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We perform a direct comparison between experiment and simulation of density-driven
convective mixing in three-dimensional (3D) porous media. We find excellent agreement
between the experiment and the model in terms of both the convection fingering pattern
and the average rate of fluid mixing. In particular, the experiment exhibits dynamic
self-organization of columnar plumes into a reticular pattern, which, until now, had only
been observed in 3D simulations. We also report good quantitative agreement between the
experiment and simulation in the evolution of the state of mixing by comparing, over time,
(i) the average concentration at depth, (ii) the variance of the concentration field, (iii) the
scalar dissipation rate, and (iv) the dissolution flux. We derive a relation between the scalar
dissipation rate and the dissolution flux in a closed system, and we show that the flux in
a 3D system is approximately ∼30% higher than in a 2D system, confirming previous
numerical estimates.

DOI: 10.1103/PhysRevFluids.9.043802

I. INTRODUCTION

Density-driven convective mixing of two miscible fluids in porous media is initiated by local
perturbations at a stable fluid-fluid interface due to an unfavorable density contrast upon mixing.
The subsequent fluid mechanical instability results in the formation and growth of fingered flow.
The downward movement of the more dense fingers induces a convective overturn in the underlying
fluid, accelerating the mixing of the two fluids compared to the diffusion-only scenario. This process
is relevant in many natural and engineered systems [1], and one of its earliest applications is
convection sustained by geothermal activity [2], which is the thermal analog of solutal convection.
In the past two decades, density-driven convective mixing has received renewed attention due to
its application in geological sequestration of carbon dioxide (CO2) [3,4], which aims to mitigate
climate change by storing captured CO2 underground in suitable geological formations.

A large body of work has used two-dimensional (2D) numerical simulations to characterize
the evolution of the flow dynamics [4–8], and the effect of fluid properties [9,10], dispersion
[11–14], and permeability heterogeneity [15,16] on flow. In parallel to these modeling efforts,
experimental studies have used Hele-Shaw cells [17–19] or pseudo-2D cells filled with glass beads
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to visualize and quantify the flow patterns. These experiments are often done with analog miscible
fluid-pairs (e.g., methanol and ethylene glycol-water [20,21]), water-propylene glycol [17,22–24],
or partially miscible fluid pairs (e.g., gaseous CO2-water [25]), or a solid-liquid pair (e.g., potassium
permanganate in water [26,27]). More recent experiments have used the CO2-brine systems in a
pressure-volume-temperature cell [28–32] and incorporated permeability heterogeneity [22,33,34]
to mimic more closely the subsurface environment. Only a handful of studies have addressed this
problem in 3D using either experiments [35–40] or simulations [16,41–43].

The convective mixing process in porous media is, however, inherently three-dimensional.
Whether conclusions from 2D studies can be readily applied to the 3D problem remains insuffi-
ciently addressed in the literature. Despite the demanding computational cost in 3D, there has been
a handful of numerical studies that examine convective mixing in 3D [16,41–48]. In particular,
both Pau et al. [41] and Fu et al. [43] have concluded that the flux calculated in 3D simulations is
about 30% larger than that obtained from 2D simulations. Their conclusions highlight the necessity
to validate results obtained from 2D experiments and simulations in 3D settings. However, direct
observations of density-driven convective mixing in 3D porous media are limited, because of the
experimental challenges associated with probing this process in opaque media. In recent work, x-ray
computed tomography (x-ray CT) and the MEG-brine fluid pair were used to visualize convection in
a 3D cylindrical cell [35,49] and a spherical cell [36,37]. These 3D experiments show a remarkable
qualitative resemblance in flow patterns to those from 3D simulations. However, there is a lack of
direct quantitative comparison between experiment and simulation of the mixing dynamics in 3D.

In this article, we aim to bridge the gap by presenting a quantitative one-to-one comparison of
convective mixing in 3D porous media using the methodology laid out in previous publications
with x-ray CT [36] and high-resolution numerical simulation [43]. This work directly quantifies the
mixing dynamics in 3D porous media using experiments and numerical simulations. Our results
have shown remarkable quantitative agreement between experiment and simulation, both in terms
of characteristic lengthscales of the flow patterns as well as the temporal dynamics of dissolution
flux.

