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Flow induced by the rotation of two circular cylinders in a viscous fluid
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The low-Reynolds-number Stokes flow driven by rotation of two parallel cylinders of
equal unit radius is investigated by both analytical and numerical techniques. In Part I,
the case of counterrotating cylinders is considered. A numerical (finite-element) solution
is obtained by enclosing the system in an outer cylinder of radius R0 �1, on which the
no-slip condition is imposed. A model problem with the same symmetries is first solved
exactly, and the limit of validity of the Stokes approximation is determined; this model has
some relevance for ciliary propulsion. For the two-cylinder problem, attention is focused
on the small-gap situation ε � 1. An exact analytic solution is obtained in the contact
limit ε = 0, and a net force Fc acting on the pair of cylinders in this contact limit is
identified; this contributes to the torque that each cylinder experiences about its axis. The
far-field torque doublet (“torquelet”) is also identified. Part II treats the case of corotating
cylinders, for which again a finite-element numerical solution is obtained for R0 �1. The
theory of Watson [Mathematika 42, 105 (1995)] is elucidated and shown to agree well
with the numerical solution. In contrast to the counterrotating case, inertia effects are
negligible throughout the fluid domain, however large, provided Re � 1. In the concluding
section, the main results for both cases are summarized, and the situation when the fluid is
unbounded (R0 = ∞) is discussed. If the cylinders are free to move (while rotating about
their axes), in the counterrotating case they will then translate relative to the fluid at infinity
with constant velocity, the drag force exactly compensating the self-induced force due to
the counterrotation. In the corotating case, if the cylinders are free to move, then they will
rotate as a pair relative to the fluid at infinity and the net torque on the cylinder pair is zero;
the flow relative to the fluid at infinity is identified as a “radial quadrupole.” If, however, the
cylinder axes are held fixed, then the Stokes flow in the counterrotating case extends only
for a distance r ∼ Re−1 log [Re−1] from the cylinders, and it is argued that the cylinders
then experience a (dimensionless) force F̂y ∼ 1/ log [Re−1 log [Re−1]]; in the corotating
case, the cylinder pair experiences a (dimensionless) torque T̂ , which tends to 17.2587 as
ε ↓ 0; this torque is associated with a vortex-type flow ∼r−1 that is established in the far
field. Situations that can be described by the condition ε < 0 are treated for both counter-
and corotating cases in the Supplemental Material.

DOI: 10.1103/PhysRevFluids.9.044102

INTRODUCTION

The very classical problem of determining the two-dimensional flow induced by the rotation
of two adjacent cylinders of equal unit radii originated with the pioneering work of Jeffery [1,2].
Jeffery’s solution involved a velocity field that failed to tend to zero at infinity (“Jeffery’s paradox”).
Our motivation in the present study is to understand how this paradox may be resolved. The cases
of counterrotating or corotating cylinders are very different and are treated separately in Parts I
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and II below. In both cases, we circumvent the condition of “zero velocity at infinity” by enclosing
the fluid in a cylinder of large radius R0 � 1, on which a no-slip condition may be imposed. We
then seek to infer the behavior in the limiting situation when the fluid is unbounded (R0 = ∞).
Important applications are to be found in the theory of swimming microorganisms as treated in the
book of Lauga [3], or in the behavior and interaction of two-dimensional microswimmers, as studied
recently by Nie et al. [4].

We pay particular attention to the situation when the gap 2ε between the cylinders is small.
The combination of conditions R0 � 1 and ε � 1 is numerically challenging, but we can exploit
lubrication theory in the small gap and check the accuracy and range of applicability of the finite-
element numerical scheme that is adopted. The problem studied here is prototypical, in that our
approach may be extended to a range of problems in either two or three dimensions where the
topology is nontrivial and small gaps (or contact) between moving solid bodies may occur.

PART I: COUNTERROTATING CYLINDERS

A. Background

The problem of determining the two-dimensional steady Stokes flow induced by the counter-
rotation of two parallel cylinders of infinite length in an unbounded viscous fluid was initiated in
the seminal work of Jeffery [2]. The symmetries of the streamline patterns (the angular velocities
being equal and opposite) are as indicated in Fig. 1. Using bipolar coordinates and conformal
transformation, Jeffery showed that it was not possible to satisfy the condition that the fluid velocity
should vanish at infinity (“Jeffery’s paradox”). He did however find a solution that allowed for a
uniform streaming flow at infinity. (The situation is in some respects like the classical problem
of viscous flow past a circular cylinder, for which Stokes had himself established that there is no
solution of the linearized equations satisfying the required condition at infinity [5,6]; this difficulty
was ultimately resolved by Proudman and Pearson [7] through the (then novel) technique of matched
asymptotic expansions.) For ease of reference, some aspects of Jeffery’s approach are summarized
in Appendix A, together with a new asymptotic evaluation of his results.

We use dimensionless variables such that the two cylinders C1,2 have equal unit radius a = 1, are
centered at (∓(1 + ε), 0), and rotate with angular velocities �1 = 1, �2 = −1, respectively; the
no-slip condition is to be satisfied on both cylinders. The natural Reynolds number for the problem
is then

Re = �1a2/ν = ν−1, (1)

where ν is the kinematic viscosity in dimensionless units. The gap between the cylinders is 2ε, and
their boundaries are

C1 : (x + 1 + ε)2 + y2 = 1 and C2 : (x − 1 − ε)2 + y2 = 1. (2)

We shall be particularly concerned with the “small-gap situation,” 0 < ε � 1. In the limiting
situation ε = 0, the cylinders make contact and a singularity is to be expected. (The seemingly
artificial situation of “overlapping cylinders” (ε < 0), which could in principle be realized by ciliary
action of micro-organisms, is considered in the Supplemental Material [8].)

In the Stokes approximation, valid at small Reynolds number, the pressure field p and velocity
field u = (u, v) = (∂ψ/∂y,−∂ψ/∂x) satisfy the equations

μ∇2u = ∇p, ∇ · u = 0, (3)

where μ is the dynamic viscosity. The vorticity ω = ∇ × u = −∇2ψ ez satisfies ∇2ω = 0, so that
ψ satisfies the biharmonic equation ∇4ψ = 0.

We shall suppose that the fluid is bounded externally by a cylinder C0 of radius r = R0 � 1, on
which an appropriate boundary condition can be imposed; in this way, we circumvent the problem
of imposing conditions “at infinity.” This is moreover needed for the numerical treatment presented
in this paper, and is in any case more realistic in experimental contexts. We note the comprehensive
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FLOW INDUCED BY ROTATION OF TWO CIRCULAR CYLINDERS

(a) (b)

(c) (d)

FIG. 1. Streamlines ψ = const. (symmetric with respect to both x axis and y axis) from the numerical
solution of the Stokes problem for counterrotating cylinders; the outer boundary condition is no-slip on r = R0

(here R0 = 10 and ψ = 0 on r = R0); the color code is the same for all four panels. (a) ε = 0.2, full flow
domain; (b) ε = 0.2, zoom to neighborhood of inner cylinders; the sense of rotation is indicated by the arrows;
(c) same zoom for ε = 0.1; (d) same zoom for ε = 0.01. Note that the two saddle points on the y-axis approach
the origin as ε decreases.

numerical and experimental investigations by Hills [9] of the ‘two-roll mill’ flow in a finite domain
with a rectangular outer boundary. Hills used finite-difference techniques with focus on the effects
of increasing Reynolds number and of change in the angular velocities of the cylinders.

The two-cylinder problem was revisited by Watson [10] who addressed Jeffery’s paradox,
recognizing that there may be a self-induced force per unit axial length on the pair of cylinders
resulting from their counterrotation. Such a force must generate a two-dimensional stokeslet in the
far flow field. Watson argued that the resulting flow should be matched asymptotically to an outer
solution of the full Navier-Stokes equations, presumably a jet of the type first analyzed by Bickley
[11], but this difficult matching problem remains unsolved to the present day.

The problem had been discussed earlier by Dorrepaal et al. [12], who showed on the basis of
Jeffery’s [2] solution that the force on each cylinder is zero provided Jeffery’s uniform streaming at
infinity is allowed for. The problem was further investigated by Elliott et al. [13,14] who used the
boundary-element method to determine the flow for several choices of cylinder radii and angular
velocities, with the conclusion that in general “the total force and the total torque (on the pair
of cylinders) are both zero.” This conclusion was at some variance with Watson’s conclusions,
published almost simultaneously.

A further approach to the two-cylinder problem was adopted by Ueda et al. [15], who supposed
that the two cylinders are abruptly set in their rotary motion at time t = 0 in an initially quiescent
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(a) (b)

FIG. 2. Streamlines ψ (r, θ ) = const. for the flow (5); (a) with no slip on r = R0 (here R0 = 10); (b) with
no outer boundary condition (C = D = 0), and with A = 0 thus showing the instantaneous (dipole) flow in a
frame fixed to the fluid at infinity.

fluid. Neglecting nonlinear inertia effects (i.e., for vanishingly small Reynolds number) and again
using the boundary-element method, they studied the approach to a steady state as t → ∞, and
found expressions for the asymptotic force acting on each cylinder. They found a nonzero force
[Fig. 6(b) of their paper] in apparent conflict with the assertion of Elliott et al. cited above. We
note that a nonzero force implies a far-field stokeslet velocity ∼ log r, incompatible with the outer
boundary condition imposed for all t by Ueda et al., suggesting that a steady state is not attained
throughout the infinite domain. The situation is indeed confusing, and calls for clarification, which
we attempt to provide in the present paper.

B. A simplified model

It is helpful first to consider the following idealized problem [see Fig. 2(a)]. Suppose that fluid is
contained in the annulus between two cylinders r = 1 and r = R0, and that the boundary conditions
on the inner cylinder are

ur (r, θ ) ≡ r−1∂ψ/∂θ = 0, uθ (r, θ ) ≡ −∂ψ/∂r = − cos θ on r = 1. (4)

Thus, we replace the two counterrotating cylinders by a single cylinder with prescribed tangential
velocity on its surface—a “squirming cylinder” in the language of biofluid mechanics [16,17]. This
problem has the same symmetries as the two-cylinder situation, and may be expected to give similar
qualitative behavior for large R0. Again the Reynolds number based on the boundary conditions (4)
is simply Re = ν−1.

