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In this work we apply a formulation for capturing detuned secondary instabilities. This
formulation, based on two-dimensional stability analysis coupled with a Bloch wave for-
malism originally described by Schmidt et al. [Phys. Rev. Fluids 2, 113902 (2017)], allows
us to consider high-dimensional systems resulting from several repetitions of a spatially
periodic unit by solving an eigenproblem of much smaller size. Secondary instabilities
coupling multiple periodic units thus can be retrieved. The method is applied on the
secondary stability of a swept boundary-layer flow subject to stationary cross-flow vortices.
Two distinct detuned secondary instabilities are retrieved. The first one, obtained for a de-
tuning factor ε = 0.35 and reaching a maximum growth rate for streamwise wave number
αv = 0.087, was already found in the work of Fischer and Dallmann [Phys. Fluids A: Fluid
Dyn. 3, 2378 (1991)]. The second instability is obtained for streamwise independent modes
and small detuning factor ε = 0.08. The corresponding mode presents large-wavelength
oscillations, arising from a characteristic beating phenomenon. The physical origin of these
two secondary instabilities has been investigated by varying the amplitude of the primary
disturbance: for the latter instability, reminiscent of a type III mode, the unstable branch
continuously deforms as the amplitude is increased, whereas a change of topology of the
spectrum is observed for the αv = 0 mode.

DOI: 10.1103/PhysRevFluids.9.043901

I. INTRODUCTION

Transition to turbulence is a crucial problem of great technical interest in fluid mechanics. A
successful approach for studying it consists in dividing the process into several stages. An initial
stage, denoted as primary instability, can be investigated through linear stability theory, either
modal or nonmodal [1]. These analyses yield structures representative of the primary instability
mechanisms such as Tollmien-Schlichting (TS) waves for channel or boundary-layer flows [2],
cross-flow vortices for swept flows [3], gravity waves in stratified flows [4], or streaks in the case of
nonmodal mechanisms [5]. This list is far from being exhaustive as the relevant structures strongly
depend on the flow configuration and the case considered.

These flow structures are likely to further destabilize, resulting in the second stage of the tran-
sition process. Investigation of this stage is possible through secondary stability theory, established
through the seminal works of Orszag and Patera [6] and Herbert [7] on two-dimensional TS waves in
wall-bounded flows. In the simplest cases, secondary stability theory is based on a Floquet analysis
of a secondary base flow constructed as the superposition of an initial laminar flow and a primary
disturbance previously identified. In channel and boundary layer flows, the exponential growth of
small three-dimensional disturbances, observed experimentally and in numerical simulations, was
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explained as a secondary instability of two-dimensional TS waves [6,7]. Following these seminal
works, the theory was applied to numerous other configurations such as streaks in boundary-layer
[8] or cross-flow vortices in swept flows [9,10], leading to breakthroughs in the identification of the
underlying mechanisms of transition to turbulence.

Peculiar long-wavelength modes can be observed in several flow configurations, usually coupling
multiple length scales, such as the flow over superhydrophobic surfaces with moving interfaces
[11], large arrays of vortices [12], or vortex pairings in mixing layers [13]. The origin of such
long-wavelength, detuned modes can be investigated by means of secondary instability of primary
modes. In this article we introduce a formulation for secondary stability analysis based on the
association of a local two-dimensional stability analysis and a Bloch wave formalism. This for-
mulation is based on the mathematical framework proposed by Schmid et al. [14] for the primary
stability analysis of fluid systems consisting of a spatially periodic array of n identical units. A
similar framework has already been employed in the field of vibration analysis to study rotationally
symmetric systems like bladed disks (see Olson et al. [15] for a review in this context). This method
allows us to compute multi-modal fluid instabilities, i.e., modal solutions that are spatially periodic
over the array of n units, despite not being periodic over individual units, without solving the
whole eigenvalue problem. Using this formalism, secondary stability analyses can be carried out
on very large systems, allowing us to capture modes with small detuning factors spanning several
wavelengths of the primary disturbance or resonances.