II. METHODOLOGY

A. Experimental setup

We use a mixture of 59 wt. % methanol and 41 wt. % ethylene glycol (MEG) containing 10 wt. %
potassium iodide (KI) that allows a good x-ray contrast against the resident fluid (6 wt. % sodium
chloride brine) but maintains a neutral buoyancy. The flow cell is an acrylic cube of 15 × 15 × 15 cm
(Fig. 1). The cube is first wet packed with brine and soda glass beads with a particle diameter
of 0.4–0.5 mm (SiLibeads®, supplied by VWR, UK) to a height of HB ≈ 13 cm. To initiate the
experiment, we introduce the MEG and glass bead slurry to create a layer with a height of HT ≈
2 cm. Because it takes some time for the fluids to mix, the gravitational instability does not begin
right away, which allows sufficient time to prepare for the scanning procedure. In previous studies
[36,37], we show that the method is robust and not sensitive to initial perturbations. Assuming a
random close packing with a porosity φ = 0.36, the Kozeny-Carman equation yields a permeability
of k = 1.9 × 10−10 m2. A Toshiba 64-slice x-ray CT scanner noninvasively images mixing at regular
time intervals. The first CT scan starts shortly after introducing the slurry. Scans were taken every
minute for 10 min, after which every 10 min for 1 h, then regularly until the experiment was ended
after 5 h. Each scan takes less than 1 min.

B. Mass fraction and fluid density

The above experimental system is composed of a single-phase two-component fluid, character-
ized by χ , the mass fraction of MEG, and ρ, the density of the solution, which is a function of χ ,
ρ = ρ(χ ). The concentration of MEG is then defined as c ≡ ρ(χ ) χ (g/mL).
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FIG. 1. A diagram that illustrates the initial setup and the dimensions of the convective dissolution problem
in an enclosed cube. HT corresponds to the initial thickness of the MEG-brine layer and HB is the initial
thickness of the MEG-free resident brine. In the experiment presented in this study, HT = 2 cm, HB = 13 cm,
W = L = 15 cm.

The raw CT images are converted into a mass fraction of dissolved MEG, χ , through measured
calibration curves [36]. We also experimentally measure the density profile of the MEG-brine mix-
ture and determine that ρ(χ ) = −0.03χ3 − 0.0084χ2 + 0.0304χ + ρ0 (g/mL), where ρ0 = 1.04
g/mL is the density of the MEG-free solution.

C. High-resolution 3D simulations

To compare with the experiment, we perform a high-resolution 3D simulation of the equa-
tions that govern gravity-driven convective mixing in homogeneous porous media [50]:

∇ · u = 0, (1)

u = − k

μ
[∇p − ρ(χ )gẑ], (2)

φ
∂c

∂t
+ ∇ · (uc − φD∇c) = 0, (3)

where u is the Darcy velocity, p is the fluid pressure, and ẑ is a unit vector pointing in the direction
of gravity. Equations (1) and (2) are the incompressibility constraint accompanied by Darcy’s law.
Equation (3) is the advection-diffusion transport equation, where we assume a constant molecular
diffusion coefficient Dm = 1 × 10−9 m2/s [51]. The maximum viscosity difference between the two
fluids is 2.5 mPa s [37]. We assume a constant viscosity μ = 1.09 mPa s, which is taken as that of
the resident brine [20,21,35,36].

We initialize the numerical simulation with c = 1 in the upper layer (z < HT ) and c = 0 in the
lower layer (z > HT ). The transition between the two layers at z = HT takes the shape of an error
function whose transition width is scaled by

√
Ra/2 to reflect the diffusive nature of the initial

interface:

c0 = 1

2
− 1

2
erf

(√
Ra

2
[z − HT − θ (x, y)]

)
. (4)

We perturb the initial concentration by adding a randomized Gaussian white noise θ (x, y) to the
transition depth HT . The maximum magnitude of this noise is 0.02 cm, which is small compared to
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HT = 2 cm. The white noise is randomized on a pixel-by-pixel basis and thus does not impose any
lengthscale in the x and y directions.

