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We investigate drag reduction mechanisms in flows past two- and three-dimensional
cylinders controlled by surface actuators using deep reinforcement learning. We investigate
2D and 3D flows at Reynolds numbers up to 8000 and 4000, respectively. The learning
agents are trained in planar flows at various Reynolds numbers, with constraints on the
available actuation energy. The discovered actuation policies exhibit intriguing general-
ization capabilities, enabling open-loop control even for Reynolds numbers beyond their
training range. Remarkably, the discovered two-dimensional controls, inducing delayed
separation, are transferable to three-dimensional cylinder flows. We examine the trade-offs
between drag reduction and energy input while discussing the associated mechanisms. The
present paper demonstrates discovery of transferable and interpretable control strategies
for bluff body flows through deep reinforcement learning with limited computational cost.
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I. INTRODUCTION

The identification and utilization of drag reduction mechanisms in bluff body flow constitute
fundamental elements in the design of aircraft and ships. This has a direct and profound impact on
their energy consumption and environmental emissions [1].

Since the early stages of flow control, following the development of boundary layer theory by
Prandtl in 1904, circular cylinders have been a standard model for studying drag reduction mech-
anisms [2]. These approaches can be broadly categorized into passive and active methodologies.
Passive methods suggest modifications to the body’s surface, such as wall protrusions or surface
roughness [3,4]. Active methods involve the use of surface actuators, including mass transpiration,
tangential belt actuators, or plasma actuators [5–8]. The discovery of control strategies has heavily
relied on computer simulations. In Ref. [9], a series of simulations investigated passive drag
reduction through partial leeward porous coatings on a cylinder’s surface. In another work, active
and passive drag reduction strategies were derived for a three-dimensional flow around a cylinder by
examining the sensitivity of drag with respect to perturbations of the surface velocity and roughness.
The control reduced drag by 20% with a maximum control velocity 2% of the free-stream velocity
at Reynolds number Re = 190, 300, 1000 [10]. In later work, optimization of control parameters
through evolutionary algorithms has also proven to be a reliable approach. Automated discovery
of control strategies for cylinder flows was first introduced to optimize tangential actuators on
cylinder surfaces, exhibiting up to 50% reduction in drag at a Reynolds number of 500 [5]. Further
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investigations extended these findings to three-dimensional settings, achieving a 40% reduction in
drag [5].

Reinforcement learning (RL) has been introduced in fluid dynamics over the last decade
for developing control strategies for synchronizing multiple hydrodynamically interacting swim-
mers [11–15]. The scope of these applications has been extended in several directions, including
effective navigation in vortical flows [16] and the semisupervised discovery of subgrid-scale models
in turbulent flows [17–19].

In recent years, there have been several works that apply RL to find optimal control strategies for
active drag reduction. In Ref. [20], the authors used RL to control a cylinder’s angular velocity
in order to reduce drag, at a relatively modest Reynolds number of 100. A crucial component
in the formulation of an RL problem is the choice of state and action. In the context of active
flow control, the magnitude and therefore the required power for the control has to be carefully
considered. The work presented in Ref. [21] reports successful drag reduction for the planar flow
past a cylinder at Re = 100; however, the proposed approach seems to suffer from sampling
multiple quantities from the cylinder’s wake for the RL state and from using unrealistically large
actuation velocities for the employed actions. The active control with mass flow actuators using
RL was also examined in different works for Reynolds numbers ranging from 100 to 1000 in
Refs. [22,23], where the achieved drag reductions range from 17%, to 38%. Similarly, other
work in Ref. [24] has used RL in order to learn active control policies for elliptical cylinders at
Re = 100, achieving drag reductions up to 10%. The effect of the chosen actuation strengths is
not discussed and the feasibility of the chosen values are largely ignored. A similar approach to
Ref. [21] is chosen in Ref. [25], where the previous work from is extended to Reynolds numbers
up to 2000. That work touches on the generalization capabilities of the learned policies to higher
Reynolds numbers through Transfer Learning, which would be a desirable trait of a computed
optimal policy. Reference [26] moved in that direction, by extensively training an RL agent at
low Reynolds numbers and then by complementing the training process with a few simulations at
higher Reynolds numbers. Their results successfully reduced drag for a three-dimensional cylinder
whose wake was controlled by two smaller ones. Recent work by Ref. [27] also proposes strategies
in a three-dimensional setting, but with the goal of reducing skin friction in a channel flow. The
authors from [28] combined simulations and experiments to discover control policies for increasing
the system power gain efficiency of a system of three cylinders, showing the transferability of the
insights from simulation to reality. The authors of this study reported a wall-clock time of more
than three weeks for their training to complete, exemplifying the high computational cost of such
tasks.

