:

m∗ d2δn

dt2
+ λ

dδn

dt
+ knδn = 0 with λ = 6√

2
πμ

(
1

η

)3/2

. (8)

The rebound velocity Vr can then be estimated as Vr = dδn/dt at t = τ , where τ denotes the time
at which the overlapping distance is again equal to the cutoff length ηR. Based on this definition, τ

represents the solid contact time. The obtained rebound-to-collision velocity ratio reads

Vr

Vc
= − exp

(
− λτ

2m∗

)
. (9)

According to this model, the ratio Vr/Vc depends on the particle stiffness via the solid contact time
τ . The longer is the contact time, the smaller is the magnitude of the rebound velocity. Except very
close to the rebound threshold, where viscous effects are important, the contact time is controlled
by contact elasticity, and it is reasonable to approximate it by τ = π

√
m∗/kn. Figure 8(b) shows the

ratio Vr/Vc obtained from both numerical simulations and Eq. (9), for different elasticity parameter
α, ranging from 0.5 to 10. Overall, the model captures the trend found in the simulations, i.e., the
ratio Vr/Vc increases with St and decreases with the elasticity parameter. The overestimation of
Vr/Vc by the model is likely due to inertial effects that are not accounted for in Eq. (8), such as the
contribution of the wake behind the cylinder to the dynamics during motion reversal.
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FIG. 10. (a), (c) The coefficient of restitution normalized by its value in air as a function of the Stokes
number and (b), (d) the nondimensional contact time as a function of the Stokes number scaled by Stc. Symbols
in (a) and (b) are obtained from numerical simulations, and similar to Fig. 9(b), obtained with different contact
elasticity parameters α. Red symbols in (c) and (d) correspond to experiments as in Fig. 5. Vertical error
bars for experiments in (c) are associated to uncertainties in e0

y and horizontal ones to uncertainties in Stc

(not reproduced in panel d). Empty (resp. filled) symbols are for one-contact (resp. two-contact) rebounds.
The black dashed line in (a) and (c) is for eRB. In (a) colored lines correspond to model (13) with constant
dimensionless contact time tcVt/D obtained from (b) (lines, same color legend). In (c) and (d), the blue solid
line is for eIz and τIz [Eqs. (16) and (3)] with η ∈ [3.6–15]×10−4, while the green and cyan lines correspond to
models emC1 and emC2 [Eqs. (14) and (15)] with Stc = 75 (γ = 2) and apparent nondimensional contact time
being constant at (6 ± 3)×10−2 or fitted by (8 ± 4)×10−3

√
St/Stc − 1, respectively. Shaded areas around the

models describe the uncertainties on the fitting parameters or the value of Stc.

Finally, the effective coefficient of restitution is defined as the negative product of both velocity
ratios

e = −Vc

Vt
×Vr

Vc
=

(
1 − Stc

St

)
exp

(
− λτ

2m∗

)
. (10)

With this way of writing the coefficient of restitution, we account for both the contact roughness
parameter (through Stc) and the contact elasticity parameter (through the contact time τ ). We are
therefore left with the description of the link between the contact time and the physical processes
that come into play during bouncing. From Figs. 10(b) and 10(d), which will be discussed below,
it can be suggested that this contact time is mainly dependent on the elasticity parameter α in
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the numerical simulations, whereas it depends on many complex phenomena like cavitation and
cylinder pitching in the experiments, with a possible rationalization as a function of St/Stc.

In Fig. 9(b) the coefficient of restitution obtained from numerical simulations is compared with
Eq. (10) (displayed in dotted lines), in which the contact time was obtained a posteriori in each
simulation (the time during which the contact force is turned on). The agreement between numerical
results and Eq. (10) is relatively good. Indeed, an increase of α, i.e. softer contact, leads to longer
contact duration and thus to a more significant contribution of the viscous dissipation to the overall
energy loss during the collision process (Vr

Vc
decreases). Consequently the slope of the e-St curve is

lowered, and the transition of the coefficient of restitution from 0 to 1 is expected to take place on
a much wider range of Stokes numbers. This relatively good agreement suggests that the proposed
simple model contains the required ingredients to capture the energy loss during the 2D cylinder
bouncing.