The boundary conditions are no-flow on the top and bottom surfaces. We assume periodicity
in the x and y directions, which deviates from the experimental setup of a closed box. We find
that this approximation has little impact on our analysis but significantly speeds up the computa-
tion. We initialize the concentration field with the same initial condition used in the experiment:
c(z >= 13 cm) = ρ(χ = 1) = 1.032 g/mL; c(z < 2 cm) = 0 g/mL. We perturb the concentration
near the interface z ≈ 13 cm with Gaussian noise [20,41,50]. We solve the equations sequentially
on a 512 × 512 × 512 Cartesian grid. At each step, we obtain the velocity using the stream
function–vorticity formulation [52,53] with a Poisson solver [54]; then we solve Eq. (3) using sixth-
order compact finite differences [55] in z, and a pseudospectral (Fourier) discretization along the
horizontal directions. We integrate in time using a third-order Runge-Kutta scheme with automatic
time-step adaptation [56].

D. Rayleigh number of the study

We choose the following characteristic quantities to normalize our equations:

Lc = HB, ρc = ρ0, �ρc = �ρmax, kc = k, μc = μ, �pc = �ρmaxgHB, (5)

where HB is the height of the initial brine layer (13 cm), �ρmax is the maximum density difference
between the MEG-brine solution and resident brine, k is the permeability of the glass bead pack, μ

is the viscosity of the resident brine, and �pc is the characteristic pressure difference with respect to
the hydrostatic datum. In our experiments, �ρmax = 0.0093 g/mL, achieved at χ = 0.5 as reported
in our previous work [36,37]. After normalization, the problem can now be characterized by the
Rayleigh number (Ra), which computes the ratio between the rate of convection and diffusion:

Ra = k�ρmaxgHB

μφDm
, (6)

where the gravitational acceleration is g = 9.81 m/s2. Based on the parameter values given above,
Ra ≈ 6000 for both the experiment and the simulation in our study.

III. RESULTS

In the following, we present both qualitative and quantitative comparisons between the exper-
iment and simulation. We use the normalized concentration c′ = c/ρ0 to perform these analyses.
The results presented here come from a direct comparison between exactly one experiment and
one 3D simulation, focusing on only Ra = 6000. However, many more experiments using the same
setup have been performed, and the results were published in earlier studies [36,37]. Additional 3D
simulations at different Rayleigh numbers using the same numerical method were performed and
published in [43].

A. Plume dynamics

Reconstructions of the data in 3D and 2D slices reveal the time evolution of the characteristic
columnar patterns at different depths. Here we focus on the time period before fingers hit the
bottom (t < 150 min), when their structure remains sharp and not disrupted by any returning
plume. Figure 2 shows a time series of horizontal cross-sections at z = 4 and 8 cm, respectively.
By direct visual comparison, the pattern formation as characterized by finger lengthscale and its
coarsening dynamics are strikingly consistent between experiment and simulation. In the upper
section (z = 4 cm), at early times (t = 40 min), the fingers are small (diameter < 1 cm) and form
bright islands distributed uniformly across the plane. As time progresses, the islands merge and
coarsen with regions of high concentration (red colored) marking the center of each finger. At later
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FIG. 2. Right: 3D reconstruction of the simulated c′ at t = 140 min. Left: 2D reconstruction of fingering
patterns at z = 4 cm and at 40, 80, and 140 min (top panel) and at z = 8 cm and at 100, 120, and 140 min
(bottom panel). Within each panel, the top row is simulation and bottom row is experiment. Color map
corresponds to the normalized MEG concentration (c′).

times (t = 140 min), just before the fingers reach the bottom, the plumes have coarsened signifi-
cantly (diameter ∼5 cm) and are no longer circular. As time progresses, the fingers self-organize to
become laterally connected instead of remaining as independent plumes—a feature that has been
revealed by earlier 3D simulations [41,43] and has not been experimentally verified until now. The
direct visual comparison is less consistent, however, in the lower section (e.g., z = 8 cm), where
finger tips only become visible after 100 min. This is likely caused by the resolution of the CT scan
and dispersion in porous media that is not considered by the simulation.