The present work aims to tackle the four aforementioned issues when RL is applied for active
flow control: generalizing to high Reynolds numbers, doing so with realistic actuation strengths,
transferring of the results to realistic three-dimensional flows and achieving a manageable compu-
tational cost. By randomizing the Reynolds number and the control strength during training, we
showcase how the generalization capabilities can be improved and what effect the choice of the ac-
tuation strength has. Using this framework, we explore drag reduction mechanisms for the flow past
a circular cylinder for Reynolds numbers in the range Re = [500, 8000] using RL. For the strongest
actuation, the drag reduction achieved is competitive to existing results that required stronger actua-
tion. Furthermore, the generalisation capabilities to three-dimensional flows at Re = 1000, 2000 and
4000 is demonstrated. In these cases a drag reduction from 14.1%, 18.2% and 16.1% was achieved,
respectively. Compared to the—relatively scarce—results for three-dimensional flows, our approach
seems to be advantageous in terms of actuation strength and computational cost. For example,
Ref. [5] reports a 40% reduction in drag (for a lower Reynolds number of 500), but uses moving
tangential actuator belts. Similarly, the configurations suggested in Refs. [26,28] utilize additional
cylinders to control the wake, achieving reductions in drag in the order of 30%. The computational
cost is alleviated by leveraging an an efficient implementation of Adaptive Mesh Refinement [29] for
the fluid dynamics simulations and by using a parallel implementation of V-RACER with Remember
and Forget for Experience Replay (ReF-ER) [30] in Korali [31] for the stochastic search involved
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in DRL. Our approach allows for parallel training with direct numerical simulations (DNSs) at a
manageable cost.

This paper is structured as follows: In Sec. I A, we introduce the governing equations and
numerical method used for our direct numerical simulations. The RL method is discussed in Sec. I B.
Building on that background, we formulate drag reduction as a RL problem in Sec. II. Our results,
presented in Sec. III, are organized as follows: First, we introduce the experimental setup and
examine the mechanism for drag reduction on one example in Sec. III A. Then, in Sec. III B, we
analyze the effect of the actuation velocity on the results. The transferability of the learned policy to
different Reynolds numbers is discussed in Sec. III C, and we further investigate the influence of the
two factors on the actions taken in Sec. III D. We explore extending the results to 3D in Sec. III E
and conclude in Sec. IV.

A. Direct numerical simulations

We perform two- and three-dimensional DNSs of the flow past a cylinder by solving the
incompressible Navier-Stokes equations

∇ · u = 0,
∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u, (1)

where u, ρ, p, and ν are the fluid velocity, density, pressure, and kinematic viscosity. The no-slip
boundary condition is enforced on the cylinder surface with a prescribed velocity us through the
penalization approach [32–34], which augments the Navier-Stokes equations with a penalty term
λχ (us − u). Here λ ∈ R is the penalization coefficient and χ is the characteristic function that
takes values χ = 1 inside the cylinder and χ = 0 outside. The simulations are performed with
CUBISMAMR software, an adaptive version of the CUBISM library, which partitions the simulation
domain into cubic blocks of uniform resolution that are distributed to multiple compute nodes for
cache-optimized parallelism [35]. CUBISMAMR organizes these blocks in an octree data structure
(for three-dimensional simulations) or a quadtree data structure (for two-dimensional simulations),
allowing for adaptive mesh refinement in different regions. We refer to Refs. [29,36] for details on
the implemented numerical scheme and code validation results.

B. Reinforcement learning

RL algorithms solve Markov decision processes (MDPs), which are defined by the tuple
(S, A, r, p) consisting of a state-space S , an action-space A, a function r : S × S × A → R
which is the reward of transitioning to state s′ ∈ S from state s ∈ S by taking action a ∈ A, and
an unknown, stochastic transition map p(s′|a, s), which is the probability of transitioning to s′ from
s by taking action a.