The general solution of ∇4ψ = 0 proportional to cos θ is

ψ (r, θ ) = (A r + B r−1 + C r log r + D r3) cos θ. (5)

Here, the stokeslet term C r log r cos θ is associated with the force

F = −4πμC, (6)

that the cylinder exerts on the fluid (of dynamic viscosity μ). The velocity components are

ur (r, θ ) = −(A + B r−2 + C log r + D r2) sin θ,

uθ (r, θ ) = −(A − B r−2 + C(1 + log r) + 3D r2) cos θ, (7)
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and the boundary conditions (4) give

A + B + D = 0, A − B + C + 3D = 1. (8)

The no-slip conditions ur = uθ = 0 on r = R0 give the additional equations

A + B R−2
0 + C log R0 + D R2

0 = 0, A − B R−2
0 + C(1 + log R0) + 3D R2

0 = 0. (9)

Equations (8) and (9) may be solved for the constants A, B,C, D, giving

A = R4
0(2 log R0 − 1) + 2 log R0 + 1

4
(
R2

0 − 1
)
H (R0)

, B = −[
R4

0(2 log R0 − 1) + R2
0

]
4
(
R2

0 − 1
)
H (R0)

,

C = 1 − R2
0

2H (R0)
, D = −(A + B), (10)

where H (R0) = R2
0(log R0−1)+log R0+1. For log R0 � 1, C ∼ −(2 log R0)−1, so from Eq. (6) the

force F exerted by the cylinder on the fluid behaves like

F ∼ 2πμ/ log R0 as log R0 → ∞, (11)

with very slow convergence to zero. The streamlines for this flow are shown in Fig. 2(a) for the
choice R0 = 10.

On θ = π/2 and in the “inner regime” 1 � r � R0, the radial velocity is given asymptotically
by

ur (r, π/2) ∼ −1

2
+ 2 log r − 1

4 log R0
+ O

(
1

r2 log R0
,

r2

R2
0 log R0

)
, (12)

the three terms representing (in order) contributions from a uniform stream −1/2, the stokeslet,
and a (negligible) dipole. For 1 � r � log R0, the uniform stream is dominant; thus, for any fixed
r � 1, the velocity tends to the uniform-stream value −1/2 as log R0 → ∞.

If instead we focus on the “outer regime” where r = O(R0) as R0 → ∞, we may set k = r/R0

with {k < 1, k = O(1)}; then

ur (r, π/2) ∼ k2 − 2 log k − 1

4(log R0 − 1)
for R0 � 1, r = O(R0). (13)

The ratio of inertia forces to viscous forces in this regime is given by

r ur (r, π/2)

ν
= f (k)R0

ν(log R0 − 1)
, where f (k) = 1

4
k(k2−2 log k−1). (14)

The function f (k) is maximal at k ≈ 0.244, where it takes the approximate value 0.115. Hence,
neglecting constants of order unity, the maximum of the expression (14) is of order ν−1R0/ log R0

for log R0 � 1. This means that if

R0

log R0
� ν = Re−1, or equivalently if R0 � Re−1 log [Re−1], (15)

then inertia cannot be neglected in this outer regime. Thus, no matter how small Re may be, there
is always an upper limit for R0 for applicability of the Stokes approximation throughout the whole
fluid domain 1 < r < R0.

For the same reason, in the case of an unbounded fluid domain (R0 = ∞), inertia effects must
intervene when

r � Re−1 log [Re−1]. (16)

The same limitation must surely apply to the two-cylinder problem, supporting the suggestion of
Watson [10] that matching to a solution of the full Navier-Stokes equation is needed in this outer
regime.
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(a) (b)

FIG. 3. As for Figs. 1(c) and 1(d), further zoomed to near the origin; (a) ε = 0.1; (b) ε = 0.01.

No outer boundary

We may note nevertheless that, if we take C = D = 0 in Eq. (5), thus eliminating the terms that
are most divergent for large r, then we have simply A = −B = 1

2 , and the flow is a simple potential
flow (and so an exact solution of the Navier-Stokes equation) with the uniform stream [0, −1/2] at
infinity. Figure 2(b) shows the instantaneous streamlines in a frame of reference fixed to the fluid
at infinity; this is a dipole field. It is interesting that this “swimming flow” could be generated by
ciliary action on the surface of a microscopic organism; in contrast to the conventional Stokes flow
past a cylinder, the force here evaluates to zero, because the force generated by the ciliary action
(4) is exactly balanced by the resulting drag force on the organism. (A similar mechanism for a
spherical microscopic swimmer has been described by Lauga and Powers [17].)

C. The two-cylinder problem

1. Numerical solution

Consider now the two-cylinder counterrotating situation with nondimensionalized boundary
conditions

�1 = 1 on C1, �2 = −1 on C2, u = 0 on C0 (r = R0). (17)

We used a finite-element procedure (details in Appendix C) to provide an accurate numerical
solution. Figure 1(a) shows the streamlines ψ = const. for the flow when ε = 0.2 and R0 = 10;
the arbitrary additive constant in ψ was chosen so that ψ = 0 on r = R0. Note the presence of two
saddle points near the inner cylinders on the y axis; these are more evident in the zoom of Fig. 1(b).
There is an upward flux in the gap between the cylinders, and the flow due to the rotation of each
cylinder exerts an upward force on the other. This joint force is transmitted to the fluid, creating a
stokeslet contribution to the flow beyond the cylinders, the possibility recognized by Watson [10];
this is coupled with the downward streaming previously found by Jeffery [2] [cf Eq. (12)].

Figure 1(c) shows the same zoom when ε is reduced to 0.1. Here the saddle points have moved
towards the origin, a process that is further marked in Fig. 1(d) for which ε = 0.01. The zoom
of Fig. 3(a) to the neighborhood of the origin for the case ε = 0.1 makes this even more evident;
Fig. 3(b) for ε = 0.01 shows that the saddle points are now well within the narrow gap where
lubrication theory should be relevant. We shall find [see comment below Eq. (28)] that the saddle
points are located at y = ±(6ε)1/2 as ε → 0.

2. Lubrication theory

If we assume that 0 < ε � 1, then lubrication theory should be applicable and reasonably
accurate in the gap region. In this region, the surfaces of the two cylinders are at x = ±h(y),
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FLOW INDUCED BY ROTATION OF TWO CIRCULAR CYLINDERS

(a) (b)

FIG. 4. (a) Normalized mass flux Q through the small gap between the cylinders as a function of ε; the
dashed asymptote is at Q/ε = 8/3 = 2.66 . . . , as determined by lubrication theory; (b) showing that, as ε

increases to its limiting value (8 for R0 = 10, when C1 and C2 make contact with C0), the normalized mass flux
decreases to zero.

where

h(y) = ε + 1
2 y2 + O(y4), dh/dy = y + O(y3). (18)

We shall use a hat ˆ throughout to denote kinematic equivalents of dynamic quantities; thus for
example pressure p = μp̂, force F = μF̂ , etc. In the lubrication approximation ([6], Sec. 4.8),
p̂ = p̂(y) and d p̂/dy = ∂2v/∂x2, where u = (u, v) with |v| � |u|. This integrates with boundary
conditions v = cos y ≈ 1 on x = ±h(y) to give

v(x, y) = 1 + 1
2 (d p̂/dy)(x2 − h(y)2). (19)

The flux Q between the cylinders is then

Q =
∫ h(y)

−h(y)
v(x, y) dx = 2 h(y) − 2

3

d p̂

dy
h(y)3, (20)

so that

2

3

d p̂

dy
= 2

h(y)2
− Q

h(y)3
= 2(

ε + 1
2 y2

)2 − Q(
ε + 1

2 y2
)3 . (21)

This integrates to give the deviation of pressure from the pressure “at infinity” as

p̂(y) = − 3Qy

2ε(y2 + 2ε)2
− 3(3Q − 8ε)

8ε2

[
y

y2 + 2ε
+ 1√

2ε
tan−1 [y/

√
2ε]

]
. (22)

For large |y|, Eq. (22) gives

p̂(y) ∼ ±(3π/16
√

2)(3Q − 8ε)ε−5/2 + O(|y|−3), (23)

and since p̂(y) → 0 for large |y|, the leading term must vanish, giving Q = 8 ε/3. As expected,
Q → 0 as ε → 0. The flux Q as a function of ε, computed from the numerical solution, is shown in
Figs. 4(a) and 4(b) in which the asymptote at Q/ε ∼ 8/3 ≈ 2.666 is shown by the dashed line. The
behavior here gives confidence that lubrication theory is indeed reliable when ε � 1, and that the
flow in the gap is well resolved by the numerical solution for values of ε down to a few times 10−5.
For smaller values, numerical resolution becomes more challenging, but the lubrication description
becomes increasingly accurate. With Q = 8ε/3, Eqs. (21) and (22) give

d p̂/dy = [h(y)]−2[3 − 4ε/h(y)], (24)
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(a) (b)

FIG. 5. (a) Plot of ε3/2 p̂(Y ) vs Y = y/
√

ε as given by Eq. (25); (b) velocity profiles [Eq. (26)] for ε = 10−2

at two sections, y = 0.7ε1/2 (blue) and y = 0.9 ε1/2 (red); the boundaries are at x = ±h(y) in each case, and
diverge as y increases; the viscous wall stress is positive for y < 0.816 ε1/2, negative for y > 0.816 ε1/2.

and, with Y = y/
√

ε,

p̂(y) = − 4y

(y2 + 2ε)2
, or equivalently ε3/2 p̂(Y ) = − 4Y

(Y 2 + 2)2
, (25)

and Eq. (19) then gives

v(x, y) = 1 + 1

2h(y)2

(
3 − 4ε

h(y)

)
(x2 − h(y)2). (26)

Using the suffix L to denote the lubrication approximation, the corresponding stream function
ψL(x, y), satisfying ∂ψL/∂x=−v(x, y) and ψL(0, y)=0, is

ψL(x, y) = −x − 1

2h(y)2

(
3 − 4ε

h(y)

)(
1

3
x3 − h(y)2x

)
. (27)

The scaled pressure as a function of Y = y/
√

ε is shown in Fig. 5(a). The singular behavior
p(y) ∼ −4 y−3 when ε = 0 is unphysical, and indicates that in practice some deformation of the
cylinders must occur if they are brought into contact while rotating, a phenomenon first recognized
by Hertz [18]; moreover, the liquid will cavitate where p(y) + p0 falls below the vapour pressure
in the region {y > 0, y � 1}. The singularity in pressure could presumably be resolved by taking
such effects into account. This resolution problem lies outside the scope of the present treatment,
and will be ignored in what follows.

