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Electrocapillary driven two-phase flows in a confined configuration of a classical ex-
periment of Melcher and Taylor are studied. The computed streamlines of the flow of the
heavier dielectric liquid (corn oil) qualitatively represent the corresponding experimental
image. With the increase of electrocapillary forcing, the flow pattern changes, so that the
main circulation localizes near a boundary with a larger electric potential. When a dielectric
liquid is replaced by a poorly conducting one, the system becomes nonisothermal owing
to the Joule heating. Then the flow is driven also by buoyancy and thermocapillary con-
vection, whose effect becomes noticeably stronger than the electrocapillary one. With the
increase of electric conductivity, the electrocapillary effect is further weakened compared
to the two others, while the electrocapillary and thermocapillary forces remain comparable
at the central part of the interface. The results show that consideration of the two-phase
model is mandatory for obtaining correct flow patterns in the lower, heavier fluid. The
Lippmann equation, connecting electrically induced surface tension with nonuniform
surface electric potential, is numerically verified for both isothermal and nonisothermal
formulations and is found to hold in both of them.
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I. INTRODUCTION

Electrocapillary flows appear in two-liquid systems under the action of an external electric field
tangent to the liquid-liquid interface. An excessive surface charge, which can result either from
charge carrying particles or polarization of electrically neutral ones, interacts with the electric
field, which creates a Coulomb force that drives the flow. This force is located at the interface
and sometimes is interpreted as an electrostatic addition to the surface tension.

Melcher and Taylor [1] observed some earlier works, gave a general description of the phenom-
ena of electrocapillarity, and presented several examples of electrocapillary flows. Later studies
considered mainly flows of drops and small particles [2,3], thin films and sheets [4–8], electrocapil-
lary instability of quiescent [9–13] and parallel [14–17] flow two-fluid systems, and electrocapillary
flows in bounded cylindrical geometries [18–22]. Part of the studies focused on deformations of the
liquid-liquid interface [4–8,22], while the other part considered instabilities of quiescent fluid or
simple shear flows under the effect of the electrocapillary forces [14–17,21]. Analytical solutions
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for developed electrocapillary driven flows are given in [1] for an infinite layer and for Stokes flow
around a drop.

Comparing to the extensive literature on similar thermocapillary flows also driven by the surface
force (see [23] and references therein), there is a certain lack of results for developed nonlinear
electrocapillary flows in finite, experimentally realizable, geometry. To the best of our knowledge,
the study [24] was the only attempt to approach numerically the model experiment of Melcher and
Taylor [1]. The authors of [24] reported flow patterns qualitatively similar to those observed in the
experiment; however, values of their dimensionless parameters did not exactly correspond to the
parameters of the experiment.

This study consists of two main parts. In the first one we address numerically the model
experiment of [1] that illustrated the electrocapillary driving effect in a rectangular cavity filled with
a dielectric liquid and covered by a triangular air layer. We formulate a two-phase two-dimensional
numerical model, which allows us to represent qualitatively the experimental observations. Further
computational modeling shows that with increase of the voltage the electrocapillary flow pattern
changes similarly to thermocapillary flow driven by an increasing temperature gradient along the
interface [23,25]. In both cases, the main circulation becomes more intensive either near a cold
vertical wall, or near the wall with a lower electric potential.

The second part is motivated by electrocapillary phenomena observed in liquid electrolytes, in
particular, liquid electrodes [26] in liquid metal batteries (LMBs) [27]. We argue that a similar
Taylor-Melcher setup [1], where the dielectric fluid is replaced by a poorly conducting one, will
be subject to Joule heating. The resulting nonuniform distribution of the temperature will trigger
buoyancy and thermocapillary convection. We find that with the increase of electric conductivity,
the electrocapillary forcing becomes small compared to the two convective forces. The results show
also that consideration of the two-phase model, and taking buoyancy convection in the air into
account, are crucial for obtaining a correct flow pattern in the lower, heavier liquid.

Since our main goal in this study is a comparison of the contribution of the three driving forces
on flow patterns, we restrict ourselves to the two-dimensional steady flows. We are aware, of course,
that these steady flows become unstable at certain forcing. The latter is governed here by the applied
voltage. The numerical technique we apply [25] allows for a comprehensive linear stability analysis
that can include also interface disturbances, but we leave that for future studies. We can argue also
that no visible oscillations, which would indicate on instability, were observed in the experiments
[1].

The numerical technique [25] applied here is very effective for two-dimensional (2D) flows;
however, computer memory restrictions do not allow us to apply it in three-dimensional (3D)
cases. For direct computations of 3D steady convective flows and a study of their stability, we
proposed another approach [28], which is significantly more CPU-time consuming. Consideration
of more realistic 3D flows requires definition of the spanwise extent and boundary conditions in
the spanwise direction. Both of these were not described in [1]. On the other hand, studies [29,30]
show that only variation of the thermal boundary conditions at the spanwise boundaries can lead to
noticeable changes in flow patterns. In the authors’ opinion, a separate numerical study of different
spanwise boundary conditions would be quite meaningless, unless it is connected directly to a
certain experimental setup, where all the boundary conditions are well defined.

Finally, we examine whether obtained numerical solutions obey the Lippmann equation [31,32],
which describes the dependence of the surface tension on the applied voltage. The results show that
the Lippmann equation is perfectly satisfied both for isothermal and nonisothermal cases. Since this
equation is derived on the basis of purely thermodynamic considerations, which are not explicitly
included in our numerical model, we consider this test as an independent validation of the results.

