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We investigate the stability of the steady vertical path and the emerging trajectories of
a buoyancy-driven annular disk as the diameter of its central hole is varied. The steady
and axisymmetric wake associated with the steady vertical path of the disk, for small hole
diameters, behaves similarly to the one past a permeable disk, with the detachment of
the vortex ring due to the bleeding flow through the hole. However, as the hole diameter
increases, a second recirculating vortex ring of opposite vorticity forms at the internal
edge of the annulus. A further increase in the hole size leads to the shrinking of these
recirculating regions until they disappear. The flow modifications induced by the hole
influence the stability features of the steady and axisymmetric flow associated with the
steady vertical path. The fluid-solid coupled problem shows a nonmonotonic behavior of
the critical Reynolds number for the destabilization of the steady vertical path, for low
values of the disk’s moment of inertia. However, for very large holes, with dimension
approximately more than half of the external diameter, a marked increase of the neutral
stability threshold is observed. The nature of the primary instability changes as the hole size
increases, with large (small) amplitude oscillations of the trajectory at intermediate (very
small and large) internal diameters. We then illustrate results obtained with fully nonlinear
simulations of the time-dependent dynamics, together with a comparison of the linear
stability analysis results. Falling styles, typically described as steady, hula-hoop, fluttering,
chaotic, and tumbling, are shown to emerge as attractors for the nonlinear dynamics of the
coupled fluid-structure system. The presence of a central hole does not always reduce the
falling Reynolds number, and it may cause the transition from tumbling towards fluttering,
from fluttering to hula-hoop, and from hula-hoop to steady, hence promoting trajectories
with smaller lateral deviations from the vertical path. The observed trajectories and patterns
agree well with linear stability analysis results, in the vicinity of the threshold of instability.

DOI: 10.1103/PhysRevFluids.9.043907

I. INTRODUCTION

Buoyancy-driven motions of bodies in a viscous fluid are a problem of interest in many engi-
neering and scientific disciplines (cf. Ref. [1] for an extensive review). These include seed dispersal
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FIG. 1. (a) Sketch of the flow configuration with the employed coordinate systems. (b) Some falling style
of thin disks. The falling mode has a direct impact on the lateral distance R covered, which vanishes in the
case of steady vertical fall while it scales like R ≈ Hi tan α, where Hi is the falling height, in the case of the
tumbling mode.

and the unpowered flight of bio-inspired artifacts. Mazzolai et al. [2,3] proposed applications to
environmental sensing in remote areas through biodegradable sensors which are released by drones
that mimic the dispersal strategies of natural seeds. Understanding the free-fall dynamics and
trajectories is crucial for planning the effective deployment of these sensors.

Nontrivial falling or rising paths stem from the interaction between the buoyancy-driven object
and the surrounding fluid, as in the case of free-falling paper sheets [4–6]. Objects falling (or rising)
under gravity in a fluid medium may follow complex and even chaotic trajectories depending on
their geometry, the ratio of densities between the body and the surrounding fluid, and the fluid
viscosity. The governing equations for this fluid-structure interaction problem are well-known
[7]. In the case of a rigid body, they consist of the nonlinear equations of rigid-body dynamics,
coupled with the nonlinear Navier-Stokes equations for the viscous dynamics of the surrounding
fluid. The nonlinearity of this system leads to highly nontrivial behavior. Even for the case of an
axially symmetric object falling along its axis of symmetry, these include instability of the straight
vertical path and chaotic motions. Thin disks, which are one of the simplest three-dimensional
shapes exhibiting nonstraight descent paths, have been the subject of extensive experimental and
numerical research [6,8,9]. Several descent modes have been observed, e.g., steady vertical path,
flutter, hula-hoop, tumbling, and chaotic. The latter represents a mix of different descent modes
with the system chaotically switching between them; see Fig. 1. At least in the case of thin disks,
these descent modes can be mapped onto regions of a two-dimensional parameter space consisting
of the disk’s dimensionless moment of inertia and the ratio of the flow’s inertial-to-viscous forces,
summarized by the Reynolds number associated with the average free-fall vertical velocity.

Linear stability analysis can be employed to understand the departure of the trajectory from the
vertical one; see, e.g., Fabre et al. [10] and Assemat et al. [11] for two-dimensional plates. The
departure from the steady vertical path of a buoyancy-driven disk was rationalized by Tchoufag
et al. [12] via a linear stability analysis with respect to azimuthal perturbations of the steady and
axisymmetric flow associated with the vertical path. The authors identified several unstable modes
and found a threshold beyond which the steady vertical trajectory is unstable, depending on the
disk’s dimensionless moment of inertia and on the Reynolds number, with a very good agreement
with the nonlinear simulation results of Auguste et al. [9].

With the aim of tailoring flow patterns, in the case of fixed objects, and trajectories, in the case
of gravity-driven free-falling objects or buoyancy-driven bodies, local geometrical modifications
of the body have been thoroughly investigated, notably in the category of permeable objects. The
idea that the flow through internal holes and pores may have a strong impact in promoting the
stability of falling modes has been confirmed for both natural and artificial systems [13–21]. It has
been established that the structure of the flows generated by internal pores and holes plays a key
role in stabilizing the steady descent mode of seeds dispersed through bristly, porous appendages;
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see, e.g., the separated vortex ring developing in the wake past dandelion seeds in stable flight [14].
Internal porosity may also stabilize flows past fixed objects by suppressing wake instabilities such as
periodic vortex shedding (von Karman street vortices [15,22–24]) or the onset of nonaxisymmetric
and unsteady wakes past axisymmetric objects [17,25]. Permeable structures not only promote wake
modifications and their stabilization for fixed bodies, but they also modify the falling trajectories in
the case of buoyancy-driven objects. Vagnoli et al. [26] performed a linear stability analysis on the
instability of the steady vertical path of permeable thin disks, highlighting the selection of specific
modes depending on the permeability and, for large enough permeability, the stabilization of the
steady vertical path.

The permeable body model relies on the fact that geometrical modifications are characterized by
a distinct length scale, much smaller than the characteristic size of the object [27–29]. Macroscopic,
internal holes may also lead to stabilization effects similar to the ones observed in biological
flows related to seed dispersal. Contrary to the case of microscopic porosity, however, macroscopic
holes lead to flows with marked spatial heterogeneities, and they need the complete representation
of the geometry of the buoyancy-driven body. In the simple case of thin disks, here considered
as a prototype of a falling object with relatively simple geometry, already a single internal hole
introduces new richness in the observed behavior: annular disks have different wakes that affect the
stability of the descent modes, typically delaying the occurrence of instabilities [30–34]. Vincent
et al. [31] showed that the presence of the hole promotes a transition from tumbling to fluttering
motions, which in turn induces a more vertical falling trajectory. The authors related this behavior
to the decrease of the vorticity in the wake, associated with a decrease of the falling velocity because
of the weight reduction.