The pressure gradient (24) is negative for h(y) < 4 ε/3, i.e., for |y| < (2 ε/3)1/2 ≈ 0.816 ε1/2. It
follows from Eq. (19) that the curvature of the velocity profile across the gap changes sign at |y| ≈
0.816 ε1/2. Figure 5(b) shows two velocity profiles across the gap, the blue one at y = 0.7 ε1/2, just
below the critical level at which the curvature changes sign, the red one at y = 0.9 ε1/2 just above.
The wall stress below the critical level y = 0.816 ε1/2 evidently provides a positive contribution to
the force on the cylinders, while above this critical level, it provides a negative contribution. The
velocity on the axis x = 0 is

v(0, y) = 1 + 1

2

(
4ε

h(y)
− 3

)
= 2ε

h(y)
− 1

2
= 4

2 + Y 2
− 1

2
. (28)

This vanishes where h(y) = 4 ε, i.e., at Y = ±√
6, or y = ±(6ε)1/2 ≈ ±2.45 ε1/2; this therefore, as

previously stated, gives the location of the two saddle points on the y axis.
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FLOW INDUCED BY ROTATION OF TWO CIRCULAR CYLINDERS

(a) (b)

(c) (d)

(e) (f)

FIG. 6. (a) Streamlines ψL (x, y) = const. as given by Eq. (27) for the case ε = 0.01 [compare with
Fig. 3(b)]; (b) vertical velocity on the midplane v(0,Y ), where Y = y/

√
ε, for ε = 0.2, 0.1, 0.05, 0.025, with

correspondingly decreasing line thickness; the solution determined by lubrication theory [Eq. (28)] is shown in
black, dash-dotted; (c) same as panel (a), but closer to the origin and with x coordinate stretched by a factor 10;
(d) the same from the full numerical solution, with the same color code; the difference is almost imperceptible.
The critical levels y = ±0.816 ε1/2 and y = ±2.45 ε1/2 are shown by the dashed lines; (e) and (f) the same for
the case ε = 0.001; (e) correct aspect ratio for this value of ε; (f) zoomed near the origin and stretched (by
a factor 15) in the x direction, to show more details of the structure; the critical levels y = ±0.816 ε1/2 and
y = ±2.45 ε1/2 are again shown by the dashed lines.
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(a) (b)

FIG. 7. Distribution of the vertical forces on C2 as functions of the angle φ; the narrowest point of the gap
is at φ = π ; R0 = 10; viscous term (blue), pressure term (green), total force (red); (a) ε = 10−1; (b) ε = 10−2.

Figure 6(a) shows the streamlines ψL= const. given by Eq. (27) for ε = 0.01, which admits
comparison with the numerical solution shown in Fig. 3(b). Figure 6(c) shows the same nearer the
origin with the x coordinate stretched by a factor 10, and Fig. 6(d) shows the same streamlines as
determined by the full numerical solution; the difference here is almost imperceptible, again giving
confidence in the accuracy of both the numerics and the lubrication theory at least at this value
of ε = 0.01. In both panels, the critical levels y = ±0.816 ε1/2 (at which the viscous wall stress
changes sign) and y = ±2.45 ε1/2 (at which the saddle points occur) are shown by the dashed lines.

Figure 6(b) shows the vertical velocity on the midplane v(0,Y ), where Y = y/
√

ε, for ε =
0.2, 0.1, 0.05, 0.025, with correspondingly decreasing line thickness, and the limiting curve (dash-
dotted) as given by lubrication theory [Eq. (28)]. The curves shadow the limiting curve ever more
faithfully as ε decreases, giving further confidence in the relevance of the limiting lubrication-theory
treatment.

Figure 6(e) shows the streamlines in the gap as given by Eq. (27) for the even smaller value
ε = 0.001, and Fig. 6(f) shows the same zoomed near the origin and stretched in the x direction,
again revealing the saddle-point structure.

3. Force on the cylinders, as determined by lubrication theory

The vertical force μFy on each cylinder consists of two parts: (i) the shear stress (viscous) force
Fyv = μF̂yv and (ii) the pressure force Fyp = μF̂yp; for ε > 0, these are given by

F̂yv = −
∫ ∞

−∞

∂v

∂x

∣∣∣∣
x=h(y)

dy =
∫ ∞

−∞

4ε − 6y2

(y2 + 2ε)2
dy = −π (2/ε)1/2, (29)

and

F̂yp =
∫ ∞

−∞
p̂

(
−dh

dy

)
dy =

∫ ∞

−∞

4y2

(y2 + 2ε)2
dy = π (2/ε)1/2, (30)

so that

F̂yv + F̂yp =
∫ ∞

−∞

4ε − 2y2

(y2 + 2ε)2
dy = 0. (31)

Thus, somewhat surprisingly, the total force on each cylinder vanishes at O(ε−1/2). This conclusion
is however supported by the numerical solution: Fig. 7 shows the distribution of the two contri-
butions to the vertical force as functions of the angle φ round C2, confirming that the forces are
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(a) (b) (c)

FIG. 8. (a) Integrated contributions to the vertical force on C2, viscous (blue), pressure (green) and the total
(red), as functions of ε; (b) the same, but with the viscous and pressure contributions rescaled by

√
ε (the total

force is not rescaled); (c) dependence of total force on R0, ε = 0.1 (solid), ε = 0.01 (dashed); no-slip condition
on C0 (red), stress-free condition on C0 (black).

indeed increasingly concentrated near the minimum gap position φ = π as ε decreases; and Fig. 8
shows that when R0 = 10 the integrated pressure and viscous contributions do indeed nearly cancel
at O(ε−1/2), but that there is an O(1) residual contribution F̂yv + F̂yp ≈ 3.9 for 0 < ε � 1, a result
that lies outside the scope of the leading-order lubrication approximation. We might expect that this
residual force should decrease to zero as R0 increases without limit, in conformity with Jeffery’s
[2] conclusion; Fig. 8(c) shows that the force does decrease at least in the range 8 < R0 < 55; this
dependence implies that the force, being dependent on the far-field, cannot be obtained even by
the higher-order, but still local, lubrication theory of Tavakol et al. [19]. From comparison with
the model problem of Part I B above, it is almost certain that F̂y ∼ (log R0)−1 as R0 increases, i.e.,
extremely slowly. When R0 → ∞ at fixed Reynolds number Re � 1, inertia effects in the far field
require that we replace R0 by r ∼ Re−1 log [Re−1] [see Eq. (16) above]; it thus seems likely that the
decrease of F̂y will satisfy

F̂y ∼ (log[Re−1 log [Re−1]])−1 when R0 � Re−1 � 1, (32)

although proof of this would require matching to an appropriate far-field solution.
But what if ε = 0? In this situation, when the cylinders make contact, the

integrand in Eq. (31) is −2/y2, and the integral diverges. The force F̂yv + F̂yp

is then apparently infinite! The situation can be understood with reference to
Fig. 9, which shows a plot of the integrand in Eq. (31) for ε = 10−5 (blue),
5 × 10−6 (green), and ε = 0 (red). As ε decreases the curves approach the limit curve more
and more closely. The spike in the region |y| < (2ε)1/2 contributes the positive value to the integral
that exactly compensates the negative value from the region |y| > (2ε)1/2. When ε = 0, the spike
disappears, and only the negative contribution survives.

However, in this limit situation when the cylinders make contact, there is a pressure discontinuity
across the point of contact, and this can contribute a force F̂c to the resultant total force on the two
cylinders. We describe this as a ‘flow-induced contact force’, because it arises as a net force on the
pair of cylinders due to the contact between them in the presence of flow. [This must be distinguished
from the more familiar (equal and opposite) “solid contact force” that may be experienced by each
cylinder by virtue of their contact.] This flow-induced contact force can be obtained as follows.

4. Flow-induced contact force

We need simply consider the restricted domain of fluid inside the blue contour shown in Fig. 9(b)
for the contact situation ε = 0 with h(y) = 1

2 y2. The short segment in this figure is at the level
y = y1. The total force on the curved parts of the blue contour is

2
∫ ∞

y1

(−2y2)

y4
dy = −4/y1. (33)
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(a) (b)

FIG. 9. (a) Plot of the function (4ε − 2y2)/(y2 + 2ε)2, for ε = 10−5 (blue), 5 × 10−6 (green), and ε = 0
(red). As ε ↓ 0, the spike at y = 0 becomes longer and narrower, and ultimately disappears in the limit ε = 0;
(b) contour (shown in blue) used for calculation of the contact force when ε = 0; the short segment is at the
level y = y1, and the limit y1 ↓ 0 is considered.

