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Image-based modeling of mineral dissolution poses challenges due to its multiscale
nature, requiring the consideration of multiphase reactive flow and transport at both the
resolved pore scale (macropores/fractures) and the unresolved Darcy scale (micropores).
The existing hybrid-scale simulation methods pose difficulties in handling the multiscale
fluid-rock interactions and temporal structural evolution. In this study, we propose a
multiscale compressive continuum species transfer (MC-CST) scheme to address the
limitations of the standard CST scheme, which exhibits numerical diffusion issues at the
gas-liquid interface and thereby suffers from inaccuracies in reactive transport simulations.
The proposed scheme incorporates an additional compressive term derived from volume-
averaging principles for the advection and diffusion fluxes in a single-field framework. To
ensure the impermeable species transport condition at the solid boundary, a concentration
extrapolation algorithm is developed. Four validation cases are conducted to demonstrate
the model’s capability in accurately simulating multiphase reactive flow and transport at
various scales, including pore scale, continuum scale, and hybrid scales. Special attention
is given to accurately modeling the thermodynamic conditions at the gas-liquid interface,
particularly with respect to the concentration jump under conditions of large local Péclet
numbers. Furthermore, we present a case study simulating calcite dissolution in a porous
medium to underscore the importance of multiscale fluid-rock interactions for an in-depth
comprehension of the dissolution regime.
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I. INTRODUCTION

Mineral dissolution is widely encountered in many subsurface applications, including CO2 geo-
logical storage and petroleum reservoir engineering [1–4]. For example, the injected CO2 dissolves
into the formation water during CO2 geological storage, leading to calcite (a type of carbonate
mineral) dissolution, which plays a crucial role in trapping and immobilizing the CO2 [5]. Acidic
fluids, such as hydrochloric acid, are often injected into reservoirs to dissolve minerals obstructing
pore spaces, thereby increasing permeability and enhancing oil or gas recovery [6]. Depending on
the specific flow conditions, pore geometry, and mineral properties, various dissolution patterns can
arise, including facial dissolution, viscous fingering, conical wormholes, and ramified wormholes
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[6,7]. These physical changes in pore structure hold a substantial influence on the subsurface
processes, thereby necessitating an in-depth study. Notably, pore-resolved numerical modeling
allows for direct consideration of the explicit pore geometry within complex porous media, thereby
advancing our quantitative understanding of the nonlinear fluid-rock interaction during multiphase
reactive flow and transport in mineral dissolution [8].

The multiscale feature of natural geological structures presents significant challenges for numer-
ical modeling, even within pore-resolved computational domains of centimeter scale [9]. The size
of natural pores and fractures can span several orders of magnitude, ranging from submicrometer
to several hundred micrometers [10]. High-resolution imaging techniques, such as x-ray computed
microtomography (micro-CT), enable nondestructive reconstruction of detailed pore spaces and
mineral grains. This digital representation of the rock microstructure is commonly referred to as
digital rock, and its accompanying pore-scale simulations offer great potential for understanding
fluid-rock interactions during mineral dissolution [11,12]. However, achieving a full Navier-Stokes
modeling for all pore spaces characterized via digital rock techniques would result in an unac-
ceptable computational burden. More importantly, there are tradeoffs between image resolution and
sample size. For example, when scanning a typical core plug of 2.5 cm in diameter, micrometer-scale
pores can be explicitly resolved while a significant number of sub-micrometer-scale pores remain
hidden below the image voxel [13,14]. In contrast to the resolved pore space, the unresolved porous
medium is typically treated as an effective continuum with subgrid information, including porosity,
saturation, and permeability [15–17]. Neglecting the reactive flow within the subresolution porous
medium can lead to the oversight of important phenomena such as the development of a weathered
zone near the fracture-porous interface [18]. Consequently, modeling complications arise from the
combined pore-resolved and continuum-scale representations of such digital rocks.

Multiphase reactive flow involves the coupling of advection-dominated and diffusion-dominated
mechanisms at multiple scales. In fully resolved macropores/fractures with high fluid transport
capacity, inertial and viscous forces dominate the multiphase flow [15,19], resulting in high Péclet
numbers (Pe, a dimensionless number quantifying the relative importance of advection to diffusion
in a system) [6]. The high Péclet number condition signifies that convective transport becomes
more significant than molecular diffusion. Conversely, within unresolved micropores characterized
by reduced size and permeability, capillary forces gradually dominate the slower multiphase flow,
leading to much lower Péclet numbers, typically below 10−1. As such, the molecular diffusion and
the possible Knudsen diffusion become the primary mechanisms [20], overshadowing the influence
of advection transport. In the conventional single-scale simulation [21], the porous mineral matrix
was typically considered as impermeable solid structures, neglecting the smaller-scale reactive
transport processes. However, this approach may lead to a misinterpretation of dissolution dynamics
under different conditions given the insufficient account of the scale-dependent processes and
their mutual mass transfer within the complex spatial arrangements of the multiscale pore space
[10,22,23]. The challenge of dynamic dissolution also involves the movement of fluid-solid in-
terfaces and the microstructural evolution of the subresolution porous matrix. Therefore, predictive
modeling of multiphase reactive flow through the inherently multiscale porous media remains highly
challenging. To the best of our knowledge, few studies have been devoted to understanding the
multiscale dynamics of multiphase reactive flow during mineral dissolution. This status primarily
arises from the limited development of numerical modeling and methodologies applied in this field.

Hybrid-scale modeling provides a powerful approach for image-based simulations of multiscale
flow and transport, which can be broadly classified into two categories: the domain decomposition
method and the microcontinuum method [9]. In the domain decomposition method, the compu-
tational domain is decomposed into separate subdomains comprising resolved solid-free regions
(e.g., macropores and fractures) and unresolved porous matrix. Two independent sets of governing
equations and numerical models are applied to adapt the scale-dependent representations of the
porous media and account for different flow and transport physics. In this approach, the standard
Navier-Stokes/Stokes equation·and advection-diffusion equations are used to describe the single-
phase/multiphase flow and solute transport in the solid-free regions [24]. On the other hand, the
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flow and transport in the porous matrix are solved using continuum-scale models based on Darcy’s
law, supplemented by subgrid models such as the absolute/relative permeability model, the reactive
surface area model, and the capillary pressure model [9,25]. Bidirectional communication between
at-scale modeling domains is implemented during scale coupling to enforce physical continuity
through appropriate interaction algorithms and boundary conditions, such as the Beavers and Joseph
interface condition [18,26]. Molins et al. [25] developed the domain decomposition method and
applied it to simulate the multiscale reactive transport in fractured media, where the dissolution
occurs in both the fracture and the matrix. The multiscale model was proved to effectively simulate
altered layers that formed around the porous matrix and the nonequilibrium concentration at the
calcite surface under surface-limited reaction conditions, which cannot be captured by the purely
pore-scale simulation. However, the domain decomposition method currently faces challenges in
capturing the dynamic evolution of the interface between pore- and continuum-scale subdomains
as a result of dissolution [25,27]. Further development of coupling theories, non-iterative solutions,
and local grid refinement algorithms is required to enhance the model’s performance in realistic
multiphase problems with dynamic morphology [9].

Compared to the domain decomposition method, the microcontinuum model differs primarily in
that it employs single-field governing equations capable of describing multiscale physics throughout
the entire computational domain, regardless of the content within each grid cell. The fundamental
aspect of the microcontinuum framework is the local porosity field εf to map the multiscale struc-
ture. A bounding value of εf = 1 represents the resolved pores/fractures, while a bounding value
εf = 0 ≡ 0.01 characterizes the impermeable solid. The intermediate range 0 < εf < 1 describes
the unresolved pores [19]. Numerous numerical studies have leveraged the Darcy-Brinkmann-
Stokes (DBS) momentum equation in the microcontinuum framework to demonstrate its capacity
in modeling single-phase flows across multiscale porous media [6,13,20,24,28]. Additionally, the
multiphase microcontinuum DBS framework has been developed to simulate multiphase flows
across the multiscale porous media. Two-phase microcontinuum DBS frameworks can be tracked
back to the work of Horgue et al. [29] and Soulaine et al. [16,17], who proposed multiphase DBS
equations to describe the two-phase flow at both the pore and continuum scales. Carrilo et al. [15]
later proposed an improved multiphase microcontinuum model, wherein theoretical derivations
were rooted in elementary physics and volume-averaging principles. According to the rigorous
derivations of multiscale parameters, including the relative velocity, density, and capillary force,
the multiphase microcontinuum model was validated to asymptotically match the scale-dependent
multiphase model. This includes the classic volume-of-fluid (VOF) -based Navier-Stokes model at
the pore scale and the multiphase Darcy’s model at the continuum scale. Recently, Liu et al. im-
proved the two-phase microcontinuum DBS models to mitigate spurious velocities at the gas-liquid
interface and contact-line regions, strengthening the modeling accuracy of the capillary-dominated
multiphase flow [19]. Thanks to these efforts, the multiphase microcontinuum model becomes
feasible for solving multiphase flow across the multiscale porous media.

