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Effects of wall conductivities on magnetoconvection in a cube

Hai-Tao Zhu,* Long Chen ,* and Ming-Jiu Ni †

School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China

(Received 26 December 2023; accepted 14 March 2024; published 8 April 2024)

This research article delves into the natural convection of liquid metal in a three-
dimensional cavity with varying magnetic fields and wall conductivities using direct
numerical simulation. Two opposite sidewalls are heated/cooled, while the magnetic field
is perpendicular to the main circulation. Our primary focus is on examining flows within
the Grashof number, Gr � 108, the Hartmann number, Ha � 400, and the wall conductance
ratio, Cw = 0.01–1. It is found that weakly conducting walls experience a significant en-
hancement in convection within a specific range of magnetic field strength, whereas highly
conducting walls exhibit pronounced flow attenuation. The applied horizontal magnetic
field alters the plume’s topology and dynamics, generating a more coherent and energetic
large-scale flow structure, while it weakens convection by consuming buoyant potential
energy through Joule dissipation. This results in a competition between the rectifying
effect and the damping effect to determine whether the magnetic field has a positive
or negative feedback on heat transfer, with the quasi-two-dimensional state serving as a
critical point. Additionally, varying wall conductivities transform the current distribution
within the parallel layer, influencing the flow’s response to changes in field strength. The
formation of corner vortices can be considered by the curvature of the boundary layer that
undergoes turning at corners. Furthermore, the effects of wall shear and plume transport
on heat transfer are systematically investigated. The analysis reveals that while the plume
area remains almost constant, the condensation of coherent structures facilitates greater
horizontal heat transport per unit area of the plume, contributing significantly to the overall
heat transfer enhancement. Finally, the computed Nusselt number Nu and Reynolds num-
ber Re can be correlated as functions of Ha/Gr1/3. The critical conductance ratio referring
to the complete suppression of convection conforms to the scaling of 2.31(Ha/Gr1/3)−5,
where heat transfer occurs solely by thermal conduction once it exceeds this value.

DOI: 10.1103/PhysRevFluids.9.043701

I. INTRODUCTION

Convection subjected to an externally applied magnetic field, referred to as magnetoconvection
(MC), holds significance not just in astrophysical [1] and geophysical [2] phenomena, but also
in crucial engineering domains including liquid metal batteries [3], fusion reactor blankets [4],
and crystal growth [5]. The magnetic field introduces flow anisotropy, leading to alterations in the
flow structure contingent upon the magnetic field’s orientation, strength, and additional boundary
conditions. This suggests that magnetoconvection displays a broad spectrum of dynamic properties.

The standard paradigm for studying thermal convection is the Rayleigh-Bénard convection
(RBC) [6–8], characterized by heating from the bottom and cooling from the top. When applying
this temperature gradient along the vertical sidewalls rather than the top and bottom plates, a
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related yet distinctly different physical model is formulated. Batchelor referred to this system as
a “differentially heated cavity” [9]. Since the horizontal heat transfer direction is orthogonal to
the vertical buoyancy flux, it is also termed “vertical convection” (VC). Moreover, the large-scale
dynamics [10,11], boundary layer [12,13], and global transport [14–16] in vertical convection have
been extensively investigated, but the physical properties of its coupling to magnetic fields have not
been fully revealed.

It is commonly accepted that the flow of electrically conducting fluid in a strong magnetic field
is mainly controlled by the Lorentz force [17], with the resulting Joule dissipation causing a strong
attenuation of the angular momentum perpendicular to the field lines, while the viscous effect is
confined to an extremely thin boundary layer. In the core region, the flow aligns significantly with the
field lines, and alterations in physical quantities along this direction are typically negligible. Under
conditions of wall insulation [18], the two-dimensional equations can be obtained by averaging
the equations of motion integrally along the field lines. The Lorentz force is expressed here as
a linear term, regarded as the friction indirectly induced by shaping the Hartmann layer, i.e., the
SM82 model [19]. This model and its subsequent extensions have been widely used in numerical
simulations in the fields of magnetohydrodynamics (MHD) duct flow [20], thermal convection,
and shear turbulence [21], and they have shown great superiority. However, if the boundary walls
conduct currents, the validity of the quasi-two-dimensional (Q2D) model is compromised, leading
to highly inaccurate velocity calculations for the side layer and necessitating three-dimensional
simulations [22].