II. SURFACE FORCE INDUCED BY ELECTROCAPILLARITY

Since electrocapillary flows are much less known compared to thermocapillary or concentration-
capillary flows, we give a brief introduction to the basic physical principles. The field of
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Electrohydrodynamics treats flows induced by electric fields in weakly conducting liquids such
as leaky dielectrics or poorly conducting fluids, e.g., aqueous electrolytes [33–38]. The electrome-
chanical coupling at the interfaces, where electrical parameters are subject to discontinuities, induce
un-neglectable surface forces that must be accounted for in fluid dynamics models. The effect of
electrocapillarity relates to variation of surface tension γ with the local interfacial electrical potential
V , similarly to better known variations of the surface tension with temperature T or concentration
c. The dependence γ (T, c) is a material property, and usually is assumed to be linear for both
the temperature and the concentration. In most liquids ∂γ /∂T < 0, which defines the direction of
the thermocapillary force from warmer to colder interface regions. In the electrocapillary flows
dependence of the surface tension on the local electric potential V is not monotonic, usually
parabolic γ ∼ V 2, so that the sign of ∂γ /∂V can change. The parabolic dependence follows from
the Lippmann equation [31,32], which, under the constraint that liquid composition and temperature
remain quasiconstant, states

∂γ

∂V
= −qs, (1)

where qs is the interface electric charge. The latter can be either induced by external electric
fields, or result from covalently bound ionizable groups, or ion adsorption in electrochemical
systems [32,37–39]. However, the charge density is not a material constant, but results from the
electrohydrodynamics of the whole system. To avoid consideration of the full electrohydrodynamic
problem, the interface can be assigned with a specific capacitance C, such that qs = C(V − V0),
where V0 denotes the potential of zero charge, which is nonzero in most electrochemical systems.
In the particular case of the dielectric liquid addressed in this paper, an external potential difference
is needed to induce surface charges, and the capacitance is simply given by the electric permittivity
and the normal distance between the electrodes, C = ε0/a (see below). Substituting qs = C(V − V0)
into Eq. (1) and integrating yields the parabolic electrocapillary profile,

γ = γ0 − 1
2C(V − V0)2, (2)

with γ0 = γ (V = V0) being the surface tension in the discharged case. Equation (2) shows that any
increase in charge density, positive or negative, will result in a decrease in the surface tension. This
behavior can be intuitively explained by the fact that all interfacial charges exert repulsive Coulomb
forces on each other, which are tangential to the interface. A hypothetical expansion of the interface
therefore requires less energy resulting in lower surface tension. Electrocapillary flows necessarily
develop whenever there is an unbalanced tangential gradient of the surface tension created by
a tangential voltage gradient, which, in its turn, results from a nonzero tangential electric field
component. Contrarily to thermocapillary flows the derivative ∂γ /∂V changes with polarization
(V < V0 or V > V0), which makes electrocapillary forcing more complicated, potentially exhibiting
either a destabilizing or stabilizing effect. Apparently, to attain sufficiently large tangential stresses
that can noticeably affect macroscopic flows, either the capacitance or the voltage must be large
enough. In dielectrics, the capacitance is very small such that voltages of the order of kilovolts
must be applied to drive considerable flows. In contrast, the capacitance of electrochemical double
layers is very high, allowing it to reach similar tangential stresses only with a few volts. The
latter is illustrated by the results below. As a last point, it should be mentioned that the introduced
electrocapillary effect can also be described and understood in a fully equivalent way by considering
electric Maxwell stresses acting at the interface [33,34]. This formulation, following [37,38], is
applied in this study, while the Lippmann equation (1) is used for validation of the numerical results.

III. DESCRIPTION OF A PROBLEM

We consider a 2D configuration of the experiment described in Melcher and Taylor [1]; see their
Figs. 1 and 2. The problem is sketched again in Fig. 1. The liquid (corn oil in [1]) occupies a
rectangular volume of length l and height b. The vertical boundaries are electrodes that are at the
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FIG. 1. Sketch of the problem. All the boundaries are assumed to be no slip and isothermal.

electric potential difference V0. The third electrode is a straight plate, whose left end is attached to
the top of the left vertical boundary, and the right end is positioned at the distance a above the top
of the right boundary. Its electric potential is the same as that of the left boundary. The bottom and
part of the vertical boundary that connects the second and the third electrodes are assumed to be
electrically insulated. The triangular part above the liquid is filled with air.

The jump of the electrical field vertical component over the liquid-air interface creates an
excessive surface charge, whose interaction with the tangential component of the electric field
results in the Coulomb force acting along the surface, as explained above and in [1]. We assume that
the gravity force is large enough to keep the interface flat, which is consistent with the experimental
photo in Fig. 2 of [1]. More arguments justifying this assumption are given below. The horizontal
component of the Coulomb force acts along the interface and drives the flow. The whole system
represents a two-phase flow driven by the tangential Coulomb force acting along the interface. In
all the calculations below, the upper fluid is air and the upper boundary is at room temperature.
The lower and heavier fluid is taken first as dielectric corn oil (liquid 1) used in the experiment [1].
Then we examine the electrocapillary driving in poorly conducting liquids with gradually increasing
electric conductivity. For representative examples we take 0.1 mole/kg NaCl water solution (liquid
2), 2 mole/kg NaCl solution (liquid 3), and a LiCl-KCl mixture used in some liquid metal batteries
[35,36]. For further clarity we collect all the material properties used in the following calculations in
Table I, and the corresponding dimensionless numbers in Table II. The properties were taken from
the published data [40–62].

IV. GOVERNING EQUATIONS

We use the leaky dielectric model introduced in [1] and thoroughly rederived by Saville [33].
Since the electric field is irrotational, it is represented by the gradient of the electric potential E =
−∇φ. Neglecting the volume electric charges in each of the phases 1 and 2, continuity of the electric
current yields

div(σ jE j ) = 0 ⇒ �φ j = 0, j = 1, 2. (3)

The boundary conditions for the electric potential follow from the description of Fig. 1:

φ1(x = 0, y) = φ2

(
x, y = b + a

x

l

)
= 0, (3a)

φ1(x = l, 0 � y � b) = V0, (3b)

∂φ1

∂y
(x, y = 0) = ∂φ2

∂x
(x = l, b < y � b + a) = 0. (3c)
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TABLE I. Properties of the considered liquids.