To quantify these observations in Fig. 2, for one experimental and one simulation data set, we
track the time evolution of the number of fingers and average finger size at different depths (Fig. 3)
by segmenting the concentration field (c′

threshold = 0.2) slice-by-slice using MATLAB, and we identify

FIG. 3. The number of fingers (left) and the average area of a finger (right) for both the experiment (points)
and simulation (solid lines). The results are shown at five depths where dark red is 3.8 cm, red is 4.4 cm, light
red is 5.8 cm, orange is 7.4 cm, and yellow is 10.7 cm from the top.
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FIG. 4. Left: horizontally averaged normalized concentration 〈c′〉 over depth (z) at various times from the
experiment (cross) and the simulation (solid lines). Right: the same concentration profiles plotted as a function
of the self-similarity variable ζ = (z − z0)/(t − tonset ). The black dashed line marks ζ = 0.

individual fingers. We continue to find good agreement between the experiment and simulation in
these measures. The rate of finger coarsening, as measured by the slope of the curves of mean finger
area over time (Fig. 3, right), decreases with increasing depth. The peak in the number of plumes
decreases with depth (Fig. 3, left), indicating coarsening in both time and space [7]. This spatial-
temporal coarsening can also be seen by plotting the horizontally averaged normalized concentration
(〈c′〉) over depth at various times (Fig. 4, left). Further, by replotting 〈c′〉 against the self-similarity
variable ζ = z−z0

t−tonset
[7], we are able to collapse all the curves at different times onto a master curve

(Fig. 4, right). The onset time is tonset ≈ 8 min for both the experiment and the simulation. The initial
interface is z0 = HT = 2 cm. The times analyzed in Fig. 4 are chosen so that the plume structure is
well developed (t 	 tonset) and not significantly impacted by the bottom boundary (t < 150 min).
This shows that the convective mixing phenomenon in the two-layer system can also be described
by self-similar dynamics at intermediate times [7].

B. Measures of mass transfer and fluid mixing

The onset and growth of these convective fingers have a profound impact on mass transfer and the
rate of fluid mixing in the system. In particular, the pattern formation process accelerates downward
mass transfer by invoking advection (rather than diffusion-only). Further, the fingering structure
significantly increases the interfacial area of fluid mixing, thus enhancing the overall mixing rate.

Here, we directly quantify mass transport and fluid mixing in both experiment and simulation.
We first plot the time evolution of the mean concentrations at different depths [Fig. 5(a)], which
indirectly tracks the progression of fingering plumes as they move downward. Again, we find
excellent agreement between the experiment and the simulation. Such a measure, however, only
describes local dynamics and does not provide a global measure of convective mixing. One
straightforward way to measure mixing by convection at the global scale is to track the total volume
of mixing, defined as regions of nonzero concentration gradient at interfaces between two miscible
fluids. The dimensionless mean scalar dissipation rate, defined here as 〈ε′〉 ≡ 〈|∇′c′|2〉/Ra (∇′ is
the normalized gradient by HB), is a robust measure of the mixing volume in a miscible system
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FIG. 5. (a) Mean normalized concentration over time at various depths where dark red is 3.8 cm, red is
4.4 cm, light red is 5.8 cm, orange is 7.4 cm, and yellow is 10.7 cm from the top; (b) time evolution of σ 2 and
(c) time evolution of 〈ε ′〉 calculated from experimental images (dots) and simulation (solid lines).

[6,57,58]. We dedicate the rest of our discussion to the computation, comparison, and interpretation
of ε′ obtained from the experiment and the simulation.