Nevertheless, the modeling of multiphase reactive flow and transport in the microcontinuum
framework is still in its infancy. Soulaine et al. employed the microcontinuum approach to sim-
ulate mineral dissolution in presence of gas and liquid phases [17]. However, the focus of these
simulations was on the dynamic evolution of the fluid-solid interface without incorporating any
complex remeshing strategies. Moreover, due to the absence of continuum-scale physics in the
porous matrix (0 < εf < 1), the model was equivalent to a pore-scale model with an embedded
boundary method for time-evolving domains. The challenge lies in the modeling of multispecies
transport with interfacial mass transfer in realistic multiscale domains. To be more specific, the
single-field concentration equation must be formulated to ensure the continuity of fluxes and
chemical potentials at the gas-liquid interface in both the pore-scale and continuum-scale regions,
regardless of the transport mechanisms dominated by advection or diffusion. Recent progress on
pore-scale modelings of the multiphase mass transport can provide some insights into the multiscale
modeling in the microcontinuum framework. At the pore scale, the volume-of-fluid (VOF) frame-
work introduced the continuum species transfer (CST) approach proposed by Haroun [30] to enforce
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interface conditions. However, Yang et al. found that the original CST method can significantly
violate mass conservation when convection dominates diffusion locally near the interface (local
Péclet number Pelocal > 0.5) [31]. Later, Maes et al. developed a compressive continuum species
transfer scheme, known as C-CST, to achieve more robust simulations across a wide range of
Péclet numbers [32]. Despite the advancements of CST methods at pore scale, less attention has
been paid to the multiphase microcontinuum model, leading to its limited capability to perform
the advection-dominated species transport with the interplay of the pore-scale and continuum-scale
physics.

In this paper, the two-phase microcontinuum model is developed to robustly simulate the mul-
tiphase reactive flow and transport with interface species transfer. By employing volume averaging
to the species transfer equation, rigorous derivations of single-field advection and diffusion fluxes
are performed, yielding an additional compressive term compared to the previous microcontinuum
CST model [17]. Several validation cases are then conducted to prove the model capacity for solving
reactive flow and transport under varying Péclet number conditions at pore scale, continuum scale,
and hybrid scales, respectively. Finally, a challenging application is simulated to study the calcite
dissolution in a multiscale porous medium to improve the understanding of the multiscale fluid-rock
interaction dynamics.

II. MATHEMATICAL MODELS

In this section, the mathematical model based on the microcontinuum DBS framework is
developed to simulate the multiscale and multiphase dissolution, including mass, momentum, sat-
uration, and concentration conservations. The concentration equation is derived using a multiscale
compressive continuous species transfer scheme (MC-CST) to suppress the numerical diffusion by
the convection term at both the pore and continuum scales.

A. Multiscale variable definitions

In the microcontinuum DBS framework, fluid and solid aggregates at a scale smaller than the
control volume are filtered as the subgrid information. Thus, each control volume can contain one
or two fluid phases (Vl/Vg) in resolved macropores, an impermeable solid phase (Vs), or unresolved
fluid/solid aggregates (Vl/Vg/Vs). The volume fraction of void space in each control volume, namely
the local porosity, is introduced as ε f = (Vl + Vg)/V to categorize the complex multiscale structure
into the three regions: the resolved macropores (εf = 1), the unresolved porous matrix (0 < εf < 1),
and the solid regions (εf ≈ 0). Meanwhile, the saturation field is characterized as the ratio of the
liquid volume over the total fluid phase volume within the control volume αl = Vl/(Vl + Vg). In
the resolved macropores, the saturation field is defined as the indicator function in the volume-of-
fluid (VOF) model to track the gas-liquid interface delineated by 0 < αl < 1, with the bounding
values of αl = 1 and 0 as the liquid and gas phase, respectively. By contrast, the saturation field
turns out to represent the actual liquid phase distribution as the multiphase Darcy equation in the
unresolved porous matrix. Note that the relations εf + εs = 1 and αl + αg = 1 are always valid for
all the computational cells. Therefore, only εs and αl need to be computed to simulate the evolution
of the mineral/pore structure and liquid/gas phase distribution.

According to volume averaging, governing partial differential equations are formulated in terms
of single fields regardless of the cell content. Correspondingly, all the physical variables should
be defined as the volume-averaged quantities over the control volume by β̄i = (1/V )

∫
Vi

βidV , or
the phase-averaged quantities over each phase by β̄ i

i = (1/Vi )
∫

Vi
βidV (i = l, g). For example, v̄l

depicts the averaged liquid velocity through the control volume, p̄g
g denotes the averaged pressure

over the gas phase, and c̄l
l, j defines the averaged molar concentration of species j in the liquid phase.
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These averages can be related to the local porosity and the saturation via β̄i = εiαiβ̄
i
i . In this context,

the single-field pressure, velocity, and molar concentration can be derived as

p̄ = αl p̄
l
l + αg p̄g

g, (1)

v̄ = v̄l + v̄g = εf
(
αlv̄

l
l + αgv̄

g
g

)
, (2)

c̄j = αlc̄
l
j,l + αgc̄g

j,g. (3)

B. Microcontinuum equations for two-phase flow

The microcontinuum equations for two-phase flow are implemented based on Carrillo’s deriva-
tion [15], with numerical improvement in the previous work to reduce the spurious velocity [19].
In this section, the derivation from the fundamental equations to the upscaled equations and the
numerical corrections are briefly reviewed.

Assuming the fluid phases are Newtonian, incompressible, and immiscible, the fundamental
equations, including the mass and momentum conservation in each phase, dictate

∂ρi

∂t
+ ∇ · (ρivi ) = 0, i = l, g, (4)

∂ρivi

∂t
+ ∇ · (ρivivi ) − ∇ · τ i = −∇pi + ρig, i = l,g, (5)

where vi is the velocity of phase i, τ i = (μi(∇vi + ∇vi
T )) is the viscous stress tensor, μi is the

viscosity of phase i, pi is the pressure of phase i, and g is the gravity vector. At the gas-liquid
interface with a velocity of w , the mass conservation is expressed as

ρl (vl − w) · nlg=ρg(vg − w) · nlg at Alg, (6)

where ρi is the density of phase i, and nlg is the normal vector to the fluid-fluid interface pointing
from the wetting to the nonwetting phase. When there is no phase change at the fluid-fluid interface,
vl = vg = w. The surface tension causes a sharp interface pressure drop at the fluid-fluid interface,

�pc = pg − pl = σκ at Alg, (7)

where pg and pl are the pressure of the nonwetting and wetting phase, σ is the surface tension
coefficient, and κ = ∇ · nlg is the interface curvature.

The above fundamental equations are defined on a continuous physical domain. After discretizing
the continuous domain into the grid-based domain by the finite volume method (FVM), the single-
field microcontinuum model is derived using volume-averaging theorems,

∂βi

∂t
= ∂βi

∂t
− 1

V

∫
Ai,f

βivi,f · ni,f dA − 1

V

∫
Ai,s

βivi,s · ni,sdA, (8)

∇βi = ∇βi + 1

V

∫
Ai,f

βini,f dA + 1

V

∫
Ai,s

βini,sdA, (9)

∇ · βi = ∇ · βi +
∫

Ai,f

βi · ni,f dA + 1

V

∫
Ai,s

βi · ni,sdA, (10)

where subscripts f and s represent the fluid-fluid interface and the fluid-solid interface of phase i,
respectively.

The application of the volume-averaging theorems on the mass conservation equation of each
phase, Eq. (4), yields [33]

∂ε f αi

∂t
+ ∇ · (αiv̄i ) = 0, i = l, g. (11)
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The single-field continuity equation is obtained by adding the volume-averaged mass conserva-
tion equation of each phase [33],

∇ · v̄ = 0. (12)

A similar upscaling procedure is also performed to form the multiscale single-field momentum
equation [33],

1

ε f

(
∂ρv̄

∂t
+ ∇ ·

(
ρ

ε f
v̄v̄

))
= −∇ p̄ + ρg + ∇ · (μ(∇v̄ + ∇v̄T )) − μk−1v̄ + Fc, (13)

where μk−1 is a drag force coefficient in unresolved porous regions, and Fc is the surface tension
force in the fluid-fluid interface.