From Eq. (25), when ε = 0, the pressure is given by p̂ = −4/y3, so the pressure force on the small
horizontal segment (an upwards suction) is

∫ h(y1 )

−h(y1 )
−p̂ dx = (

4/y3
1

)
y2

1 = +4/y1. (34)

This exactly balances the force (33) from the curved parts of the contour. (These forces are ±8/y1

when contributions from the region y < 0 are also taken into account.) This force balance persists in
the limit y1 ↓ 0, and we may conclude that what was the upward contribution to F̂yv + F̂yp when ε >

0 is replaced when ε = 0 by the upward contact force resulting from the (infinite) jump in pressure
across the point of contact. (This argument ignores cavitation, which must break the symmetry of
the limiting flow across y = 0.)

The analytic treatment of this limit that now follows provides an alternative derivation of this
contact force that does not rely on the lubrication approximation.

D. Analytic solution when ε = 0 and R0 = ∞
When ε = 0 and R0 = ∞, the Stokes problem may be solved exactly; this is the limit version of

Jeffery’s [2] problem (see Appendix A). Following Schubert [20], we use the conformal mapping
ζ ≡ ξ + iη = 1/z, where z ≡ x + iy, giving

ξ = x

x2 + y2
, η = −y

x2 + y2
. (35)

The scale factor for this mapping is

h(ξ, η) = |dζ/dz| = (x2 + y2)−1 = ξ 2 + η2. (36)

The contours ξ = const., η = const., are the circles shown in Fig. 10(a). The essential property of
this mapping is that ψ (x, y) satisfies the biharmonic equation ∇4ψ = 0 if and only if 
(ξ, η) =
h(ξ, η)ψ[x(ξ, η), y(ξ, η)] satisfies ∇4

ξ,η
 = 0.
For our problem, we want a solution of ∇4ψ = 0 that is antisymmetric about x = 0, or equiv-

alently a solution of ∇4
ξ,η
 = 0 antisymmetric about ξ = 0. We also need to impose angular

velocities ±1 on the circles ξ = ∓1/2. The boundary conditions are then


 = 
ξξ = 0 on ξ = 0, and 
 = 0, 
ξ = −1 on ξ = ±1/2. (37)

044102-12



FLOW INDUCED BY ROTATION OF TWO CIRCULAR CYLINDERS

(a) (b)

FIG. 10. (a) Contours ξ = const. (red) and η = const. (blue), given by Eq. (35); the contours ξ = 0, ±1/2
are shown in black; (b) corresponding contours given by the conformal mapping ζ = log[(z + c)/(z − c)], as
used by Jeffery [2] here c = 1 and the cylinders of unit radius are shown by the contours ξ = ± sinh−1 c ≈
±0.881.

The required solution evidently does not depend on η; it is given by 
(ξ, η) = ξ/2 − 2ξ 3, and
correspondingly

ψ (x, y) = (x2 + y2)
(ξ, η) = x/2 − 2x3(x2 + y2)−2 = x/2 − ∂

∂x

[
y2

x2 + y2
+ log (x2 + y2)

]
.

(38)
In plane polar coordinates {r, θ}, this is equivalently

ψ (r, θ ) = 1
2 r cos θ − 1

2 r−1(3 cos θ + cos 3θ ), (39)

which does indeed satisfy ∇4ψ = 0. The streamlines ψ = const. are shown in Fig. 11(a), and a
zoom near the point of contact in Fig. 11(b). The leading term x/2 in Eq. (38) represents the Jeffery
uniform stream [(0,− 1

2 ) in this contact limit], while the term −2x3(x2 + y2)−2 admits interpretation
as the flow due to a “torque doublet” (or, to coin a suitable word comparable to stresslet [21], a

(a) (b) (c)

FIG. 11. (a) Streamlines ψ = const., as given by Eq. (38); (b) zoom near the point of contact; (c) contours
p̂ = const. in the half-plane x > 0 as given by Eq. (43).
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(a) (b)

FIG. 12. (a) Streamlines associated with the torquelet ψT = −(∂/∂x)(log r2 + sin2 θ ); (b) streamlines
associated with the vortex dipole ψV = −(∂/∂x)(log r2). The torquelet streamlines appear to be more com-
pressed towards the plane y = 0.

“torquelet”):

ψT = −(∂/∂x)(log r2 + sin2 θ ). (40)

The streamlines of the torquelet ψT = cst. are shown in Fig. 12(a); the apparent compression of the
streamlines towards the plane y = 0 as compared with the streamlines of the simpler vortex dipole
ψV = −(∂/∂x)(log r2) [Eq. (12)] is evident. This compression is due to the no-slip condition on the
two rotating cylinders and their resulting mutual influence, an effect that evidently persists to the far
field in the fluid.

1. Pressure field

The velocity components are

u(x, y) = ∂ψ

∂y
= 8x3y

(x2 + y2)3
, v(x, y) = −∂ψ

∂x
= −1

2
− 2(x4 − 3x2y2)

(x2 + y2)3
, (41)

and the pressure field satisfies the equations

∂ p̂

∂x
= ∇2u = −48xy(x2 − y2)

(x2 + y2)4
,

∂ p̂

∂y
= ∇2v = 12(x4 − 6x2y2 + y4)

(x2 + y2)4
. (42)

Either of these equations may be integrated, giving

p̂(x, y) = 4y(3x2 − y2)(x2 + y2)−3. (43)

The contours p̂(x, y) = const. in the half-plane x � 0 are shown in Fig. 11(c).
On the right-hand cylinder C2, let

x = 1 + cos φ, y = sin φ, (−π � φ � π ), so r2 ≡ x2 + y2 = 2(1 + cos φ). (44)

The normal and tangent vectors on C2 have cartesian components

n = (cos φ, sin φ), t = (− sin φ, cos φ). (45)

From Eq. (43), the pressure on C2 is then

p̂(φ) = 1
2 sin φ[3(1 + cos φ)2 − sin2 φ)](1 + cos φ)−3. (46)
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The vertical component of the pressure force −p̂ n on C2 is −p̂(φ) sin φ, which has the asymptotic
behavior

−p̂(φ) sin φ ∼ 4(φ − π )−2 near φ = π, (47)

obviously nonintegrable at the point of contact φ = π .

2. Viscous stress on cylinder

The rate-of strain components are

e11 = ∂u/∂x, e12 = e21 = 1
2 (∂u/∂y + ∂v/∂x), e22 = ∂v/∂y. (48)

Substituting Eq. (41), and simplifying leads to the results

e11(x, y) = −e22(x, y) = 24y(x2y2 − x4)

(x2 + y2)4
, e12(x, y) = 6x(x4 − 6x2y2 + y4)

(x2 + y2)4
. (49)

On the cylinder C2 with parametric equations (44), these reduce to

e11(φ) = −e22(φ) = −3 sin 2φ

2(1 + cos φ)
, e12(φ) = 3 cos 2φ

2(1 + cos φ)
. (50)

The viscous stress components τ1(φ) = μ τ̂1(φ) and τ2(φ) = μ τ̂2(φ) on C2 are given by

τ̂1(φ) = 2(e11(φ) cos φ + e12(φ) sin φ), τ̂2(φ) = 2(e21(φ) cos φ + e22(φ) sin φ), (51)

and these reduce to

τ̂1(φ) = −3 sin φ(1 + cos φ)−1, τ̂2(φ) = 3 cos φ(1 + cos φ)−1, (52)

with the asymptotic behavior near φ = π ,

τ̂1(φ) ∼ 6(π − φ)−1, τ̂2(φ) ∼ −6(π − φ)−2. (53)

Note that the total vertical component of stress on C2, −p̂(φ) sin φ + τ̂2(φ), therefore behaves like
−2(π − φ)−2 near φ − π , and is therefore nonintegrable, indicating an infinite integrated downward
contribution to the vertical force.

3. Confirmation of flow-induced contact force

To resolve this singularity, we consider the vertical force now integrated round the closed contour
shown in red in Fig. 13, as described in the figure caption. The integral of the vertical force
component round C2 from φ = −φ1 to φ = φ1 is, with some simplification,∫ φ1

−φ1

(−p̂(φ) sin φ + τ̂2(φ)) dφ =
∫ φ1

−φ1

2 cos φ + cos 2φ

1 + cos φ
dφ = 2 sin(3φ1/2) sec(φ1/2). (54)

The contribution to F̂yp + F̂yv from both C1 and C2 is therefore

4 sin (3φ1/2) sec (φ1/2) ∼ −8(π − φ1)−1 + 26
3 (π − φ1) + O(π − φ1)3, (55)

which is indeed singular as φ1 → π . However, as in Part I C 2, there is also a contribution to the
total vertical force from the small segments at y = ±y1; this is

F̂c =
∫ h(y1 )

−h(y1 )
[ p̂(x,−y1) − p̂(x, y1)] dx = 128

y1(4 + y1)2
∼ 8

y1
− 4y1 + O

(
y3

1

)
, (56)

and, since y1 ∼ π − φ1, the singularity here exactly cancels the singularity in Eq. (55) as y1 → 0.
Moreover since this leaves terms of order y1 which vanish in the limit, it follows that, in the limit,
the total net force on the composite body is zero:

F̂y = lim
y1→0

(F̂yp + F̂yv + F̂c) = 0. (57)
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(a) (b)

FIG. 13. (a) Contour of integration (shown in red) for calculating the total resultant vertical force on both
cylinders when they make contact (ε = 0); the integral round the right-hand cylinder C2 runs from φ = −φ1 to
φ = φ1, where 0 < π − φ1 � 1 (and this is equal, by symmetry, to the contribution from C1); and the integral
on the small horizontal segments at y = ±y1 run from x = −y2

1/2 to y2
1/2, where y1 = sin φ1 = sin (π − φ1) ∼

π − φ1; we then take the limit φ1 → π (i.e., y1 → 0); (b) zoom near the origin, and expanded by a factor of 2
in the x direction to make the short sections at y = ±y1 more clearly visible.