With the 3D data sets in this study, 〈ε′〉 can be computed directly from experimental images and
simulation data. However, we find that direct computation of normalized concentration gradients
(∇′c′) based on experimental images is overly sensitive to the noise inevitably introduced during
CT imaging, and thus produces unreliable results. To circumvent the need for gradient calculation,
we compute 〈ε′〉 indirectly via the variance of the concentration field: σ 2 ≡ 〈c′2〉 − 〈c′〉2, where
〈·〉 denotes spatial averaging over the entire volume. σ 2 quantifies the degree of mixing such that
σ 2 = 0 corresponds to a perfectly mixed volume. Therefore, we expect σ 2 to decrease towards zero
as the volume becomes increasingly mixed, as is confirmed by our data analysis in Fig. 5(b). Further,
Fig. 5(b) illustrates that there is an excellent quantitative agreement between the experimental and
simulation data without any fitting parameters. We note that σ 2 calculated from the experiment is
consistently higher than the simulation by a small amount. In particular, the variance is uniformly
1.1× larger in the experiment across the time series. Here, we hypothesize that the consistently
higher value in the variance of the experimental data is a result of random noise from the x-ray-CT
scan, which inevitably increases the variance of the measured concentration field.
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While σ 2 characterizes the degree of mixing in the volume, the mean scalar dissipation rate 〈ε′〉
is used to quantify the rate of mixing at a given time. As is often done in the turbulence literature
[59] and more recently in the context of viscous fingering in porous media [57,58], 〈ε′〉 can be
calculated from the decay in σ 2:

∂σ 2

∂t
= −2〈ε′〉. (7)

Equation (7) provides a straightforward way to calculate 〈ε′〉 as the time derivative of σ 2. In
particular, to calculate 〈ε′〉 from the simulation data, we use a forward Euler approximation of
Eq. (7) on the simulation data in Fig. 5(b), which yields a quantity that has a unit of min−1. We
then multiply this quantity by the timescale of the problem tscale = 40 min to obtain a dimensionless
scalar dissipation rate. We apply the same process to the experimental data except for the data
collected between t ∈ [30, 200] min. The data collected in this time period mark a special regime of
constant mixing rate that is well studied [6,26,50]. Here, taking advantage of the prior knowledge
that 〈ε′〉 should be constant during this period, we first impose a linear interpolation on the
experimental data points in Fig. 5(b) (t ∈ [30, 200] min) and use the slope of the linear interpolation
to calculate 〈ε′〉. Doing so avoids noise amplification during numerical differentiation. We do not
perform any further smoothing or fitting after the linear fit. We present the final result in Fig. 5(c)
and contextualize the flow dynamics with 2D slice snapshots of the simulated plume structure.
Snapshot I in Fig. 5(c) (t ≈ 30 min) marks the start of the constant mixing rate regime. Snapshot II
(t ≈ 110 min) and snapshot III (t ≈ 150 min) are taken during the constant mixing rate period where
the plume is well developed. At the tail end of the curve, snapshot IV (t ≈ 240 min), we observe
that the MEG layer has been depleted and the mixing rate decreases as the system homogenizes.

While there is an excellent match between experiment and simulation during the regime of
constant mixing rate, we note that there is a more apparent mismatch at the beginning and towards
the end of the convective mixing process. Here we provide possible explanations for the mismatch.
In the beginning of the experiment (0–30 min), we attribute the mismatch to noise in the data, which
is amplified during numerical differentiation to produce the rate of mixing [Fig. 5(c)]. During this
period, the time between each tomogram is less than 1–2 min, which is significantly more resolved
in time compared to the rest of the experiment (scanned every 10–20 min). The irregularity of data
collection was designed to capture the early-time dynamic behavior of instability onset. However,
the early-time dynamics is also known to be nonlinear and lack a well-reasoned analytical fit.
Therefore, the process of numerical differentiation of the data collected during this period amplifies
any small noise in the data, which results in the much noisier plot compared to the simulation. We
want to point out, however, that the mismatch is mainly in the magnitude of the scalar dissipation
rate; the trend of an initial increase followed by a decay is consistent between experiment and
simulation. As the experiment goes on, the temporal resolution decreases to every 10–20 min. The
sparsity in data sampling is not an issue during the constant flux regime ([30, 200] min). However,
the decreased temporal resolution may be responsible for the mismatch between experiment and
simulation towards the end (>200 min). In particular, the convective shutdown regime of the
experiment appears to begin earlier and decay faster compared to the simulation [Fig. 5(c)]. This
entire regime, however, is only captured by four experimental data points. Therefore, we hypothesize
that the poor temporal resolution during the shutdown regime could explain the mismatch during
the period t ∈ [200, 275] min.