In the next section we will consider several possibilities of modeling the solid contact time to
obtain explicit expressions for the coefficient of restitution, depending on the governing physical
process. Before that, let us consider the limit where the contact time is infinitely small, τ → 0, then
there is no energy loss during the collision (−Vr/Vc → 1). In that case the coefficient of restitution
called eRB (RB standing for rigid body) becomes equal to

eRB =
(

1 − Stc

St

)
. (11)

eRB is displayed with dashed lines in Fig. 9(a), with η = 0.01 (blue) and η = 0.1 (red). One clearly
observes that the e-St curves obtained from numerical simulations with the most rigid cylinders
(α = 0.5 and α = 1) follow closely the rigid body model, as long as the appropriate Stc, set by the
apparent contact roughness modeled by η, is used.

V. DISCUSSION OF MODEL PARAMETRIZATION

The study described in the previous section with a 2D cylinder suggests that (1) the increase of
dissipation associated with the contact elasticity is well captured by a model based on solid contact
timescale τ , leading to relation (9) for the velocity ratio Vr/Vc, and (2) the cutoff length η impacts
mainly the velocity ratio Vc/Vt following relation (7). We will examine here to which extent these
concepts apply to our experimental measurements. The panels in Fig. 10 display the variation of the
coefficient of restitution [Figs. 10(a) and 10(c)] and the contact time tc [Figs. 10(b) and 10(d)] as
a function of the Stokes number, from numerical simulations and experiments, respectively. Note
that for numerical simulations the contact time tc is the one discussed in the model (9), tc = αTH .
The Stokes number is scaled by the critical Stokes number corresponding to the onset of bouncing
in different cases. Regarding the results from experiments, we remind the reader that only those
obtained from observations when the rebound is nearly normal, and when the contact dynamics
is with one or two contacts, are kept in this Fig. 10. This induces some dispersion of the results,
due to the various processes at contact between the falling object and the wall, as classified in
Sec. II B. This is different from measurement uncertainties, with vertical error bars associated with
uncertainties in e0

y and horizontal ones with uncertainties in Stc, when changing its value from 50 to
100.

Let us examine in Fig. 10(c) the coefficients of restitution from experiments. Despite the
dispersion in experiments, we can derive a general trend based on previous modeling. The departure
of e and ey/e0

y from zero near Stc is assumed to be controlled by the apparent contact roughness,
imposed in the numerical simulations and associated with the surface properties of the material
considered in the experiments (PVC in our case). If single rigid contact is first considered, the
coefficient of restitution could be estimated from the rigid body approximation, following Eq. (7),
shown by the black dashed line. This model is characterized only by the threshold in Stokes number.
According to Eq. (7), the numerical value of Stc

∼= 18.9 is imposed by the value of η = 0.01
used here, while the experimental estimate of Stc = 75 would correspond to a contact roughness
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parameter of η = 6.3×10−4. It is worth noting here that this expression for Stc (obtained with the
definition of the Stokes number in Eq. (2) inspired from the falling sphere) should be adjusted to
account for the shape of the experimental object, i.e., a cylinder with a tail. However, the form of
the relationship between η and Stc still holds as

Stc = γ η−1/2, (12)

where γ will be a shape-dependent constant of order unity (γ � 1.88 for the cylinder without a tail,
as in simulations). Whatever the value of this constant, the value of η does not seem to reflect the
range of δz/R reported for experiments in Fig. 2(c). Varying Stc from 50 to 100 (with γ = 2) would
lead to η ∈ [4.0×10−4–1.6×10−3], that is, of the order of the roughness measured, for instance, for
a nylon particle surface [4], but still below the range of δz/R observed in the experiments. Only
values of γ larger than 10 could allow for a better match. Hence the apparent roughness is more
likely to relate to the material roughness, which is identical for all the cylinders (outer shell in PVC
bouncing on a PVC plate).