This is consistent with the result (31), implying that the conclusion that the force is zero is in fact
valid for all ε � 0. This also confirms the validity of the previous simpler derivation of the same
force balance under the lubrication approximation. We shall see in Part I E below how 1

2 F̂c exerts
part of the torque that each cylinder experiences about its axis.

Note that in a frame of reference fixed in the fluid at infinity, the two cylinders move with velocity
V = (0, 1

2 ). The force generated by their rotation is then equal and opposite to the drag force that
they jointly experience as they move through the fluid; in effect the velocity V is just such that this
force balance is exactly satisfied.

E. Torque on the cylinders

1. Torque when ε > 0

Since the total force on each cylinder, including the contact force, is zero (when R0 → ∞), the
torques T̂1 ez and T̂2 ez = T̂1 ez acting on C1,2 are independent of the point relative to which the
torque is calculated, e.g., T̂2 is the same whether calculated relative to the center of C2 or relative
to the origin O. When 0 < ε � 1, the viscous drag on C2 is concentrated near the gap point (ε, 0)
and the pressure on C2 makes no contribution to the torque about its axis at (1 + ε, 0); hence, using
Eq. (29), this torque is given by

T̂2 ∼ −F̂yv ∼ π (2/ε)1/2. (58)

Figure 14(a) shows the torque T̂2(α) (where α ∼ (2ε)1/2) computed both from our numerical
solution for R0 = 10 (blue) and 15 (red), and from Jeffery’s solution [2] as described in Appendix A
(black), and Fig. 14(b) shows the corresponding compensated functions α T̂2(α). The convergence
as R0 increases is evident, and it is clear that, in the limit R0 → ∞, T̂2(α) ∼ 2π/α as α → 0, in
perfect agreement with the asymptotic result (58).

The pair of torques ±T̂2(α) do indeed constitute a torquelet associated with the term
− 1

2 r−1(3 cos θ + cos 3θ ) in Eq. (39). We shall confirm in Appendix A that Eq. (39) is the limit as
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(a) (b)(a) (b)

FIG. 14. (a) The torque T̂2(α) where α = cosh−1(1 + ε) ∼ (2ε)1/2, computed from Jeffery’s solution (see
Appendix A, in black), and from the full numerics with R0 = 10 (in blue), and R0 = 15 (in red); (b) The
function αT̂2(α) with the same color code; the level 2π is shown by the dashed line, showing that T̂2(α) ∼
2π/α = π (2/ε)1/2 as α → 0.

ε → 0 of the solution found by Jeffery [2] and that the torquelet ingredient of this flow is associated
in the limit α ∼ (2ε)1/2 → 0 with torque singularities ±T̂2(α) ∼ ±2π/α separated by the vanishing
distance d (α) ∼ 3 α.

2. Torque when ε = 0

When ε = 0, it is instructive also to calculate the asymptotic behavior of this torque as a function
of the cut-off level y1 defined in Fig. 13. From the cartesian stress components (52), the tangential
stress on C2 is

τ̂ (φ) = τ̂2(φ) cos φ − τ̂1(φ) sin φ = 3(1 + cos φ)−1. (59)

Integrating this from −φ1 to +φ1 where π − φ1 ∼ y1 � 1 gives the moment of this tangential stress
as

M̂v =
∫ φ1

−φ1

3

1 + cos φ
dφ = 6 tan(φ1/2) ∼ 12

π − φ1
as φ1 → π. (60)

There is also a contribution from the moment of the half of the contact force F̂c that can be deemed
to act on C2, viz, M̂c = − 1

2 F̂c ∼ −4/y1 from Eq. (56). Combining these moments gives the torque

T̂2(y1) = M̂v + M̂c ∼ 8/y1 as y1 → 0, (61)

and we note again that, by symmetry, T̂1(y1) = −T̂2(y1).
Alternatively, we may calculate this same torque relative to the origin O. The tangential stress

τ̂ (φ) exerts a moment (x × t)τ̂ (φ) about the contact point O(0, 0); here,

x = (1 + cos φ, sin φ) and t = (− sin φ, cos φ), so x × t = (1 + cos φ)ez, (62)

and it follows remarkably that this moment takes the value 3, uniform on C2, so that the total moment
of the tangential stress about O takes the finite value M̂Ov = 3(2π ) = 6π . However, noting that

x × n = (1 + cos φ, sin φ) × (cos φ, sin φ) = sin φ ez on C2, (63)
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−0.15
−0.013 0.013

(a) (b) (c)(a) (b) (c)

FIG. 15. (a) Streamlines ψJ2(x, y, α) = const. as given by Eq. (69), for the choice ε = 1 (α = 1.317); the
flow asymptotes rapidly to rigid body rotation �(α) = −0.275; (b) streamlines in rotating frame, exhibiting
the radial flow in the far field with �(α) = −1.449; (c) contours ψL (x, y) = const. in the narrow gap, for
corotating cylinders with ε = 0.001.

it is actually the pressure −p̂(φ)n on C2 that exerts the dominant moment about O; using Eqs. (46)
and (63), this is

M̂Op =
∫ φ1

−φ1

−p̂(φ) sin φ dφ = −6φ + 4 sin φ + 4 tan(φ/2) ∼ 8

π − φ1
− 6π, (64)

and so the torque relative to O is

T̂2(y1) = M̂Ov + M̂Op ∼ 8/y1 as y1 ∼ π − φ1 → 0, (65)

in precise agreement with Eq. (61). We should note here that the flow-induced contact force has
zero moment about O in the limit y1 → 0.

PART II: COROTATING CYLINDERS

A. An elementary model problem

Figure 15(a) shows the symmetries of the flow induced by corotating cylinders. We recall first
an elementary model problem that exhibits the same symmetries as those of this figure, namely
the problem of flow in an annulus 1 < r < R0, R0 � 1, when the inner cylinder r = 1 rotates with
angular velocity � = −1, and the outer cylinder r = R0 is at rest. The flow in the annulus is purely
azimuthal,

u = [0, v(r)] where v(r) = Ar + B/r with A + B = −1. (66)

There are two quite distinct possible scenarios:
(i) We may impose a “zero-stress” condition, d (v/r)/dr = 0, on r = R0; then B = 0 and v(r) =

−r, rigid-body rotation throughout the fluid, obviously nonzero at infinity when R0 → ∞. The
torque acting on the cylinder is zero in this situation. This is the scenario that is apparent in Jeffery’s
[2] approach to the two-cylinder problem described in Part II C 1 and Part II C 2 below.

(ii) Alternatively, we may impose no-slip on r = R0; then AR0 + B/R0 = 0, giving v(r) = (r −
R2

0/r)/(R2
0 − 1). Thus, for 1 � r � R0, we have v(r) ∼ −1/r, the flow due to a virtual point vortex

at r = 0. In the limit R0 → ∞, this point-vortex flow extends throughout the fluid tending to zero
at infinity, and the fluid exerts a nonzero torque Ts = 4πμ[1 + O(R−2

0 )] on the cylinder. This is
the scenario that is evident in Watson’s [10] remedy (Part II C 3 below), which incorporates the
appropriate torque that nullifies the far-field rigid-body rotation.
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B. Lubrication approach for the two-cylinder problem

We consider first the situation when the gap between the cylinders is small (ε � 1), and
lubrication theory is applicable. With the cylinders corotating in the clockwise sense (�1 =
�2 = −1), the lubrication solution for the vertical component of velocity v is very simple: with
v = ±1 on the cylinder boundaries x = ±h(y) = ±(ε + 1

2 y2), this solution is the locally Couette
flow v(x, y) = x/h(y), and the corresponding stream function satisfying v(x, y) = −∂ψL/∂x is
ψL(x, y) = 1

2 [h(y)2 − x2]/h(y). The pressure in this Couette-type flow is evidently uniform in the
gap. The streamlines ψL = const. are shown in Fig. 15(c) for ε = 0.001. The x component of
velocity is

u(x, y) = ∂ψL

∂y
= y

[
1

2
+ 2x2

(y2 + 2ε)2

]
. (67)

Thus, on the y axis, u(0, y) = 1
2 y; it will turn out that this does correctly represent the flow in the

lubrication region y = O(ε1/2)—see Fig. 18(a) below.
The vertical forces on C1 and C2 are, respectively,

F̂y = ∓
∫ ∞

−∞

dy

h(y)
= ∓π (2/ε)1/2, (68)

singular in the limit ε → 0. In this limit these forces are concentrated very near the points (∓ε, 0),
so the torque on each cylinder about its axis is T̂ ∼ π (2/ε)1/2. However, the torque relative to the
origin (0,0) acting on the pair of cylinders is Ĝ(ε) ∼ 2π (2ε)1/2, vanishing in the limit ε → 0.

C. Jeffery’s paradox and Watson’s remedy

1. Jeffery’s [2] solution

Using Jeffery’s [2] bipolar coordinates [Appendix A and Fig. 10(b)], the solution for corotating
cylinders (�1 = �2 = −1) may be easily obtained. With α = cosh−1 (1 + ε), the required stream
function (an even function of ξ in this case) is found to be

ψJ2(x, y) = α sinh α cosh ξ − ξ sinh ξ cosh α

h(ξ, η)[α + cosh α sinh α]
. (69)

Streamlines for the choice ε = 1 (α = 1.317) are shown in Fig. 15(a). For r � 1 + ε, in polar
coordinates and dropping an irrelevant constant, ψJ2 has the asymptotic form

ψJ2(r, θ ) ∼ − 1
2�(α)r2 − �(α) cos2 θ + O(r−2), (70)

where

�(α) = − α

α + cosh α sinh α
, �(α) = 2 sinh α cosh α

α + sinh α cosh α
. (71)

The first term represents rigid-body rotation with angular velocity �(α), and, in the frame rotating
with this angular velocity, the second term represents the instantaneous far-field radial flow of
strength �(α) apparent in Fig. 15(b); “instantaneous” because, in this rotating frame, this radial
field rotates in tandem with the two cylinders with angular velocity −�(α). Note that, in the contact
limit α = 0, �(0) = −1/2 and �(0) = +1.