We present here an application of this framework to secondary stability theory of a swept
boundary layer subject to stationary cross-flow modes. In this case the spatial periodicity, necessary
for the application of the method, results from the periodicity of the primary disturbance, and not
from the spatial recurrence of a geometric feature as for the examples provided in Schmid et al. [14].
The case of the swept boundary layer subject to stationary cross-flow modes has been chosen due to
previous observation of long-wavelength structures in numerical and experimental studies. In fact, in
a DNS study of such a flow case [16], detuning of the secondary instability appeared, but it was not
further investigated. Moreover, long-wavelength coherent flow structures have been experimentally
reported by [17], but their physical origin remained unclear. Finally, to the authors’ knowledge,
despite the extensive literature on the secondary instabilities in swept boundary layers [9,10,17–19],
no study has considered yet the simultaneous secondary instability of a large number of cross-flow
vortices. Moreover, for small spanwise wavelength instabilities, a direct comparison can be made
with results from the Floquet analysis of Fischer and Dallmann [9], allowing a validation of the
results. The outline of the remainder of the paper is as follows. The mathematical framework
described in Schmid et al. [14] will be adapted for the study of secondary instabilities in Sec. II.
The results and discussion on the secondary stability of the swept boundary layer are contained in
Sec. III. The main findings are summarized in Sec. IV.

II. MATHEMATICAL FRAMEWORK

Let us consider a general, time-evolving system of the form

∂Q
∂t

= F[Q(x, t )], (1)

where Q is the state vector, F a nonlinear operator, and x = (x, y, z) is the spatial coordinates
vector, with x being the streamwise, y the wall-normal, and z the spanwise direction. The flow is
decomposed into a base flow Q0(y), assumed to be locally parallel, and a small primary disturbance
q1(x, t ), such that Q(x, t ) = Q0(y) + q1(x, t ). Substituting the previous decomposition into Eq. (1)
and neglecting nonlinear terms results in the following system for the perturbation:

∂q1

∂t
= Aq1 (2)
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with A the Jacobian of the system. Assuming an ansatz of the form q1(x, t ) =
q̃1(y) exp [i(αx + βz − ωt )], modal and nonmodal stability analysis [1] can be performed, iden-
tifying specific waves of interest, with (α, β ) the spatial and ω the temporal wave number. Notice
that the primary instability analysis is carried out in a temporal framework, so that α, β are real
quantities whereas ω = ωr + iωi is complex.

Following Herbert [7], the secondary base flow Q1 is defined as the superposition of the
primary disturbance of interest q1, with amplitude A, and the primary base flow Q0, such that
Q1(x, t ) = Q0(y) + Aq1(x, t ). We also introduce a Galilean coordinate system (xv, y, zv ) normal
to the wave vector k = (α, β )T of the primary disturbance moving with phase speed c = ωr/||k||
in the zv direction. The passage from one coordinate system to the other can be performed through
the following Squire transform: xv (t ) = β/||k||x − α/||k||z and zv (t ) = α/||k||x + β/||k||z − ct .
In this frame the secondary base flow Q1(y, zv ) is stationary, streamwise independent, and 2π/||k||-
periodic in the spanwise direction zv . In the wave-oriented reference frame, the flow is decomposed
into the secondary base flow Q1(y, zv ) and a small secondary perturbation q2(xv, y, zv, t ) such as
Q(xv, y, zv, t ) = Q1(y, zv ) + q2(xv, y, zv, t ). This formulation requires the shape assumption to be
valid. Potentially, the base flow for secondary stability analysis can be retrieved by other means, such
as parabolized stability equations or direct extraction from a numerical simulation. The key point
is to guarantee the spatial periodicity of the secondary base flow on the subunits. Modal secondary
perturbations are assumed:

q2(xv, y, zv, t ) = q̃2(y, zv ) exp(iαvxv + σ t ) (3)

with αv and σ = σr + iσi being respectively the (real) streamwise wave number and the (complex)
temporal wave number, σr the growth rate, and σi the circular frequency of the modes.

In the classical theory of secondary stability, Floquet analysis would be applied on the secondary
base flow Q1. Instead, we consider a fluid system composed of the repetition in the spanwise
direction zv of the secondary base flow Q1 over n subunits of length 2π/||k||. The Navier-
Stokes equations are then linearized around the 2π/||k||-periodic base flow Q1(y, zv ). The ansatz
for the secondary disturbance is introduced, yielding a two-dimensional local stability problem
with 2π/||k||-periodic coefficients. The equations for the stability problem linearized around a
two-dimensional stationary base flow Q1(y, zv ) = [U1(y, zv ),V1(y, zv ),W1(y, zv )]T can be found in
Loiseau [20] and are reproduced here for the sake of clarity:

σ ũ2 + iαvU1ũ2 + V1∂yũ2 + W1∂zv
ũ2 + ṽ2∂yU1 + w̃2∂zv

U1 = −iαv p̃ + 1

Re

(
∂yy + ∂zvzv

− α2
v

)
ũ2

σ ṽ2 + iαvU1ṽ2 + V1∂yṽ2 + W1∂zv
ṽ2 + ṽ2∂yV1 + w̃2∂zv

V1 = −∂y p̃ + 1

Re

(
∂yy + ∂zvzv

− α2
v

)
ṽ2

σ w̃2 + iαvU1w̃2 + V1∂yw̃2 + W1∂zv
w̃2 + ṽ2∂yW1 + w̃2∂zv

W1 = −∂zv
p̃ + 1

Re

(
∂yy + ∂zvzv

− α2
v

)
w̃2

iαv ũ2 + ∂yṽ2 + ∂zv
w̃2 = 0, (4)

where Re is the Reynolds number. Performing a classical linear stability analysis of a system of
this size yields a prohibitive computational cost. However, this task can be tackled at an affordable
cost using the framework described by Schmid et al. [14]. For the sake of completeness, the method
will be quickly described in the following. The first step consists in reordering the system, which
is partitioned into n smaller systems, each one corresponding to a subunit. Mathematically, the
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disturbance equations can be recast under the following form:

∂

∂t

⎛
⎜⎜⎜⎜⎝

q(0)
2

q(1)
2
...

q(n−1)
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

A(0) A(1) · · · A(n−1)

A(n−1) A(0) · · · A(n−2)

...
...

...

A(1) A(2) · · · A(0)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A′

⎛
⎜⎜⎜⎜⎝

q(0)
2

q(1)
2
...

q(n−1)
2

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
q2

(5)

with A′ the Jacobian associated with the full secondary stability problem, which is composed of the
matrices A(0) and A( j) (for j = 0, . . . , n − 1) describing respectively the dynamics in a subunit and
the coupling interactions between subunits. The secondary disturbance state vector in the jth subunit
is denoted as q( j)

2 . The Jacobian matrix A′ is block-circulant due to the specific n-periodic nature of
the system and can become a block-diagonal matrix Â through the similarity transformation:

PH A′P = diag(Â(0), Â(1), . . . , Â(n−1)) ≡ Â. (6)

The transfer matrix P can be found analytically as

P = J ⊗ I (7)

with J a matrix such as J j+1,k+1 = ρk
j /

√
n for j, k = 0, . . . , n − 1 and ρ j = exp(2iπ j/n) the jth

of the n roots of unity. The symbol ⊗ denotes the usual Kronecker product and I the identity
matrix. With this transformation, the linear stability problem has been reduced to the study of
n smaller subsystems characterized by the matrices Â( j). Hence, the full spectrum of the matrix
A′ can be found merging the n spectra of Â( j) for j = 0, . . . , n − 1. Similarly, provided v j is
an eigenvector of Â( j), the eigenfunctions of the full system can be retrieved and take the form
[v j, ρ jv j, ρ

2
j v j, . . . , ρ

n−1
j v j]T for j = 0, . . . , n − 1. In the case of nearest-neighbor coupling, rather

common in many applications, the Jacobian A′ reduces to a block-tridiagonal matrix. Only a
three-unit system A(0), A(1), A(2) needs to be discretized and processed, significantly reducing the
complexity and computational cost of the method. A sensitivity study of the method with respect to
the nearest-neighbor coupling hypothesis, as well to the number of subunits considered, is carried
out in the Appendix.

Notice that the argument θ j of the root-of-unity ρ j acts as a phase shift between the different
subunits: the farther it is from 0 (or 2π ), the more desynchronized the secondary mode is. Thus,
the eigenfunction v j , after each subunit, is phase shifted by θ j = arg(ρ j ) = 2π j/n, meaning that
after nj = 2π/θ j = n/ j, (here j = 1, . . . , n − 1) subunits, the cumulative phase shift will exceed
2π , giving an estimate of the effective fundamental period of the eigenfunction of the full system.
Associated with this number of coupled subunits, the fundamental wave number of the mode can be
retrieved and is equal to βv = 2π/(2πn j/||k||) = j||k||/n.