Motivated by the arguments above, in what follows we report on the free-fall dynamics of a thin
disk with a central hole, which has been selected as a benchmark test case for the study of different
falling styles of biological and bio-inspired seeds and how their falling behavior may be affected by
the flow patterns induced by the presence of geometric features such as bristles, pores, and holes,
of macroscopic size. In particular, we consider a range of Reynolds numbers consistent with those
arising in the free-fall, in air, of thin disks of a few centimeters in size, thickness of a few millimeters,
and effective material density up to 100 kg/m3 (e.g., corrugated cardboard or porous 3D-printed
material for environmental sensing applications [2,3]). A first estimate, obtained assuming a steady
equilibrium between gravity force and aerodynamic drag, leads to Reynolds numbers in the range
of 100 < Re < 2000. The aim of this work is to give a coherent and systematic study of the
effects of the hole in a buoyancy-driven disk through the synergy of linear stability analysis and
nonlinear dynamics simulations. In spite of the simplifications arising from the axial symmetry of
the system, understanding the mechanisms explaining the observed trajectories requires varying
systematically, and over large ranges, the values of four nondimensional parameters: the thickness
over outer diameter ratio (ε), the inner over outer diameter ratio (δ), the reduced moment of inertia
(I ∗), and the Reynolds number (Re). The paper is organized as follows: Section II presents the
problem formulations and their numerical implementation; Sec. III studies the flow past an annular
disk falling or rising with a vertical steady trajectory; subsequently, Sec. IV is devoted to the linear
stability analysis of such a trajectory and to the identification of thresholds for the instability and
of the emerging modes; Sec. V shows results of nonlinear simulations compared against the linear
stability analysis results.

II. PROBLEM FORMULATION

A. Nonlinear equations

In this section, we present the equations governing the free-fall or rise of a buoyancy-driven
annular disk of density ρs and thickness h. The internal and external diameters are denoted as d
and D, respectively, and the volume of the disk as V . The annular disk is immersed in a viscous
fluid of constant viscosity μ and density ρ. We denote with v̄(t̄ ) and �̄(t̄ ) the translational and
rotational velocities of the body during its trajectory, respectively. We introduce a fixed Cartesian
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frame (x̄1, x̄2, x̄3). With respect to this fixed reference frame, we introduce relative coordinate
systems rotating with the disk. In particular, we employ a Cartesian reference frame (x̄, ȳ, z̄) for
Newton’s equations, and cylindrical coordinates (x̄, r̄, θ̄ ) for the incompressible Navier-Stokes
equations for the flow dynamics (see Fig. 1). The x̄-direction, common to both coordinate systems, is
aligned along the disk axis. Following Tchoufag et al. [12], the flow equations are written in terms
of absolute velocity. Dropping bars for nondimensional variables, the dimensional equations are
nondimensionalized with the falling velocity U , the disk external diameter D, and the characteristic
time D/U , leading to [12]

∇ · u = 0,

∂u
∂t

+ (u − w) · ∇u + � × u = −∇p + 1

Re
∇2u,

M
dv

dt
+ M� × v = (M − ρV )g +

∫
�d

	nd�,

I · d�

dt
+ � × (I �) =

∫
�d

r × (	n)d�, 	 = −pI + 1

Re
(∇u + ∇uT ), (1)

where 	 is the nondimensional stress tensor, w = v + � × r, Re = ρUD/μ is the Reynolds
number, M = ρsV /(ρD3) is the nondimensional mass of the disk, and I = Ī /(ρD5) is the nondi-
mensional inertia tensor; for an annular disk, the nonzero diagonal components of its dimensional
counterpart Ī read

Ī xx = 1
8 M̄D2(1 + δ2), Ī yy = Ī zz = 1

16 M̄D2(1 + δ2 + 4
3ε2), (2)

where ε = h/D and δ = d/D are the nondimensional thickness and internal radius, respectively,
while the dimensional mass reads M̄ = π

4 ρs(D2 − d2)h. The off-diagonal terms are identically zero.
The problem is closed with the far-field condition u = 0 and the zero relative velocity Dirichlet
boundary condition at the disk u = w.

B. Steady vertical path

The velocity and pressure fields [U , P] associated with the steady vertical path of constant
vertical velocity V = −ex and zero angular velocity, with the disk axis aligned with the flow, satisfy
the steady and axisymmetric Navier-Stokes equations:

∇ · U = 0, (U + ex ) · ∇U + ∇P − 1

Re
∇2U = 0, lim

‖r‖→∞
U = 0, (3)

with U = −ex at the disk walls and symmetry conditions at r = 0 [12]. The problem is for-
mally analogous to the fixed-body case if the relative velocity U + ex is considered. Besides,
Newton’s equations reduce to the equilibrium between nondimensional gravity and drag D0 =∫
�int

	(U , P)d�int along the vertical direction. In this nondimensionalization, once the thickness
ε and the internal radius δ are fixed, the falling Reynolds number Re is the only nondimensional
parameter that describes the steady vertical path.

The flow equations are solved in a rectangular domain corresponding to a section ϕ = const, for
the coordinates (x, r) (see Fig. 1). We impose zero velocity at the boundary located at x = x−∞ and
r = r∞, and the free-stress condition at x = x+∞, together with the zero relative velocity Dirichlet
condition at the disk. On the axis, we impose the symmetry condition ur = 0 [12]. The numerical
implementation of the weak form of the various equations is performed in COMSOL MULTIPHYSICS,
with Taylor-Hood elements for the velocity and pressure fields. The numerical details are reported
in Appendix A.
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C. Linear stability analysis of the steady vertical path

We study the linear stability of the steady and axisymmetric flow associated with the steady
vertical falling or rising path of the disk along its symmetry axis. The following decomposition is
introduced (ς � 1):

[u, p] = [U (x, r), P(x, r)] + ς [u′(x, r, θ ), p′(x, r, θ )],

v(t ) = −ex + ςv′(t ), �(t ) = ςω′(t ). (4)

Upon substitution in Eq. (1), the steady and axisymmetric Navier-Stokes equations described in the
previous section and satisfied by the field (U , P) are recovered at order O(1), while at O(ς ) the
equations for the linearized dynamics are obtained [12]. For small angles, g = −gex + ςg(ϑyez −
ϑzey), where we introduced the components of the vector �(t ) = ςϑ′(t ) = ς (ϑx, ϑy, ϑz ), whose
components are the inclination angles of the reference frame that rotates with the disk with respect
to the fixed reference of the steady vertical path. We consider a normal mode expansion of the
perturbation of azimuthal wave number m and complex growth rate σ ∈ C:

u′(x, r, t ) = û(x, r)eimϕ+σ t , p′(x, r, t ) = p̂(x, r)eimϕ+σ t ,

v(t ) = v̂eσ t , ω′(t ) = ω̂eσ t , ϑ′(t ) = ϑ̂eσ t . (5)

Tchoufag et al. [12] showed that modes with m = 0 are stable. Also, modes with |m| > 2 do not
influence the path’s linear instability since the integral contribution in Newton’s equations is zero,
and thus the wake dynamics is decoupled from that of the disk. In the following, we investigate
the modifications of the instabilities with azimuthal wave number m = ±1. Right-handed helices
are obtained for m = 1 and Im(σ ) > 0, while left-handed helices are characterized by m = −1
and Im(σ ) > 0. Linear stability analysis admits both types of solutions, and the superposition
of helices of opposite sign and the same amplitude leads to planar zigzagging paths [12]. The
assumption m = ±1 implies, by symmetry, v̂x = ϑ̂x = 0. The projections of the linearized Newton’s
equations [obtained at order O(ς )] along y and z are combined in one single equation through
the U (1) transformation (v̂± = v̂y ∓ iv̂z, ω̂± = ω̂z ± iω̂y, ϑ̂± = ϑ̂z ± iϑ̂y) for m = ±1 [7]. The
linearized Newton’s equations for the perturbation, upon introduction of the normal mode expansion
and of the U (1) transformation, read