Nevertheless, the rigid body approximation is clearly an upper bound for the evolution of e
(numeric) and ey/e0

y (experiment) as a function of St/Stc. This observation suggests that the contact
elasticity parameter α used in the numerical model, and its apparent counterpart in experiments,
has to be considered. We recall here that by apparent contact elasticity, we refer to the fact that the
contact time occurring during this overlap scale is finite.

Figures 10(b) and 10(d) display the contact time measured from numerical simulations (the time
where the separation gap is smaller than ηR) and the apparent contact time from the experiments,
both being referred to as tC , as a function of St/Stc, respectively. The contact time is scaled by the
settling timescale D/Vt . These figures suggest that (1) the dimensionless contact time obtained from
the simulations [Fig. 10(b)] varies significantly with the elasticity parameter α but more weakly
with the Stokes number, and (2) it falls in the same range of contact time measured experimentally
[Fig. 10(d)]. The latter can be grouped in two families. One group can be described by constant
tC1Vt/D = (6 ± 3)×10−2, corresponding mainly to the collisions with two contacts which lead to
a large apparent contact at high Stokes numbers [filled red symbols in Fig. 10(b)]. As for the other
group [empty red symbols in 10(b)], the contact time seems to be adequately described by a law
of the form tC2Vt/D = (8 ± 4)×10−3√St/Stc − 1. Note that the empty symbols correspond to one-
contact rebounds and cavitation has been observed for the cylinders of type C (squares) and D
(triangles), even in the low St/Stc range. In the first group where the dimensionless contact time can
be considered as constant (and relatively large), the contact time is close to, but exceeds, the largest
contact time measured in the simulations at large α (soft contact). This observation agrees with the
experimental coefficient of restitution ey/e0

y being globally smaller than the numerical value e at a
given St/Stc. However, in the second group, the contact time increases by more than one order of
magnitude in the considered range of St/Stc, in a range which is consistent with the influence of the
elasticity parameter α on the contact time obtained from numerical simulations [Fig. 10(b)].

According to the previous observations, we shall therefore discuss in the following the possibility
of modeling the coefficient of restitution given a law for the contact time, whatever its physical
origin (here elasticity in simulations and more complex processes as cavitation, orientation, and
multicontact in experiments). From Eqs. (7) and (9), if one uses the relation between contact rough-
ness parameter η, the critical Stokes number following Eq. (12), and the definition of St in (2), one
obtains

emC =
(

1 − Stc

St

)
exp

[
− π

3
√

2

(
Stc

γ

)3 1

S̃ St

tcVt

D

]
, (13)

where S̃ = Sobj/D2 with Sobj the 2D surface of the falling object. For a disk, Sobj = πD2/4 while
for the experimental cylinder with a tail, one has Sobj = πD2/4 + Stail ≈ 2D2 for the geometry
of the tail used here. For numerical simulations, considering a constant contact time for a given
elastic parameter [lines in Fig. 10(b)], model (13) leads to the effective coefficient of restitution
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shown by solid lines in Fig. 10(a), with colors corresponding to the ones used for the contact time.
Note that such results are closely related to the one shown in Fig. 9(b). Even if this model does
not perfectly collapse onto the numerical results of e, it clearly highlights the right quantitative
trend.

Let us now consider the experimental results. First, data corresponding to a constant contact time
tC1Vt/D = (6 ± 3)×10−2 are discussed. Following Eq. (13), this contact time law leads to

emC1 �
(

1 − Stc

St

)
exp

[
− π

6
√

2

(
Stc

γ

)3 (6 ± 3) 10−2

St

]
. (14)

The green solid lines in Figs. 10(c) and 10(d) describing this model, with St/Stc = 75 and γ = 2,
offer a good description of the experimental results for values of St/Stc large enough, with a strong
mismatch for values between 1 and 20. Note moreover that such a contact law mimics the one used
previously to characterize the influence of the elasticity on numerical results. Similar trends are
clearly observed, but here for a “softer” experimental contact (large contact time). Last, accounting
for variations of this apparent contact time with the Stokes number [cyan in Fig. 10(d)] leads to a
different law. In particular, using tC2Vt/D = (8 ± 4) 10−3√St/Stc − 1 implies for the coefficient of
restitution based on (13)

emC2 �
(

1 − Stc

St

)
exp

[
− π

6
√

2

(
Stc

γ

)3 (8 ± 4) 10−3√St/Stc − 1

St

]
. (15)