The connection with Floquet analysis and the corresponding detuning factor ε can be thus
specified. In the wave-oriented frame, the secondary base flow is periodic with wave number
β0

v = ||k|| in the zv direction. After Fourier expanding the base flow in this direction (see [1], for
instance) the secondary disturbance has the following modal expansion:

q2(xv, y, zv, t ) = eσ t eiαvxv

∑
m

q̂m(y)ei(m+ε)||k||zv , (8)

where ε = γi/||k||, γi being the imaginary part of the classical Floquet exponent γ . The funda-
mental wave number (m = 0) of the resulting mode is thus βv = ε||k||, which, after equating
with the expression of βv previously obtained for the jth eigenmode with root-of-unity ρ j ,
gives ε = 1/nj = j/n. Reintroducing the detuning factor into the Floquet modal expansion
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yields

q( j)
2 (xv, y, zv, t ) = eσ t eiαvxv ei j ||k||

n zv

∑
m

q̂m(y)eim||k||zv (9)

= eσ t eiαvxv ei j ||k||
n zv q̃(y, zv ) (10)

for j = 0, . . . , n − 1, where the Bloch theorem for the n subunits is retrieved.
Comparing the computational cost of the Bloch wave method to that of a limited [O(10)] number

of Floquet computations with different detuning factors, one can conclude that the total CPU time
is approximately equivalent. Thus, there is not a direct computational advantage of using such a
method instead of Floquet analysis.

However, in the present framework, the eigenproblem is solved using a two-dimensional base
flow, without needing to develop and truncate it in a Fourier series. This can be quite beneficial in
the case of complex base flows (as mean flows), where using Fourier modes may not be convenient
if the secondary base flow has been computed using a nonspectral method (e.g., a finite-difference
numerical code). Of course, this would merely constitute a pragmatic advantage, while the two
approaches are equivalent from both a theoretical and computational point of view. Finally, since a
large numbers of eigenmodes can be retrieved, the framework is also well suited for carrying out
nonmodal or resolvent analyses. These have not been described as the present article focuses on
modal instabilites. For a full discussion, the reader is referred to Schmid et al. [14].

III. RESULTS

To illustrate the previous method, the secondary instability of stationary cross-flow vortices in a
swept-boundary flow is investigated. This analysis extends and completes the work of Fischer and
Dallmann [9], where long-wavelength instabilities were not investigated. All the stability results
hereafter are obtained using a temporal approach (ω, σ ∈ C). The secondary stability problem is
tackled considering the nearest-neighbor coupling assumption (see the Appendix for a validation
of this assumption). For both primary and secondary analyses, the stability problem is discretized
with a spectral collocation method [22]. Wall-normal and spanwise directions are respectively dis-
cretized with a 64-point Chebyschev grid and a 64-point Fourier grid, respectively. The generalized
eigenvalue problem is solved using a Krylov-Schur algorithm of the SciPy Python module coupled
with a shift-and-inverse technique.

A. Primary stability analysis

In the following, we consider the incompressible flow over an infinite swept flat plate with
an imposed negative pressure gradient (i.e., decreasing pressure in the chordwise direction). The
laminar base flow Q0 = [U0(y), 0,W0(y)]T is modeled with a Falkner-Skan-Cook profile [23,24].
Precisely, introducing f and g such that U0(y) = f ′(y) cos θ and W0(y) = g(y) sin θ , we have

(2 − βH ) f ′′′ + f f ′′ + βH [1 − ( f ′)2] = 0, (11)

(2 − βH )g′′ + f g′ = 0, (12)

where the Hartree dimensionless pressure-gradient parameter (βH ), the local sweep angle, and the
local Reynolds number are set respectively to βH = 0.630, θ = 46.9◦, and Re = Reδ = 826. These
parameters are taken directly from Fischer and Dallmann [9] and set to fit qualitatively experimental
results from Müller [25]. Assuming wavelike solutions for the disturbances, modal stability analysis
is performed for this configuration. Stationary disturbances maximizing the temporal growth rate
with respect to the streamwise and spanwise wave numbers α and β are sought. Figure 1 exhibits the
neutral curve of the primary instability. Since Squire’s theorem is not valid for three-dimensional
flows [26], the β < 0 plane was also investigated for the sake of completeness. The maximum
growth rate for stationary disturbances is reached for (α, β ) = (0.0361, 0.4774). The eigenfunctions
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FIG. 1. (a) Neutral curve [black solid line ωi(α, β ) = 0] of the swept boundary layer for Reδ = 826. The
dashed line corresponds to stationary disturbances, ωr (α, β ) = 0. (b) Absolute value of the eigenfunctions
for Reδ = 826, α = 0.0361, and β = 0.4774 [ = arctan(β/α) = 89.9◦]. The dashed lines are extracted from
Fischer and Dallmann [9].

of this mode are displayed in Fig. 1(a). A second instability region appears as well, albeit with lower
growth rates and no stationary disturbances. The agreement with the results found in Fischer and
Dallmann [9] is excellent.