Mσ v̂± = ±Mω̂± ± D0ϑ̂± + 2π

∫
�int

[
1

2

(
−p̂ + 2

Re

∂ ûr

∂r

)
nrdx + 1

Re

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
nxrdr

]

∓ 2iπ

Re

∫
�int

[
1

2

(
∂ ûϕ

∂r
− ûϕ

r
± iû

r

)
nrdx +

(
∂ ûϕ

∂x
± iûx

r

)
nxrdr

]
, (6)

σI ∗ω̂± = −2π

∫
�int

r

[(
−p̂ + 2

Re

∂ ûx

∂x

)
nxrdr + 1

2Re

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
nrdx

]

+ 2π

∫
�int

x

[
1

2

(
−p̂ + 2

Re

∂ ûr

∂r

)
nrdx + 1

Re

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
nxrdr

]

∓ iπ
∫

�int

x

[
1

2 Re

(
∂ ûϕ

∂r
− ûϕ

r
± iûr

r

)
nrdx + 1

Re

(
∂ ûϕ

∂x
± iûx

r

)
nxrdr

]
(7)

σ ϑ̂± = ω̂±, (8)

where I ∗ = Iyy = Izz and M = 16I ∗/[1 + δ2 + (4/3)ε2], i.e., M is slaved to I ∗ because of
geometry. Coupled with the continuity equation for the perturbation ∇± · û = 0, the linearized
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FIG. 2. ε = 10−3. Streamlines and isocontours of the streamwise relative velocity, for increasing values of
δ and fixed Re = 50.

Navier-Stokes equations read

σ û + û · ∇U + (U + ex ) · ∇±û

= −∇± p̂ + 1

Re
∇2

±û + 1

2

(
∂U
∂r

± iUr

r
eϕ

)
v̂±

+
{
∓1

2

[
r
∂U
∂x

− (Uxer + Urex )

]
± 1

2
x
∂U
∂r

± 1

2
i

[
x

Ur

r
− Ux

]
eϕ

}
ω̂±, (9)

where ∇± is the nabla operator upon introduction of the normal mode expansion; see Tchoufag
et al. [12] for the complete expression. The linearized Navier-Stokes equations are closed with
zero velocity conditions on the inlet and lateral boundary, zero stress at the outlet boundary, zero
relative velocity on the disk surface, and suitable symmetry conditions for m = 1 modes on the
axis; see, e.g., Meliga et al. [35]. The resulting problem is an eigenvalue problem of the form
Aq̂ = σBq̂. The linear stability equations are solved in the same rectangular domain corresponding
to ϕ = const (see Fig. 1). Newton’s equations are implemented as ODE problems, with integrals at
the disk surface discretized through a fourth-order Gaussian quadrature rule. Upon solution of the
steady and axisymmetric problem for the baseflow (U , P) for a specific combination of (Re, δ, ε),
the stability analysis is performed for the same values of these parameters and for different values
of the disk moment of inertia I ∗. To this end, we employ the COMSOL built-in eigenvalue solver
based on the ARPACK Library. The algorithm was validated against the stability results for a solid
disk with thickness 10−4 of [12], in the case δ = 0. We performed a mesh independence analysis,
as reported in Appendix A. We now study the steady vertical path and its stability for a very thin
disk with ε = 10−3. The effect of varying the thickness is extensively discussed in the Supplemental
Material [36].

III. STEADY AND AXISYMMETRIC FLOW ASSOCIATED WITH THE VERTICAL PATH

The steady and axisymmetric solution associated with the steady vertical path of a buoyancy-
driven annular disk, in the absence of the hole (here denoted as a full disk), presents a toroidal
recirculation region completely attached to the body. The presence of a hole progressively modifies
this picture, as shown in Fig. 2, for fixed Re = 50, with a downstream displacement of the
recirculation region, which bends and remains attached to the disk. The velocity through the hole
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FIG. 3. ε = 10−3. Streamlines and isocontours of the streamwise relative velocity, for increasing values of
δ and fixed Re = 50.

increases and reaches values of the same order as that of the free-stream. In parallel, a second
recirculation region of opposite vorticity (negative vorticity, in contrast with the positive sign of
the first recirculation) forms. At δ = 0.4, a sudden transition of the flow pattern is observed. The
flow is now characterized by a recirculation region completely detached from the body, and
the recirculation region of negative vorticity now dominates the wake dynamics in the vicinity
of the disk. The region of large velocity close to the axis becomes larger and the bleeding effect
remains present further downstream. As shown in Fig. 3, at δ = 0.45, the first recirculation region
eventually disappears, even if a region of low velocity (defect) is observed downstream of the body.
For δ = 0.5, a small detached recirculation is also observed in the vicinity of the disk edge. At the
same time, the recirculation region of negative vorticity decreases its size and, for δ = 0.6, the flow
streamlines are almost straight with a region of small velocity restrained in the near wake of the
annulus.

In summary, the presence of a hole of increasing size, for fixed Re, leads to the formation
of a central jet of large velocity. This jet tends to displace downstream the main recirculation
region. When the hole and the associated velocity are large enough, the flow separates at the
inner edge, and a second recirculation region appears. This flow separation induces a relative
velocity that pushes the fluid upstream, competing with the jet effect, which instead moves the
main recirculation downstream. When the internal radius is approximately half of the external one,
the main recirculation detaches, becomes smaller, and disappears. However, a small recirculation
induced by the internal flow separation is still observed. Eventually, these recirculations become
smaller and disappear as the internal radius approaches the external one.

The effect of the Reynolds number is reported in Fig. 4. In the case δ = 0.25, an increase of
Re leads to an increase of the size of the recirculation region, which almost doubles its length from
Re = 25 to 100. Also, the small recirculation caused by the separation at the internal radius increases
its size. The case δ = 0.4 shows a recirculation region completely detached from the body already
at Re = 25. At Re = 100, a third recirculation region of positive vorticity forms, in the vicinity of
the disk edge. For δ = 0.5 and small Re, only the recirculation induced by the separation at the
internal radius is present, with a wake defect whose minimum is located at x ≈ 1. An increase in
the Reynolds number leads to the formation of a third recirculation region of positive vorticity in
the vicinity of the disk edge.

The behavior of the first recirculation region can be described by two quantities, its distance XR

from the rear of the disk, and its length LR, measured on the axis. Figure 5 shows the isocontours of
(a) LR and (b) XR in the (δ, Re) plane.