Once again, we consider Stc = 75 and γ = 2 for experiments. The cyan line in Fig. 10(b) corre-
sponds to the coefficient of restitution emC2. Note that this law provides a better prediction of the
experimental data at relatively small St/Stc, mostly open symbols in our case. To finish, the shaded
areas in Figs. 10(c) and 10(d) indicate the influence of the uncertainties in estimating the fitting
parameters for a value of Stc = 75. In the Appendix 4, Figs. 12(a) and 12(b) show the same model
with different Stc, keeping γ = 2. The values 50 and 100 are used, respectively, in Figs. 12(a) and
12(b). Comparison with Fig. 10(a) suggests that using Stc = 75 leads to a better matching between
the model and our data. In summary, these models allow us to describe the features of the rebound
in two different limits: the low St/Stc limit where one contact with relatively short dimensionless
time and sometimes cavitation are observed, and the high St/Stc where collisions with two contacts
occur due to cylinder pitching.

Before ending this section, we test here a simple scaling of the solid contact time following Izard
et al. [20]. For this purpose, if one assumes a balance between the force of elastic deformation that
scales like knη and the lubrication force that scales like λ|Vc|, the ratio Vr/Vc can be written in a way
that does not depend on the cylinder rigidity, but only on particle inertia and roughness which sets
the critical Stokes number Stc. After some calculation summarized in the Appendix 3, we obtain

the velocity ratio Vr
Vc

= − exp(− π

2
√

2

√
Stc

St−Stc
). The corresponding restitution coefficient (called eIz)

is thus

eIz =
(

1 − Stc

St

)
exp

⎛
⎝− π

2
√

2

√
Stc

St − Stc

⎞
⎠, (16)

and the associated contact time (called τIz) is τIzVt

D = π
2 ( 3√

2

ρp

ρ∗
St

1−Stc/St )
1/2η5/4. The difference with the

models above lies in the constant elasticity. This model is compared against numerical simulations
and experiments (blue lines in Fig. 10). It underpredicts the measured contact time, and in a
consistent way, the coefficient of restitution obtained from this model [blue line in Fig. 10(a)]
follows the same S shape but overpredicts the experimental results. Thus, while the simple model of
[20] captures qualitatively the features of the rebound and is closer to the experimental results than
the rigid-body model, it fails to predict the wide range of experimental e-St data that seems to be
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associated with more complex apparent elasticity during contact. The latter ingredient is therefore
essential to allow a general description of the rebound of nonspherical objects.

VI. CONCLUSION

To conclude this work, we have shown through Fig. 10 that using a critical Stokes number
Stc and a relevant contact time tc allows us to capture the characteristics of bouncing, especially
the coefficient of restitution. In an idealized 2D configuration, Stc and tc were associated with
a rebound contact roughness parameter η and a contact elasticity parameter α, with in particular
tc ≡ τ emanating from a a viscoelastic model, whereas in the experiments, Stc and tC were inferred
from measurements (image processing). Even if a perfect match is not obtained, the evolution of the
coefficient of restitution and contact timescale with the Stokes number and their range of dispersion
is quite consistent in view of the difficulty in measuring such quantities in experiments. Note again
that mechanisms at play during experimental contact are numerous: pitching leading to multiple
contact and cavitation, among others, for which the implementation of a contact elasticity in models
remains an empirical parametrization. A finer description requires a larger database, which is left to
future investigation.
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APPENDIX

1. Lubrication force between a cylinder and a wall

Equation (6) was obtained in the frame of the thin lubrication approximation [31]. The cylinder is
assumed to approach the wall with a given normal velocity Uc. The coordinates x and y are equal to 0
at the center line at the wall (see the geometry in Fig. 11). We assume that the problem is quasisteady
(the time variation of the flow velocity u and pressure p is small compared to their spatial variation).
The separation gap h varies in time due to the cylinder motion according ∂h