C. Quantifying the dissolution flux

The temporal dynamics of 〈ε′〉 closely tracks the temporal dynamics of dissolution flux F [6]. As
evidenced in Fig. 5(c), the time series of 〈ε′〉 obtained in our experiment and simulation both exhibit
the well-established three-stage progression of F [26,50]: (i) onset of instability for t ∈ [0, 30) min,
(ii) constant flux during t ∈ [30, 200] min, and (iii) convective shutdown for t ∈ [200, 275] min.
To directly calculate F , however, one often resorts to actively tracking the volume of the overlying
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fluid that remains to be dissolved [20]. This requires locating the interface with sufficient precision
by image segmentation, which is prone to errors introduced by CT scanning and image processing.
Here, we demonstrate an alternative approximation of the flux directly from the global measure of
the scalar dissipation rate, and we avoid the need for interface tracking. In particular, we illustrate
the robustness of the mixing-based flux calculation by comparing it against flux calculated from the
commonly used interface-based method.

In both calculation methods shown below, we will first directly calculate the dimensionless
dissolution flux, F ′, and then convert to dimensional units by scaling with the characteristic flux
Fc:

F = FcF ′. (8)

We introduce the following characteristic scales. The characteristic velocity based on the experi-
mental parameters is calculated as

Uc = �ρmaxgk

μ
= 9.3 kg/m3 × 9.8 m/s2 × 1.9 × 10−10 m2

1.09 × 10−3 Pa s
≈ 0.095 cm/min. (9)

The corresponding characteristic time is

tc = φHB

Uc
= 0.36 × 13 cm

0.095 cm/min
≈ 50 min. (10)

Note that here, the theoretical characteristic timescale of tc = 50 min is slightly larger than the
actual time scale (tscale = 40 min) used to convert our dimensionless simulations results [see Fig. 5
and the discussion after Eq. (7)]. This suggests that the actual permeability of the experiments could
be higher than the estimated value using the Kozeny-Carman equation. However, the exact value of
tc does not impact the calculations below because the tc parameter cancels out in the final formulas.

We compute the characteristic flux Fc as

Fc = H2
Bρ0Uc/φ

W L
= 13 cm × 13 cm × 1.04 g/mL × 0.265 cm/min

152 cm2
= 0.207 g/cm2/min. (11)

1. Flux calculation based on interfacial velocity

We first obtain F in the traditional way by tracking the location of the bottom interface of the
MEG layer and computing its interfacial velocity. We assume a simple picture of the convective
mixing in a cubic domain where the interface moves at a constant velocity vi during the stage
of constant-rate dissolution. During this stage, the dissolution flux (F ) is defined as the rate of
mass exchange across a unit area, and it can be computed as a function of the velocity (vi) of the
upward-moving interface between the MEG solution and MEG-free brine:

F = W Lφρ1vi, (12)

where W and L are the width and depth of the domain (Fig. 1).
To obtain vi in the above formula, we define the MEG layer as voxels where c′ > 0.95, and we

use image segmentation to track its bottom position linterface in both experimental and simulation
data. Figure 8 (inset) shows the average linterface over time, where the linear portions of the curves
correspond to the constant flux regime. We calculate the interfacial velocity as vi = dlinterface/dt . In
particular, we use a moving average filter with a six-point window to smooth the interface position
data before calculating its derivative. We then convert vi into its dimensionless form v′

i by scaling it
with Uc [Eq. (9)]. Finally, we obtain the interface-based flux, Fvi , using Eq. (13):

Fvi = FcF ′
vi

= FcW
′L′φρ ′

1v
′
i, (13)

where W ′ = W/HB = 1.15, L′ = L/HB = 1.15, and ρ ′
1 = ρ1/ρ0 ≈ 0.99.
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FIG. 6. In 2D, at three different Ra (row), snapshot of ε = |∇c|2/Ra obtained from the numerical simu-
lation at four different times (column). The color map is truncated at εthreshold = 0.1 max(ε) to accentuate the
mixing volume (the black region).