The distance XR of the axial separation point closing the first recirculation region progressively
increases with δ [Fig. 5(b)]. For δ ∼ 0.4, the recirculation length presents a nonmonotonic behavior
with Re, i.e., it increases, reaches a maximum, and decreases until it disappears. We identify a
critical value of δ = 0.45, in the considered range of parameters, beyond which the first recirculation
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FIG. 4. ε = 10−3. Streamlines and isocontours of the axial relative velocity, for increasing values of δ (from
the top to the bottom) and increasing values of Re = 25, 50, 100 (from the left to the right).

is absent. The flow topology influences also the values of the nondimensional drag D0, an essential
quantity to define the falling velocity and thus the stability of the falling trajectory. The isocontours
of D0 in the (δ, Re) plane are reported in Fig. 5(c). The drag monotonically decreases with Re while
it presents a nonmonotonic behavior with δ, characterized by an initial increase followed by a rapid
decrease for δ > 0.4, approximately. The peak becomes steeper as Re increases. This behavior is
very similar to the permeable disk case [13,14,26], where a similar drag peak is observed, close
to the critical value of permeability beyond which there is no recirculation region. We can infer the
origin of this mechanism by observing the bleeding flow from the central hole. As shown in Figs. 2–
4, an increase in δ within the range 0 < δ < 0.4–0.5 leads to a progressive increase of the intensity
of the bleeding flow through the hole. However, increasing δ beyond 0.4, the peak in the streamwise
velocity decreases, and, more importantly, the difference between the upstream and downstream
velocity through the hole decreases. Since �p ∼ �u2

x , the maximum pressure difference occurs for
approximately δ = 0.4, whereas beyond this value of δ, the pressure drop decreases. This behavior
is due to the competition between the bleeding flow and the aerodynamic flow around the whole
object. As the hole size increases, more flow passes through the hole, thus leading to a more intense
bleeding flow (and pressure drop) when the hole is small. However, as the hole becomes larger, the
confinement effect decreases, thus promoting streamlines more aligned with the asymptotic flow,
with smaller peak velocities and a subsequent decrease in the pressure drop across the hole. Since
the pressure drop can be reasonably correlated to the drag for a bluff body, the competition of these
two effects leads to the observed peak in the drag coefficient.

FIG. 5. ε = 10−3. Isocontours of (a) length of the recirculation region LR and (b) its distance from disk XR,
obtained by finding the zeros of the axial relative velocity on the axis, as functions of Re and δ. (c) Isocontours
of the nondimensional drag D0 as a function of Re and δ.
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FIG. 6. (a), (b) Nonoscillatory mode. (a) Real part of the streamwise component of the velocity eigenvector,
rescaled with ϑ±, for Re = 144, δ = 0.1, and ε = 10−3. The imaginary part is identically zero. (b) Critical
Reynolds number of the nonoscillatory mode as a function of δ. (c) Marginal stability curves in the (I ∗, Re)
plane, for δ = 0.1 and ε = 10−3. The (+) and (−) help identify the regions with positive and negative real part
of the eigenvalues, and the symbols o and x connect the neutral curves to the corresponding Strouhal number
ones (on the bottom). The gray regions identify where the steady vertical path is linearly stable with respect to
azimuthal perturbations.

In summary, the variety of observed flow topologies is related to the bleeding effect through the
hole and the competition between the separation at the internal and external edges. An increase in
the Reynolds number leads to an increase of the bleeding effect through the hole and of the strength
of the separation at the internal disk edge. The flow features with δ and Re resemble those of the
wake past a permeable body [13,15]. The detachment from the body of the first recirculation due
to bleed in through the hole appears very similar to the one induced by an increasing permeability.
However, for small δ, this detachment is not complete since the bubble remains attached to the disk
tip. In opposition to the permeable case, the strength of the flow separation is not directly correlated
to an increase of the bleeding flow. The complete separation of the first recirculation is instead
related to the more intense flow separation at the disk internal edge, which at some point involves
the whole annulus. Due to the competition between the two flow separations, an increase in the
Reynolds number leads to a nonmonotonic behavior of the length recirculation region. In the next
section, we identify the conditions that lead to the departure from the described base flow through
the linear stability analysis framework presented in Sec. II.

IV. FLUID-STRUCTURE INTERACTION: INSTABILITY OF THE STEADY VERTICAL PATH

A. The nonoscillatory mode

In the full disk case, several modes are known [12] to become unstable in the (Re,I ∗) plane.
Three of them are oscillatory, whereas one is independent of inertia and nonoscillatory [12]. We
begin by considering the effect of δ on the nonoscillatory mode. Its spatial structure [Fig. 6(a)]
is characterized by a wake with a real part of constant sign that propagates downstream, while
the imaginary part is identically zero, once rescaled with ϑ̂±. Note that this rescaling allows
for identifying in the real and imaginary parts two instants of the trajectory, i.e., the ones with
maximum inclinations along the y and z directions [12]. The nonoscillatory mode is very similar
to the steady one associated with the pure aerodynamic problem; see the Supplemental Material
[36]. This structure was labeled by [12] as a sign preserving type (SPT) structure, in contrast
with a sign alternating type (SAT structures), which instead are spatial distributions very similar
to the oscillatory modes of the fixed case. The SPT/SAT structures here described result from the
bifurcation of the steady and axisymmetric (SA) wake. In the fixed-body problem, the SA wake
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undergoes two bifurcations often labeled as SS (steady state) and SW (standing wave), as thoroughly
described by Fabre et al. [37] and Meliga et al. [38]. The SPT and SAT structures can be seen as the
fluid-structure interaction counterparts of the SS and SW bifurcations, respectively, since they both
stem from the instability of the steady and axisymmetric wake past a fixed disk. The combination or
dominance of SPT or SAT structures in the real and imaginary parts of the modes, rescaled with ϑ̂±,
help in qualitatively identifying the fluid-structure interaction or the segregation between the disk
dynamics and the wake one, during one period. In the fixed-disk case, the nonoscillatory instability
causes a steady shift in the wake, in the nonlinear regime. If the disk could move, this shift would
make it rotate towards an inclined path. Thus, the main impact of SPT structure is altering the disk’s
orientation, with the wake’s tilt being a result of the disk’s angle. Conversely, SAT disturbances
involve downstream oscillations that resemble the shedding of vortical structures, indicating that
the wake’s instability governs the disk’s dynamics [9,12]. In the case of Fig. 6(a), a zero imaginary
part means ϑ̂z = 0 and thus an exponentially increasing inclination along the y direction, since the
frequency is identically zero. Nonlinear effects, eventually, would lead to saturation of the trajectory
with a constant inclination angle, as observed by Auguste et al. [9] for the full disk geometry.

The effect of δ on the neutral curve of the nonoscillatory mode is shown in Fig. 6(b). An increase
in δ leads to an abrupt increase of the critical Reynolds number for the instability and reaches values
larger than 200. With a good approximation, the nonoscillatory mode becomes stable for δ > 0.2,
in the studied range of Re.

B. The oscillatory modes

The stability of the nonoscillatory mode is not enough to ensure the overall stability of the steady
vertical path since other modes may be unstable. Figure 6(c) shows the neutral curves, i.e., the locus
of the zero-growth-rate, so-called marginal, eigenvalues in the (Re,I ∗) plane, for δ = 0.1. These
curves are built by continuation, starting from very low and very large inertia values. Each curve
defines two regions in the plane, an unstable and a stable one, whose sides are denoted with a plus
and a minus sign, respectively. The gray region depicts the part of the (I ∗, Re) plane in which
the steady vertical path is stable, i.e., there are no eigenvalues with a positive real part. The stable
region is bounded by the red and black curves, respectively, at low and large inertia. Therefore, the
first instability encountered by the steady vertical path is given by oscillatory modes, in the whole
range of I ∗. The presented picture of modes is very similar to the full disk case described in [12],
although the considered thickness is slightly larger.