As to the specific modeling of the two-phase interfacial dynamics, the VOF method is employed
to explicitly track the shape and position of the interface in the resolved macropore region. The
averaged phase velocities v̄i in the volume-averaged mass conservation equations, Eq. (11), are
transformed into expressions of the single-field variables, deriving the saturation equation [33],

∂ε f αl

∂t
+ ∇ · (αl v̄) + ∇ · (ε f αlαgvr ) = 0, (14)

where vr = v̄l
l − v̄

g
g is the relative velocity. Since there is no conservation law to solve for vr, this

term must be closed.
In resolved macropore regions, the relative velocity is computed using the gradient of the

saturation and a value based on the maximum magnitude of v̄, which is a common practice in
the VOF method,

vr = Cα max (v̄)

( ∇αl

|∇αl |
)

, (15)

where Cα is the interface compression coefficient to adjust the magnitude of the compressive
velocity normal to the gas-liquid interface for a tradeoff between the interface thickness and spurious
velocity in the macropore regions. The continuum surface force (CSF) model is used for specific
modeling of the interfacial force term arising from the VOF method [15],

Fc = ε−1
f σ∇ ·

( ∇αl

|∇αl |
)

∇αl . (16)

The multiphase Darcy equation is applied to describe the multiphase flow in unresolved microp-
ore regions. The two-phase Darcy model and a capillary pressure model are used to derive the drag
force coefficient, the relative velocity, and the surface tension force in unresolved micropore regions
[15]. The momentum balance equations of the two-phase Darcy model can be written as

0 = −∇ p̄i
i + ρig − M−1

i v̄i, i = l, g, (17)

where Mi = k0kr,i

μi
are the fluid mobilities, k0 is the the absolute permeability of the porous structure,

and kr,i are the relative permeabilities of each phase.
The microcontinuum framework is used to combine the above equations and models of both the

macropore and micropore regions into a fully coupled multiscale model, which can be applied in
pore, continuum, or hybrid scale representation of multiphase flow in porous media. The multiscale
parameters, vr, ρ, μk−1, and Fc, are defined to illustrate Eqs. (13) and (14) by asymptotic matching
to the VOF method in resolved macropore regions and to the multiphase Darcy model in unresolved
micropore regions.
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According to Carrillo’s work, the multiscale relative velocity vr is expresseas [15]

vr =

⎧⎪⎪⎨
⎪⎪⎩

Cα max(|v̄|)∇αl
∇αl

in resolved macropore regions,

ε−1
f

[
−

(
Ml
αl

− Mg
αg

)
∇ p̄ +

(
ρl Ml
αl

− ρgMg
αg

)
g

+
(

Ml αg
αl

+ Mgαl
αg

)
∇pc −

(
Ml
αl

− Mg
αg

)
pc∇αl

]
in unresolved porous regions,

. (18)

where pc is the capillary pressure. According to the two-phase Darcy law, the relative velocity vr

in the porous domain can be formulated to account for the comprehensive interplay of the relative
permeability, gravity, and capillary effects.

The multiscale density ρ and drag force coefficient μk−1 can be written as [15]

ρ =
{

ρlαl + ρgαg in resolved macropore regions,

(ρlMl + ρgMg)M−1 in unresolved porous regions,
(19)

μk−1 =
⎧⎨
⎩

0 in resolved macropore regions,

k−1
0

( kr,l

μl
+ kr,g

μg

)−1
in unresolved porous regions,

(20)

where M = Ml+Mg is the total mobility. Notably, the single-fluid density is the saturation-weighted
average in resolved macropore regions, while it becomes the mobility-weighted average in unre-
solved micropore regions. The absolute permeability is usually described by the Kozeny-Carman
relation with respect to the local porosity, while the relative permeability for different saturations can
be given by the Brooks and Corey model [34]. Correspondingly, the nonzero drag force coefficient
μk−1, based on a harmonic average of the two-phase mobilities, is applied exclusively in the porous
regions to describe the porous resistance exerted on the subgrid pore walls.

The multiscale capillary force Fc follows the relation as [15]

Fc =
{−ε−1

f σ∇ · (nlg)∇αl in resolved macropore regions,[
M−1(Mlαg − Mgαl )

(
∂ pc

∂αl

) − pc
]∇αl in unresolved porous regions,

(21)

where σ is the surface tension, nlg = ∇αl
∇αl

is the normal to the gas-liquid interface, and pc is the
capillary pressure. In the macropores, the capillary force Fc reduces to the well-known continuum
surface force (CSF) formulation to balance the pressure gradient according to Young-Laplace law.
In the unresolved porous domain, the capillary force Fc is derived such that the DBS momentum
equation can match the two-phase Darcy equation [15]. The relationship between the capillary
pressure and the saturation can be given by the Van Genutchen model [35].

In the multiphase microcontinuum DBS framework, liquid-statured or gas-saturated porous
regions impact the saturation gradient at the porous boundary, which results in an unintended
normal to the gas-fluid interface. Some numerical corrections were proposed to improve the
numerical accuracy of the interface curvature and reduce the spurious velocity around the gas-liquid
interface [19].

The face-centered interface norm nlg, f is employed to calculate the term ∇ · (nlg) (the magnitude
of the interface curvature) based on the Gaussian scheme. A hybrid numerical scheme is used to
compute nlg, f more accurately as follows [19]:

nlg, f = C

〈 ∇α

‖∇α‖
〉

c→ f

+(1 − Clg)
〈∇αl〉c→ f

‖〈∇αl〉c→ f ‖ lg

, (22)

where Clg is the mixing coefficient, set as 0.6 in this work, and 〈〉c→ f denotes the interpolation
operator from the cell-centered field to the face-centered field.

At the porous/solid boundary, a saturation extrapolation algorithm is devised to reconstruct the
saturation gradient in the gas-liquid interface before modifying nlg to enforce the wall adhesion
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condition with the prescribed contact angle θ by

ñlg = cos θ − cos θI cos (θI − θ )

1 − cos2θI
np + cos (θI − θ ) − cos θI cos θ

1 − cos2θI
nlg, (23)

where ñlg is the local modified normal vector, np = ∇ε f

‖∇ε f ‖ is the normal to the porous boundary, and

θI = cos−1(np · nlg) is the contact angle before correction. To reduce the spurious velocity at the
contact line, nlg should be first revised based on the extrapolated saturation from resolved macropore
regions to the nearby porous region [19],

χ =
{

1 in resolved macropore regions,
0 in unresolved pore regions, χ f = �〈χ〉c→ f 	, (24)

αl,corr =

⎧⎪⎨
⎪⎩

χαl + (1 − χ )
〈χ f 〈αl〉c→ f ,harmonic〉 f →c

〈χ f 〉 f →c

, αl,solid = 1

1 − (
χ (1 − αl ) + (1 − χ )

〈χ f 〈1−αl〉c→ f ,harmonic〉 f →c

〈χ f 〉 f →c

)
, αl,solid = 0

, (25)

where χ is an indicator function representing whether the grid block belongs to the resolved
macropore region or the unresolved porous region, � 	 denotes the ceiling operator that maps a
real number x to the smallest integer greater than or equal to x, 〈〉 f →c represents interpolation from
face center to cell center, while 〈〉c→ f represents interpolation from cell center to face center. The
subscript “harmonic” denotes the harmonic-mean scheme used in the interpolation. Meanwhile, np

is numerically smoothed to improve its perpendicularity to the curved and sloped porous boundary
by [19]

ñ∗
p =

‖np‖〈〈ξnp〉c→ f 〉 f →c

〈〈ξ 〉c→ f 〉 f →c

. (26)

C. Mineral dissolution model

Following the experimental and numerical work by Soulaine et al. [17], mineral dissolution is
simplified as reaction kinetics Eq. (27), in which the calcite crystal is acidified by the hydrochloric
acid (HCl). The underlying assumption is that the CO2 can be instantaneously nucleated at the
mineral surface from the liquid phase to the gas phase,

CaCO3(s) + 2HCl(l ) → CaCl2(l ) + CO2(g) + H2O(l ). (27)

HCl is the primary species in the liquid phase, and the molar reaction rate ṅHCl can be written as

ṅHCl = −ral
v (c̄HCl − c̄HCl,eq ) , (28)

where r is the reaction rate constant, c̄HCl is the averaged HCl molar concentration, and c̄HCl,eq is
the equilibrium concentration, respectively. Considering that the HCl is only present in the aqueous
phase, the specific reactive surface al

v denotes the effective calcite area exposed to the acidic solution
and it can be related by the specific geometrical area av and the liquid saturation αl by al

v = avαl.
In the present study, the specific geometrical area is modeled by the sugar lump model as Eq. (29)
to account for the temporal evolution of the reactive surface area,

av =
(

av0 + avm

(
1 −

(
εs

εs0

)n1
)n2)(

εs

εs0

)n3

, (29)

where av0 is the initial specific surface area, avm is the maximum specific surface area by the sum
of individual grain surface areas, εs0 is the initial volume fraction of the calcite, and n1, n2, and n3

are empirical coefficients of the specific microstructure of the calcite aggregates.
The volume fractions of the gas/liquid/solid phase are evolved during the min-

eral dissolution, and their evolution can be governed by the following conservations
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laws:
∂εsρs

∂t
= ṁs, (30)

∂ε f αiρi

∂t
+ ∇ · (

ε f αiρl v̄
i
i

) = ṁi, i = l, g, (31)

where ρs and ρi are the density of the solid and fluid phases, and ṁs and ṁi are the dissolution rate
for the solid and fluid phases, respectively. These dissolution rates can be expressed based on the
consumption rate of HCl ṁHCl as

ṁHCl = MHClṅHCl, (32)

ṁk = γkṁHCl, k = s, l, g. (33)

γk is the stoichiometric coefficients: γs = MCaCO3
2MHCl

, γg = −MCO2
2MHCl

, and γl = (2MHCl−MCaCl2 −MH2O )
2MHCl

, and
Mj is the molar mass of species j.