2. Rotating frame solution: Radial quadrupole

Although the solution (70) tends to rigid-body rotation �(α) at infinity, it is nevertheless not
without interest. In a frame of reference rotating with this angular velocity, the cylinders ‘orbit’
with angular velocity −�(α). The torque T (α) resisting this orbiting is just equal and opposite to
the torque −T (α) on the pair that is generated by their corotation. The net torque experienced by
the cylinder pair (and equally the net torque imparted to the fluid) is therefore zero in this situation.
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(a) (b) (c)(a) (b) (c)

FIG. 16. (a) Streamlines ψ (r, θ ) = 1
4 r2 − cos2 θ = const. (in the contact limit ε = 0); (b) streamlines

ψQ(r, θ ) = − cos2 θ = const; (c) velocity profile for the radial quadrupole, defined in Part II C 2.

In this sense, the situation is quite similar to that of scenario (i) for the model problem in Part II A,
when the zero-stress condition is applied on the “remote” cylinder r = R0 (which therefore absorbs
zero torque).

Figure 16(a) shows the streamlines ψJ2 = const. for the flow (70) in the contact limit ε = 0 (α =
0), in the frame of the two cylinders. Figure 16(b) shows the streamlines of the same flow in the
frame rotating with angular velocity �(0) = − 1

2 ; these streamlines are again purely radial, the
normal velocity being nonzero on the cylinders because in this rotating frame the cylinders are
orbiting about the origin (as well as still rotating about their respective axes). The streamline pattern
of Fig. 16(b) corresponds to the stream function

ψQ(r, θ ) = − cos2 θ = − 1
2 (1 + cos 2θ ), (72)

a very particular solution of the biharmonic equation. The radial velocity is ur (r, θ ) = r−1 sin 2θ . In
the first quadrant {x > 0, y > 0} this may be recognized as the low-Reynolds-number limit of the
Jeffery-Hamel flow due to a line source of strength Q = 1 at the intersection of the plane boundaries
x = 0, y = 0, with no slip on both boundaries ([1], or see, for example, Batchelor [6], Sec. 5.6). In
the second quadrant, it represents the same flow but with a line sink Q = −1; and in the third
and fourth quadrants, it represents again the same flows, source and sink respectively. The total
velocity profile going round the circle r = 1 is as indicated in Fig. 16(c), outwards in the first and
third quadrants, inwards in the second and fourth. It is appropriate to describe this flow as a “radial
quadrupole.”

3. Watson’s remedy

The flow described by the stream function (70) obviously does not satisfy the condition of zero
velocity at infinity; this is “Jeffery’s paradox” for the corotating situation. Resolution of this paradox
was provided by Watson [10], who compared the situation to the case of a single cylinder rotating in
an unbounded fluid [scenario (ii) of Part II A], for which the steady flow is that due to a virtual line
vortex at the axis of the cylinder. As Watson remarked “it seems implausible that the introduction
of a second [corotating] cylinder would change the character of the motion so drastically” (as to
replace this asymptotic vortex flow by a rigid-body rotation).

The essential step in Watson’s treatment was to introduce a term proportional to log[{(x − c)2 +
y2}{(x + c)2 + y2}] in the solution, thereby contributing a vortex ingredient uθ = k/r to the velocity
at infinity and an associated torque −4πμk acting on the cylinder pair. It was then necessary to
satisfy the no-slip conditions on the two cylinders, and to ensure that the rigid-body term is expunged
from the solution. The rather complex details are summarized in Appendix B. We provide some
diagrams here that help in the interpretation of Watson’s results. Denoting his stream function by
ψW (x, y), the contours ψW (x, y) = const. are shown in Fig. 17(a) for the case r1 = 1, ε = 0.1 (so
α = 0.4436); the zoom near the origin in Fig. 17(b) shows the expected saddle point at the origin.
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(a) (b)

FIG. 17. (a) Contours ψW (x, y) = const. as given by Eq. (B5) in Appendix B, for the situation when r1 =
1, ε = 0.1 (so α = 0.4436); (b) zoom of the same near the origin, showing in red the expected saddle point
where ψW (0, 0) = 0.0491.

Figure 18(a) shows the corresponding velocity uW (x, y) = ∂ψW /∂y on the axis x = 0 for ε = 0.1
(α = 0.4436, solid black), ε = 0.01 (α = 0.1413, solid blue), and ε = 0.001 (α = 0.04472, dashed
blue); the last two are indistinguishable on the scale shown; the red line, with slope 1/2, is as given
by the lubrication solution (67). Figure 18(b) shows that |uW (y)| ∼ k |y|−1 for large |y|, as for a
point vortex; there is no rigid-body ingredient in this solution. The constant k depends on ε, and
may be evaluated numerically as lim|y|→∞ |y uW (y)|; the function k(ε) is shown in Fig. 18(c), with
the limiting behavior k(ε) ∼ 1.3734 as ε ↓ 0.

Figure 19 shows numerical solutions of the corotating problem with ε = 0.01 for three differ-
ent conditions on the outer boundary r = R0(= 10): (a, d) no-slip; (b, e) stress-free; and (c, f)
with the boundary condition vθ = −k(ε)/R0 [with k(0.01) derived from the Watson solution—
see Fig. 18(c)]. Figure 20 shows corresponding plots of the axial velocity distributions v(x, 0)
(2 < x < 10) and u(0, y) (−10 < y < 10). The Watson solution shows the expected r−1 behavior
in both plots [as evident also in Fig. 18(b)], and the no-slip solution comes quite close to this.

The stress-free solution is very different; it shows behavior close to rigid-body rotation in the far
field, as in the solution originally found by Jeffery [2]. Here again we may compare the situation
with the model problem introduced in Part II A: with the stress-free condition [scenario (i)] on the

(a) (b) (c)

FIG. 18. (a) Plots of uW (0, y) for r1 = 1, and ε = 0.1 (solid black), ε = 0.01 (solid blue), ε = 0.001
(dashed blue); the last two curves are indistinguishable on the scale shown. These graphs show the expected
behavior uW (0, |y|) ∼ |y|−1 for large |y|. The red line has slope 1/2, and correctly represents the flow in
the lubrication region y = O(ε1/2); (b) Corresponding plots of y uW (0, y) for positive y, showing that in fact
y uW (0, y) → k(ε) as y → ∞. (c) The function k(ε) = lim|y|→∞ |y uW (0, y)|, which asymptotes to 1.3734 as
ε ↓ 0; this asymptote is shown by the dashed line, which coincides with the level of T (0)/4π as determined
by Eq. (75).
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(a (b)

(c) (d)

(e) (f)

(b)(a)

(d)(c)

(f)(e)

FIG. 19. Streamlines ψ = constant from the numerical solution of the Stokes problem for corotating
cylinders with ε = 0.01; the outer boundary condition on r = R0 is either no slip (a), (b); stress-free (c), (d);
or (e), (f) with uθ = k(0.01)/R0, from Watson [10] and Fig. 18(c).

outer cylinder r = R0; the steady solution in that case is rigid body rotation no matter how large R0

may be.

4. Torque on cylinder pair

Having expunged the rigid-body term in the general solution, the asymptotic form of ψW (x, y)
for r = (x2 + y2)1/2 → ∞ is indeed found to be that of a line vortex

ψW (x, y) ∼ −2K (α) sinh2α log(1/r), (73)

where K (α) is the function defined in Appendix B by Eqs. (B1) and (B3); this corresponds to a
torque

T̂ (α) = 8πK (α) sinh2α (74)
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(b)(a)

FIG. 20. Axial velocity distributions corresponding to the streamline plots of Fig. 19; ε = 0.01: (a) v(x, 0)
(2 + ε < x < 10); (b) u(0, y) (−10 < y < 10). The outer boundary condition on r = R0 is either no slip in
blue; stress-free in green; or with uθ = k(0.01)/R0 in red. The influence of the outer boundary condition is
evident: in the no-slip case, the far-field flow is quite close to that of a point vortex (∼r−1 for r � 1), except
near to r = R0 where the no-slip condition is imposed; in the stress-free case, the far field is rigid body rotation
(∼r).

exerted by the cylinder pair on the fluid. For small ε ∼ 1
2α2, using the asymptotic form (B4) (see

Appendix B), this implies that

T̂ (α) ∼ 8πα2(0.6867α−2) = 17.2587 as α → 0 ; so T̂ (0)/4π = 1.3734 (75)

(cf. T̂s/4π = 1 for a single rotating cylinder). The dashed line in Fig. 18(c) shows that T̂ (0)/4π =
1.3734 exactly as given by Eq. (75), and the agreement is evidently excellent. Just as for a single
cylinder, this torque arises from the stress distribution around the entire boundary of the two
cylinders, and the result cannot therefore be obtained from the lubrication theory of Part II B.

In the finite-domain numerical solution, the torque exerted on the fluid jointly by the two
inner cylinders must equal the torque absorbed by the outer cylinder C0. Figure 21 shows the
dependence of this torque on R0 (with the no-slip boundary condition) in the range 8 � R0 � 20,

FIG. 21. Torque on the bounding cylinder C0 (with no-slip boundary condition) as a function of R0 for
ε = 0.04 (red), 0.02 (green), 0.01 (blue). The double limit R0 → ∞ and ε ↓ 0 (taken numerically in either
order) is needed to approach the asymptotic value 17.2587, marked by the dashed line, as derived in Eq. (75).
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for ε = 0.04, 0.02, and 0.01; here, it is the double limiting process R0 → ∞, ε ↓ 0 that shows
convergence towards the limit 17.2587, again marked by the dashed line.

DISCUSSION AND CONCLUSIONS

We have here reinvestigated the classical problem of the Stokes flow generated by two parallel
rotating circular cylinders of unit radius. We have assumed that the fluid domain D is bounded by
a cylinder r = R0 � 1 on which either no-slip or stress-free boundary conditions can be imposed,
and have provided an accurate finite-element numerical treatment of this problem in two cases:
counterrotating cylinders in Part I (A–E), and corotating cylinders in Part II (A–C). Note that, insofar
as the Stokes problem is linear, the case of arbitrary cylinder rotation rates �1 and �2 is just a linear
combination of these two prototypical cases.