Liquid 1 2 3 4 5

Property Notation
Corn

oil/source

NaCl-water
0.1 mole/kg

solution
NaCl-water 2

mole/kg solution
Electrolyte
LiCl-KCl

Air (at
25 °C)/source

Density (kg/m3) ρ 915 [1] 998.8 [52] 1071 [43,55] 1598 [35] 1.184 [43]
Viscosity (kg/m s) μ 0.0592 [1] 0.00103

[52,56]
0.001075 [47] 0.0022 [35] 1.84 × 10−5

[43]
Electric
permittivity

ε 3.35 [1] 70 [49] 48 [49] 5.0 [46] 1.0005 [43]

Electric
conductivity
(1/	 m)

σ 0.24 × 10−10

[41]
0.01 [48] 0.125 [48] 187.1 [35] 10−14 [44]

Heat conductivity
(W/m ◦C)

κ 0.166 [41] 0.61 [50] 0.586 [50] 0.365 [35] 0.0263 [43]

Heat capacity
(J/kg ◦C)

C p 1956 [42] 4190 [51] 3700 [51] 1202 [35] 1006 [43]

Heat expansion
(1/ ◦C)

β 7.22 × 10−4

[42]
2.67 × 10−4

[52]
3.7 × 10−4 [52] 3.32 × 10−4

[35]
0.00338 [43]

Surface tensiona

(N/m)
γ 0.0316 [41] 0.0728 [53] 0.0755 [53] 0.0165 [45]

Temperature
coefficient of
surface tensiona

(N/m K)

dγ /dT 0.53 × 10−5

[41]
0.14 × 10−3

[54]
0.14 × 10−3 [54] 3.1 × 10−5

[35]

Interface electric
conductivityb

(1/	)

σs 10−10 10−10 10−10 10−10

Interface diffusion
coefficientb (m2/s)

Ds 10−09 10−09 10−09 10−09

Interface electric
mobility of ionsb

(1/	)

ξs 10−09 10−09 10−09 10−09

aWith air.
bThe correct value is unknown.

At the interface y = b,

φ1(x, y = b) = φ2(x, y = b), (4a)

ε0[ε2E2,y − ε1E1,y]y=b = ε0

[(
ε1

∂φ1

∂y
− ε2

∂φ2

∂y

)]
y=b

= qs, (4b)

where qs is the surface charge, ε0 is electric permittivity of vacuum, and ε j are electric permittivities
of the two liquids. To close the formulation for the electric field, we need to add an equation
describing conservation of the surface charge, which will include the flow velocity and will be
discussed later.

In the considered model, the electrocapillary flow appears after the voltage V0 is applied (see
Fig. 1), which leads to a nonuniform distribution of the electric charge along the interface. At the
same time, assuming that the boundaries with different electric potential are connected via a closed
circuit, the electric current will lead to release of Joule heat in the lower, poorly conducting liquid.
This can be significant even for fluids with very small electrical conductivity, as happens, e.g., in
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TABLE II. Dimensionless parameters and their characteristic values for the Taylor-Melcher experiment,
�T = T1 − T0.

NaCl-water
0.1 mole/kg
solution,

NaCl-water
2 mole/kg
solution,

Dimensionless parameter Definition
Corn oil,

V0 = 20 kV V0 = 70 V V0 = 20 V
LiCl-KCl,
V0 = 1 V

Prandtl number, Pr μ1
α1ρ1

697 7.07 6.79 7.245

Grashof number, Gr
gβ1(T1−T0 )H3ρ2

1,0

μ2
1

93�T 1.35 ×
105�T

1.98 ×
105�T

9.43 ×
104�T

Marangoni number, Ma γ (T1−T0 )b
μ1α1

37�T 3.54 ×
104�T

3.35 ×
104�T

2818�T

Electrocapillary number,
Ec

ε1V 2
0 ρ1

μ2
1

193.6 2859 158 0.0098

Joule heating number, Jo
σV 2

0 b2

μ1cp,1(T1−T0 ) 1.2 × 10−7 0.0164 0.0182 2.55 × 106

Galileo number, Ga
gρ2

1,0b3

μ2
1

1.29 × 105 5.06 × 108 5.34 × 108 2.84 × 108

Bond number, Bo ρ1,0gb2

γ
410 194 201 1372

Capillary number, Caa μ
4/3
1 g1/3

γ ρ1/3 = Bo
Ga2/3 0.16 3.06 × 10−4 3.05 × 10−4 0.0032

Taylor electrocapillary
number, Taa

ερ1/3V 2
0

μ
4/3
1 g1/3b

61.4 3.59 0.194 1.49 × 10−5

aDefinition of Ref. [24].

liquid metal batteries [35]. Effect of the Joule heating is twofold. First, a nonuniform distribution
of the temperature triggers natural convection. Second, a temperature variation along the interface
creates thermocapillary forces that will interact with the electrocapillary ones. Taking all these into
account, and neglecting all possible effects of the flow on the imposed electric field, the remaining
part of the problem is described by the momentum, continuity, and internal energy equations. For
further formulation, it is necessary to discuss the electrostriction force, which is derived from
the Maxwell stress tensor [37,39], and must be added to the momentum equation. The general
expression for this force is [37]

f E
i = −1

2

∂

∂xi

[(
ε − ρ

∂ε

∂ρ

)
E2

]
+ ∂

∂x j
(εEiEj ). (5a)

The first term of the above expression is potential and can be added to the pressure gradient term
of the momentum equation. This term does not affect the velocity field, but should be taken into ac-
count for derivation of the shape of the interface. The second term can be expressed as Div[εE ⊗ E]
and can be evaluated using the relation Div[U ⊗ W ] = UdivW + (W · ∇ )U . Assuming ε = const
in each layer,

Div[εE ⊗ E] = εEdivE + ε(E · ∇ )E = εEdivE + 1
2εgrad(E2) − εE × rotE. (5b)