After considering the dissolution rate ṁl, the saturation equation, Eq. (14), becomes

∂ε f αl

∂t
+ ∇ · (αl v̄) + ∇ · (ε f αlαgvr ) = ṁl

ρl
. (34)

Assuming the gas and liquid phases are incompressible, the summation of Eqs. (30) and (31) can
yield the global mass conservation as

∇ · v̄ = ṁHCl

(
γs

ρs
+ γg

ρg
+ γl

ρl

)
. (35)

D. Concentration conservation equations

In a two-phase system, the chemical species can be present in both gas and liquid phases.
Assuming the solution is dilute, the fundamental equation for species transfer of species j in phase
i reads

∂c j,i

∂t
+ ∇ · (c j,ivi ) − ∇ · (Dj,i∇c j,i ) = ṅ j in�i (i = l, g), (36)

where Dj,i is the molecular diffusivity of species j in phase i, F j,i = c j,ivi is the advective term,
J j,i = −Dj,i∇c j,i is the diffusive term, and ṅ j is the source term due to the chemical reaction. In
this work, the effect of the interfacial mass transfer on the multiphase flow is neglected based on
the specific problem that the characteristic time of CO2 mass transfer from the gas to the liquid
phase is much longer than that of the CO2 production from the calcite dissolution [17]. Following
Maes et al.’s work [36], the source term due to interfacial mass transfer is also easily formulated
and involved in Eqs. (35)

At the gas-liquid interface, the flux continuity and thermodynamic equilibrium condition can be
modelled using Henry’s law,

(c j,i(vi − w) − Dj,i∇c j,i ) · n1g = 0, at A1g, (37)

c̄l
j,l = Hjc̄

g
j,g, (38)

where w is the interface velocity, and Hj is Henry’s constant of species j. Similar to the derivation
of the single-field momentum equation, the global concentration conservation equation to solve c̄ j

throughout the multiscale domain can be formulated based on volume averaging.
The application of the volume-averaging theorem, Eqs. (8)–(10), to the fundamental equations

for species j, Eq. (36), yields
∂ c̄ j,i

∂t
+ ∇ · (F̄ j,i + J̄ j,i ) + Di f + Dis = 0, (39)
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where the last two terms on the left-hand side,

Di f = 1

V

∫
Ai f

(F j,i + J j,i ) · ni f dA = 0,

Dis = 1

V

∫
Ais

(F j,i + J j,i ) · nisdA = 1

V

∫
Ais

J j,i · nisdA, (40)

where Di f is the species flux at the gas-liquid interface, equal to 0 imposed by the flux continuity,
Eq. (37), Dis reflects the diffusion resistance exerted by the solid surface with nonslip boundary
condition (vi = 0). The averaged intrinsic molecular diffusion term ∇ · J̄ j,i and the diffusion
resistance term Dis are lumped into an effective molecular diffusion term [17]

∇ · J̄ j,i + Dis = −∇ · (D∗
j,i∇c̄ j,i ), (41)

where D∗
j,i is the effective diffusion coefficient in porous media, accounting for microstructural

effects, such as porosity and tortuosity [37]. For simplification, D∗
j,i = εf Dj,i are used in this work

[17]. Eventually, if the spatial derivatives of the local porosity and saturation are neglected, the
volume-averaged concentration equation for species j in phase i becomes

∂ε f αic̄i
j,i

∂t
+ ∇ · (

ε f αic̄
i
j,iv̄

i
i

) = ∇ · (
ε f αiD

∗
j,i∇c̄i

j,i

)
. (42)

This equation is valid everywhere regardless of the cell content. The sum of the volume-averaged
concentration equations for the gas and liquid phases yields

∂ε f c̄ j

∂t
+ ∇ · (

ε f αl c̄
l
j,lv̄

l
l + ε f αgc̄g

j,gv̄
g
g

) = ∇ · (ε f αlD
∗
j,l∇c̄l

j,l + ε f αgD∗
j,g∇c̄g

j,g

)
. (43)

Here, the upscaled concentration equation is obtained. For the equation to be solved, the fol-
lowing derivation further transforms the upscaled equation into the single-field equation based on
definitions of the single-field v̄ and c̄ j .

The combination of the advection term result in Eq. (44) with the detailed derivation in
Appendix A 1,

∇ · (
ε f αl c̄

l
j,lv̄

l
l + ε f αgc̄g

j,gv̄
g
g

) = ∇ · (c̄v̄) + ∇ · (ε f αgαl
(
c̄l

j,l − c̄g
j,g

)
vr

)
, (44)

where the first term on the right-hand side is the standard advection term in Soulaine et al. [17],
and the second term is an additional term, namely the multiscale compressive advection term. Com-
bining the single-field concentration definition c̄ j , Eq. (3), and Henry’s law, Eq. (38), the unknown
phase-averaged concentration difference c̄l

j,l − c̄g
j,g can be derived based on the thermodynamic

equilibrium assumption at the gas-liquid interface,

c̄l
j,l − c̄g

j,g = (1 − Hj )c̄ j

αlHj + αg
. (45)

Equation (44) is derived without any assumption and is an exact formulation of the single-field
species advection term. The compressive advection term is not zero at the gas-liquid interface
with an artificial compressive velocity vr �= 0. Section IV will show if the compressive term is not
involved, numerical errors can significantly break species concentration conservation, particularly
when the local Pélect number (Pelocal = vx�/Dj,i, where vx is the velocity along the x direction,
and � is the grid size along the x direction) is large or even infinite (Dj,i → 0, for example the
gas is pure). Actually, the contribution of the compressive advection term in the microcontinuum
framework is consistent with that using the standard VOF method [32]. Therefore, compared to the
standard CST advection term [17], the compressive advection term can allow for more accurate and
flexible simulations of multiscale species transfer, facing the advection- and diffusion-dominated
problems.
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FIG. 1. Graphic representation of the concentration gradient at the solid surface: (a) the pore-scale ap-
proach; (b) noncorrected concentration gradient vectors in the multiphase multiscale model; (c) illustration
of the concentration extrapolation from the fluid region to the solid region at the fluid/solid interface and the
resulting corrected concentration gradient vectors in the multiphase multiscale model.

Following the previous work [30,32], the single-field diffusive term can be derived as

J̄ j = −ε f αlD
∗
j,l∇c̄l

j,l − ε f αgD∗
j,g∇c̄g

j,g

= −ε f
(
Dm∗

j ∇c̄ j − �CST
)
, (46)

Dm∗
j = αlHjD∗

j,l + αgD∗
j,g

αlHj + αg
, (47)

�CST = (Hj − 1)c̄ j

αlHj + αg
∇αl , (48)

where Dm∗
j is the weighted mean of the effective diffusion coefficient D∗

j,l and D∗
j,g in gas and liquid

phase weighted by αlHj and αg, and �CST is the CST flux arising from the concentration jump at the
gas-liquid interface. The cornerstone of the CST term is that it transforms the interface condition,
Eq. (38), into a volumetric term under the microcontinuum framework.

Eventually, the single-field concentration conservation equation for species j can be reorganized
as

∂ε f c̄ j

∂t
+ ∇ · (c̄ j v̄) + ∇ ·

(
ε f

(1 − Hj )c̄ j

αlHj + αg
αgαlvr

)
= ∇ · (

ε f Dm∗
j (∇c̄ j − �CST)

) + ṅ j . (49)

This equation is referred to hereafter as the multiscale compressive equation (MC-CST), which
is distinguished from the standard CST equation without the compressive advection term [17].

The boundary condition for the single-field concentration at the solid wall is given by

ε f Dm*
j (∇c̄ j − �CST) · ns = 0. (50)

Finally, a numerical scheme is used to address the nonphysical concentration gradient problem
near the fluid-solid interface (see Fig. 1). In the solid regions, a very small decimal number εf =
0.01 was used to replace εf = 0 to escape floating-point exceptions [20]. Due to the approximate
representation of the solid regions, Eq. (50) cannot completely vanish to zero at the solid wall. To
recover the zero-flux boundary condition accurately, gradient terms ∇c̄ j and ∇αl are enforced to
zero at the solid wall via the variable extrapolation scheme according to Eqs. (25) and (51). To be
more specific, the saturation and concentration of the solid-free region are extrapolated to the nearby
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solid region, leading to equal field at either side of the solid wall and the elimination of the gradient
terms there,

χ =
{

1 in the macropore and porous region,

0 in the solid region,
χ f = cell

⌈〈χ〉c→ f

⌉
,

χ1 = (1 − χ )
‖∇χ‖

‖∇χ‖ + δ
,

C01 = (c̄ j − c̄ j,min)/(c̄ j,max − c̄ j,min),

C01,corr =

⎧⎪⎪⎨
⎪⎪⎩

(1 − χ1)C01 + χ1
〈χ f 〈C01〉c→ f ,harmonic〉 f →c

〈χ f 〉 f →c

, C01,solid = 1

1 −
(

(1 − χ1)(1 − C01) + χ1
〈χ f 〈1−C01〉c→ f ,harmonic〉 f →c

〈χ f 〉 f →c

)
, C01,solid = 0

c̄ j,corr = C01,corr × (c̄ j,max − c̄ j,min) + c̄ j,min (51)

where χ is an indicator function representing whether the grid block belongs to the macropore and
porous regions or the solid region, χ1 is an indicator function representing the first layer of grid
adjacent to the macropore and porous regions in the solid region, and δ is a very small number to
avoid the division to zero, � 	 denotes the ceiling operator that maps a real number x to the smallest
integer greater than or equal to x, 〈〉c→ f denotes the interpolation operator from the cell-centered
field to the face-centered field, and 〈〉 f →c denotes the interpolation operator from the face-centered
field to the cell-centered field. The subscript “harmonic” denotes the harmonic-mean scheme used
in the interpolation.