B. Secondary stability analysis

Secondary stability of the flow is investigated using the framework described in Sec. II. The
secondary base flow is defined as Q1(y, zv ) = Q0(y) + Aq1(y, zv ) with q1 the disturbance with wave
vector k = (α, β ) = (0.0361, 0.4774)T in the original reference frame. The amplitude A is set as
A = 0.0789 [9]. The resulting base flow on one subunit and in the wave-oriented reference frame is
shown in Fig. 2. Qualitative validity of the shape assumption in this particular case is shown through
comparison with experiments in Fischer and Dallmann [9]. Regarding the saturation amplitude, in
a similar configuration, White and Saric [27] found a saturation amplitude of 19% for subcritical
transition. This has been retrieved in the more recent work of Serpieri and Kotsonis [17] where, at
worst, an N factor of 3 was found, corresponding to a saturation amplitude of 20%. Returning to
the study of White and Saric [27], in the case where the generated primary cross-flow vortices were

FIG. 2. Secondary base flow U1(y, zv ) (a) and W1(y, zv ) (b) in the wave-oriented reference frame for one
subunit. The wall-normal component V1 is nonzero but is one order of magnitude smaller than W1, thus it is not
shown.
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FIG. 3. (a) Evolution of the secondary growth rate σr (black circles) as a function of the streamwise wave
number αv . A comparison is made with Fig. 8 of Fischer and Dallmann [9] (red symbols), where ε corresponds
to the detuning factor of the Floquet analysis [9]. (b), (c) Spatial Fourier spectra of the energy of the most
unstable mode for αv = 0 (b) and αv = 0.087 (c).

supercritical, their amplitude grew by only a few percent before reaching saturation, in agreement
with the chosen amplitude.

Secondary growth rate for the full system as a function of the streamwise wave number is
displayed in Fig. 3. Two modes appear to compete: the maximum growth rate σr = 0.0068 is
reached for αv = 0.087, while streamwise independent perturbations (αv = 0) also display strong
amplification with σr = 0.0065. A direct comparison can be made with Fig. 8 from Fischer and
Dallmann [9], where Floquet analysis (on one subunit) is conducted for both harmonic modes
and resonant modes with a detuning factor ε = 0.35, where ε = γi/||k|| and γi is the imaginary
part of the Floquet exponent γ , as discussed in Sec. II. Maximum growth rates are obtained for
αv = 0.03 and αv = 0.087, respectively. The agreement with the ε = 0.35 curve is good although
some discrepancies are observed for the growth rates of harmonic modes. The Floquet analysis
seems to overestimate the secondary growth rate in the range where small wave number modes are
predominant.

The nature of the instabilities obtained in our framework can be inferred inspecting the spatial
Fourier energy spectra of the most unstable modes. These Fourier spectra, realized for the cases
with αv = 0 and αv = 0.087, are shown in Figs. 3(b) and 3(c). The detuning factor can be identified,
from the spectra, as ε = βv/‖k‖ with βv the wave number of the Fourier fundamental mode. Thus,
the maximum at αv = 0.087 is associated with a detuned mode with ε = 0.35, in agreement with
Fischer and Dallmann [9]. For αv = 0, all the frequencies are almost multiples of ‖k‖, indicating a
quasifundamental (ε = 0.08) nature of the instability. It is also worth noticing the larger number of
modes required to accurately describe the instability. The secondary perturbation is truly multimodal
with important coupling effects between subunits. Notice that Fischer and Dallmann [9] missed this
secondary mode, since the associated value of ε is very low, but still not zero.

The spectra for the system composed of n = 50 subunits and for αv = 0 and αv = 0.087 are
displayed in Fig. 4. A high number of subunits corresponds to a (very) large system and allows a
wide range of admissible spanwise wave numbers. This explains the appearance of many branches
within the spectra. The higher the number of subunits, the more continuous these branches will
be. Quasihorizontal branches represent convective Squire modes and do not play a role in the
asymptotic stability as they are always stable. The eigenvalues are colored with the argument of
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FIG. 4. Full spectra of the secondary stability problem for Reδ = 826, A = 0.0789, n = 50 and for αv = 0
(a) and αv = 0.087 (b). The full spectrum is constructed merging the n spectra of the subsystems. The eigen-
values have been colored by the argument of their respective root of unity: z ∈ [0, 1] such as ρ = exp (2iπz).
The dashed line corresponds to the σr = 0 line.

their corresponding root-of-unity ρ j . Brighter colors indicate important phase shift between subunits
and, thus, strong desynchronization of the perturbation. For αv = 0, as expected, the spectrum is
symmetric with respect to the σi = 0 axis. Two unstable branches are found: the most unstable
one loops on itself, and the second remains open ended. The maximum growth rate is reached for
ρ4 = 0.87 + 0.48 j, corresponding to a phase shift θ = 29o between the subunits and indicating
limited desynchronization. The spectrum for αv = 0.087 is quite different. Two unstable branches
are also observed. The first is marginally stable, and reaches a maximum growth rate for synchro-
nized modes. The second is much more unstable and reaches a maximum for ρ31 = −0.73 − 0.68 j,
equivalent to a phase shift θ = −137o and causing strong desynchronization.