On the MDP, we define a stochastic policy via a probability distribution π (a|s), which allows
sampling an action for a given state. The goal of RL is to find the optimal policy:

π� = arg max
π

V π (s), ∀s ∈ S. (2)

that maximizes the state-value function, defined as

V π (s) = Ep,π

[
Ni−1∑
i=0

γ ir(si, si+1, ai )|s0 = s

]
, (3)

where γ i ∈ [0, 1) is known as the discount factor and Ni are the total number of transitions between
states.

The optimal policy is computed based on interactions of an RL agent with the environment.
At every step i, the agent chooses an action ai based on the observation of the state si from the
environment. The environment then transitions to a new state si+1 and returns a reward r(si, si+1, ai ).
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In off-policy methods, transitions are collected in a replay memory and an approximation to the
optimal policy π (a|s; ϑ) with parameters ϑ is learned. In actor-critic methods, a value function
V (s; ϑ) approximation is learned as well. State-of-the-art DRL employs neural networks NN(s; ϑ) as
universal function approximators, where the weights ϑ of the neural network are typically optimized
using stochastic gradient descent. For the present paper, we use V-RACER with ReF-ER [30]
implemented in Korali [31]; this is an off-policy actor-critic DRL method, proven successful in
several scientific applications [17,18] and recently generalized to multiple RL agents [37].

II. REINFORCEMENT LEARNING FOR DRAG REDUCTION

The effective deployment of RL requires an appropriate choice of states, actions, and reward
function. Here we deploy an RL agent that interacts with the environment at discrete times ti = t0 +
i
t , for i = 0, . . . , Ni − 1, where Ni is the total number of actions taken before a set of interactions,
also referred to as an episode, terminates. The times at which the actions are taken are equally
spaced in time, with spacing 
t , and the agent starts the interaction after a transient time t0. We set

t = 0.1U/D, where U is the cylinder velocity and D its diameter.

A. Actions

We deploy Na = 8 uniformly distributed mass transpiration actuators on the cylinder sur-
face [5,22], each with a time-dependent strength ati

j ∈ [−1, 1], j = 0, . . . , Na − 1. Actuator j
imposes a radial velocity on the surface of the cylinder,

vr
j (θ ) = cUati

j cos

(
π (θ − θ j )

θ
j

a

)
, |θ − θ j | � θ j

a /2, (4)

where c is a constant that varies during training, θ
j

a is the angle that corresponds to the arc length
over which actuator j is active, θ j = j π

4 is the angle on the cylinder surface where each actuator is
centered. One set of actions ai consists of picking the actuator strengths under the constraint that
their mean value

∑N
j=1 ati

j /Na is zero, ensuring a zero total mass flux caused by actuation.

B. State

We observe the cylinder lift and drag coefficients as well as the pressure and vorticity on its
surface in Ns = 16 uniformly placed sensors. For each of the sensors, pressure and vorticity are
averaged over the cylinder surface in an area covered by an arc length of 10 º. We also include the
Reynolds number and c value from Eq. (4) in our state representation, resulting in a 36−dimensional
state.

C. Reward

The reward function entails the averaged total drag and a penalty term for the actuation strengths,
expressed as

r(si, si+1, ai ) = − 1


t

∫ ti+1

ti

CD(t ) dt − w

Na

√√√√ Na∑
j=0

(
ati

j

)2
, (5)

where CD denotes the cylinder drag coefficient. The first term implies that the agent minimizes the
mean drag. The second term is a regularization term with coefficient w that penalizes strong actions
and therefore balances the trade-off between drag reduction and energy required for the actuation.
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FIG. 1. Illustration of the RL setup. Top: Snapshot of the vorticity field at T = 200 for the two-dimensional
flow at Re = 4000. Bottom left: Sketch of the actuators and 2D simulation domain. Bottom right: Sketch of
the actuators and 3D simulation domain, top view.

The computed drag reduction for each case refers to the time-averaged drag coefficient through-
out each simulation, and is computed from∫ Te

Ts
CD(t )dt − ∫ Te,b

Ts,b
CD,baselinedt∫ Te,b

Ts,b
CD,baseline(t )dt

, (6)

where CD,baseline and CD(t ) are the instantaneous drag coefficients without control and when using
a trained policy and respectively. Also, we use Ts,b = Ts = 0.1 and Te = Te,b = 30 for the 3D
simulations and Ts,b = 50, Ts = Te,b = 200 and Te = 300 for the 2D simulations.