III. NUMERICAL METHODS

In this section, numerical implementations to solve partial differential equations for single fields
εs, αl , p̄, v̄, and c̄ j are introduced and discussed, including special solution algorithms, equation
discretizations, and numerical workflow.

A. Equation discretization

The solver was developed based on the open-source multiscalePorousFoam solver [19] and
GeoChemFoam solver [38]. The first is implemented for the microcontinuum modeling of the
capillary-dominated multiphase flow, while the latter can be used for multiple flow processes,
including the multiphase reactive transport with mineral dissolution. The basic computational
infrastructure of both comes from the OpenFOAM platform [39–41]. The solver employs the
finite volume method (FVM) to solve governing equations on the Eulerian grid, mainly composed
of Eqs. (13), (30), (34), (35), and (49). These partial differential equations are first discretized
by integrating them over each control volume to yield a set of algebraic equations. During dis-
cretization, the first-order Euler time scheme is used to discretize the time derivative ∂/∂t terms.
The gradient term ∇ is discretized by the Gauss linear scheme, such as ∇ p̄ [Eq. (13)] and ∇c̄ j

[Eq. (49)] [19,20]. Advection terms for ∇ · ( ρ

ε f
v̄v̄) [Eq. (13)], ∇ · (αl v̄) [Eq. (34)], and ∇ · (c̄ j v̄)

[Eq. (49)], are performed using the second-order and conservative Gauss vanLeerV scheme [42],
while compressive terms, including ∇ · (ε f αlαgvr ) [Eq. (34)] and ∇ · (ε f

(1−Hj )c̄ j

αl Hj+αg
αgαlvr ) [Eq. (49)],

are implemented by the interfaceCompression scheme. The second-order Gauss linear corrected
scheme is employed to discretize the Laplace term, including ∇ · (μ(∇v̄ + ∇v̄T )) [Eq. (13)] and
∇ · (ε f Dm∗

j ∇c̄ j ) [Eq. (49)]. For numerical stability, the Gauss upwinding scheme is used for the
CST term ∇ · (�CST) [Eq. (49)] with respect to the direction of ±∇αl [36,43].
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FIG. 2. Flowchart of the microcontinuum model of the multiphase reactive flow.

B. Numerical workflow and solution algorithms

Sequential coupling strategies are performed to iteratively solve the discretized equations of the
nonlinear problem at each time step, as illustrated in Fig. 2. By numerical experiments, the time-
step size is observed to be controlled by the interface Courant number in the solid-free region,
Co = 1

2

∑ |φ|
V �t , where φ is the mass flux at the gas-liquid interface denoted by 0.01 < αl < 0.99. In

this work, the interface Courant number is set as 0.01 to limit the spurious velocity to an acceptable
magnitude. The main iteration within a time step is depicted as follows.

(1) Calcite dissolution rates ṁHCl and ṁk(k = l, g, s) are calculated based on Eqs. (32) and (33)
with the concentration and specific reactive surface area from the previous iteration/time step.

(2) The volume fraction of calcite εs is explicitly solved by Eq. (30). The local porosity εs and
its dependent normal vector ñ∗

p and effective transport properties in the porous matrix, such as the
absolute permeability k0, the effective phase diffusivity D∗

j,i and the specific geometric surface area
av, are updated.

(3) Considering the mass conservation cannot be satisfied unless convergence, the divergent
term αl∇ · v̄ − αl∇ · v̄ can be introduced at the right-hand side of the saturation equation, Eq. (34),
to make up the impact of the numerical flux discontinuity on the saturation boundedness. Along
with the mass conservation equation, Eq.(35), the saturation equation can be written as Eq. (52).
More detailed derivation is given in Appendix A 2,

∂ε f αl

∂t
+ ∇ · (αl v̄) + ∇ · (ε f αlαgvr ) = ṁHCl

γl

ρl
+ αl

[
∇ · v̄ − ṁHCl

(
γs

ρs
+ γg

ρg
+ γl

ρl

)]
. (52)

The yielded saturation equation, Eq. (52), is then solved with the explicit source term ṁHCl
γl

ρl

and the implicit source term αl [∇ · v̄ − ṁHCl(
γs

ρs
+ γg

ρg
+ γl

ρl
)] using the multidimensional universal

limiter with explicit solution (MULES) algorithm to ensure saturation boundedness [44].
(4) The normal vector ñlg, the curvature of the gas-liquid interface κ , the surface tension force

Fc, the capillary pressure pc, and single-field transport properties (i.e., al
v, μk−1, and Dm∗

j ) are
updated based on the new saturation field.
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(5) The discretized DBS momentum equation, Eq. (13), is then implicitly solved to obtain the
predicted velocity v̄ and mass flux φ, which is so-called the momentum prediction step.

(6) The predicted velocity is corrected based on a predictor-corrector strategy using the splitting
of operators (PSIO) algorithms [45], which is so-called the momentum corrector step. For the
PISO loop, the semidiscretized pressure equation should be formulated by combining the mass
conservation and DBS momentum equations, Eqs. (35) and (13), to take the velocity-pressure
coupling into account [15,20]. The pressure equation is then computed and repeated until the
convergence of the pressure and velocity fields. The corrector step number of 2 ∼ 3 is recommended
to guarantee mass conservation.

(7) The concentration equation, Eq. (49), is solved using the sequential operator splitting
algorithm to improve the numerical stability, wherein the advection term is first solved and then
injected as a source term in the diffusion equation [43]. At the next iteration, the chemical reaction
rate can be updated based on the latest concentration field.

IV. VALIDATION CASES

In this section, four validation cases are implemented to demonstrate the model’s applicability
and reliability in solving reactive flow and transport across various scales, including pore scale, con-
tinuum scale, and hybrid scales. In the first test case, the contribution of the compressive advection
term in reducing artificial species transfer at the gas-liquid interface is evaluated by comparing the
concentration jump of two-phase flow and transport in a 1D tube using the standard CST term
and the compressive CST term to the analytical solutions. The second test case aims to verify
the capability of the MC-CST scheme in simulating species transport in a heterogeneous porous
medium at the continuum scale. In the third test case, simulations of two-phase flow and transport in
capillary tubes are conducted to demonstrate that the saturation/concentration extrapolation scheme
can effectively eliminate the artificial advection and diffusion fluxes at the solid boundary and assess
the model performance in simulating flow and transport at hybrid scales. Lastly, the microcontinuum
model of the multiphase reactive flow is validated by comparing it with Soulaine’s experimental
results of the dissolution of a calcite crystal in a microchannel [17]. This allows us to assess the
model’s performance in capturing the dissolution dynamics and its agreement with experimental
observations [17]. More information related to the boundary conditions, simulation parameters, and
mesh sensitivity analysis is given in the Supplemental Material [46].

A. Two-phase transport in a 1D tube

This test case aims to demonstrate the effectiveness of the MC-CST scheme in mitigating the
artificial species transfer at the gas-liquid interface. The standard CST term and the compressive
CST term are used to simulate both diffusion-dominated and advection-dominated flow in a 1D
tube. The fluid domain extends over 0.2 mm × 0.01 mm and is discretized with a uniform mesh of
400 × 10 elements. For diffusion-dominated flow, symmetrical boundary conditions are imposed
on the top and bottom boundaries for all the variables. The left and right boundaries are subjected
to standard no-slip wall conditions, while the diffusion coefficients are set as Dg = Dl = 10−6. For
advection-dominated flow, liquid is injected from the left boundary with a velocity of 0.05 m/s.
Accordingly, the diffusion coefficients are adjusted as Dg = Dl = 0, leading to an infinite local
Péclet number. Other fluid parameters, such as density and viscosity, remain consistent across all
simulations. Especially, the fluid densities and viscosities are ρl = 1000 kg/m3, ρg = 20 kg/m3,
and νg = νl = 10−3 m2/s, respectively. Henry’s constant H = Cl/Cg is specified as 2. The surface
tension is σ = 0.01 kg/s2, while the contact angle on the wall is prescribed as 90◦.

In the case of diffusion-dominated flow, the gas-liquid interface initially resides at the center of
the tube, with the liquid phase positioned on the left and the gas phase on the right. The initial
concentration of the solute component is Cl = 0 kmol/m3 in the liquid phase and Cg = 1 kmol/m3

in the gas phase. As the solute component diffuses, it undergoes interfacial mass transport from the
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FIG. 3. Comparisons of the analytical solution and numerical results by the standard CST and MC-CST
models for the diffusion-dominated flow for very early physical times (zoom in).

gas phase to the liquid phase in order to achieve thermodynamic equilibrium in accordance with
Henry’s law. Consequently, a concentration jump occurs at the gas-liquid interface. As the spread
range of the solute component at the early time is far from the left and right boundaries, the distance
between the two planes can be regarded as infinite [47,48]. Based on this assumption, the analytical
solution of the concentration field can be derived as [47,48]

C(x) =
{

β0erf
( ηg

2

) + β1, x > 0 (in gas phase),

γ0erf
(

ηl

2

) + γ1, x < 0 (in liquid phase),
(53)

where ηg = x√
Dgt

, ηl = x√
Dlt

, β0 = HCg,0−Cl,0

H+
√

Dl /Dg
, β1 =

√
Dl /DgCg,0+Cl,0

H+
√

Dl /Dg
, γ0 =

√
Dl
Dg

HCg,0−Cl,0

H+
√

Dl /Dg
, and γ1 =

H
√

Dl /DgCg,0+Cl,0

H+
√

Dl /Dg
.