The most unstable modes are reconstructed for αv = 0 and αv = 0.087. Figure 5 displays the
streamwise component of the disturbance velocity in the full domain, while Fig. 6 exhibits the
cross-flow velocities for a group of three subunits. The streamwise velocity disturbance is one order
of magnitude higher than the cross-flow components. The position of the maxima of the streamwise
disturbance slightly varies across the subunits, although it is approximately located on the upwelling
of the wave pattern of the secondary base flow. The detuned behavior can be observed in both modes:
for αv = 0, approximately 23 subunits are involved in large-wavelength oscillations, whereas only
three contribute to the instability for αv = 0.087. The beating phenomenon observed for αv = 0 is
characteristic of a superposition of functions with two close spatial wavelengths, one of these being
the spatial wavelength of the primary cross-flow vortices, which, in this context, acts as a forcing.

The cross-flow dynamics, displayed in Fig. 6 on a group of three subunits, is less sensitive to
unit-to-unit variation, likely due to the smaller magnitude of the components. The streamwise-
independent mode displays counter-rotating vortices, which might be linked to either the lift-up
effect or to a Görtler instability [28]. The latter is usually linked to curved walls, but it has been
conjectured that the curvature of the base flow streamlines could have a similar effect on the
instability of a boundary layer. Since the lift-up is usually a nonmodal energy growth mechanism,
while here we focus on modal instabilities, a Görtler-like instability can be a good candidate for
explaining the onset of such counter-rotating vortices on top of the curved streamlines induced by
the primary modes.

For αv = 0.087, the vortical structures are sensibly different. The vortices seem to arise from the
roll-up of a shear layer. This might have been anticipated, since it has been shown that secondary
instability of swept flows can be related to Kelvin-Helmholtz instabilities [19]. Furthermore, these
secondary vortices are located on the edge of the boundary layer, in a region associated with strong
wall-normal and spanwise shear layers. Ultimately, it appears that two distinct mechanisms are at
play. The first is linked to streak instabilities, which push high-velocity fluid downwards near the
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FIG. 5. Three-dimensional views of the streamwise velocity component of the most unstable mode for
different streamwise wave number αv (a: αv = 0, n = 25; b: αv = 0.087, n = 12) and a number of visualized
subunits n, chosen in both cases to give a good overview of the spatial characteristics of the mode. Isosurfaces
correspond to ±0.75umax. Spanwise direction is normalized by the spatial period of a subunit 2π/||k||. Notice
the beating phenomenon for αv = 0.

walls while low-velocity fluid from the near-wall region is ejected higher in the boundary layer. The
second instability mechanism is Kelvin-Helmholtz related and generates secondary vortices through
the roll-up of the shear layer located at the edge of the boundary layer.

In an effort to assess more precisely the instability nature of these two modes, a comparison
can be made with experimental work [17,29] in which a POD decomposition of the laminar-
turbulent transition on a swept wing was realized. The most energetic POD mode appeared to be
streamwise-independent, with a shape similar to that found in the present analysis. Furthermore,
it was characterized by a very low frequency in the [1 Hz, 20 Hz] range, in agreement with the
frequency f = 4 Hz found here for the αv = 0 mode. However, no modulation of the mode has
been observed as the POD was realized for only one cross-flow vortex. Figure 7 depicts the absolute
value of the streamwise component of the disturbance. For αv = 0.087, the concentration of the
streamwise velocity disturbance in the bottom part of the cross-flow vortices is reminiscent of a type
III instability [29]. The frequency f = 154 Hz obtained for this mode is smaller than the frequency
range 350 Hz � f � 550 Hz found by Serpieri [29] but still in good agreement with the frequency
f = 145 Hz found by Fischer and Dallmann [9]. This type of mode is traditionally associated with
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FIG. 6. Vectors: cross-flow velocity in the plane (y, zv ) for a group of three subunits. The contour plot
represents the streamwise component of the secondary base flow. The flow in the z direction goes from left to
right. (a) αv = 0; (b) αv = 0.087.

interactions between primary stationary and traveling modes. The αv = 0 mode is quite interesting:
the streamwise component of the perturbation is located on the upwelling of the cross-flow vortex
which is characteristic of a type I instability. The mode is also strongly correlated with the spanwise
gradient of the base flow, as for type I modes. However, these are usually associated with nonzero
streamwise wave number and higher frequencies.