III. RESULTS

We perform two- and three-dimensional simulations of flows past circular cylinders. The two-
dimensional simulations are performed in a rectangular domain �2 = [0, 20D] × [0, 10D], with a
cylinder of diameter D placed at (5D, 5D). The three-dimensional simulations use a rectangular
domain �3 = [0, 20D] × [0, 10D] × [0, 10D], with a cylinder of diameter D and length L = 2.5D
placed at (5D, 5D, 5D). In both cases, the cylinder is impulsively set into motion with velocity U .
Figure 1 shows the aforementioned setup. Adaptive mesh refinement takes place according to the
magnitude of the vorticity field and the finest resolution depends on the minimum grid spacing
allowed (denoted by h). We find that decreasing the value of h below D/200 yields a smaller than
2% change in the computed mean drag, and thus choose to use this value for our simulations.
Nondimensional time is scaled as T = tU/D while the time step is determined according to the
Courant Friedrichs Lewy (CFL) condition, with a Courant number of 0.5. Commencement of vortex
shedding is accelerated by adding a small rotation of the cylinder along the z direction. For 0.25 <

T < 0.5, the z component of its angular velocity is

ωz = 0.04U

D
sin (8πT ). (7)
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FIG. 2. Results for policy π (no regularizer weight) for a two-dimensional flow past a cylinder at Re =
4000, with maximum actuation velocity up to 15% of the cylinder velocity. Top left: Cumulative reward as
a function of episodes simulated, plotted with a 95% confidence interval. Top center: Drag coefficient as a
function of time for the converged policy. Top right: Actions as fraction of cylinder velocity as a function of
time. Bottom left: Time-averaged cylinder pressure coefficient, before and after actuators are activated. Bottom
center: Angle of the points with zero shear (separation points) on cylinder surface. Bottom right: Vorticity field
at T = 300.

We train the RL agent in 2D simulations with a Reynolds number randomly sampled from
Re = 1000, 2000, and 4000. For each episode, the maximum actuation velocity is determined by
sampling c, Eq. (4), in the interval [0.05,0.15]. We examine two policies π and πw. The first policy
does not employ a regularizer (w = 0) whereas the second policy does (we set w = 0.1). Each
episode consists of a simulation where actuation starts at T = 200, when the wake of the cylinder
is developed and vortex shedding has commenced (also see Fig. 1 for a snapshot of the vorticity
field) and ends at T = 250. Each training was run on 32 compute nodes, each equipped with two
AMD EPYC 7763 of 64 cores and lasts 12 h. As can be seen in the top left plot of Fig. 2, this
allows simulating approximately 4000 episodes and achieves a converged policy approximately
after episode 3000. Note that the resolution used during training used a minimum grid spacing of 2h
as a compromise between time-to-solution and accuracy of each episode simulated. After training,
the found policies are tested in a fully resolved simulation for different Reynolds numbers and
maximum actuation velocities (determined by the value of c). Table I compares the mean drag for
the uncontrolled case T ∈ [100, 200] and for the controlled case where T ∈ [200, 300].

A. Mechanism for drag reduction

To understand the mechanism for drag reduction, we present the results for Re = 4000 and
c = 0.15 in Fig. 2. In the top middle plot, the drag coefficient time series before and after the
actuators are activated is presented; drag is decreased by almost 33% (see Table I). The fluid
velocity imposed by each actuator expressed as a fraction of the cylinder velocity is displayed
in the top right panel. Positive values correspond to blowing and negative values to suction. The
actuators at the front half of the cylinder (π/2 � |θa| � π ) suction fluid, while the other actuators
blow fluid, which helps the boundary layer remain attached for longer. The vorticity field with
actuation (bottom right plot of Fig. 2) at T = 300 can be compared with the initial condition at
T = 200 shown in Fig. 1. The comparison reveals that the cylinder wake becomes narrower and
more symmetric. The width of the wake is closely associated with the location of the flow separation
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TABLE I. Summary of the two-dimensional simulation results. Each row shows the mean drag coefficient
without actuation and the mean drag coefficient for three cases with different values for the maximum actuation
velocity c. Results are shown for both policies π and πw. The percentage written in parentheses indicates the
drag reduction.