Therefore, aside from the magnetic field itself, it is significant to explore the potential influence
of wall conductivity on convective motion. Hunt’s pioneering work [23] indicated that in wall-
conducting MHD duct flow, the velocity profile exhibits a flat core, an exponential boundary layer
perpendicular to the magnetic field, and jets near the walls parallel to the magnetic field. The jets
appear due to a specific current distribution that makes the side layers much less damped than the
core, resulting in higher fluid velocity near the side walls.

Reflected in vertical convection, the research in question was initially inspired by Tagawa and
Ozoe [24] with the numerical simulations in a conductive cavity. It is shown that a magnetic field
applied perpendicular to the isothermal wall is more effective in suppressing convective motion
than a parallel field. Di Piazza and Ciofalo [25] used the thin wall condition to deal with the
potential boundary of the conducting walls, and the fine mesh required to resolve the Hartmann
layer was replaced by an integral model. They found that increasing the wall conductance ratio will
strengthen the square shape of the circulation cell, and there is a weak reverse flow in the core region,
which may be related to the additional circulation center. Meanwhile, Gajbhiye and Eswaran [26]
reported that the damping of convection by increasing wall conductivity is not continuous, but there
is a threshold value of conductance ratio of about 10. In addition to the wall electric conduction,
if the heat conduction in the solid domain is considered at the same time, the three-dimensional
effect of flow will be much stronger [27]. Similar wall effects have also been observed in truncated
conjugated cavities [28], and natural convection coupled with melting in the presence of an internal
heat source can provide a reference for further comprehension [29]. These intriguing dynamic
properties have captured our attention, yet limited discussion has been devoted to the underlying
physical mechanisms associated with the conducting wall. Furthermore, a systematic analysis of
the quantitative relationship between global transport and dimensionless parameters remains largely
unexplored. While an extension of the unified theory of thermal convection scaling [30] to MC has
recently been proposed [31], this discussion is also grounded on insulating walls.

The preceding contemplations prompt us to reexamine vertical convection within the conducting
walls across a wider range of parameters, rather than confining our analysis to the extremes of
insulation or complete conductivity. Our present research aims to explore the following inquiries:

(i) How does the change in wall conductance ratio affect the vertical convection system?
(ii) For low-Pr fluids, how do we delineate the evolution of corner vortices under the magnetic

field, as a flow characteristic of cavity?
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FIG. 1. Schematic diagram of the studied physical model.

(iii) Can we establish empirical formulas correlating the Nusselt and Reynolds numbers with the
Hartmann and Grashof numbers for different wall conductivities?

(iv) Is there a rectification effect akin to the magnetic field observed within insulating walls [32]
in the case of conducting walls? Does it lead to an intensified convective heat transfer? What are the
specific mechanisms involved in this process, and what factors primarily influence it?

The remainder of this paper is organized as follows. In Sec. II, we outline the numerical model,
the algorithm, and the setup of the simulations. Section III A discusses the effect of wall conductivity
on the flow organization by analyzing the Lorentz force and current distribution. In Sec. III B, we
describe the temperature field, focusing on the thermal stratification phenomenon characterizing
the convective intensity and the evolution of the corner structure. Section III C presents the result
regarding how the global Nusselt and Reynolds numbers respond to the values of Hartmann
numbers, Grashof numbers, and wall conductance ratio (Cw), and it explores the exact physical
mechanism behind the nonmonotonic change in heat transfer. Finally, we offer concluding remarks
in Sec. IV.