In order to assess more precisely the nature of the αv = 0 mode, the amplitude A of the primary
disturbance was varied. Figure 8 displays the evolution of the spectrum of the αv = 0 mode for
different amplitudes. When A → 0, characteristics of the primary instability are retrieved: the

FIG. 7. Absolute value of the streamwise component of the eigenfunction for αv = 0 (a) and αv = 0.087
(b). The solid contours depict the spanwise and wall-normal velocity gradients of the secondary base flow,
respectively.
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FIG. 8. Spectra of the secondary stability problem for Reδ = 826, n = 50, αv = 0 and for several ampli-
tudes A. From left to right and top to bottom: A = 0.02, A = 0.04, A = 0.06, and A = 0.07. The dashed line
corresponds to the σr = 0 line.

primary growth rate is reached for stationary cross-flow vortices. However, this mode results from
the merging of two spatial branches, forming an exceptional point [30]. Exceptional points are
spectral singularities in the parameter space of a system in which two or more eigenvalues, and
their corresponding eigenvectors, simultaneously coalesce and are usually associated with strong
interactions between modes like resonances [21]. In the present case, the exceptional point indicates
the presence of interactions between cross-flow vortices with different spanwise wave numbers as
can be seen for A = 0.06, from the two eigenfunctions shown in Fig. 9. When the amplitude is
increased, the outer branch is deformed, leading to the formation of two other exceptional points
associated with interactions between traveling disturbances with opposite spanwise wave numbers.
For A = 0.07, a change in the topology of the spectrum can be observed: the two spatial branches
break up, then reconnect in a different configuration, forming the loops observed in the spectrum
of Fig. 4. This evolution of the spectrum tends to indicate a change in the nature of the modes.
However, it may be noticed that the growth rate of this mode remains finite as the amplitude of
the base flow primary instability continuously reduces to some small but finite threshold. Thus,
the topological changes within the spectrum should be linked to the modulation effect provided
by the increase in amplitude of the primary instability. The resulting eigenvectors are visualized
together with the modulated base flow for A = 0.02 and A = 0.07. On the contrary, carrying out
the same analysis for the αv = 0.087 mode as shown in Fig. 10, only a continuous deformation of
the unstable branch can be observed. Streamwise velocity eigenfunctions of the most unstable mode
are provided in Fig. 11 for different amplitudes. The most unstable mode is found for ε ≈ 0.35 in
all cases, yielding a secondary instability coupling approximately three subunits. Besides, it appears
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FIG. 9. Three-dimensional views of the streamwise velocity perturbation of the unstable modes at the
exceptional point for αv = 0, A = 0.06, and n = 25 subunits. Isosurfaces correspond to ±0.75umax. Spanwise
direction is normalized by the spatial period of a subunit 2π/||k||. Notice the beating phenomenon for αv = 0.
(a) ρ22; (b) ρ35.

to stem from a traveling cross-flow mode, which is progressively deformed by the presence of
the primary stationary cross-flow mode. The traveling cross-flow mode has a spatial periodicity
approximately three times larger than the primary mode. This is in agreement with the findings of
Malik et al. [31], who argued, using an NPSE approach, that the modulation is simply a result of the
nonlinear interaction of the stationary and traveling disturbances that becomes more pronounced as
the amplitude A is increased.

IV. CONCLUSIONS

A formulation for secondary stability analysis of linearly unstable flows has been proposed,
which allows retrieving amplification mechanisms involving detuned modes spanning several units
of the primary instability. Such a method is based on the combination of a local two-dimensional
stability analysis and a Bloch waves formalism originally described in Schmid et al. [14]. Within
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FIG. 10. Same as Fig. 8 but for the αv = 0.087 mode.

this framework, the linear stability of systems having a high number of degrees of freedom resulting
from the repetition of several units of the primary instability is investigated.