Policy π (no regularizer weight) Policy πw (regularizer weight w = 0.1)

Re CD c = 0.05 c = 0.10 c = 0.15 c = 0.05 c = 0.10 c = 0.15

500 1.52 1.42 (6%) 1.33 (12%) 1.25 (18%) 1.43 (6%) 1.34 (12%) 1.26 (17%)
1000 1.61 1.45 (10%) 1.31 (19%) 1.20 (26%) 1.45 (10%) 1.32 (18%) 1.21 (25%)
2000 1.75 1.52 (14%) 1.28 (27%) 1.14 (35%) 1.53 (13%) 1.30 (26%) 1.16 (34%)
4000 1.75 1.70 (3%) 1.35 (23%) 1.18 (33%) 1.70 (3%) 1.42 (19%) 1.20 (32%)
8000 1.92 1.91 (1%) 1.67 (13%) 1.29 (33%) 1.67 (13%) 1.74 (10%) 1.33 (31%)

point on the cylinder surface, where early separation can cause wider wakes and increased drag [29].
The policy successfully delays separation, allowing the flow to remain attached for a longer duration
and resulting in reduced drag. This delay of the separation is quantified in the bottom left and center
plots of Fig. 2. The first plot shows the time-averaged pressure coefficient on the cylinder surface
before and after activation of the actuators. Regions of separated flow are characterized by flat
pressure profiles, which significantly contribute to drag increases. After the actuators are activated,
the regions of constant pressure become visibly smaller, indicating that the flow remains attached for
a longer duration. The center plot shows the polar angle of the points of zero vorticity on the cylinder
surface over time, which is indicative of flow separation. The found policy effectively moves the
separation angle towards the back of the cylinder, reducing the maximum separation angle (at the
top part of the cylinder) from approximately 90ºto around ±75º. Overall, the results from policy
π demonstrate the effectiveness of the implemented drag reduction strategy, as evidenced by the
significant reduction in drag, improved wake symmetry, and delayed separation.

B. Effect of actuation velocities

We examine the effect of the actuation strength and of introducing a regularizer preferring low
actuation to the reward function. The actuation velocity effectively influences the amount of energy
injected into the system. To quantify this added energy, we introduce the energy cost metric, denoted
as Ec. It is defined as follows:

Ec = 1

(τ2 − τ1)Na

∫ τ2

τ1

√√√√Na−1∑
j=0

(
ati

j

)2
dt (8)

where τ1 = 200T corresponds to the start of actuator activation and τ2 = 300T to the end time of
each of our simulations. We also define Ec = 0 for simulations with inactive actuators. This metric
provides a measure of the overall cost associated with reducing drag by activating the actuators
within a given time interval. Figure 3 shows the mean drag coefficient, mean squared lift coefficient,
and mean separation angle as functions of the energy cost. Notably, as the energy cost increases, we
observe more substantial reductions in drag. These reductions are achieved by generating narrower
and more symmetric wakes. Consequently, the mean squared lift coefficient and mean separation
angle decrease with increasing energy cost. Note that an energy cost of zero corresponds to the
baseline case before the actuators were activated. As anticipated, smaller actuation velocities result
in less drag reduction, refer also to Table I. It is worth noting that the inclusion of a regularizer in
the reward function yields comparable drag reductions to the case without a regularizer. However, a
significant difference lies in the energy cost, particularly when higher actuation velocities (c = 0.10
or c = 0.15) are permitted. In both instances, the energy cost is approximately 25% lower.
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FIG. 3. Summary of results when a regularizer is introduced into the reward function for Re = 4000. Top
row: Mean drag coefficient, mean squared lift coefficient, and mean flow separation angle as functions of the
energy cost for policy π (no regularizer) and policy πw (with regularizer). Bottom: Comparison of actions
taken by the two policies, expressed as a fraction of the cylinder velocity, for c = 0.10.