II. MODEL AND FORMULATION

A. Governing equations

The study focuses on natural convection in a three-dimensional cavity with a specific wall
thickness, as illustrated in Fig. 1(a). The cavity is filled with liquid metal having a Prandtl number
of 0.025. The width of the fluid domain is denoted by L, and the wall thickness is 0.1L. The vertical
inner walls at the left and right sides have a temperature difference, and an orthogonal magnetic field
is applied to the temperature gradient. Notably, unlike the conventional adiabatic horizontal wall,
a linear transition in temperature distribution from cold to hot is employed for the top and bottom
walls, although not indicated on the schematic diagram. This condition helps to enhance turbulence
levels in the flow [33], thereby enabling the capture of richer flow phenomena within a limited range
of parameters. In addition, the difference in electrical conductivity between the solid walls and the
fluid is characterized by the wall conductance ratio (Cw = σwtw/σL), which is primarily considered
in the range of 0.01–1 in this study.

The cross-section in the yz-plane, as shown in Fig. 1(b), includes different layers of the flow. The
Hartmann layer, with a thickness of L/Ha, is perpendicular to the magnetic field, and the parallel
layer, with a thickness of L/

√
Ha, is parallel to the magnetic field. These different layers have

different flow characteristics and play a crucial role in the overall heat transfer process. The core
region is usually characterized by the formation of large-scale vortex and recirculation zones, which
are responsible for mixing the fluid and transporting heat.
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The liquid metal in question is deemed an incompressible Newtonian fluid. The Boussinesq
assumption is applied to express the buoyancy force, which results from density change, as a
linear function of temperature. In the context of the liquid metal flow within practical engineering
applications such as fusion reactors, the induced magnetic field does exist, but it is much smaller
than the applied magnetic field (Rem = uL/η � 1), and it can be neglected once it appears together
with the applied one. Additionally, compared to heating from thermostatic walls, the contribution of
Joule dissipation can be ignored [34]. These considerations led to the establishment of the following
three-dimensional dimensionless governing equations:

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + ∇2u + Ha2( j × B) + GrT ey, (2)

j = −∇φ + u × B, (3)

∇ · j = 0, (4)

∂T

∂t
+ u · ∇T = 1

Pr
∇2T, (5)

where u, j, B, T , and φ stand for the velocity, current density, magnetic field, temperature, and
electric potential scaled by the characteristic values ν/L, σνB0/L, B0, �T , and νB0, respectively.

The above equations feature three dimensionless parameters that determine the fluid behavior:
the Prandtl, Grashof, and Hartmann numbers,

Pr = ν

κ
, Gr = gβ�T L3

ν2
and Ha = B0L

√
σ

ρν
,

where Ha denotes the ratio of electromagnetic force to viscous force. The current study considers
cases with Gr � 108 and Ha � 400, within which range the three-dimensional instability can be
observed while turbulence is not yet established.

B. Boundary conditions

The boundary conditions employed to solve this conjugate problem are expressed as follows:

u = 0, x = ±0.5, y = ±0.5, z = ±0.5, (6)

T = ±0.5, x = ±0.5, (7)

T = x, y = ±0.5, (8)

∂T/∂y = 0, z = ±0.5, (9)

∂φ/∂n = 0, x = ±0.6, y = ±0.6, z = ±0.6. (10)

To couple the solutions across all interfaces between fluid and solid regions, the continuous
distribution of electric potential and wall-normal component current density is ensured: φ f = φs and
jn, f = jn,s, where the subscripts f and s denote the fluid region and the solid region, respectively.
The temperature and heat flux at the interfaces between fluid and solid regions must satisfy the
continuous boundary conditions as well, i.e., Tf = Ts and qn, f = qn,s, which ensure that the solutions
are coupled properly.
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TABLE I. Grid node parameters and sensitivity analysis.

Nfluid,x Nfluid,y Nfluid,z Nsolid Nu 〈Uy〉(max)