∂t = Uc,y, where we recall

that the separation gap is not uniform along x, i.e., h(x, t ) = b(t ) + R
2

x2

R2 at the leading order, with
b denoting the minimum height. In the frame of the thin gap lubrication assumptions, the flow in
the gap is dominantly along the x direction, while the pressure does not vary significantly along the
y direction. After finding the flow velocity profile and assuming a constant flow rate along x, one
obtains the following relation between the gap h and the pressure p:

∂h

∂t
= d

dx

(
h3

12μ

d p

dx

)
. (A1)

This leads to a differential equation for the pressure, which after integration along x becomes

p = 12μ
∂h

∂t

∫ x

0

x(
b + x2

2R

)3 dx. (A2)

We assume that at a certain distance R0 from the center line (0 < R0 < R), the pressure tends
toward the outer pressure p → p0 and the lubrication assumptions do not hold anymore. The
pressure profile along x direction becomes then

p(x) − p0 = 12μ
∂h

∂t

[
R

2
(
b + R2

0
2R

)2
− R

2
(
b + x2

2R

)2

]
. (A3)
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FIG. 11. Configuration used for the calculation of the viscous lubrication force in the gap between an
infinite circular cylinder (of radius R) and a rigid plane.

The wall-normal lubrication force can be obtained by integrating the pressure along the x
direction, and assuming small gaps ε = b

R → 0:

Fy = −12πμ
∂h

∂t

(
1

2ε

)3/2

. (A4)

2. Calculation of the collision-to-terminal velocity ratio

Integration of (5) and (6) from a distance where the cylinder starts to decelerate (V ≈ Vt at ζ ≈ R)
to the wall where collision occurs (V = Vc at ζ = ηR) leads to m∗ ∫ Vc

Vt
dV = − 6√

2
πμR3/2

∫ ηR
R

dζ

ζ 3/2 .
As the roughness ηR is very small compared to the cylinder radius R the equality then approximates
to m∗(Vc − Vt ) � 12√

2
πμR( 1

η
)1/2, or similarly, Vc

Vt
� 1 − 8

3
√

2
1
St (

1
η

)1/2. At this stage, we can define the
critical Stokes number that corresponds to the minimum inertia required for the cylinder to reach
the wall with a finite velocity that allows the rebound. This critical Stokes number corresponds to
Vc = 0+, which leads to Stc = 8

3
√

2
( 1
η

)1/2. Therefore the collision-to-terminal velocity ratio is given

FIG. 12. Same as in Fig. 10(a) but with different values of the threshold for rebounds in models emC1 and
emC2 with γ = 2: (a) Stc = 50 and (b) Stc = 100.
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by

Vc

Vt
= 1 − Stc

St
. (A5)

3. Estimation of the contact time from simple scaling analysis

Above the rebound onset, the contact time corresponding to the damped oscillator harmonic

can be approximated by τ = π
√

m∗
kn

, as explained below Eq. (9). Yet the assumption of equilibrium

between elastic and viscous lubrication forces during the contact stage leads to λ|Vc| ≈ knηR. Here λ

corresponds to the coefficient of the lubrication force as defined in Eq. (8), and the distance between
the particle surface and the wall is approximated by ηR. After replacing the contact velocity Vc from
Eq. (7), one can estimate the ratio m∗/kn, and thus obtain the contact time, which we will call τIz:

τIzVt

D
= π

2

(
3√
2

ρp

ρ∗
St

1 − Stc/St

)1/2

, η5/4 = π

2�
η5/4, (A6)

with 1/� = [3ρpSt/
√

2ρ∗(1 − Stc/St)]1/2.

4. Influence of Stc on emC

In Fig. 12 we compare the influence of the value of Stc on the models for the coefficient of
restitution, emC1 and emC2, given in Eqs. (14) and (15), respectively.
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