To understand how varying the maximum actuation velocity affects our policy, we plot the drag
coefficient for Re = 4000 and different values of c in Fig. 4. We see that for c = 0.05, drag is not
reduced until t ≈ 280T . The vorticity field for c = 0.05 is presented in Fig. 4 for various time
instances. Like the stronger actuation case, the wake width eventually becomes narrower here.
However, this does not happen until t ≈ 280T , which coincides with the time instance during which
drag is actually reduced. It is only after that time that the separation angle becomes acute, yielding a
narrower wake and a decrease in drag of about 8%. When averaged throughout the whole simulation,
the final decrease ends up being only 2.7%. Interestingly, for c = 0.05, the actions taken by the RL
agent exhibit greater variance over time compared to when c = 0.15, as depicted in both Figs. 4
and 2. This variation can be attributed to the RL agent’s efforts to control the wake of the cylinder,

FIG. 4. Summary of results for policy π with varying maximum actuation velocities (varying c) and a
fixed Reynolds number of 4000. Top left: Drag coefficient time series for different values of c. Top right:
Actions time series for c = 0.05, expressed as fraction of cylinder velocity. Bottom: vorticity field at several
time instances, for c = 0.05.
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aiming to make it narrower and more symmetrical. For instance, we observe that the actuator located
at θa = −90o is occasionally turned off (the actuation strength briefly reaches zero, as indicated by
the pink curve in Fig. 4). This typically occurs when vortices are shed in the positive y direction, such
as at t ≈ 280T . A similar behavior is observed when vortices are shed in the negative y direction,
concerning the actuator located at θa = 90o. Switching off or momentarily reducing the strength of
these two actuators appears to be crucial in controlling the direction of vortices shed by the cylinder.
Ultimately, successful control leads to a narrower wake and reduced drag.

At the bottom of Fig. 4, we visualize the impact of introducing a regularizer on the actions
taken by the RL agent for c = 0.1. On the left, we display the actions taken by policy π , while on
the right we present the actions taken by πw. Notably, we observe intermittent deactivation of the
actuators positioned at θa = ±90o. As discussed earlier, strategic deactivation of these influential
actuators at opportune moments enhances wake symmetry. In addition, the transition from π to πw

gives the RL agent the ability to identify safe time instances for deactivating these actuators without
compromising drag reduction performance. Furthermore, when employing πw, the actuator located
at θa = 135o exhibits periodic oscillations around a small value, effectively reducing the energy
cost. Conversely, when utilizing π , this particular actuator maintains a nonzero mean value without
necessarily contributing to drag reduction significantly.

C. Effect of Reynolds number

Here we assess the effectiveness of our policy at varying Reynolds numbers. During training, we
used Re = 1000, 2000, 4000 and we extend this range by also testing Re = 500 and Re = 8000.

For c = 0.15, we observe a significant reduction in drag across all Reynolds numbers, as depicted
in Fig. 5. Similar to the case of Re = 4000, the wake becomes narrower and flow separation is
delayed, as evident by the comparison between the initial and final vorticity field for Re = 8000 in
the middle of Fig. 5. The location of separation points and pressure coefficient profiles also show
similar trends; the middle right of Fig. 5 shows how the mean separation point location varies with
the Reynolds number for the uncontrolled scenario and when policy π is applied for c = 0.15.
The displacement of the separation point is greater for the larger Reynolds numbers examined.
For Re = 1000, 2000, 4000, and 8000, the mechanism for drag reduction is mostly the same for
c = 0.15. To elucidate the situation at lower Reynolds numbers, we examine the time-averaged
pressure coefficient in the bottom right plot of Fig. 5. Although the size of constant pressure regions
does not change significantly, the pressure values do, leading to the reduction in total drag. These
subtle changes are not clearly visible in the vorticity field before and after actuation, which is shown
at the bottom left and center of Fig. 5.

As the Reynolds number increases, the actions taken by the RL agent demonstrate greater
variance with time. This is evident as we compare the top left plot of Fig. 5 with the top left plot
of Fig. 2. We have established that a strategic deactivation of the actuators placed at θa = ±90o

can help with enforcing symmetry in the cylinder’s wake. So far, this has only been necessary for
smaller values of the actuation velocity (c = 0.05 or c = 0.10). This is not the case for Re = 8000,
where we see that large actuation values are not sufficient and need to be combined with the
aforementioned periodic deactivation of the actuators to manage to reduce drag and maintain more
symmetric conditions in the wake compared to the uncontrolled case.