G1 60 60 60 12 4.7345 3.919 × 103

G2 80 80 80 15 4.7453 3.948 × 103

G3 100 100 100 18 4.7484 3.956 × 103

C. Numerical algorithm

The numerical simulations presented in this paper utilize the MHD finite-volume solver “MHD-
UCAS” [35,36], with second-order accuracy in both time and space. The projection algorithm is
employed to address the coupled pressure-velocity field. Initially, the predicted step velocity is
derived at the mesh center by solving the momentum equation based on the pressure obtained in
the prior iteration. Subsequently, the anticipated velocity flux on the mesh surface is computed as
the source term for the pressure Poisson equation, which resolves the pressure difference, updating
both pressure and velocity. The potential Poisson equation is then solved to acquire the potential,
and the current density at the grid interface is determined through the consistent and conservative
scheme. The current at the grid center is derived through conservation interpolation, facilitating the
computation of the Lorentz force. This obtained Lorentz force is incorporated into the momentum
equation as a source term to compute the velocity and pressure at the next time step. Typically,
two iterations are necessary for the prediction step before solving the potential Poisson equation.
The equations employ second-order implicit backward differences for the time term, while the
convective and diffusive terms utilize center difference formats.

The efficacy of this numerical code has been extensively validated for both laminar and turbulent
flows [21,37]. To guarantee computational stability in simulating unsteady flows, the present study is
executed with a constant time step size, thereby ensuring that the maximum Courant number remains
small enough (Comax = u f n f �T/|d| � 0.3). Furthermore, we have adopted a uniform convergence
criterion of 10−6 for the velocity, pressure, temperature, and electric potential.

D. Grid independence study

To accurately capture the jet patterns present in the side layers and the possible complex
structures while considering acceptable computational cost in the study of MHD vertical convection,
we have employed a high-resolution mesh with nonuniform cell clustering in the boundary layers.
For grid independence analysis, we have utilized three distinct grids (G1, G2, G3) with varying
degrees of coarseness. Table I presents the distribution of specific nodes and corresponding test
results. Notably, the discrepancy between G2 and G3 is reduced to a mere 0.34%, compared to the
1.37% difference between G1 and G3. Figure 2(a) illustrates the grid independence result, leading to
the conclusion that G2 strikes the optimal balance between sufficient resolution and computational
cost in calculations.

Finally, for a complete test of the numerical methods and grids used in this paper, we run
test cases for comparison with published results. As illustrated in Fig. 2(b), the Nusselt numbers
obtained for Pr = 0.01 and Cw = 0.01 show a strong correlation with the data of Gajbhiye and
Eswaran [26]. This concordance substantiates the numerical simulation’s accuracy presented in this
study.

III. RESULTS AND DISCUSSION

A. Wall effects on the velocity

Due to the buoyancy effect, the fluid near the low-temperature wall and the high-temperature
wall moves downward and upward, respectively, giving rise to two high-pressure regions at the
lower left and upper right, as illustrated in Fig. 3(b). This pressure gradient drives the horizontal
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FIG. 2. (a) Temperature monitoring for Gr = 108, Ha = 200, and Cw = 0.1 at the probe location
(0.45, 0, 0). (b) Comparison of Nu between Gajbhiye and Eswaran [26] and the present simulations at
Pr = 0.01 and Cw = 0.01.

motion of the fluid, ultimately leading to the formation of a large-scale circulation structure, as
reported in Ref. [27].

In the scenario of low-conducting walls, the velocity profiles (Fig. 4) reveal a notable increase
in the peak with the increment of Ha, signifying an enhancement in flow intensity. Concurrently,
the jet width diminishes progressively, and the “overshoot” phenomenon [38] at the outer edge of
the boundary layer becomes distinctly observable. Alterations in the streamlines (Fig. 5) exhibit a
gradual suppression of intricate and chaotic three-dimensional structures. Nonetheless, the influence
of the Lorentz force on the overall flow field remains limited, while corner vortices persist around the
cavity. Conversely, for high-conducting walls, a rapid decline of approximately 25% in jet velocity
occurs with each increase of 100 units in Ha. Three-dimensional streamlines are absent, and the
corner vortices transform from an initial distribution around all sides to retaining two distinct flow
separation structures in the lower-left and upper-right corners before eventually being completely
suppressed.

From the depiction of flow imagery, we can extract two pivotal inquiries: first, the mechanism
by which the magnetic field enhances convection in weakly conductive walls while inducing a stark

FIG. 3. Buoyant convection for Gr = 3 × 107, Ha = 200, and Cw = 0.1.
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FIG. 4. The distribution of the mean vertical velocity along the x-axis near the cold wall for Gr = 108.

decline in flow for highly conductive walls; second, the reasons behind the divergent sensitivity to
magnetic field variations exhibited by walls of different conductivities.