The first term of Eq. (5b), together with the Maxwell equation εdivE = q, yields the Coulomb
force f C = qE, where q is the volume charge. Since there is no free charge in the considered system,
the first term of the r.h.s. of Eq. (5b) can be dropped. According to the Maxwell equation, rotE =
−∂B/∂t , and rotE = 0 for the steady electromagnetic field, so that the third term also vanishes. The
second term is potential and can be added to the pressure gradient term. Assuming constant electric
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permittivity, the resulting electrostriction pressure results from Eq. (5a)

pstr = 1
2εE2, f str = ∇pstr. (5c)

To apply the Boussinesq approximation, we assume a linear dependence of the densities on
the temperature, ρ j = ρ0, j[1 − β j (Tj − T0)], where β j are the thermal expansion coefficients of
the liquid and the air, and β j (Tmax − Tmin) � 1. Governing equations for velocity u j = (u j,w j ),
pressure p j , and temperature Tj , j = 1 or 2, of the liquids 1 and 2, read

ρ j

[
∂u j

∂t
+ (u j · ∇ )u j

]
= −∇Pj + μ j�u j + gβ j (Tj − T0)ey, (6)

∇ · u j = 0, (7)

ρ jcp, j

[
∂Tj

∂t
+ (u j · ∇ )Tj

]
= κ j�Tj + J2

j

σ j
. (8)

Here t is time; μ j , Tj , cp, j , κ j , and σ j are viscosity, temperature, heat capacity, heat conductivity,
and electric conductivity of the fluids, respectively. J j = σ j∇φ j is the electric current in each layer.
The total pressure Pj consists of dynamic, hydrostatic, and electrostriction parts, and is expressed as

Pj = p j + ρ0, jg + 1
2ε jE2

j . (9)

Assuming all the boundaries to be no slip and isothermal at the temperature T0, the boundary
conditions read

u j (x, y = 0) = u j (x = 0, y) = u j (x = l, y) = u j

(
x, y = b + a

x

l

)
= 0, (10)

Tj (x, y = 0) = Tj (x = 0, y) = Tj (x = l, y) = Tj

(
x, y = b + a

x

l

)
= T0, (11a)

κ1

(
∂T1

∂y

)
y=b

= κ2

(
∂T2

∂y

)
y=b

. (11b)

To render equations dimensionless, we choose b to be the length scale and, following common
formulations for natural convection, the velocity scale is defined as μ1/ρ1b. The scales of time,
pressure, electric potential, and electric current are b2ρ1/μ1, μ2

1/b2ρ1, V0, and σ0,mV0/b, respec-
tively. The temperature is rendered dimensionless by θ = (T − T0)/(T1 − T0), and assuming the
Boussinesq, which includes Eq. (9), we arrive at the nondimensional form of equations:[

∂u j

∂t
+ (u j · ∇ )u j

]
= − ρ2,0

ρ21ρ j,0
∇Pj + μ j

ρ2,0

ρ21ρ j,0

μ21μ j

μ2
�u j + Gr

β21β j

β2
θ jey, (12)

∇ · u j = 0, (13)

∂θ j

∂t
+ (u j · ∇ )θ j = α21α j

α2

1

Pr
�θ j + ρ2,0

ρ21ρ j,0

cp,2

cp,21cp, j

σ2

σ21σ j
JoJ2, J j = σ21σ j

σ2
∇φ j, (14)

where the dimensionless governing parameters are ratios of physical properties, ρ21 = ρ2/ρ1, μ21 =
μ2/μ1, β21 = β2/β1, σ21 = σ2/σ1, ε21 = ε/ε1, and α21 = α2/α1 (α j = k j/ρ jCp, j); the Prandtl
number Pr = μ1/α1ρ1; the Grashof number Gr = gβ1(T1 − T0)H3ρ2

1,0/μ
2
1; and the Joule heating

number Jo = σV 2
0 b2/μ1cp,1(T1 − T0).

The shape of the liquid-liquid interface is described as y/b = 1 + χ (x). It is defined by the
balance of normal stresses, which, in the dimensionless form reads

p1 − p2 + 1

2
Ec

(
E2

1 − ε21E2
2

) − Ga

(
1 − 1

ρ21

)
χ − Ga

Bo
K = �τnn�, (15)
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where K is the dimensionless main interface curvature; n and τ are unit normal and tangent
to the interface vectors; �τnn� denotes a jump of the normal viscous stress over the interface,
respectively; Ga = gρ2

1,0b3/μ2
1 is the Galileo number; Bo = ρ1,0gb2/σ is the Bond number; and

Ec = ε1V 2
0 ρ1/μ

2
1 is a dimensionless parameter that describes the electrocapillary forcing and is

sometimes called the electrocapillary Marangoni number. As follows from Table II, the Galileo
number Ga is several orders of magnitude larger than the electrocapillary number Ec, and than the
ratio Ga/Bo. The other terms are noticeably smaller, which can be seen, for example, from the
numerical results. This means that all the terms of Eq. (15) can be balanced only if the interface
deviation from the horizon χ and the curvature K are several orders smaller than unity, meaning
that the interface deformations can be neglected [63]. The results of [24], where these deformations
were included in the model, did not report any significant interface deviation from the flat shape.
It is stressed, however, that investigation of the stability of steady flows reported below requires
consideration of the interface deformations, as is argued in [64].