For the diffusion-dominated flow, Fig. 3 shows good agreement between the analytical solution
and numerical results from both the CST and MC-CST models with the same mean relative errors of
1.22% at 250 μs, as listed in Table I. As expected, the concentration jump can always be guaranteed,
which validates the effectiveness of the CST term. Notably, both the CST and MC-CST models are
observed to yield almost identical concentration profiles, consistent with the previous work that
supports the applicability of the CST model for Pelocal < 0.5 [31].

For the advection-dominated flow, Fig. 4 compares analytical solutions of concentration and
saturation profiles and numerical results using CST and MC-CST models at different time, while
Fig. 5 illustrates the concentration contour near the gas-liquid interface for the two models. In the
absence of interfacial mass transfer, the analytical solutions indicate a sharp front propagating at
the liquid injection velocity of 0.05 m/s. However, the CST model smeared the sharp gas-liquid
interface due to spurious diffusion at the interface. Conversely, the MC-CST model, upon the in-
troduction of the compressive term, effectively mitigates the spurious diffusion, resulting in a sharp
concentration jump that closely aligns with the analytical solutions. Therefore, this test case proves
that the proposed MC-CST model within the microcontinuum framework can achieve more accurate
and flexible performance to ensure the pore-scale thermodynamic equilibrium condition regardless

TABLE I. The relative error of the simulated Henry’s constant H = Cl/Cg at different times for the
diffusion-dominated flow.

Time (µs) 25 125 250

Hsimulated 1.54 1.78 1.90
Hanalytical 1.44 1.73 1.88
Error 7.01% 2.86% 1.22%
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FIG. 4. Comparisons of analytical solutions and numerical results from the standard CST and MC-CST
models for the advection-dominated flow case. Solid lines represent the analytical solutions, dashed lines are
saturation profiles, and markers depict numerical results.

of diffusion- and advection-dominated scenarios, surpassing the limitations of the previous CST
model.

B. Oil drainage and solute transport in a heterogeneous porous medium

To illustrate the applicability of the MC-CST model in solving the multiphase concentration
dynamics within complex systems at the Darcy scale, a coupled oil drainage and solute transport
process is simulated across a porous medium with spatially heterogeneous permeability. The oil
drainage case, originally proposed by Horgue et al. [49] and subsequently used by Carrillo et al.
[15] as a benchmark for validating the multiphase microcontinuum model with the conventional
two-phase Darcy model, serves as the foundation for this investigation. Building upon the multi-
phase microcontinuum model for oil drainage, the MC-CST model is incorporated to substantiate
its capability in achieving the thermodynamic concentration equilibrium at the oil-water interface
at the Darcy scale. The oil reservoir, measuring 1 by 0.4 m and discretized into a 2000 by 800
grid, is divided into multiple blocks with absolute permeability k0 values ranging from 1 × 10−13

to 4 × 10−13 m2, as shown in Fig. 6. The relative permeabilities within each block are modeled

FIG. 5. Concentration contours near the gas-liquid interface for the advection-dominated flow obtained
using (a) CST and (b) MC-CST models. The white dashed line is the gas-liquid interface.
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FIG. 6. Darcy-scale simulation configuration of the absolute permeability field and boundary conditions
for oil drainage.

through the Van Genuchten model [35], with capillary effects assumed to be negligible. In the
simulation, water with a solute concentration of 1 kmol/m3 is injected from the left boundary
at a velocity of 1 × 10−4 m/s, while the static pressure on the right boundary is maintained at
0 Pa. No-slip wall boundaries with a prescribed contact angle of 90◦ are imposed on the top
and bottom boundaries. The fluid densities and viscosities are ρwater = 1000 kg/m3 and ρoil =
800 kg/m3, νwater = 10−6 m2/s, and νoil = 1.25 × 10−4 m2/s, respectively. The surface tension is
set as σ = 0.15 kg/s2. The solute diffusion coefficients are specified as Doil = Dwater = 10−5 m2/s,
and Henry’s constant H = Cwater/Coil varies as 1, 2, and 5.

Figure 7 shows that viscous fingering instabilities appear on the water saturation front, consistent
with previous Carrillo et al.’s simulations [15]. Figure 8 compares temporal concentration distribu-
tions solved using various Henry’s constants. When H = 1, the concentration field is continuous
between oil and water phases without the concentration jump, wherein the solute transport is
predominantly influenced by both advection and diffusion mechanisms. As H increases from
1 to 5, the CST term progressively establishes a concentration jump at the oil-water interface,
resulting in a decrease in concentration within the oil phase. Figure 9 shows the concentration ratio
Hcalc = Cwater/Coil at the oil-water interface closely approximating the prescribed Henry constant,
with relative errors less than 1% at 100 s. This case convincingly demonstrates the capability of
the MC-CST equation in accurately simulating species transport within a heterogeneous porous
medium at the Darcy scale.

FIG. 7. Simulation results of liquid saturation solved by (a) hybridPorousInterFoam, and (b) the present
model. The white line delineates the oil-water interface.
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FIG. 8. Simulation results of solute concentration solved by the present model for different Henry’s
constant: (a) H = 1, (b) H = 2, (c) H = 5. The white line delineates the oil-water interface.

C. Capillary flow and transport at hybrid scale

This test case aims to validate the capability of the improved microcontinuum model in simu-
lating the two-phase flow and transport at the hybrid scale. As shown in Figs. 10(a) and 11(a), two
narrow tubes are considered: one with fluid and solid regions, and the other with fluid, porous,
and solid regions, to validate the capability of the MC-CST equation to accurately model the
transport process of two-phase flow in hybrid scale. The computational fluid domain extends
over 10 mm × 2 mm and is discretized using a uniform mesh of 400 × 80 elements. Within the
domain, solid and porous blocks measuring 8 mm × 2 mm are inserted and positioned at the top and
bottom, respectively, leaving solid-free flow buffer regions of 1 mm width at the entrance and exit.
The impermeable solid region is approximated by a porosity of εf = 10−3 and a Kozeny-Carman
coefficient of kc = 10−16 m2, while the porous matrix is characterized by a porosity of εf = 0.3
and a Kozeny-Carman coefficient of kc = 10−14 m2. The absolute permeability varies from the local

FIG. 9. Simulated concentration profile along the horizontal line at y = 0.06 m for different Henry’s
constants. The horizontal line is labeled in Fig. 8(c).
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FIG. 10. Simulation domain and results of the solid tube case: (a) domain configuration, (b) liquid satu-
ration field (t = 0.3 s), and concentration fields (t = 0.3 s) solved using (c) the CST model without boundary
correction, (d) the CST model with boundary correction, (e) the MC-CST model without boundary correction,
and (f) the MC-CST model with boundary correction.

porosity based on the Kozeny-Carman relation. Symmetrical boundary conditions are applied to
the top and bottom boundaries for all the variables. At the left boundary, liquid with a solute
concentration of 1 kmol/m3 is injected at a velocity of 5 × 10−3 m/s, while the right boundary
maintains a static pressure of 0 Pa. The fluid densities and viscosities are set as ρl = 1000 kg/m3

and ρg = 50 kg/m3, νl = 10−6, and νg = 1.48 × 10−5 m2/s, respectively. The surface tension is
σ = 0.001 kg/s2, while the contact angle on the solid/porous boundary is prescribed as 90◦. The
solute diffusion coefficients are Dg = Dl = 10−8 m2/s, and Henry’s constant H = Cl/Cg varies as
1, 2, 5, and 10.

Initially, we focus on validating the effectiveness of the compressive CST term and the boundary
correction using a variable extrapolation scheme on mitigating artificial species transfer at the gas-
liquid interface and the fluid-solid interface, respectively. As observed in Fig. 10(b), the injected
liquid displaces the gas phase within the fluid tube, resulting in a distinct fluid-solid interface and

FIG. 11. Simulation domain and results of the porous tube case: (a) domain configuration, (b) liquid
saturation field (t = 0.3 s), and concentration fields (t = 0.3 s) solved by the MC-CST model with various
Henry’s constants of (c) H = 1, (d) H = 2, (e) H = 5, and (f) H = 10.
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sharp gas-liquid interface. However, both Figs. 10(c) and 10(e) indicate that numerical diffusion
blurs the sharp concentration jump at the impermeable solid boundary when the boundary correction
scheme is not implemented. This behavior arises due to the approximation of the solid regions by
εf = 0.01 and the presence of a substantial concentration gradient at the fluid-solid region, which
then generates artificial diffusion fluxes and breaks the impermeable solid boundary condition. By
incorporating the variable extrapolation scheme, the concentration gradient at the solid boundary
is enforced to zero. Figures 10(d) and 10(f) illustrate the effective elimination of artificial diffusion
fluxes, rendering the fluid-solid interface equivalent to zero-gradient wall boundaries as described by
Eq. (50). Furthermore, as the solute transport is dominated by advection (Pelocal = 12 500), artificial
advection fluxes emerge at the gas-liquid interface solving by the CST model shown in Figs. 10(c)
and 10(d). Similar to Case B, the additional compressive term in the MC-CST model successfully
mitigates these artificial advection fluxes, thereby preserving a sharp gas-liquid interface during the
advection-dominated transport, as shown in Fig. 10(f).