The red curve is associated with an eigenvalue that is retrieved also in the fixed case (i.e., the
oscillatory one of the pure aerodynamic case) as I ∗ → ∞, and its real part and Strouhal number,
defined as St = ( f D)/U = Im(σ )/(2π ) (where f is the oscillation frequency in dimensional form),
are weakly dependent on the disk inertia. According to [12], this curve is labeled F1. Conversely,
the eigenvalue associated with the black curve is present only in the fluid-solid coupled problem
and presents large variations with I ∗ both in the real and imaginary parts. Also, the imaginary
part decreases as I ∗−1/2, which gives a criterion to identify this mode as δ increases. This mode
is labeled S1, following [12]. The green line is associated with the nonoscillatory mode previously
described and is independent of the disk inertia. This mode is labeled S2, since it is present only in
the fluid-solid coupled problem. The blue curve is associated with a mode that is identified at large
Reynolds numbers also in the fixed problem, and is thus labeled F2. We also note the presence of
a loop in the black neutral curve, which defines a small island of stability in the (I ∗, Re) plane,
thoroughly described in the literature [9,12,26].

The spatial distributions of the oscillatory modes are reported in Fig. 7. Mode F1 is characterized
by SAT structures, in which the imaginary part appears as a downstream shift of the real part,
strongly reminiscent of the oscillatory mode of the pure aerodynamic case. Its distribution does
not quantitatively change at small and large disk inertia. In nonlinear simulations [9], this mode
structure was associated with strong wake oscillations, coupled with very small oscillations of
the disk trajectory with respect to the vertical one. Mode S1 [panel (b)] instead shows strong
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FIG. 7. ε = 10−3 and δ = 0.1. Real part of the streamwise component of the velocity eigenvector, rescaled
with ϑ̂±, at the marginal stability, for different modes and values of I ∗.

variations with the disk inertia. In both cases, the real part is dominated by a SPT structure, while the
imaginary part shows structures of alternating sign when moving downstream. This eigenvector is
thus associated with a strong fluid-solid coupling, and, in the nonlinear regime, this would ultimately
lead to large-amplitude oscillations of the disk trajectory [9]. Mode F2 [panel (c)], at low disk inertia,
resembles mode S1, with vortical structures of smaller streamwise extent. However, at large inertia,
the spatial distribution is reminiscent of mode F1, with SAT structures.

C. Effect of the disk hole

We now describe the effect of δ on the instabilities encountered by the steady vertical path. We
label by continuity the modes based on their behavior at large and low inertia. Figure 8(a) shows the
neutral curves for δ = 0.25. The globally stable (gray) region becomes slightly larger, and, at low
inertia, the overall first instability is given by mode F2. Mode S2 is stable in the considered range of
Re, in agreement with Fig. 6. We also identify a new mode, present only at low inertia (cyan curve),
which we label S3. However, this mode becomes unstable at very large Reynolds numbers, far from
the threshold of instability of the steady vertical path. An increase to δ = 0.27 [panel (b)] does not
lead to significant differences, although another mode present at large inertia and large Reynolds
numbers, here labeled F3, is present. At δ = 0.3 [panel (c)], the F -curves abruptly move toward
larger Reynolds numbers, and the primary destabilization is given by mode S1 in the whole range
of I ∗. Also, there is a large loop region associated with the restabilization of mode S1. However,
the stable (gray) region of the steady vertical path remains qualitatively the same. Therefore, the
effect of the disk hole for δ < 0.3 is an abrupt increase of the critical Reynolds numbers of the
nonoscillatory mode S2 and of the F -modes.

In panel (d) (δ = 0.4), only modes F2 and S1 remain unstable, with the former only at very large
Reynolds numbers. A restabilizing branch of mode S1 is present, which defines an island of stability
of the steady vertical path, with an extent similar to the case δ = 0.3. For larger values of δ, also the
neutral curve of mode S1 abruptly moves at large Reynolds numbers, and, at δ = 0.7 [Fig. 9(a)], the
only instability present in the considered plane is given by mode S1 and occurs at large Reynolds
numbers. A further increase in δ = 0.8 leads to a shift of the neutral curves toward even larger
Reynolds numbers [Fig. 9(b)].

Variations in the marginal stability curves are associated with modifications of the eigenvectors
at the primary instability of the steady vertical path. Figure 10 shows the marginally stable modes
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FIG. 8. Marginal stability curves in the (I ∗, Re) plane, for increasing values of δ and fixed ε = 10−3. The
(+) and (−) help identify the regions with positive and negative real part of the eigenvalues, and the symbols
o and x to connect the neutral curves to the corresponding Strouhal number ones. The gray regions identify
where the steady vertical path is linearly stable with respect to azimuthal perturbations.

of the steady vertical path, at the critical Reynolds number for the first instability, for fixed I ∗ and
increasing size of the hole. We begin by considering I ∗ = 0.001 [panel (a)]. For δ = 0.1, the mode
structure is analogous to the full-disk case, with structures of alternating sign. The imaginary part
appears as a phase shift of the corresponding real part. At δ = 0.25, the far-wake is a sign-preserving
type structure, where both the real and imaginary parts are nonzero and present the opposite sign.
In the vicinity of the disk, small structures of alternating sign are instead present. For δ = 0.4,
the pattern is very similar, although the critical Reynolds number is lower. At very large δ = 0.7,
the wake is dominated by structures of alternating sign, where real and imaginary parts appear
phase-shifted. In panel (b), an increase in δ does not strongly modify the spatial distribution of
the eigenvectors, which are characterized by a dominance of sign-preserving type structures and
opposite sign between real and imaginary parts, with an exception in the close vicinity of the
disk. For δ = 0.7, a slight variation of the mode is observed, with a decrease of the Strouhal
number associated with the instability and consequent stretching of the vortical structures along
the streamwise direction.

FIG. 9. Same as Fig. 8 for (a) δ = 0.7 and (b) δ = 0.8.
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FIG. 10. ε = 10−3. Real (on the top) and imaginary (on the bottom) parts of the streamwise component of
the velocity eigenvector, rescaled with ϑ̂±, for (a) I ∗ = 0.001 and (b) I ∗ = 0.1 and increasing values of δ,
from the top to the bottom. The plotted modes are identified as the first threshold encountered by the steady
vertical path as Reynolds increases, for fixed δ.

At large values of I ∗, the wake structure of the unstable mode is not strongly modified by the
increase of the hole diameter. The differences become substantial only when very large values of the
hole radius are considered. Conversely, at low disk inertia the size of the hole modifies the instability
thresholds and the structures of the modes. The critical Reynolds number for the instability presents
a nonmonotonic behavior, with an initial decrease followed by an abrupt increase. At low values
of δ, the mode is reminiscent of the full-disk case, and it would ultimately lead to low-amplitude
oscillations of the disk, in the nonlinear regime [12]. For larger values of δ, structures of constant
sign are instead observed, which can be associated with large-amplitude disk oscillations. However,
at large δ = 0.7, a regime with small oscillations of the disk is recovered, with a much faster
frequency compared to the full-disk case.

The effect of a hole is similar to an increase of permeability; see Vagnoli et al. [26]. Initially,
modes characterized by large wake oscillations are stabilized, followed by those that are dominated
by the disk dynamics (with a weak effect on wake oscillations). However, the permeability-induced
restabilization at large Reynolds number [26] is absent in the annular disk case. We observe only
a progressive increase of the marginal stability thresholds, without restabilizing branches, at least
in the considered range of Re. In the following, we relate the stability observations with nonlinear
simulations of falling annular disks in the range 0.001 < I ∗ < 0.1.