For the flat interface, the normal to interface velocity is zero,

uy(x, y = b) = 0. (16)

The tangent stress balance at the flat interface reads[
μ2

∂u2,x

∂y
− μ1

∂u1,x

∂y

]
y=b

= qsEx(x, y = b) + dγ

dx
= qs

[
∂φ

∂x

]
y=b

−
∣∣∣∣dγ

dT

∣∣∣∣dT

dx
. (17)

Following the scales introduced above, we define the scales of the electric field and the surface
charge as V0/b and ε0V0/b, respectively. This yields Eq. (17) in the dimensionless form,[

μ21
∂u2,x

∂y
− ∂u1,x

∂y

]
y=b

= Ec

[
∂φ

∂x

]
y=b

− MaPr
dθ

dx
, (18)

where Ma = | dγ

dT | (T1−T0 )b
μ1α1

is the Marangoni number.
In the work of Saville [33] the conservation of surface charge is described by Eq. (22′), in which

the charge diffusion is neglected. Also, the origin of the velocity dependent terms is not completely
clear. In our opinion, keeping the diffusion term is essential, since otherwise it will be impossible to
arrive at a steady distribution of the surface charge in a quiescent fluid. In the following we use the
equation derived in [37] and used in [15], which reads for an arbitrary interface,

∂qs

∂t
+ un(∇ · n)qs + ∇s · Ks + n · �σE� − un�q� = 0, (19)

where

Ks = ξsqsEs + σsEs + qsus − Ds∇qs. (20)

Here n is the normal to the interface, ξs is the surface electrical mobility of ions, σs is interface
electrical conductivity, Ds is the surface diffusion coefficient, un is the normal to the surface velocity,
and (∇ · n) represents the interface curvature. The operator ∇s is the projection of the operator ∇
on the interface and is defined as ∇s = ∇ − n(n · ∇ ). The double square brackets denote the jump
of a quantity from phase 1 to phase 2, []2 − []1. A similar formulation can be found in [37,38].

For the present problem un = 0, (∇ · n) = 0, and ∇s = ∂/∂x. Therefore, for a steady flow,
Eqs. (9) and (10) yield

ξs
∂

∂x
(qsEx ) + σs

∂Ex

∂x
+ qsux − Ds

∂2qs

∂x2
+ (σ1E1,y − σ2E2,y) = 0. (21)

Considering boundary conditions for the surface charge, we assume that there is no flux of
the surface charge through the left boundary. For the right boundary this assumption leads to a
discontinuity in the derivative ∂qs

∂y at y = b. Thus, we derive the boundary condition from Eq. (4b)
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taking into account that this boundary is equipotential for y � b, so that[
∂q

∂x

]
y=b, x=0

= 0, qs(x = l ) = ε0ε2

[
∂φ2

∂y

]
y=b, x=l

. (22)

This closes the set of equations for the considered problem.
The problem is solved using the finite volume discretization on a regular staggered grid. The

finite volume schemes are conservative and are derived as in [65]. Expressions for all the schemes
are reported in [66]. Convergence of this discretization for several natural convection benchmark
problems is studied in [67]. The upper boundary is accounted for by the immersed boundary method,
where formulation of [68] is used for the momentum equations, and formulation of [69]—for the
continuity equation. The steady flows are calculated by the Newton method using the approach of
[25]. The calculations are performed on grids varying from 200 × 200 to 500 × 500 nodes, stretched
as in [25] in the cases where boundary layers are observed. The convergence study shows that this
grid yields three decimal places converged for all computed functions.

V. PLANE-PARALLEL SOLUTION OF MELCHER AND TAYLOR

Melcher and Taylor [1] considered the current problem assuming very large length l and vacuum
as the second phase. The electric potential was assumed to be a linear function of x and y, so that
the horizontal and vertical components of the electric field were constant:

φ = V0

(x

l
− y

a

)
, Ex = −∂φ

∂x
= −V0

l
, Ey = −∂φ

∂y
= V0

a
. (23)

This yields for the electric charge and the Coulomb tangent stress,

qs = ε0V0

a
, τC = −ε0

V 2
0

al
. (24)

Now assuming that, owing to a large l , velocity has only a horizontal nonzero component that
depends only on the coordinate y, the problem for velocity becomes

μ
d2ux

dy2
= −d p

dx
, ux(y = 0) = 0, μ

[
dux

dy

]
y=b

= −ε0
V 2

0

al
. (25)

The pressure gradient d p
dx is assumed to be a constant, and is obtained from the requirement of

the zero mass flux across the liquid layer: ∫ b

0
uxdy = 0. (26)

The solution of (16) and (17) is

ux = − ε0

2μ

V 2
0 b

al

(
3

2

y2

b2
− y

b

)
. (27)

This is the same parabolic return flow as the profile of Birikh [70] for thermocapillary convection
in a horizontal layer subject to a horizontal temperature gradient.

VI. FLOW IN A FINITE GEOMETRY

As mentioned above, for calculations in the finite geometry that fully corresponds to the geometry
of experiment [1], we consider four different dielectric and poorly conducting liquids, whose
properties taken from [42–56] are listed in Table I. First we consider the corn oil (liquid 1) used
in the above experiment. Then we are interested in the effect of release of the Joule heat when the
lower liquid is weakly electrically conducting. For this purpose, we consider a dilute 0.1 mole/kg
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FIG. 2. (a) Flow image of the experiment [1] at V0 = 20 kV. Streamlines of the computed flow (b) with
a constant surface Coulomb tension (13); ψmin = −0.000 523 m2/s, ψmax = 0.000 211 m2/s and (c) with a
complete leaky dielectric model (1)–(11); ψmin = −0.000 516 m2

s , ψmax = 0.000 213 m2/s. Along the interface
the flow is directed from the right to the left boundary.

NaCl-water solution (liquid 2), a more concentrated 2 mole/kg NaCl-water solution (liquid 3),
whose electric conductivity is noticeably larger, and, finally, a mixture of LiCl-KCl salts (liquid
4), whose properties are taken as a characteristic for electrolytes used in the LMB design [27,35],
and whose electric conductivity is larger than that of the two previous liquids. Note that the values
of surface conductivity, mobility, and diffusion coefficient are unknown, and we estimate them by
the orders of magnitude of these values published for other materials. Thus [57] reports the surface
mobility values for some oils to be below 10−11m2/V s, and [58] estimates it for NaCl aqueous
solutions below 10−9 m2/V s. The surface conductivity of dielectric fluids is estimated in [59] to be
below 10−15 1/	, and for some salt solutions it is 10−5 1/	 [60]. The diffusion coefficient is about
10−10 m2/s for oils [61], and of the order of 10−9 m2/s for NaCl solutions [62].