When transitioning to the comparatively conservative scenario (with regard to action/actuator
velocity magnitudes) characterized by c = 0.05, our policy demonstrates notable success in miti-
gating drag, specifically for Re = 500, 1000, and 2000 (refer to Table I). In the case of Re = 4000,
it has been demonstrated that control eventually proves effective, resulting in an approximate 8%
reduction in drag. However, it is worth noting that the average reduction amounts to around 2%
due to the time required for the actions taken to manifest their full impact. At Re = 8000, allowing
actuation with only up to 5% of the cylinder’s velocity does not seem to suffice to achieve a notable
drag reduction. The introduction of a regularizer does not seem to alter results significantly for
c = 0.05. This is valid across all Reynolds numbers, with the exception of Re = 8000 where a 13%
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FIG. 5. Summary of results for different Reynolds numbers and c = 0.15. Top left and top center: Drag
coefficient time series. Top right: Mean separation angle as a function of the Reynolds number for the
uncontrolled case and a controlled case. Middle left and center: Vorticity field at Re = 8000 before (T = 200)
and after actuation (T = 300). Middle right: Actions as fraction of cylinder velocity for Re=8000. Bottom left
and center: Vorticity field at Re = 500 before (T = 200) and after actuation (T = 300). Bottom right: Cylinder
pressure coefficient for Re = 500 before and after actuators are activated.

reduction is observed. A possible reason for this outlier could be the chaotic nature of the flow at
this Reynolds number, which can change drastically from small perturbations; it is, however, hard
to pinpoint the exact reasons for this success.

Note that when testing at Reynolds numbers different from the ones used during training, we
have chosen to use the same number of actuators. The introduction of a regularizer in one of the
two computed policies should result in weak actuation for actuators that do not contribute to drag
reduction significantly, indicating that they could possibly be omitted (which proves to be the case
for the actuators located at ±135o, as discussed in the next section). Furthermore, the location of
the pressure and vorticity measurements is kept the same. Our uniform distribution of 16 sensors on
the cylinder surface could in theory be altered when changing Reynolds numbers to accommodate
maximum information gain and result in an optimal sensor placement, which is beyond the scope
of this paper.

D. Discussion: Action space

RL policies can be effective, but at the same time they are complex and do not readily render
themselves to interpretation. Here, to enhance our understanding of the discovered policies, we
examine their action space. For each Reynolds number, value of c, and computed policy (π and
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FIG. 6. Action pairs across Reynolds numbers and maximum actuation velocities for the two policies π

and πw . For each plot, the horizontal axis corresponds to θa ∈ {0o, 45o, 90o, 135o} and the vertical axis to
θa ∈ {180o, −45o, −90o, −135o}.
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FIG. 7. Flow past three-dimensional cylinder at Re = 1000, 2000, and 4000. Drag coefficient time series
for baseline case and for three different policies.

πw), we plot four pairs of actions; each pair corresponds to all actions taken by two actuators
plotted against one another. This is shown in Fig. 6.

At low Reynolds numbers, we observe mostly constant actions. However, as the Reynolds
number increases, more complex behavior emerges. At higher Reynolds numbers, we even observe
actuator pairs that switch from blowing to suction.

A similar trend can be observed as the maximum actuation velocity (c) decreases. Larger
values of c demonstrate a more simplistic approach to drag reduction, where each actuator pair
predominantly performs either suction or blowing, without significant variance. On the other hand,
reducing the actuation velocity calls for a more sophisticated approach, resulting in increased
variance in the actions taken.

Figure 6 also demonstrates how introducing a regularizer affects the policy and the action space.
In most cases, the trajectories plotted are shifted closer to the origin, indicating a reduction in the
action magnitudes for actuators that do not contribute significantly to drag reduction, such as those
placed at θa = ±135◦. Conversely, the other pairs of actuators, whose actuation velocity magnitude
is not significantly reduced by the regularizer, display a strong correlation. This correlation is
expected due to symmetry; there is no apparent reason for our policy to prefer one direction over
another, especially for the key locations at θa = ±45◦ and θa = ±90◦, which strongly influence flow
separation.

E. Three-dimensional flow

The transition from two-dimensional to three-dimensional vortex shedding has been observed
at Reynolds numbers as low as 200 [38]. Yet, two-dimensional simulations could provide insights
relevant to their three-dimensional counterparts at a greatly reduced computational cost; each three-
dimensional simulation utilizes about half of the computational resources required to perform a
complete training for a single policy (with thousands of two-dimensional simulations).