V. FALLING STYLES AS ATTRACTORS FOR THE NONLINEAR DYNAMICS:
RESULTS OF FULLY NONLINEAR SIMULATIONS

To explore the role of geometric and physical parameters in determining the disk falling
styles, we solve the fully nonlinear system (1) starting from rest and letting time run
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FIG. 11. (a) Falling styles [different symbols, see also Fig. 1(b)] from simulations of the fully nonlinear
dynamics and marginal instability thresholds for steady vertical fall in the (I ∗, G(1 − δ)) plane (ε = 1/60).

until a recognizable falling style is reached. Details on the numerical method are given in
Appendix B.

In the following, we focus on the case ε = 1/60 and we compare the results of nonlinear
dynamics with the marginal stability curves obtained for the same value of the thickness-to-diameter
ratio. Following Tchoufag et al. [12], for a disk with external diameter D and a solid-fluid density
ratio ρs/ρ, we introduce the Galileo number G defined as

G = DUapp

ν
=

√
2|ρs/ρ − 1|gεD3

ν
, Uapp =

√
2|(ρs/ρ) − 1|gεD. (10)

G is thus the Reynolds number based on Uapp, an approximation of the nominal terminal velocity
Ug obtained by setting CD = 1 for the drag coefficient CD when balancing weight and drag. In
dimensional form, this balance reads

|ρs − ρ|gεD3(1 − δ2)π/4 = ρCDD2(1 − δ2)U 2π/8; (11)

Ug is the value of U obtained by solving (11) (this requires knowledge of CD), while Uapp is the
value of U obtained by solving (11) with CD = 1 (this only involves a priori known values of
geometric and physical parameters). Therefore, the Galileo number provides a convenient parameter
to classify the falling regime, since it does not require knowledge of aerodynamic properties, and it
is independent of δ. Once the relation CD(Re, δ) is known, the actual value for the Reynolds number
(and thus of the nominal terminal velocity) is computed starting from G through the exact balance
between drag and gravity, defined implicitly by

G2 = Re2CD(Re, δ). (12)

Vice versa, (12) can be used to attribute a Galileo number G to a disk for which the nominal terminal
velocity Ug (hence Re) and δ are known. We remark that, at least in the parameter range we explore,
the function CD(Re) for fixed δ is monotonically increasing with respect to Re (see the Supplemental
Material [36]), thus ensuring a unique solution.

We consider cases G = 99, 198, 280, 524, 1237, 1971 and inner holes with δ = 0, 0.25, 0.4, 0.7.
Following the rescaling employed by Vincent et al. [31], results of the nonlinear dynamics and
stability analysis are represented together in the plane (I ∗, (1 − δ)G). As concerns the marginal
stability curves of Sec. IV, for given I ∗ and δ, we define Recr(I ∗, δ) as the smallest value of Re
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FIG. 12. Vertical velocity as a function of time, for different values of G and δ. For each value of G,
velocities are rescaled with the nominal falling velocity of the full disk U0 = Ug(δ = 0) (ε = 1/60).

beyond which the steady vertical path becomes unstable. We then compute the Galileo number of
a disk with fixed δ through (12) and, in particular, G2

cr = Re2
crCD(Recr, δ) and transfer the marginal

point in the (I ∗, (1 − δ)G) plane, building a series of δ-dependent marginal curves. The points with
coordinates (I ∗, (1 − δ)G) are labeled as stable, hula-hoop, flutter, chaotic, or tumbling, according
to the observed falling style. Figure 11 is thus interpreted as a phase diagram classifying the falling
styles and providing a prediction of the critical stability conditions and of the observable nonlinear
trajectories based only on intrinsic geometric and material parameters of the system.

In a free-falling numerical experiment starting from rest, the disk progressively accelerates,
eventually leading to a constant terminal value or to oscillatory periodic/nonperiodic states. In
terms of velocities, nonlinear simulations confirm that, if G < Gcr, a steady state is reached in
a falling experiment starting from rest. The corresponding point (I ∗, (1 − δ)G) lies below the
marginal stability curve of the corresponding value of δ, in the region of the phase plane labeled as
“stable.” Conversely, if G > Gcr, the steady fall mode becomes unstable before the nominal terminal
value Ug is reached, and the corresponding point (I ∗, (1 − δ)G) will lie beyond the stability curve.
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FIG. 13. (a) Falling styles from simulations of the fully nonlinear dynamics and curves marking the
instability thresholds for steady vertical fall (ε = 1/60). (b) From the top to the bottom: tumbling: G = 1971,
δ = 0; chaotic motion: G = 1237, δ = 0.4; flutter: G = 524, δ = 0.

The plane (I ∗, (1 − δ)G) can be subdivided into regions in which each of the falling styles is
prevalent. Our simulations provide a few points in this phase diagram; see also the Supplemental
Material for a comparison with the results of Auguste et al. [9] for full disks. Our results confirm and
extend the ones obtained by Auguste et al. [9], to include larger values of Re and the effect of the
hole size.

When the disk exhibits one of the unsteady but regular patterns, the following average velocity
definition is employed: Uav = (2/Tf )

∫ Tf

Tf /2 v̄z(t̄ )dt̄, where Tf /2 is chosen as the time sufficient to
reach a well-defined falling style, and Tf is the time at which the simulation is stopped. In general,
Uav can be different from the nominal falling velocity Ug. Also, in the case of chaotic modes of
descent, this quantity is not well-defined since the average velocities do not become independent of
T . Data on instantaneous, terminal, and average falling velocity, normalized with U0 = U (δ = 0),
are reported in Fig. 12 for G = 198, 280, 524. For these values of G, opening a hole in a disk
decreases the average fall velocity with respect to the case of the full disk. Also, average velocities
computed in unsteady modes are smaller than the nominal velocity corresponding to the same
value of material parameters. To visualize the dependence of the average velocity on material
parameters in a compact way, Fig. 13 shows the results in the plane (I ∗, Re). In opposition to
Fig. 11, this diagram contains information about the actual average falling velocity, a quantity
that is affected by the aerodynamic forces arising in the actual (possibly oscillatory) trajectory
followed by the disk in its nonlinear dynamics. If the steady falling style is stable, Uav = U and
the corresponding point is indeed below the Recr curve, hence it is in the region of the phase
diagram where the steady mode is stable. As observed in the (I ∗, (1 − δ)G) plane, the results
of numerical simulations agree well with the marginal stability boundary, showing a steady vertical
path below the thresholds for the instability; see G = 198 and δ = 0.7, and G = 280 and δ = 0.7.
In terms of falling styles, the graph confirms the observation by Vincent et al. [31] that opening
a hole shifts the observed falling style according to the hierarchy: tumbling → chaotic → flutter
→ hula-hoop → steady, i.e., towards trajectories with smaller lateral dispersion and closer to the
straight vertical one. As concerns the average falling velocity, points corresponding to G up to 524
show again that opening a hole decreases the average falling velocity with respect to the full disk.
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FIG. 14. Trajectories described in the absolute reference frame as functions of time, following the colormap
(on the top and on the center), and unwrapped inclination angles ϑx1 and ϑx2 around the fixed axes as functions
of time rescaled with its maximum value (on the bottom). G = 280 and (a) δ = 0.25 (flutter), (b) δ = 0.4
(hula-hoop); (c) G = 1237 and δ = 0 (tumbling). The red line in panel (c) visualizes the normal-to-the-disk
direction and helps in identifying the rotating motion of the disk in the tumbling regime.