2. Flux calculation based on scalar dissipation rate

Now, we also derive an 〈ε′〉-based method to calculate flux. The volume integral of the scalar
dissipation rate ε is computed as

∫
�

ε dV =
∫

�

φD|∇c|2dV = W L
∫ zi (t )+l

zi (t )
φD

(
dc

dz

)2

dz ≈ W Lφ D
ρ2

1

l
, (14)

where l is the thickness of the interface. Equation (14) is based on two assumptions: (i) the majority
of the mixing takes place within the interfacial region (across l); (ii) the concentration gradient
within this region can be approximated as

dc

dz
≈ c2 − c1

l
= ρ1χ1 − ρ2χ2

l
= −ρ1

l
, (15)

with χ1 ≡ 1, χ2 ≡ 0. To support the first assumption above, we have performed additional simu-
lations in 2D and computed the pointwise ε = |∇c|2/Ra field in both 2D and 3D simulations at
different Rayleigh numbers. The results, shown in Figs. 6 and 7, confirm that the majority of the
mixing volume is indeed concentrated along the interface. We further propose that the thickness of
this interface, l , is maintained by a balance between diffusion and advection. Thus, l can be defined
with either the diffusion or advection scaling as

l =
√

Dtl
c (diffusion scaling), l = t l

cvi(advection scaling),

where t l
c is the characteristic time associated with ldiff.. Equating the above two scalings yields

l = D

vi
. (16)
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FIG. 7. In 3D, at Ra = 6000, snapshot of ε = |∇c|2/Ra obtained from the numerical simulation at four
different times. The color map is truncated at εthreshold = 0.1 max(ε) to accentuate the mixing volume (the
black region).

Incorporating Eq. (16) into Eqs. (15) and (14) yields∫
�

ε dV ≈ W Lφ D
ρ2

1

D/vi
= (W Lφρ1vi )ρ1. (17)

Applying the original definition of flux in Eq. (12) to the above yields the following relationship
between the actual flux F and the total volume of mixng

∫
�

ε dV :

F = 1

ρ1

∫
�

ε dV. (18)

As result, we arrive at an 〈ε′〉-based method to quantify the flux without actively tracking the MEG-
brine interface through the following relation:

Fε = FcF ′
ε = Fc

1

ρ ′
1

∫
�

ε′ dV, (19)

where ε′ = |∇′c′|2/Ra is the dimensionless scalar dissipation rate, with ∇′ being the normalized
gradient by HB (as introduced in Sec. III B).

3. Comparison of the two methods

We apply the above two methods to both the experimental and numerical data to compute the
flux F , and we find that the interface-based method using Eq. (13) (Fig. 8, red diamonds and solid
line) and the 〈ε′〉-based method using Eq. (19) (Fig. 8, black diamonds and dashed line) are in very
good agreement. This suggests that 〈ε′〉 may serve as a direct measurement of the rate of dissolution
in this problem during the quasi-steady-state regime.
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FIG. 8. Time evolution of the dissolution flux using the interface-based method (red marker), and the 〈ε′〉-
based method (black marker) applied to the experimental (diamonds) and simulation (lines) data. Inset: The
time evolution of the interface position for the experiment (diamonds) and simulation (line).

Further, we note that these two methods agree especially well during periods where the interface
remains sharp (e.g., t ∈ [0, 180] min in Fig. 8; see also snapshots I–III in Fig. 5). This is evident from
the strong overlap between red-diamond and white-diamond symbols in Fig. 8. Such an observation
is consistent with a major assumption of the 〈ε′〉-based method, which is that the mixing takes place
within a narrow interfacial region (characterized by l). As the domain becomes increasingly well
mixed, this assumption will slowly break down as the interface becomes less well defined (e.g.,
snapshots IV in Fig. 5), and the two methods diverge significantly during the convective shutdown
regime (t > 200 min in Fig. 8).