Hence, direct training of a three-dimensional model at the range of Reynolds numbers considered
in this paper is currently not feasible. Nevertheless, we can assess the performance of our policies
in a three-dimensional setting. To this end, we apply our computed policy π directly to the three-
dimensional flow past a cylinder at Re = 1000, 2000, and 4000 for a maximum actuation velocity
up to 15% of the cylinder velocity (c = 0.15).
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TABLE II. Summary of the three-dimensional controlled and uncontrolled cases.

Re CD CD, policy π (% reduction)

1000 0.882 0.757 (14.1%)
2000 0.916 0.750 (18.2%)
4000 0.940 0.788 (16.1%)

To implement this, we define a state and a set of actions. Similar to the two-dimensional model,
we place Na = 8 mass transpiration actuators on the cylinder surface, but in this case, the actuators
are extended in the z direction on the cylinder surface for |z| < 0.5L. Our choice of state involves
sampling pressure and the z component of vorticity at 16 locations on the cylinder surface, with the
quantities averaged in the z direction. Additionally, we include the cylinder lift and drag coefficients
in our state, as well as the Reynolds number and maximum actuation velocity (c). The actuator
activation time is set to T = 0.1 (instead of T = 200), and the simulations are terminated at T =
30 (instead of T = 300). The setup is illustrated in Fig. 1. The resulting drag coefficient for all
three cases is plotted in Fig. 7 and the results are summarized in Table II. The policy successfully

FIG. 8. Left column: Slice through the xy plane showing vorticity magnitude at T = 30 for the uncontrolled
cases (top to bottom: Re = 1000, 2000, 4000). Right column: Slice through the xy plane showing vorticity
magnitude at T = 30 for the controlled cases (top to bottom: Re = 1000, 2000, 4000).
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FIG. 9. Vorticity magnitude volume rendering for Re = 2000; left column shows the top views and right
column shows the side views. The uncontrolled case corresponds to the first row, while the second row shows
the controlled case.

reduces drag, on average, for all three cases. However, the drag we obtain by applying the computed
policy is not strictly lower than the baseline case for Re = 4000. At about T = 22, drag starts to
increase. Upon closer examination of the actions taken by our policy, it becomes apparent that the
actuation velocities are significantly reduced during this time period. Consequently, the reduction
in flow control strength leads to the observed increase in drag. This discrepancy can be attributed
to the divergence between the observed state by our RL agent and its two-dimensional counterpart,
particularly at this Reynolds number. Our policy seems to not be trained well in this regime and
would require further training with three-dimensional simulations to further improve. Still, many
observations that were valid in the two-dimensional regime also hold here. As can be seen in Fig. 8,
the wake for the controlled cases at Re = 1000 and 2000 is narrower and separation is delayed. The
same is true for Re = 4000, but only before T = 22. Finally, a volume rendering of the vorticity
magnitude at T = 30 for Re = 2000 is shown in Fig. 9 for both the uncontrolled and controlled
cases.

IV. CONCLUSIONS

We investigate drag reduction for 2D and 3D cylinder flows through active control mechanisms
discovered by deep RL. The study reveals an intriguing trade-off between drag reduction and
actuation energy expenditure. Aggressive actuation leads to significant delays in separation on the
cylinder surface and up to 35% drag reduction. On the other hand, a more conservative approach in
terms of energy expenditure identifies instances when the actuators can be turned off. Similarly,
when limited resources are available (in terms of maximum actuation velocity), the discovered
policies manipulate the flow field and eventually reduce drag by turning on and off, at select time
instances, the actuators.

We find that the identified control policies exhibit generalization to a wider range of Reynolds
numbers than the ones used during training. Notably, despite being trained for two-dimensional
planar flows, the computed policy is effective for three-dimensional flows as well. We also describe
efforts to interpret the complex policies developed by RL. At the same time, we note that RL
requires length evaluations and there is significant room for improvement by developing effective
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surrogate models. The exhibited generalization from 2D to 3D flows is intriguing and deserves
further examination. We argue that further work in interpretable RL is required.

The present paper identifies effective and interpretable control strategies while promoting ef-
ficient resource utilization. We believe that the proposed RL strategies for flow control can be
extended to a broader range of unsteady separated flows, providing insights into the drag reduction
mechanisms under energy and other constraints.
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