This effect is similar to the slowing down of natural seeds granted by bristles and by hairy or porous
structures [14]. Remarkably, this is no longer true for larger values of G explored here. In this regime
(G = 1237, 1971), the full disks exhibit a tumbling motion, and opening a hole leads to a transition
towards chaotic and fluttering falling styles, with higher average falling speed.

Figures 14(a) and 14(b) show the transition from a fluttering to a well-defined hula-hoop [9]
as the hole size is increased. Hula-hoop patterns of annular disks have been recently observed in
experiments by Zhang et al. [39]. In the fluttering case, the inclination angle variation occurs only
around one direction [x2, panel (a)], while hula-hoop motions are characterized by inclinations of
the same amplitude, in the horizontal plane. During the tumbling trajectory, observed for a full disk
at large G in Fig. 14(c), the disk mainly rotates around the x2 axis, as shown by the trajectory and
by the unwrapped angle. The chaotic motion shown in Fig. 13(b) appears as a random succession of
regular falling patterns, i.e., flutter, tumbling, and hula-hoop motions. Analogous falling trajectories
are observed for the other cases denoted as chaotic. Therefore, we can infer that chaotic motion
seems to occur as a result of mode interactions that, taken individually, would lead to regular
trajectories.

For thin disks, the presence of a central hole affects the free-fall nonlinear behavior in several
ways. As general trends, we highlight the following ones. The opening of a hole in a full disk
may promote more stable over less stable modes in the hierarchy of falling styles, namely modes of
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descent with trajectories that are closer to the steady vertical one and characterized by smaller lateral
distance coverage (i.e., from tumbling to a chaotic mode of descent, from chaotic to fluttering, from
fluttering to hula-hoop, and from hula-hoop to steady), as observed experimentally by Vincent et al.
[31]. Up to moderate Galileo numbers (G up to 524 in our simulations), opening a hole leads to
lower average fall velocities. At higher Galileo numbers (G = 1237, 1971), disks with holes fall at
a higher average velocity than the corresponding full disk.

VI. CONCLUSIONS

In this paper, we performed a systematic study on the stability and falling trajectories of annular
disks. We first considered the steady and axisymmetric vertical path and its stability with respect
to azimuthal perturbations. The relative flow is characterized by a recirculation region which pro-
gressively detaches from the body, moves downstream, and disappears as the hole becomes larger.
However, the separation at the disk’s internal and external edges always leads to the formation of
local recirculations. The drag exhibits a maximum at intermediate hole sizes, in analogy with perme-
able bodies. The existence of secondary recirculations attached to the edges of the disk modifies the
picture observed in permeable cases, i.e., a destabilization-stabilization mechanism with increasing
Re [26]. The region of stability of the vertical steady fall is, with a good approximation, a band
occupying one side of the (Re,I ∗) plane. An increase in the hole size leads to a counterintuitive
decrease of the marginal stability threshold at low inertia. However, for large-enough holes, the
critical Reynolds number for the instability abruptly increases. Nonlinear simulations confirmed
the observed behaviors in terms of neutral stability boundary and emerging patterns in the vicinity
of the marginal stability thresholds. Besides, the hole promotes a transition in the hierarchy of
falling modes, from tumbling to fluttering and hula-hoop motions. In particular, the departure from
tumbling motions reduces by two orders of magnitude the horizontal distances reached by the disk.
In summary, a central hole promotes the emergence of trajectories characterized by small deviations
from the vertical one. At the same time, neutral curves present a nonmonotonous behavior, at low
inertia. Therefore, an increase in the hole size does not always lead to the stabilization to a steady
vertical path, based on the marginal stability curves of a full disk. The stabilization of the vertical
path occurs only for very large holes. In analogy with the behavior of falling permeable bodies, a
hierarchy in the modes stabilization is identified: the opening of a hole initially stabilizes modes and
trajectories characterized by a dominance of wake oscillations over trajectory ones. Only for very
large holes are modes with a dynamics dominated by the disk’s degrees of freedom also stabilized.

In spite of the rich and diverse dynamics emerging from our study, some general trends emerge
that may be useful for applications, e.g., the release by drones of biodegradable environmental
sensors inspired by the dispersal strategies of natural seeds envisaged in Refs. [2,3]. Up to moderate
G, opening a hole slows down descent speed and leads to a transition from flutter towards descent
modes with trajectories closer to the straight vertical one. For large G, opening a hole leads to higher
descent velocity and to a transition from tumbling towards fluttering descent modes, characterized
by a smaller traveled lateral distance. The first regime (small G) may be of interest for controlled
positioning on the ground, with seeds landing directly below the location of release from the drone.
To avoid lateral dispersion caused by lateral winds, the release of individual seeds from small
altitudes may be the optimal strategy. In this scenario, opening a hole may lead to better performance
(straighter path) with respect to the case of a full disk. The second regime (large G) may be of interest
for the release of several seeds from a single location at higher altitudes, aiming at large lateral
distance covered. In this case, the tumbling trajectory is of greatest interest. Lower average falling
speeds may also be beneficial, leading to larger lateral distance covered in the presence of lateral
winds. Therefore, in this scenario, the full disk guarantees better performance than its perforated
counterpart.

This work may find several extensions in the understanding of trajectories of falling objects
and the selection of modes and trajectories through tailored shapes, e.g., nonplanar objects such
as curved plates or cones, or bio-inspired shapes such as those of helicopter seeds. The approach
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TABLE I. Variation of the nondimensional drag D0 and of the real and imaginary parts of the almost
marginally stable mode for ε = 0.001, δ = 0.3, I ∗ = 0.0001, Re = 106. From the left to the right: axial
position of the inlet, axial position of the outlet, lateral boundary radial location, number of elements, drag,
real part of the almost marginally stable mode, imaginary part of the almost marginally stable mode.

Mesh Inlet (x−∞) Outlet (x+∞) Radius (r∞) N. Elem. D0 Re(σ ) Im(σ )

A −25 50 25 26114 0.5354 0.00161 2.0462
B −35 50 25 29131 0.5355 0.00101 2.0466
C −40 50 25 30412 0.5354 0.00132 2.0463
D −25 70 25 32049 0.5354 0.00127 2.0465
E −25 100 25 40839 0.5357 0.00090 2.0471
F −25 50 30 29734 0.5354 0.00131 2.0464
G −25 50 40 36646 0.5354 0.00127 2.0465
H −25 50 25 41345 0.5356 0.00093 2.0468
I −25 50 25 82393 0.5355 0.00086 2.0468

advocated here, based on the synergistic use of linear stability analysis and nonlinear dynamics
methods in the understanding of falling trajectories of annular disks in a large range of disk inertia,
could be generalized in order to help better characterize falling trajectories of a large variety of
objects with complex geometry.
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APPENDIX A: GRID INDEPENDENCE ANALYSIS OF THE BASE FLOW
AND STABILITY COMPUTATIONS

The mesh refinements are built in an analogous way to those of Ciuti et al. [17], except in
the vicinity of the disk where a boundary layer refinement of size 0.1ε is employed, for Mesh
A. Table I shows the sensitivity of the obtained results with respect to the position of the boundaries
and to uniform refinements of the entire mesh. We verify the grid independence of drag and the
results of the fluid-solid coupled eigenvalue problem in terms of the leading eigenvalue for
the considered configuration. We move upstream of the inlet position. Subsequently, we verify the
downstream position of the outlet and the radial location of the lateral boundary. In all calculations,
three significant digits of the drag and of the leading eigenvalue remain constant. Further mesh
refinements show that the real part varies from 0.00161 to 0.00086 when increasing the number
of elements by a factor 3. However, this difference would not affect the main conclusion of this
work since it leads to a variation of the critical Reynolds number below 1, which is the maximum
accuracy of the performed stability computations. As a matter of fact, instability thresholds are
obtained by linear interpolation of the eigenvalues between two successive integer values of Re
when a change of sign of the real part is detected. Thus, Mesh A appears as a reasonable compromise
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between accuracy and computational times for the large number of stability computations (beyond
1000) required to explore the parameters space and to draw the neutral curves. Therefore, Mesh
A is employed for all calculations of the base flow and stability analysis (Secs. III, IV, and the
Supplemental Material).