IV. DISCUSSION

In comparison to the actual mass of MEG used in the experiment (=157.9 g), the mass obtained
by integrating the flux with time in Fig. 8 is 159.3 g for the experiment (a difference of 0.84%) and
161.4 g for the simulation (a difference of 2.1%). Our approach proves to be robust and yields a
mass conservation consistent with experimental calibration. Further, we note that the dimensionless
flux quantified by the Sherwood number Sh = F/(φ�cDm/HB) (with �c = 1 g/cm3) is ∼240 in
this 3D experiment, compared to Sh = 178 from an earlier 2D experiment with similar Ra and fluid
pair [20]. This suggests that experimentally measured flux in 3D is 34% higher than 2D flux. This
increase in 3D flux by 34% is consistent with earlier simulation studies using the canonical setting
where a fixed concentration is prescribed at the top of the domain [41,43], which have shown that
2D and 3D fluxes differ by approximately 30%. The discrepancy between 2D and 3D flux also
exists in the measure using the scalar dissipation rate ε. In particular, the dimensionless ε plateaus
around ε3D = 0.009 − 0.01 in our study [Fig. 5(c)], which is approximately a 28–42% increase
compared to the reported 2D value of ε2D ≈ 0.007 for the analog system in [6]. In the context of
the body of simulation work referred to here, our work provides robust experimental confirmation
of this numerical prediction of flux increase in 3D. However, we note that the exact percentage
value of 3D flux increase reported here bears uncertainty. Obtaining a more accurate estimate of
this flux increase requires more accurate measurements, ideally with more decimal precision in the
measured concentration. We also note here that comparing fluid pairs with similar properties is
important because it has been shown both experimentally [37] and numerically [6] that for a fixed
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Ra (calculated with the viscosity of the resident fluid), the mixing rate and by extension Sh is weakly
dependent on the viscosity ratio.

The effect of mechanical dispersion can also significantly impact the dynamics of convective
mixing. In particular, increased mechanical dispersion can (i) modify the finger structure by promot-
ing coalescence of adjacent fingers [21,49]; (ii) decrease the onset time by enhancing the mixing
at the initial interface [14,49]; and (iii) reduce the dissolution flux by reducing the concentration
gradients and thus the strength of convection [11,14]. Such effects of dispersion are expected to be
most prominent in a coarse medium where the average grain diameter dp > 0.4 mm [12,21]. This
threshold is most pertinent for granular porous media, such as that used in this work, and originally
was verified in a 2D system. Although we do not consider mechanical dispersion in our numerical
model, encouragingly we still find good agreement between experiment and simulation in all aspects
of our analysis. We hypothesize that this is due to the value of the average bead diameter used in
our experiment, which lies exactly on the threshold around dp = 0.4−0.5 mm where mechanical
dispersion becomes important. Given that our experimental system sits at the coarseness threshold
where pore-scale dynamics may not be readily captured by REV-scale homogenization, we also
calculate the pore-scale Reynolds number in our experiment as [60]

Re = ρ0Uc

√
k

μ
≈ 0.21 × 10−3 � 1, (20)

which suggests that inertia should be negligible. Similarly, the pore-scale Péclet number, defined as
the ratio between pore size scale and the natural length scale (l) [60], is calculated as

Pe =
√

k

l
≈ 0.57 < 1, (21)

where l = φDm/Uc ≈ 2.27 × 10−5 m. This suggests that the lengthscale of the boundary layer
spans only a few pores in size in our experiment.

We expect that the analysis performed here will also be robust for even finer bead sizes
(lower permeability), which are representative analogs to the field reported, e.g., in the United
States [61,62] and the Sleipner site in the North Sea [63], where geologic carbon sequestration
is being actively explored. However, in extending the conclusions of this work to geologic porous
formations, we note that the homogeneous glass bead pack we use in our experiments may not
capture the complexity of geologic porous media that have a heterogeneous pore structure and thus
more complicated dispersion effects.

Our work reports a direct comparison between experiments and simulations of density-driven
mixing in a 3D porous media. The success of this comparison study also represents an important
step forward as it demonstrates that direct validation of quantitative imaging in 3D porous media
against simulations is possible. This enables future experimental investigations on the role of other
parameters not considered in this study, and paves the way for direct translation of experimental
results into modeling the physical process of convective mixing in 3D.

The data that support the findings of this study can be found in the Caltech Data Library [64] or
are available from the corresponding author upon reasonable request.
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