To gain better understanding of the results of the Joule heating and the magnitudes of flow
velocities, all the results are reported as dimensional values. The dimensionless parameters, which
allow for a better comparison between the cases, are listed in Table II.

A. Corn oil–air system (Melcher-Taylor experiment [1])

The experimental photo of the flow pattern is reproduced in Fig. 2(a). To compare, we first
perform calculations considering the same finite geometry and voltage, but a constant interface
Coulomb tension given by Eq. (23). The resulting streamlines are plotted in Fig. 2(b). Then we
perform computations for the full model (3)–(22), which results in the streamlines plotted in
Fig. 2(c). We observe that the flows are similar, and the minimal and maximal values of the stream
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FIG. 3. Equipotential lines (a) and distribution of the surface charge density along the surface (b).

function are close. The flow along the interface is directed from the right to the left boundary,
i.e., from the larger to lower voltage. The maximum of the stream function is shifted towards the
left boundary, which is consistent with the experimental photo of [1] shown in Fig. 2(a). This is
similar to the patterns developing in long horizontal cavities under the action of thermocapillary
force [71,72]. Note that the interface stress also drives the air flow in the upper triangular part of
the setup. Owing to the small viscosity of air, its influence on the flow inside the oil is negligible.
However, its effect can be more significant if, say, the two liquids are nonisothermal and continuity
of heat flux at the interface is required (see below).

Similarities and differences in the description of the electric part in the two cases are illustrated
in Fig. 3. Figure 3(a) shows equipotential lines for the full leaky dielectric model. We see that the
potential inside the oil is a linear function of x, and inside the air it is almost a linear function of
x and y, as assumed by Melcher and Taylor [1]. The difference is clearly seen at the profile of the
surface charge [Fig. 3(b)]. The surface charge is almost constant, except for a short region near the
right boundary, where it grows steeply. The value of the constant is qs ≈ 6.4 × 10−6 C/m2, while
Eq. (15) yields a close value, qs ≈ 6.2 × 10−6 C/m2. The steep growth near the right boundary and
a slight decay at the left boundary are caused mainly by changes of ∂φ/∂y at the air side of the
interface.

To look for possible flow changes, we varied the last three parameters of Table I, which are
unknown for the corn oil–air system. Increase of the electric mobility to the value of 10−3 m2

V s , or

surface diffusion coefficient to 0.01 m2

s , or surface conductivity to 10−5 1/	 m2 did not noticeably
alter the whole numerical solution. This shows that the added phenomena of surface charge mobility,
surface diffusion, and surface conductivity are negligible compared to the effect of the surface
charge accumulation owing to the electric field inhomogeneity. It points also to the consistency
of the Melcher-Taylor model. At the same time, these seemingly negligible effects may affect the
stability of the interface, which is yet to be studied.
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FIG. 4. Change in streamlines with the increase of applied voltage. Along the interface the flow is directed
from the right to the left boundary.

A possible change takes place with further increase of the applied voltage. This is illustrated
in Fig. 4. We observe that with the increase of voltage, meaning increase of the forcing, the main
circulation is shifted towards the left boundary, where the most intensive flow is localized. Again,
this is similar to changes of flow patterns of thermocapillary convection with the increase of the
Marangoni number [72].

Finally, we additionally verify the electrostatic part of our numerical model. The additional
surface tension induced by the Coulomb forces is characterized by the surface tension coefficient
γ , which is analogous to the mechanical surface tension coefficient, as is discussed in Sec. II. The
coefficient γ is connected with the local interface voltage by the Lippmann equation (1), which
results from thermodynamic relations [32]. These relations are not straightforwardly included in the
above mathematical model. Therefore, an examination whether the present results, obtained from
the full electrohydrodynamical model, satisfy the Lippmann Eq. (1), would yield an independent
verification. We rewrite the r.h.s. of Eq. (17) for dγ /dT = 0 as

qsEx(x, y = b) = ∂γ

∂x
, (28)

from which

γ (x) =
∫ x

0
qsEx(x, y = b)dx. (29)

We use the numerical solution to calculate γ (x) and then ∂γ

∂V = ∂γ

∂φ
, which we compare with the

calculated profile of qs.
The result of this comparison is shown in Fig. 5 for three values of the applied voltage. We

observe coincidence of all profiles to within the plot accuracy. We also observe that both compared
values are scaled by the applied voltage V0. This shows, in particular, that nonlinear coupling of
the surface charge with velocity in Eq. (12) is weak. Since the velocity and the surface charge are
coupled by Eqs. (9) and (12), and the Lippmann equation results from thermodynamic relations,
this comparison yields a good verification of the numerical results.

B. Effect of Joule heating

The electric conductivity of the corn oil is of the order of 10−10 (Table I), so that the voltage
induced electric current and the Joule heating are negligible. However, when the liquid becomes
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FIG. 5. Illustration of validity of the Lippmann equation: comparison of potential dependence of the surface
tension and distribution of the surface charge.

slightly electrically conducting, observations change drastically. For each of the liquids 2, 3, and 4,
considered below, we choose voltage, which, under effect of a fully developed flow, yields maximal
temperature difference in the range of 0.5 °C–2 °C.

A very rough estimate of the Joule heating effect can be obtained by considering an infinite layer
of width b, subjected to a potential difference V0 at its boundaries, so that the electric current passing
through it is j = σV0/b. Assuming both boundaries are isothermal at the temperature T0, this leads
to the temperature distribution,

T (y) = T0 + σV 2
0

2κ

(
y

b
− y2

b2

)
. (30)

The maximal temperature is located at y = b/2 and the maximal temperature difference is Tmax −
T0 = σV 2

0
8κ

. For the three considered poorly conducting liquids this value reaches 82 ◦C for liquid 2 at
V0 = 100 V, for liquid 3 at V0 = 50 V, and 267 ◦C for liquid 4 at V0 = 1 V. These numbers show that
the Joule heating cannot be neglected. It will be shown below that the above temperature differences
strongly overestimate the correct result. The resulting temperature is considerably lower because of
(i) heat transfer through the lateral boundaries and (ii) because of convective mixing.