APPENDIX B: VALIDATION OF THE NONLINEAR SOLVER

In Sec. V, Eq. (1) is solved numerically through a numerical implementation based on the one
developed by Corsi and Lolli (see also [40]), designed to run on high performance computing
platforms. The coupled system of equations (system of PDEs for the fluid and system of ODEs
for the solid) is solved following the approach described by Mougin et al. [41], also used by Jenny
et al. [7], with small variations. It is based on correcting the Kirchhoff equations, which describe the
motion of a rigid body in an inviscid fluid, to take into account the effects of viscosity, and model
the case of a fluid governed by the Navier-Stokes equations. The procedure was implemented in a
finite-element code, which was validated against two benchmarks from the literature, detailed below.
The incompressible Navier-Stokes equations are formulated on a moving domain, which follows the
body during its rigid motion. The solution technique is standard: the pressure-velocity coupling is
obtained with a projection method of the Chorin kind, i.e., the pressure is treated explicitly and
the velocity field is solved for, then the pressure is corrected by enforcing the divergence-free
constraint, the so-called rotational incremental pressure-correction scheme [42]. The solver is
implemented within the framework of the open source Navier-Stokes solver Oasis [43], which in
turn is based on the FEniCS [44] finite-element library. A standard projection scheme is already
implemented in the Oasis library. The solver is modified by adding the terms related to apparent
forces [see Eq. (1)], and to the moving domain, to the Navier-Stokes equations. The solution of the
coupling with the solid also requires some further modifications. The equations are solved with a
segregated approach, each component separately, in order to lower the computational effort. The
viscous term is treated implicitly in time to ensure stability, while for the nonlinear convection
term a second-order extrapolation is employed, i.e., un

conv = 2un−1 − un−2 (to which the relative
velocity due to rigid body motion is subtracted), while the convective term is treated implicitly
to avoid too strict time-step limitations due to the CFL number condition. As concerns the spatial
discretization, Taylor-Hood P2/P1 finite elements are employed. Standard iterative Krylov solvers,
from the linear algebra library PETSc, are exploited for the solution of the algebraic systems
resulting from the discretization of the Navier-Stokes equations. More precisely, for the solution
of the velocity problem, a BiCGSTAB solver, with jacobi preconditioner, is employed. For the
pressure problem instead, the solver is GMRES with AMG multigrid preconditioner. The system
of ODEs associated with (1) is advanced in time with the SciPy ODE integration routine solve_ivp.
In the applications considered in this work, the Reynolds number, based on the average falling
velocity of the disk, is at most of order of magnitude 103. Therefore, the flow surrounding the body
might be in the transitional turbulent regime. In these cases, we employ an LES turbulence model.
Specifically, we employ a Smagorinsky-Lilly model, already implemented in Oasis and validated
against a benchmark case of transitional flow in Ref. [45]. The cases simulated entail a quiescent
fluid in an unbounded domain. The domain is moving and follows the rigid body motion. Thus,
the boundary of the computational mesh is spherical. The center of mass of the body is set to be at
the origin of the sphere. The domain is large enough so that the wake that develops past the body
is undisturbed; we set its diameter to 40 times the characteristic dimension of the solid (i.e., the
diameter in the case of a disk). The mesh is composed of unstructured tetrahedra and generated with
the gmsh utility [46]. The typical element count is of order 106. At the disk’s surface, we employ
boundary layers to ensure a constant cell size of 0.01D. We check that the mesh is fine enough that
the results are not affected by the element size.

To validate the solver, we first compare our implementation with the benchmark problem of the
motion of a sphere in an unbounded domain [7]. A very similar case was considered in [47]. The
flow is entirely determined by two control parameters: the ratio of solid to fluid density ρr = ρs/ρ f
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TABLE II. Results for the buoyancy-driven sphere benchmark. Galileo number
Gsph = 200. Values from our simulations reported in the first row, errors relative to
benchmark data in the last row.

Horizontal velocity amplitude Oscillation period

Simulations 0.241 31.0
Benchmark 0.2299 29.456
Error 4.7% 5.2%

and the Galileo number, which is defined as

Gsph =
√|ρr − 1|gD3

ν
, (B1)

where g is the magnitude of the gravity vector, and D is the diameter of the sphere. Increasing the
Galileo number results in a stronger interaction of the object with its own wake, and possible un-
steadiness and/or loss of symmetry in the flow. The aim is to reproduce the case for Gsph = 200 and
ρr = 0.5. In this case, the sphere is expected to undergo a periodic zigzagging motion. Following
[47], we assign as an initial condition a small perturbation in order to trigger the instability of the
wake. Then, the horizontal velocity magnitude and oscillation period are compared against those
reported in the benchmark [7], nondimensionalized with the reference scales Uref = √|ρr − 1|gd
and tref = lref/Uref = d/Uref, obtained by averaging over several periods of the oscillation.

A periodic zigzagging state is indeed reached after the initial transient. The comparison is
reported in Table II. Results agree well with the benchmark case, with small discrepancies that
can be imputed to differences between the meshes, time step, numerical tolerances, and methods
employed in the present (finite elements) and the benchmark work (spectral elements).

For a second benchmark we consider the case of a disk. The case we consider has been studied
by several authors [9,48,49], with different definitions of controlling parameters. We compare the
results quantitatively with those reported in [48], and therefore we choose as controlling parameters
Gdisk = 160, ρr = 0.99, and ε = 0.5. It should be noted that here the reference velocity, also used
in the calculation of the Galileo number, is defined as Uref = √|ρr − 1|V ∗gD, where V ∗ = π

4 ε. The
disk, released from an initial state of rest, will start ascending and develop a wake. Then, interaction
with the wake causes an oscillatory motion, which is reported in all three of the cited studies. In
our numerical test, we also observe that the motion sets to a periodic oscillation. We compare some
numerical results with those in [48], as shown in Table III: the values compared are the Reynolds
number, defined as Re = Umd/ν, with Um average rising velocity, the normalized amplitude of
the lateral component of velocity, AUh/d , and the frequency of oscillation of the lateral motion,
identified with the Strouhal number St = f d/Um. The table shows that all values agree very well
with those reported in the literature.

TABLE III. Results for the freely rising disk benchmark. Case for Galileo
number G = 160. Data from our simulations reported in the first row, and compared
with [48]. Errors relative to benchmark data in the last row.

Re AUh/d St

Simulations 244.56 0.246 0.108
Benchmark 241.73 0.237 0.107
Error 1% 4% 1%
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