Using this method, the secondary stability of a swept boundary layer developing steady cross-
flow vortices has been investigated. This flow case has been chosen due to previous observation of

FIG. 11. Three-dimensional views of the streamwise velocity perturbation of the most unstable mode
for αv = 0.087 and different amplitudes (a: A = 0.02; b: A = 0.06; c: A = 0.07). The number n = 3 of
subunits visualized has been chosen to accommodate approximately one spatial period of the secondary mode
(ε ≈ 0.35). Isosurfaces correspond to ±0.75umax. Black contours represent the secondary base flow. Spanwise
direction is normalized by the spatial period of a subunit 2π/||k||.
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long-wavelength structures in numerical and experimental studies [16,17], whose physical origin
remained unclear. Moreover, for this flow case a direct comparison with the Floquet analysis carried
out by the work of Fischer and Dallmann [9] (limited to small to intermediate wavelengths) can be
made for validation. Here we consider subunits composed of one cross-flow stationary vortex, thus
neglecting small mistunings between neighboring vortices which might be responsible of mode
localization [32–34], potentially leading to high-amplitude phenomena such as the jagged aspect
of the transition front. Within the same framework, this limitation can be partially overcome by
considering subunits composed of more than one cross-flow vortice, opportunely modulated in
amplitude.

The instability dynamics seems to result from the competition between streamwise independent
modes and detuned modes with detuning factor ε = 0.35. In the case of streamwise wave numbers
αv > 0.087, the secondary instability analysis can be accurately described by a low number of
modes, and it has been previously retrieved by Floquet analysis, whereas, for smaller wave numbers,
a multimodal instability arises, corresponding to a Floquet mode with very small detuning factor,
that has been never reported in the literature to the best of our knowledge. The full spectra are re-
trieved, and unstable branches can be identified. Notably, for streamwise independent perturbations,
large-wavelength oscillations can be seen, while a staggered pattern, characteristic of a subharmonic
transition, appears in the disturbance for αv = 0.087. The wavelength of the staggered pattern is
imposed by the detuning factor. Physically, two instability mechanisms have been identified: one
linked to streaks and the circulation of high-momentum fluid towards the edge of the boundary layer.
The other one appears linked to the roll-up of a shear layer and seems related to Kelvin-Helmholtz
instabilities.

Notably, the obtained secondary disturbances show some similarities with the POD modes
experimentally retrieved previously [17,29]. A direct comparison with these experimental findings
has allowed us to assess the nature of these secondary perturbations. In particular, the αv = 0
mode resembles a type I mode, while the αv = 0.087 disturbance is clearly identified as a type III
mode, which has been related to interactions between stationary and traveling cross-flow vortices.
Often this disturbance is considered as a modulation of the primary instability rather than a proper
instability [31]. This possibility has been investigated by varying the amplitude of the primary
disturbance: for the type III mode, the unstable branch continuously deforms as the amplitude is
increased.

This approach has thus allowed the identification of two long-wavelength detuned instabilities
that were observed in numerical and experimental literature studies. Light has been shed on the
dynamics of detuned secondary modes with a small detuning factor, which have been overlooked in
previous studies. However, they seem to play a role when the spatial wavelength of the secondary
mode gets close to that of the base flow, yielding a long-wavelength beating phenomenon. It may be
interesting to investigate the existence of detuned secondary instabilities of other canonical flows. In
the case of cross-flow vortices, more accurate results could be obtained by using a nonlinearly sat-
urated base flow. In general, studies on the secondary instability of fundamental coherent structures
such as streaks could be completed and extended through the use of this framework.
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APPENDIX

In this Appendix we carry out a sensitivity analysis of the results with respect to the main
hypotheses of the method, namely, the use of the finite number of subunits, and the neighboring-
coupling approach.
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FIG. 12. Eigenvalue spectra for Reδ = 826, A = 0.0789, αv = 0.03 (top row), and αv = 0.0087 (bottom
row) with a number of subunits (left) n = 50 and (right) n = 80. The dashed line corresponds to the σr = 0
line.

First, in order to verify that the limited number of subunits does not affect strongly the results,
we have carried out our computations with increasing number of subunits. In Fig. 12 we show the
eigenvalue spectra for the cases αv = 0.03 (top row) and αv = 0.0087 (bottom row) with n = 50
(left) and n = 80 (right) subunits. The spectra are practically identical. Thus, provided that the
number of subunits is sufficiently high (here n > 50), the finite number of subunits has virtually no
effect on the results.

Concerning the nearest-neighbor coupling approach, we have increased for a few cases the
number of coupled units, from Nu = 3 to Nu = 50. For the case αv = 0.030, which has ρ = 0
(fundamental instability), the growth rate does not change at all, as expected. For the detuned cases
with αv = 0.030, ρ = 48 and αv = 0.087, ρ = 30, the maximum growth rate varies by 0.028% and
0.072%. Overall, we can say that the nearest-neighbor coupling approach has a very slight effect on
the results.
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