Counterrotating cylinders

A model problem exhibiting the same symmetries as the two-cylinder problem was first analyzed
in Part I B. This allows asymptotic treatment in an inner regime 1 < r � R0, and in an outer regime
{r = kR0, k < 1, k = O(1)} where the influence of inertia forces may be estimated. This shows
that, no matter how small the Reynolds number may be, inertia always becomes significant in the
outer regime as [log R0] increases without limit.

When the gap 2ε between the inner cylinders is small, lubrication theory provides a description
of the flow in the gap region that agrees well with the numerical solution. When ε ↓ 0, two saddle
points at (0,±(6ε)1/2) move towards the origin. When the cylinders make contact (i.e., when ε = 0),
the domain topology changes from triply- to doubly-connected, and the two saddle points convert
to two boundary-saddle points. The numerical evidence indicates that when ε > 0 the force exerted
on the cylinders tends to zero as R0 → ∞; this conclusion is consistent with the model calculation
of Part I B, the lubrication analysis of Part I C 2, and the analytical solution (for ε = 0) obtained in
Part I D. In this case, there is a “contact force” due to the discontinuity of pressure across the point
of contact, and we have shown that the total force is continuous down to ε = 0 if and only if this
contact force is taken into account.

Based on our results, we may envisage two distinct scenarios for this counterrotating situation
when the fluid is unbounded. If the cylinders are free of any external restraining force, then they
will move relative to the fluid, ultimately with uniform dimensionless velocity V [= 1

2 (1 + ε)−1] in
the y direction (just like two parallel line vortices of circulations ±� separated by distance 2d in an
inviscid fluid, which propagate with velocity V = �/4πd). In a frame of reference moving with the
cylinders, there is thus a uniform streaming velocity (0,−V ) at infinity. The ultimate steady state
is therefore well described by Jeffery’s original solution, the perturbation from the uniform stream
being the “torquelet” as given by Eq. (39). The velocity associated with the torquelet is O(r−2) as
r → ∞, so that u2 = O(r−4). The kinetic energy of the flow in the frame of reference in which the
fluid is at rest at infinity is therefore finite, and this flow could therefore be generated from a state
of rest in a finite time.

If however, the cylinders are constrained in such a way that their axes are fixed as they rotate, then
the situation is quite different. If in this situation the rotation is started impulsively at t = 0, then a
low Reynolds number flow will develop, as analyzed by Ueda et al. [15]. This flow incorporates both
stokeslet and uniform-streaming ingredients, but extends only over a range r � Re−1 log [Re−1],
limited by inertia effects. The cylinders must then experience a net force F̂y in the limit Re → 0
that we estimate to be F̂y ∼ 1/ log [Re−1 log [Re−1]. The problem of matching this Stokes flow to
an outer solution of the full Navier-Stokes equations remains open.

Corotating cylinders

Again in this case, an elementary model problem is presented in Part II A, for which the boundary
condition on the outer cylinder r = R0 may be stress-free or no-slip. For the two-cylinder corotating
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problem, these alternatives correspond to two quite distinct scenarios which emerge from our
analysis, We have provided a finite-element numerical solution for both scenarios when R0 � 1.
Lubrication theory describes well the highly sheared flow in the narrow gap when ε � 1, and good
agreement is achieved with the full numerical solution.

In the first scenario, a zero-stress condition is applied on r = R0, and the flow tends in the far
field to rigid-body rotation with angular velocity �(α), where α = cosh−1(1 + ε); there is in this
situation zero net torque on the cylinder pair. In an unbounded fluid, this is essentially the solution of
Jeffery [2]. In a frame of reference rotating with the fluid at infinity the cylinders orbit with angular
velocity −�(α), and this is the behavior if their axes are unconstrained. In this rotating frame, the
fluid velocity is identified as a “radial quadrupole.”

In the second scenario, the cylinder axes are supposed be held fixed by external constraints. Their
corotation about these fixed axes then generates a localized torque on the fluid and so a vortex-like
flow uθ ∼ k(ε)r−1 in the far field. (This is approximately realized numerically by imposing a no-
slip condition on r = R0.) There is also an internally driven rigid-body rotation, but, following
Watson [10], this is nullified by suitable choice of the strength of the virtual vortex [thus in effect
determining the function k(ε)], so that the resulting velocity tends to zero for large r thus resolving
Jeffery’s paradox in this case. We have extended and refined Watson’s analysis to reveal the behavior
as ε ↓ 0; in this limit we have shown that the torque T̂ on the cylinder pair asymptotes to the value
17.2587.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF JEFFERY’S [2] SOLUTION

Jeffery [2] used bipolar coordinates defined by a conformal mapping ξ + iη = log x+iy+c
x+iy−c , so that

ξ (x, y) = 1

2
log

(x + c)2 + y2

(x − c)2 + y2
, η(x, y) = tan−1

[
x+c

y

]
− tan−1

[
x−c

y

]
. (A1)

The scale factor for this mapping is h(ξ, η) = |dζ/dz| = (cosh ξ − cos η)/c. The contours
ξ (x, y) = const., η(x, y) = const. are shown in Fig. 10(b). The contour ξ = α is a circle with center
at (c1, 0) where c1 = c coth α, and radius r1 = c cosech|α|. If we fix r1 = 1, then c = sinh |α|,
and the separation of the two cylinders is (as before) 2ε, where now ε = cosh α − 1, i.e., α =
cosh−1(1 + ε). The boundaries C1,2 are taken to be ξ = ∓α with α > 0, and the fluid domain is
D : {0 � |ξ | < α, −π < η < π}.

With this notation, Jeffery ([2], p. 173) found the stream function for the counterrotating situation
in the form

ψJ (x, y) = [h(ξ, η)]−1[b0 ξ (cosh ξ − cos η) + c0 sinh ξ + c1 sinh 2ξ cos η], (A2)

where the constants b0, c0 and c1 take values determined by the boundary conditions

b0 = − cosh 2α

2 cosh α sinh2 α
, c0 = cosh α

2 sinh2 α
, c1 = − 1

4 cosh α sinh2 α
. (A3)

The stream function ψJ then takes the asymptotic form (for r = (x2 + y2)1/2 � 1)

ψJ (x, y) ∼ x

2 cosh α
− 2x[x2 + (x2 + y2) sinh2 α]

cosh α (x2 + y2)2
+ O(r−3), (A4)
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(b) (c)(a)

FIG. 22. (a) The function T̂2(α) [cf. Fig. 14(a)] showing the large-α asymptote (dashed) at the level 4π ≈
12.566; (b) streamlines ψJ (x, y, α) = const. as given by Eq. (A2), for the choice ε = 1 (α = 1.317); for this
choice, the saddle points are at y = ±3 and the flow asymptotes to the uniform stream (− 1

4 , 0) as r → ∞;
(c) the velocity vJ (0, y) for ε = 1 (black), 0.1 (blue), 0.2 (red), and 0.001 (green); in the limit ε = 0, the
asymptotic uniform stream is (− 1

2 , 0), as shown by the dashed line.

or equivalently in polar coordinates

ψJ (r, θ ) ∼ r cos θ

2 cosh α
− (4 cosh2 α − 1) cos θ + cos 3θ

2r cosh α
+ O(r−3), (A5)

giving Eq. (39) in the limit α = 0. The leading term in Eq. (A4) represents a uniform stream
(0,− 1

2 sech α)= [0,− 1
2 (1+ε)−1] as found by Jeffery, and the second term, of order r−1, which

has not been previously identified, represents a torquelet, whose strength, noting the structure of
Eq. (A5), may be defined as, say,

μT = π (4 cosh2 α − 1)sech α = d (α) T̂2(α)/2. (A6)

Here, d (α) is the separation of virtual point torques of magnitude ±T̂2(α) needed to give precisely
this torquelet strength. The flattening of the streamlines evident in Fig. 12(a) decreases as α

increases, i.e., as the separation of the cylinders is increased, with corresponding decrease of their
mutual interaction. Figure 22(a) again shows the function T̂2(α) computed from Jeffery’s solution
(A2), but here in the range α � 0.5, (ε � 0.13); this shows rapid approach to the asymptotic
level 4π , this limit being quite accurately reached for α � 2, i.e., for ε = cosh α − 1 � 2.75. The
separation d (α) then asymptotes to 2 cosh α = 2(1 + ε), the distance between the centres of C1 and
C2, as might be expected.

At the other extreme α → 0, as we have seen from Fig. 14(a), T̂2(α) ∼ 2π/α, so that in this
limit the separation d (α) is given by d (α) ∼ 6π/T̂2(α) ∼ 3 α ∼ 3 (2ε)1/2, as stated in Part II C 4.
For α ∼ (2ε)1/2 � 1 (and r � ε1/2, i.e., outside the lubrication zone), the solution (A2) may be
expanded in powers of ε; in polar coordinates, at leading order this gives

ψJ (r, θ ) = 1
2 r cos θ − 1

2 r−1(3 cos θ + cos 3θ ) + O(ε), (A7)

recovering the result (39) when ε = 0.
At the intermediate value ε = 1 (so α = 1.317), the streamlines ψJ = const. are as shown in

Fig. 22(b). For this choice of ε, the saddle points are at y = ±3 and the flow settles to the uniform
stream (0,− 1

4 ) as r → ∞. Moreover, T̂2(1.317) = 12.70 and d evaluates to 3.71, somewhat less
than 4 [= 2(1 + ε)], the distance between the centres of C1 and C2. This is to be expected, because
the tangential stress τ̂ (φ) on C2 becomes more pronounced near the gap location φ = ±π as ε

decreases (and similarly of course for C1).
Figure 22(c) shows the velocity vJ (0, y) for the four choices ε = 1, 0.2, 0.1 and 0.001. For large

|y|,

vJ (0, y) ∼ − 1

2 cosh α
+ 2 sinh2 α

cosh α
y−2 + O(y−4) = − 1

2(1 + ε)
+ 2ε(2 + ε)

(1 + ε)
y−2 + O(y−4), (A8)

the leading term giving the streaming velocity [0,− 1
2 (1 + ε)−1] as |y| → ∞.
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(b)(a)

FIG. 23. (a) Log-log plots of the functions S[N, α] for N = 10, 102, 103, 104, indicating that S[N, α] ∼
k α2 over a range of α that extends towards α = 0 with increasing N ; (b) plots of α−2S[N, α] for N = 103, 104,
indicating that k ≈ 0.7281.