Figure 6 shows temperature distribution in the lower liquid, which results from the Joule heating
and is not yet affected by the flow. All the boundaries are considered to be isothermal at the
temperature T0. The latter is withdrawn from the isotherm values shown in Fig. 6. We observe
that heat losses through the lateral boundaries lead to much lower maximal temperatures than those
reported above. The isotherms in all three cases exhibit similar patterns, whose differences are
caused mainly by different ratios of liquid to air thermal conductivities [see Eq. (11b)]. The maximal
temperature differences do not exceed 6 °C, which justifies the Boussinesq approximation.

To show how all the three electrocapillary, thermocapillary, and buoyancy forces affect the flow,
we perform calculations first for the electrocapillary driving only, then for combined electrocapillary
and thermocapillary driving, and finally for the realistic model that accounts for all three forces. The
results are shown in Figs. 7–9.
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FIG. 6. Isotherms resulting from Joule heating in the considered geometry, not affected by flow.

The patterns of purely electrocapillary driven flows (Fig. 7) are similar to those reported for
a dielectric liquid flow (Fig. 2). We observe that the flow weakens with increase of the electric
conductivity, meaning that electrocapillary forcing is most profound in dielectric liquids. We
observe also that maximal temperatures and the isotherm patterns are similar to those reported in
Fig. 6 for the no-flow case, so that convective mixing by the electrocapillary flows appears to be
negligible. It should be noted here that decrease of the flow velocity with the increase of electric
conductivity observed in Fig. 7 can be caused by a stronger convection of the surface charge affected
by the jump of σEn in Eq. (19). Alternatively, it can be a result of a weaker production of the surface
charge governed by the jump of εEn in Eq. (4b). The latter seems to be unlikely, since the electric
permittivity of the corn oil, where the electrocapillary effect is the strongest, is smaller than that
of the other liquids. The equipotential lines in all the cases considered are similar to those shown
in Fig. 3(a). Inside the liquid the lines are almost vertical, so that electric potential is a function
of x only, and En = ∂φ/∂y ≈ 0. To verify this, we repeated calculation for liquid 4, increasing the
electric permittivity from 5 to 70, which is the value of liquid 2. No noticeable changes in the results
were observed. Thus, we conclude that larger electric conductivity leads to a stronger convection of
the surface charge along the interface, so that surface charge nonuniformities are smeared and the
Coulomb force decreases.

As a result of the Joule heating, the temperature maximum is located at the midline x = l/2
(Fig. 6). Thus, the thermocapillary force drives the flow from the center of the interface to its ends,
as is seen in Fig. 8, where the thermocapillary force is combined with the electrocapillary one. One
observes that the velocities become noticeably larger than those shown in Fig. 7, meaning that the
thermocapillary force is much larger than the electrocapillary one. Nevertheless, the streamlines
inside the liquid are not symmetric, as one would expect for a purely thermocapillary convection.
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FIG. 7. Streamlines and isotherms of flows driven by the electrocapillary force only.

At the left part of the interface the direction of the two forces is the same, while at the right part it
is opposite. As a result, we observe a more intensive motion and a larger convective vortex in the
left part of the cavity, which also shows that interaction of the two forces breaks the flow symmetry
and therefore is not negligible. A more intensive flow leads to a stronger convective mixing, so
that temperature maxima are decreased. Owing to the stronger flow in the left vortex, they are
shifted towards the left boundary (cf. isotherms in Figs. 7 and 8). The more intensive flow leads to a

FIG. 8. Streamlines and isotherms of flows driven by the electrocapillary and thermocapillary forces with
neglected buoyancy force.
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FIG. 9. Streamlines and isotherms of flows driven by all three forces.

development of temperature boundary layers near the vertical boundaries, which is expected, taking
into account the relatively large Prandtl numbers of the three liquids (Table II).

When the buoyancy force is added to the model (Fig. 9), the flow patterns drastically change. The
maximal values of the temperature, shifted towards the interface, create an unstable stratification
into the air and a stable stratification inside the liquids. Taking into account a smaller viscosity of
air, this leads to development of an intensive buoyancy convection inside the air, which appears as
several convective rolls. The cold air (see isotherms in Fig. 9) descends near the right boundary,
so that the air motion along the interface in its right part is directed from right to left, which is
opposite to what was observed in Fig. 8. Similarly to convection in horizontally elongated cavities
[23], the air rolls rotate in the same direction and are located inside a large circulation, which moves
along the interface from right to left. In the bulk of liquids, the flow is weak because it is suppressed
by the stable stratification. The strongest buoyancy forces are located in thin boundary layers
adjacent to the vertical boundaries, where the horizontal part of the temperature gradient is large,
which leads to a large nonpotential buoyancy force. One observes also the velocity boundary layers
along the vertical walls, which usually develop at large Grashof and Prandtl numbers (Table II).

In the flows shown in Fig. 9 the colder liquid temperature is located closer to the vertical walls.
This means that the buoyancy force there is directed downwards and purely buoyant circulations
would be directed opposite to what is shown in the figure. Considering the right circulations in the
streamline patterns of Fig. 9, we notice that also the electrocapillary and thermocapillary forces act
in the direction opposite to the observed flow, as shown in Fig. 8. The resulting direction of the right
circulations is defined by the balance of stresses at the interface, where the air flow is so strong that
the viscous interfacial stress it produces overcomes all other forces. The left circulations are not
affected so strongly by the air flow, so that their direction is the same as in Fig. 8, and corresponds
to the direction of all three buoyant, thermocapillary, and electrocapillary forces.