After validating the effectiveness of the compressive CST term and the boundary correction,
a porous region is introduced for the assessment of the improved microcontinuum model’s perfor-
mance at the fluid-porous interface, as shown in Fig. 11. Initially, the porous region is fully saturated
with the liquid phase for the exclusive occurrence of gas drainage within the fluid tube. In the case
of the Henry’s constant of 1, the concentration is continuous at the gas-liquid interface shown in
Fig. 11(c). Notably, the solute transport along the central axis of the tube is accelerated due to the
parabolic velocity profile perpendicular to the flow direction. The solute gradually diffuses into
the adjacent porous matrix as it progresses with the flow, which is consistent with the reported
solute diffusion observed in altered porous layers surrounding fracture surfaces [25,50]. As the
Henry’s constant increases, the interfacial mass transport becomes progressively restricted due to
the changed thermodynamic equilibrium condition at the gas-liquid interface. Overall, this test case
proves the model’s capacity to successfully simulate flow and transport under high Péclet number
condition at the hybrid scale.

D. Multiphase dissolution of a calcite grain

In the last test case, the simulation of multiphase reactive flow and transport is validated against
Soulaine’s experiments regarding the dissolution of a calcite grain in a microchannel [17]. The
computational domain is a 1.5 mm × 1.5 mm two-dimensional box which contains a round calcite
grain with a diameter of 0.5 mm positioned at the center. The calcite grain is a solid characterized
by a porosity of εf = 10−3 and a Kozeny-Carman coefficient of kc = 10−15 m2. The absolute
permeability varies from the local porosity based on the Kozeny-Carman relation. A uniform mesh
of 100 × 100 elements is utilized to discretize the domain. No-slip wall boundaries with no reaction
are imposed on the top and bottom boundaries. Liquid with a solute concentration of 0.1 kmol/m3 is
injected from the left boundary at a velocity of 5.8 × 10−4 m/s, while the static pressure on the right
boundary is set to 0 Pa. The fluid densities and viscosities are ρl = 1000 kg/m3 and ρg = 1 kg/m3,
νl = 10−6, and νg = 1 × 10−3 m2/s, respectively. The surface tension is σ = 0.001 kg/s2, and the
contact angle on the calcite particle is prescribed as 45◦. The solute diffusion coefficients are
Dg = Dl = 5 × 10−9 m2/s, and the Henry’s constant H = Cl/Cg is specified as 2.

Figure 12 captures the temporal two-phase dissolution of the solid calcite grain. CO2 gas is
produced at the grain surface, leading to gas bubbles driven by surface tension forces. Consistent
with experimental observations conducted by Soulaine et al. [17], the simulation shows that the
small gas bubbles grow and coalesce with their closest neighbors, resulting in the formation of
several larger bubbles that display a relatively uniform distribution around the grain. These large
bubbles swing in response to the flow and eventually detach from the surface after reaching a
critical size. This cyclic sequence of growth, coalescence and detachment repeats throughout the
calcite dissolution. Notably, the presence of gas bubbles hinders direct contact between some calcite
surfaces and the acidic liquid, resulting in a reduced reactive surface area and a slower dissolution
rate. Therefore, a small shrinkage of the calcite grain can be visualized within 180 s.
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FIG. 12. Simulation results for temporal evolutions of fluid saturation and calcite structure during the
multiphase dissolution.

Figure 13 compares the evolution of the normalized calcite mass between numerical simulations
and experimental measurements [17]. The normalized calcite mass is computed by integrating the
volume fraction of the solid phase and normalizing it by its initial value as

m∗
calcite(t ) = ∫V εs(t )dV

∫V εs(0)dV
. (54)

Generally, the simulation result shows some agreements with experimental measurements [17],
with a mean relative error of 2.2% in the last 30 s. However, it should be noted that the simulation
slightly overpredicts the dissolution rate at the beginning. This discrepancy could potentially be
attributed to the model’s relatively low surface tension and the absence of top and bottom wall
adhesion effects, which could lead to a higher frequency of gas bubble detachment in the 2D
simulations [17].

V. APPLICATION CASE

In this section, the improved microcontinuum model is employed to investigate the multi-
phase reactive flow and transport during acidic liquid injection into a multiscale porous medium.
Particularly, this simulation focuses on understanding the effects of subgrid porosity within the

FIG. 13. Comparisons of the residual normalized mass of the calcite grain between numerical results and
experimental measurement [17].
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FIG. 14. Snapshots of (a) computational domain, (b) liquid saturation, and (c) velocity magnitude fields
at t = 20 s solved for the multiphase dissolution of solid grains. Black irregular particles represent the solid
calcite grains, while the white solid line delineates the fluid-solid interface (εf = 0.85 isosurface). The white
dashed line delineates the preferential flow pathway.

subresolution porous calcite matrix on the multiphase dissolution dynamics. As shown in Fig. 14(a),
the computational domain is 1000 µm × 290 µm in size and is meshed using a 500 × 145 Cartesian
grid. Nonslip wall conditions are imposed by introducing solid regions of 1000 µm × 30 µm at
the top and bottom boundaries. The central region of the domain, measuring 960 µm × 230 µm,
represents the pore-scale porous medium comprising irregular calcite grains. The average size
of resolved macropores is around 50 µm. These calcite grains can exist as impermeable solid
structures or as porous matrices containing subgrid pores. The impermeable solid calcite grains are
approximated by a porosity of 0.001 and a Kozeny-Carman coefficient of kc = 10−16 m2, while the
porous calcite grains are characterized by a porosity ranging from 0.1 to 0.3 and a Kozeny-Carman
coefficient of kc = 10−13 m2. The absolute permeability varies from the local porosity based on the
Kozeny-Carman relation. Initially, the computational domain is fully saturated with gas denoted as
“g.” To simulate the dissolution of calcite grains, a hydrochloric acid solution with a concentration
of 0.15 kmol/m3, denoted as “l,” is injected from the left inlet with a velocity of 0.003 m/s. The
fluid densities and viscosities are ρl = 1000 kg/m3 and ρg = 100 kg/m3, νl = 10−6 m2/s, and
νg = 10−4 m2/s, respectively. The surface tension is σ = 0.005 kg/s2, and the contact angle on
the calcite particle is prescribed as 45◦. The solute diffusion coefficients are Dg = 5 × 10−7 m2/s
and Dl = 10−8 m2/s, and the Henry’s constant H = Cl/Cg is 10. The reaction constant is set as
r = 5 × 10−3 m/s. The temporal evolution of the sub-grid-specific geometrical area inside the
porous calcite grains is modeled using the sugar-lump model [51].

Figures 14(b) and 14(c) illustrate the liquid saturation field and velocity magnitude field at the
time of 20 s for the multiphase dissolution of solid grains. The dissolution of calcite results in the
generation of CO2 gas, which subsequently grows and merges to form multiple large bubbles. These
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FIG. 15. Snapshots of concentration fields at t = 20 and 50 s in fluid regions for the multiphase dissolution
of (a) solid grains, and porous grains with porosity of (b) εf = 0.1, (c) εf = 0.2, and (d) εf = 0.3. The white
dashed line delineates the preferential flow pathway. The color ranging from white to black within the solid
grains corresponds to the volume fraction of the solid phase, varying from 0 to 1.

large CO2 bubbles, influenced by surface tension and wall adhesion conditions, become trapped
in certain pore spaces and act as flow barriers. The presence of fewer and smaller bubbles in
specific pores and throats creates a preferential flow pathway for the injected solution, spanning
from the bottom left to the top right within the computational domain. This preferential flow path
significantly influences the distribution of acid concentration and, consequently, the evolution of
the calcite structure, as depicted in Figs. 15(a) and 16(a). Grains located along the preferential path
experience accelerated dissolution rates compared to those located elsewhere. This phenomenon
can be attributed to the efficacious replenishment of consumed hydrochloric acid by the inflowing
solution, leading to higher acid concentrations in the fluid vicinity of these grains shown in
Fig. 15(a). Additionally, the porous layer formed around the surface of solid grains also present
elevated acid concentration, as evidenced in Fig. 16(a). Furthermore, the higher flow velocity
facilitates the detachment and removal of gas bubbles from the grain surface, thereby increasing
the reactive surface. The combined effects of the higher acid concentration and expanded reactive
surface area can intensify the dissolution along the preferential path. Conversely, gas bubbles formed
on the surface of grains outside the preferential path tend to grow and envelop the grain, hindering
subsequent transport and dissolution processes. Overall, the multiphase dissolution across the
single-scale porous medium packed by solid calcite grains exhibits a typical wormholing pattern.