APPENDIX B: ASYMPTOTIC ANALYSIS OF WATSON’S [10] SOLUTION

Watson’s [10] solution of the corotating problem involved the function

S(α) = 1

2
+ α sinh2 α tanh α

α + sinh α cosh α
− 4

∞∑
n=2

sinh α(sinh α + n cosh α) + n e−nα sinh nα

(n2 − 1)(n sinh 2α + sinh 2nα)
, (B1)

where α is related to the gap parameter ε (as in Appendix A) by α = cosh−1 (1 + ε). The conver-
gence of the sum here is an issue of immediate concern. For any fixed α > 0, the coefficient in the
nth term of the sum is proportional to n−1 e−2nα for large n, so that convergence is assured. However,
as ε → 0, i.e., α → 0, more and more terms of the series must be retained to get any prescribed
level of accuracy. Defining S[N, α] as the function (B1) when the summation is truncated at n = N ,
Fig. 23(a) shows log-log plots of S[N, α], for N = 10, 102, 103, 104. The dashed line has slope 2,
indicating that, as N → ∞, S[N, α] ∼ k α2 for some constant k. Figure 23(b) shows the functions
S[103, α]/α2 and S[104, α]/α2, indicating that k = 0.7281 to good approximation. As expected, this
behavior breaks down when α is too small (� 0.001 when N = 104), but it nevertheless indicates
that the limiting function S(α) has an asymptotic behavior

S(α) ∼ 0.7281 α2 as α → 0. (B2)

A second function K (α) is then defined by

K (α) = α

S(α)(α + sinh α cosh α)
, (B3)

with asymptotic behavior that follows from Eq. (B2),

K (α) ∼ 0.6867α−2 as α → 0 (B4)

(and actually α2K (α) < 0.6868 for all α > 0).
In view of the symmetry, we may restrict attention to the half-space x � 0, and to the fluid region

0 � ξ < α. With ξ (x, y), η(x, y) and h(ξ, η) as defined in Appendix A of Part 1, Watson’s stream
function is given by

ψW (x, y) = − sinh α φ[ξ (x, y), η(x, y)]

h[ξ (x, y), η(x, y)]
, (B5)

where φ(ξ, η) has the Fourier series representation

φ(ξ, η) = K (α)(cosh ξ − cos η) log(2 cosh ξ − 2 cos η) + a0(α) cosh ξ + b0(α)ξ sinh ξ

+
∞∑

n=1

[an(α) cosh(n+1)ξ + bn(α) cosh(n−1)ξ ] cos nη. (B6)
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Here the coefficients are given by

a0(α) = −α + K (α)(α + α2 + e−α sinh α)

α + sinh α cosh α
, b0(α) = coth α − K (α) sinh2 α

α + sinh α cosh α
, (B7)

a1(α) = 1

2
K (α)e−αsech α, b1(α) = K (α)

(
1 + α − 1

2
tanh α

)
, (B8)

and, for n � 2,

an(α)= 2K(α)(ne−α sinh α+e−nα sinh nα)

n(n + 1)(sinh 2nα + n sinh 2α)
, bn(α)=−2K (α)(neα sinh α+e−nα sinh nα)

n(n − 1)(sinh 2nα + n sinh 2α)
.

(B9)
Again, for any fixed α > 0, these coefficients have the asymptotic behavior

an(α) ∼ 4K (α)e−α sinh α

n e2nα
, bn(α) ∼ −4K (α)eα sinh α

n e2nα
as n → ∞, (B10)

so that the coefficient of cos nη in Eq. (B6) has the behavior

[an(α) cosh(n + 1)ξ + bn(α) cosh(n − 1)ξ ] ∼ 4K (α)

n e(n−1)(α−ξ ) enα
as n → ∞. (B11)

The series in Eq. (B6) therefore converges exponentially rapidly for 0 � ξ � α, and may again
be evaluated to good approximation if terminated at n = N provided N is appropriately chosen in
relation to α. Since α ∼ (2ε)1/2 for ε � 1, we therefore need N � (2ε)−1/2. When ε = 0.1, this
requirement is simply N � 1; we actually ran to N = 1000 in constructing Figs. 17 and 18, thus
providing extreme accuracy. If N = 10 is used instead, then the resulting figures are just as good at
this value of ε, but if ε is reduced, then N must be correspondingly increased to maintain accuracy.

The definitions (B7)–(B9) ensure that the impermeability and no-slip conditions are satisfied on
the corotating cylinders ξ = ±α. These conditions are

φ(α, η) = 0 and sinh α
∂φ

∂ξ

∣∣∣∣
ξ=α

= 1 for − π < η � π. (B12)

Normalizing φ(α, η) by its value at ξ = 0, η = π (corresponding to the point x = 0, y = 0), Fig. 24
shows φ(α, η)/φ(0, π ) and sinh α ∂φ/∂ξ |ξ=α , evaluated for two cases: ε = 0.1 (α = 0.4583)
truncating the series at N = 10; and ε = 0.01 (α = 0.1413) truncating the series at N = 20. The
conditions are satisfied to well within 0.2% and 2% accuracy respectively at these levels of
truncation. As ε is further decreased, N must be correspondingly increased to retain accuracy.

The coefficient of the “rigid-body” term in the solution as r → ∞ (i.e., as ξ 2 + η2 → 0) is
proportional to

R(α) ≡ a0(α) +
∞∑

n=1

[an(α) + bn(α)], (B13)

and it is the condition R(α) ≡ 0 that actually determines the function K (α) [through Eqs. (B1)
and (B3)]. Provided the same N is chosen in Eqs. (B1) and (B6), this condition is actually identically
satisfied for any N , as may be verified with some effort.

APPENDIX C: NUMERICAL MODELING

Finite elements were used to determine the Stokes flow in the triply connected fluid domain D

between the inner cylinders C1,2 and the outer cylinder C0. On C1,2, the boundary conditions were
“no-slip,” i.e., u|{1,2} = ω{1,2} ez ∧ n (with unit outward normal n), and on C0, the no-slip condition
u|0 = 0 was also imposed. These are “essential” boundary conditions in finite-element terms, in that
they are imposed explicitly on the solution u.

044102-28



FLOW INDUCED BY ROTATION OF TWO CIRCULAR CYLINDERS

FIG. 24. Verification of the impermeability and no-slip conditions (B12) on ξ = α; (a), (b) φ(α, η)/φ(0, π )
and sinh α ∂φ/∂ξ |ξ=α; α = 0.4583, N = 10, φ(0, π ) = −0.4681; (c), (d) the same for α = 0.1413, N =
20, φ(0, π ) = −0.4972.

The finite-element formulation involves writing the equations in variational form; it is then
required to find u in Wbc and p̂ in Q such that

2
∫
D

e(u) : e(w) dx −
∫
D

p̂∇ ·w dx = 0, ∀ w ∈ W0, (C1a)

∫
D

q ∇ ·u dx = 0, ∀ q ∈ Q, (C1b)

where e(u) is the rate-of-strain tensor, with cartesian components ei j , and Wbc, W0, and Q are
suitably defined function spaces,

Wbc = {w ∈ [H1(D)]2 : w|{0,1,2} = u|{0,1,2}}, (C2a)

W0 = {w ∈ [H1(D)]2 : w|{0,1,2} = 0} and Q = {q ∈ L2(D) : 〈q〉D = 0}. (C2b)

Q consists of functions with zero mean on D; this allows for the fact that the pressure is determined
only up to an arbitrary constant. These function spaces are then approximated with discrete spaces,
here by a triangular mesh, and with quadratic elements for the velocity and affine elements for
pressure. The resulting system was solved using FreeFem ++ [22].

Computing the stream function is not straightforward since the domain is not simply connected;
ψ can be set to zero on only one boundary: we set ψ |0 = 0 on C0. The value of ψ on C1 and C2 is
not known a priori. These missing boundary conditions can however be recovered from the solution
of Eq. (C1) as

ψ{1,2} = ±1

2
Q with Q =

∫ ε

−ε

v(x, 0) dx, (C3)

and by solving

∇2ψ = −(∇ ∧ u) · ez with ψ |{0,1,2} = ψ{0,1,2} , (C4)

044102-29



E. DORMY AND H. K. MOFFATT

or equivalently (but with higher-order shape functions) by solving ∇4ψ = 0 with the additional
boundary conditions n · ∇ψ |{1,2} = ∓1, respectively.

Some simulations using a stress-free outer boundary were also carried out for the corotating case.
With n and t unit normal and tangent vectors on C0, the boundary conditions become

n · u|0 = 0, n · e(u) · t|0 = 0, on C0, (C5)

and it is in general a nontrivial matter to implement these conditions. In writing the variational
form for this problem, the conditions on w|{0} must be relaxed for both Wbc and W0. Since the full
rate-of-strain tensor e was retained in the numerical formulation, the integration by parts that yields
Eq. (C1a) remains valid as stated with the boundary conditions (C5). The impenetrability condition
is “essential,” and needs to be imposed strongly by a penalization of the minimization problem (C1)
with ∮

C0

(n · u)(n · w) ds, (C6)

where s is arclength on C0, whereas the condition n · e(u) · t|0 = 0 is “natural,” following from the
weak form (C1).

Finally, to resolve variables with sufficient accuracy over the full range of scales [ε, R0], and to
reduce matrix sizes, an Uzawa splitting was employed in our largest simulations.
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