To gain a better comparison into the interaction of the electro- and thermocapillary forces, we plot
dimensional values of their stresses in Fig. 10. The electrocapillary forces in the models with and
without buoyancy are the same, since the flow does not affect the volume charge [see Eq. (19)]. We
notice also that in the complete model with buoyancy, the thermocapillary stress can change its sign
several times, which happens because convective rolls in the air affect the interfacial temperature,
so that its distribution along the interface becomes nonmonotonic. Comparison of the two frames
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FIG. 10. Dimensional values of electrocapillary and thermocapillary forces in the different cases consid-
ered. Electrocapillary, thermocapillary, and buoyancy forces: comparison of potential dependence of the surface
tension and distribution of the surface charge.

of Fig. 10 shows that maximal values of the thermocapillary forces are several orders of magnitude
larger than the electrocapillary ones. However, since the thermocapillary force changes sign along
the interface [Fig. 10(b)], its value in the central part is much weaker than at the ends, where the
temperature gradient is larger. This makes electrocapillary and thermocapillary forces comparable
at the central part of the interface, thus explaining the breaks of symmetry in Fig. 8, and showing
that their interaction must be taken into account.

The above examples show that contrarily to dielectric fluids, the electrocapillary effect in weakly
and strongly conducting electrolytes can be overshadowed by thermocapillary and buoyancy driving
forces. Additional computations performed for the three cases shown in Fig. 9 with removed
electrocapillary force showed such small changes in the flow that they were not visible on the
streamline plots. When we additionally remove the thermocapillary force, the changes in flow
patterns become visible, but still weak. Needless to say, the combined action of the buoyancy and
electrocapillary forces results in flow patterns almost the same as in the purely buoyant case.

In all the cases with buoyancy included, a strong buoyancy force in the lighter upper phase
creates flow, which is intensive enough to make the flow direction at the interface opposite to what
is expected from the convective and electrocapillary driving. These results lead to a conclusion
that without consideration of the two-phase model and accounting for velocity and temperature
distribution into the air, it would be impossible to obtain a correct flow pattern into the lower liquid.

We are interested also to examine whether the Lippmann equation (1) holds in nonuniformly
heated fluids, when their flows are driven not only by the electrocapillary force. Similarly to
the isothermal case, we check whether the surface charge qs can be replaced in Eq. (17) by the
derivative dγ /dφ. Assuming that dependence of the surface tension on the electric potential and the
temperature is described by independent dependencies, we again apply Eq. (29) to calculate γ , and
then to calculate dγ /dφ. The result is presented in Fig. 11. It follows that the Lippmann equation
still holds and limits of its applicability are yet to be studied.

An additional observation is scaling of the surface charge and dγ /dφ by the applied voltage V0

(Fig. 10). The two weaker conducting liquids, 2 and 3, exhibit almost the same scaled results, which
are also close to that reported in Fig. 5 for a dielectric liquid. When electric conductivity increases,
like in liquid 4, the scaled results deviate from the previous ones. Thus the limitations of this scaling
are another issue yet to be studied.
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FIG. 11. Verification of the Lippmann equation for nonisothermal flows in electrolytes driven by electro-
capillary, thermocapillary, and buoyancy forces: comparison of potential dependence of the surface tension and
distribution of the surface charge.

VII. CONCLUDING REMARKS

A confined setup used by Melcher and Taylor [1] for experimental demonstration of the elec-
trocapillary flow was studied numerically. First, we considered the flow in a corn oil–air system,
as in the experiment [1], for which a qualitative agreement between the calculated streamlines and
the experimental flow visualization was obtained. The change of velocity pattern with the increase
of the externally applied voltage was examined. It was shown that a stronger forcing leads to the
intensification of flow near the boundary having lower electric potential.

An analogy between the electrocapillary and thermocapillary flows is well known [14]. Also in
this study, we observe similarity of flows driven by these two different interface forcing mechanisms
and give relevant references to the thermocapillary flow results, which had been studied much more
intensively than the electrocapillary ones. It raises a question of how these two mechanisms interact
in a nonisothermal fluid. Noticing that applied potential differences lead to the appearance of the
electric current in the liquid, we took into account the Joule heating, thus arriving at a well-defined
nonisothermal model. The electric conductivity of the corn oil is extremely small (Table I), so that
the Joule heating leads to the negligible increase of the temperature, and all the above conclusions
about the corn oil–air system remain valid. To make the Joule heat release more profound, and
additionally motivated by recent studies of flows in LMBs [27], we replaced the corn oil by three
different weakly conducting liquids that have gradually increasing electric conductivity.

Starting to study the effect of the Joule heating, we noticed that heat transfer through the lateral
boundaries and convective mixing must be taken into account. Otherwise, the resulting temperature
will be strongly overestimated. Then we observed that with the increase of electric conductivity of
the test liquid, the electrocapillary effect weakens compared to the buoyancy and thermocapillary
driving.

The thermocapillary force drives the flow along the interface from the center to the lateral walls,
thus producing two almost symmetric vortices. A combined action of the electrocapillary and
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thermocapillary forces breaks this symmetry (Fig. 8), since the electrocapillary force is unidirec-
tional and drives the flow from the right to the left end wall. We showed that at the central part
of the interface the two surface forces become comparable. As a result, the vortex adjacent to the
left wall becomes stronger than the other one. The isotherms in the lower liquid exhibit developing
temperature boundary layers along the vertical boundaries.

In the realistic model that also involves the buoyancy forces, the flow patterns completely change.
A strong buoyancy convection in the air creates large stress at the interface, which drives the flow
opposite to the direction of all three buoyancy, thermocapillary, and electrocapillary forces. From
this observation, it follows that consideration of a single phase model of the lower liquid only would
lead to wrong results. Flow in the lower liquid is suppressed by the stable temperature stratification
in the bulk of the cavity, while both velocity and temperature thin boundary layers develop near
the vertical boundaries. Comparison of the interfacial stresses produced by the electrocapillary and
thermocapillary effects shows that in the central part of the interface they are comparable, so that
their interaction affects the final flow pattern.

Finally, we examine whether our numerical results satisfy the Lippmann equation, which is not a
part of our model and is derived from the thermodynamic relations [32]. Good agreement obtained
for isothermal (Fig. 5) and nonisothermal (Fig. 10) flows verifies the present calculations.
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