Figures 15(b)–15(d) and Figs. 16(b)–16(d) compare the concentration distribution and structural
evolution of the porous calcite grains with various subgrid porosities. In contrast to the dissolution
occurring solely at the fluid-solid interface for solid grains, the infiltration of the solution into
the porous grains leads to an increased reactive surface area and, consequently, an accelerated
dissolution rate. Figure 17 shows that the dissolution rate further rises with the increasing subgrid
porosity. The normalized mass of calcite is calculated as Eq. (54). At t = 50 s, the normalized
dissolution mass of porous calcite grains with subgrid porosities of 0.1, 0.2, and 0.3 is found to be
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FIG. 16. Snapshots of concentration fields at t = 20 and 50 s within solid and porous regions for the
multiphase dissolution of (a) solid grains, and porous grains with porosity of (b) εf = 0.1, (c) εf = 0.2, and (d)
εf = 0.3. The red dashed line delineates the preferential flow pathway. The white represents the fluid regions,
and the gray area represents the gas phase. The black solid line represents calcite at t = 0 s.

1.7, 2.2, and 3.1 times higher than that of solid calcite grains, respectively. Accordingly, the highest
dissolution rate occurs in the multiphase dissolution of the porous grains with the subresolution
porosity of εf = 0.3 among all the simulations. In this particular scenario, Fig. 15(d) illustrates the
presence of an acid concentration gradient along the flow direction, resulting in a slower dissolution

FIG. 17. Normalized mass of solid grains and porous grains with the porosity of εf = 0.1, 0.2, 0.3. The
capillary effect in the subresolution porous medium is not considered.
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FIG. 18. Profiles of normalized mass along the x direction at 20 and 50 s of solid grains and porous grains
with a porosity of εf = 0.1, 0.2, 0.3. The slope is calculated by linear regression of the normalized mass of
calcite and the dimensionless length of the x direction.

rate for downstream grains in comparison to upstream grains. Moreover, the formation of large
bubbles is not limited to areas outside the initially preferential flow path and can be observed in
upstream regions where rapid dissolution occurs, as shown in Fig. 16(d). Quantitative analysis of
the normalized mass of calcite along the flow direction was conducted to discern the dissolution
patterns, as depicted in Fig. 18. The results reveal a uniform distribution of the normalized mass
of the solid grain along the x direction, indicative of a wormhole dissolution pattern. However,
as the initial porosity increases, noticeable gradients in the normalized mass of the porous grains
are observed along the x direction. Specifically, at t = 50 s, the slopes of the normalized mass for
the porous grains with porosities are found to be 2, 2.7, and 4.1 times higher than those of the
solid grains, respectively. Therefore, the altered temporal evolution of calcite structures and spatial
distribution of large CO2 bubbles suggest a transition from a wormhole dissolution pattern to a more
compact dissolution pattern.

In summary, this application showcase demonstrates the capability of the improved micro-
continuum model to accurately simulate the multiscale dissolution dynamics, incorporating the
interplay of multiphase reactive flow and transport at both the pore scale (resolved pores) and
Darcy scale (unresolved pores). The simulation results emphasize the significance of considering
multiscale fluid-rock interactions in image-based modeling of mineral dissolution, particularly in
capturing the dissolution regime accurately. This is crucial due to the presence of subresolution
pores in micro-CT images caused by the inherent limitations in spatial resolution. It is worth noting
that the computational efficiency of the multiphase microcontinuum model still requires further
improvement to enable longer simulations and capture more significant calcite dissolution. This is
due to the necessity of using small time steps and maintaining a Courant number below 0.01 to
mitigate spurious velocity magnitudes at the contact line, particularly after the physical time of 10 s
for this application case. Therefore, the development of advanced numerical schemes and algorithms
is essential to enhance the practicality of the multiphase microcontinuum model.

VI. CONCLUSIONS

The study has improved the multiphase microcontinuum model for accurately and flexibly sim-
ulating the multiscale multiphase reactive flow and transport during mineral dissolution. Rigorous
derivations of single-field advection and diffusion fluxes are performed using volume-averaging
principles applied to the species transfer equation. The multiscale compressive continuum species
transfer (MCCST or MC-CST) model is derived by including an additional compressive term.
This modification effectively addresses the issue of numerical diffusion at the gas-liquid interface
encountered in the previous microcontinuum CST model. Additionally, to account for spurious
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species transfer at the fluid-solid interface resulting from the approximate representation of the
solid region in the microcontinuum framework, a concentration extrapolation algorithm is proposed
to ensure the impermeable wall condition. By coupling the single-field solid/fluid mass, momentum,
and saturation equations with appropriate subgrid models such as the sugar-lump reactive surface
area model, the improved multiphase microcontinuum model enables the simulation of mineral dis-
solution considering spatially multiscale fluid-rock interactions and temporal structural evolution.
Notably, the enhanced microcontinuum model possesses a multiscale capability, resembling a vol-
ume of fluid (VOF) -based Navier-Stokes model at the pore scale for resolved macropores/fractures,
and a two-phase Darcy model at the continuum scale for unresolved micropores.

To assess the numerical performance of the improved microcontinuum model across various
scales, four validation cases are conducted, including the pore scale, Darcy scale, and hybrid
scales. First, the multiscale compressive CST model is validated by simulating pore-scale two-
transport phenomena in a 1D tube. The results demonstrate the model’s ability to mitigate artificial
species transfer and maintain thermodynamic equilibrium at the gas-liquid interface for advection-
dominated transport. Second, oil drainage and solute transport across a heterogeneous porous
medium are simulated to demonstrate the model’s capability in simulating the Darcy-scale problem.
Third, simulations of two-phase flow and transport in capillary tubes containing a porous matrix are
conducted to demonstrate that the numerical model can handle the flow and transport under high
Péclet number conditions at the hybrid scales. Lastly, the impact of CO2 gas bubble dynamics on
multiphase dissolution is investigated through the simulation of single solid calcite dissolution. The
satisfactory agreement between the simulation results and experimental data validates the capacity
of the models to capture multiphase reactive flow and transport phenomena.

After the validation, an application case is conducted by simulating the multiphase dissolution of
calcite grains in both single-scale and multiscale porous media. In the single-scale porous medium,
a distinct wormholing dissociation pattern is observed, which can be attributed to the presence of
flow barriers caused by large CO2 gas bubbles and the establishment of a preferential pathway
for two-phase flow. However, when considering the subgrid reactive transport within the highly
porous calcite grains, the dissolution pattern gradually transitions into a more compact pattern.
This transformation is primarily driven by an increased dissolution rate at the upstream flow region
due to the larger reactive surface area. This application case suggests the significance of accurately
modeling the multiscale fluid-rock interaction for predicting and understanding dissolution patterns.

In future work, there is a need to enhance the multiphase microcontinuum model. Efforts
should be focused on reducing the occurrence of spurious velocity when considering the significant
capillary forces present in the subresolution micro- or even nanopores. In the meantime, the
computational efficiency of the model should be further enhanced to enable simulations of mineral
dissolution in complex porous media with larger computational domains, longer physical time
scales, and natural geological structures. These advancements will contribute to more realistic and
comprehensive simulations of natural mineral dissolution processes.
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APPENDIX: DERIVATION OF THE COMPRESSIVE ADVECTION TERM AND SOURCE TERMS
IN THE SATURATION EQUATION

1. Compressive advection term

This Appendix derives the compressive advection term of the single-field concentration conser-
vation equation from the volume-averaged concentration equations for the gas and liquid phases as
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Eq. (43). To replace the phase-averaged variables in the advection term ∇ · (ε f αl c̄l
j,lv̄

l
l + ε f αgc̄g

j,gv̄
g
g)

with the single-field variables, the above two items are expressed using Eq. (2) as
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Add the two items and organize to get
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The first and second items on the right side of Eq. (A2) are multiplied by αl+αg = 1 and merged
using Eqs. (2) and (3),
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Use Eqs. (A3) into (A2), and rewrite αgαg and αlαl to αg(1 − αl ) and αl (1 − αg), respectively.
Cancel the liked items to express the advection term by the single-field velocity and the relative
velocity as
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where vr = v̄l
l − v̄

g
g. Finally, the compressive advection term is written as
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2. Source terms in the saturation equation

When the density difference between the gas, liquid, and solid phases is large enough, using the
explicit source term can easily cause numerical instability. To emphasize the role of the continuous
equation when solving the saturation equation with source terms, αl∇ · v̄ − αl∇ · v̄ is added to the
right side of the saturation equation (34) as

∂ε f αl

∂t
+ ∇ · (αl v̄) + ∇ · (ε f αlαgvr ) = ṁl

ρl
+ αl∇ · v̄ − αl∇ · v̄. (A6)

Then the second αl∇ · v̄ is expanded using the continuous equation as

∂ε f αl

∂t
+ ∇ · (αl v̄) + ∇ · (ε f αlαgvr ) = ṁl

ρl
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[
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ρl

)]
. (A7)

043801-27



LIU, XU, YANG, LUO, AND SHI

Organize the right side of the equation, and merge the items containing αl to obtain

∂ε f αl

∂t
+ ∇ · (αl v̄) + ∇ · (ε f αlαgvr ) = ṁl
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The source term ṁl
ρl

is treated as an explicit term, and αl [∇ · v̄ − ṁHCl(
γs

ρs
+ γg

ρg
+ γl

ρl
)] is treated

as an implicit term.
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