The elucidation of the first issue can be contemplated within the framework of the visualized
vortex structure in Fig. 6: at Cw = 0.01 and Ha = 100, numerous diminutive vortex structures
perpendicular to the primary vortex manifest on the surface of the main circulation. It is discernible
that the fragments resulting from the disruption of the side vortex are stretched and ensnared onto the
surface due to the convoluted suction effect exerted by the primary vortex, inclusive of its inherent
deformation. This process engenders a vigorously oscillating three-dimensional flow structure. With

FIG. 5. Streamline plots at the midplane z = 0 for Gr = 8 × 107.

043701-7



HAI-TAO ZHU, LONG CHEN, AND MING-JIU NI

FIG. 6. The isosurface of Q3D = 0.5 ∗ (||A||2F − ||S||2F ) (the second invariant of the velocity gradient tensor,
S is a symmetric tensor and A is an antisymmetric tensor) represents the roll structures for Gr = 8 × 107,
colored by local temperature.

the augmentation of the magnetic field, the flow evolves from 3D to Q2D. The side vortices are elon-
gated along the magnetic field lines and no longer have significant interruptions, thereby exhibiting
a markedly reduced interaction with the central vortex. The surface is rendered smoother, while the
intricate structure along the axial direction is restrained by the magnetic field. This contributes to
the formation of a more coherent and improved self-organized large-scale circulation (LSC). This
process adheres to the inverse energy cascade observed in classical 2D turbulence, where energy
progresses from the forcing scale up to large-scale structures [39]. Specifically, the magnetic field
bolsters the system-size flow by directing the energy of the small-scale vortex upwards to the main
vortex. As the coherence of the global flow intensifies, the thermal convection system attains the
so-called “optimal state.” The definition of this state has garnered multiple interpretations within
RBC. Lim [40] posits that the optimal enhancement can be understood through the intersection
of the thermal and momentum boundary layers. Vogt [41] suggests that the maximum velocity
might occur when the fluid’s potential buoyancy energy transforms entirely into kinetic energy,
i.e., the theoretical free-fall limit. If the magnetic field continues to increase after reaching the
optimum, the Hartmann braking, indicative of the magnetic damping effect, undergoes further
reinforcement. However, beyond this juncture, the flow coherence cannot continue to improve, and
the convective strength diminishes as dissipation increases. As depicted in Fig. 6(d), in scenarios
involving highly conductive walls, the presence of coherent side vortices, aligned strictly parallel
to the field direction, and the regular main vortex surface, both indicate that the flow has already
reached an approximate Q2D state, even at the weakest magnetic field. Subsequently, any further
enhancement of the magnetic field would solely result in escalated dissipation within the Hartmann
layer, imposing a robust damping effect on the flow. (A more detailed quantitative analysis of the
flow coherence is given in Sec. III C.)
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FIG. 7. The distribution of vertical Lorentz force along the x-axis and electric current in solid-fluid domain
for Gr = 3 × 107.

Regarding the second inquiry, it is logical to approach the investigation of the flow mechanism
through the lens of force, as illustrated in Fig. 7(a). In the case in which Cw = 0.01, augmenting
the magnetic field yields no substantial alteration to the Lorentz force. The force peak is focused
at both extremities adjacent to the sidewall, with a restricted damping effect on the core region.
Conversely, for Cw = 1, varying Ha values result in a relatively significant disparity in Fy, which is
inclined to distribute linearly along the x-direction. At higher Ha, convective motion is considerably
suppressed.

Figure 7(b) illustrates the distribution of induced currents for different wall conductivities, which
can be employed to elucidate the distinction in Fy. For Cw = 0.01, a majority of the currents traverse
the side layer and form loops without permeating the wall, resulting in current vectors primarily
aligned parallel to the magnetic field in the side layer. Consequently, even if the magnetic field
intensity increases, it has a limited impact on the Lorentz force. When Cw = 1, the currents within
the side layer penetrate the interface perpendicularly into the sidewall, which corresponds to current
vectors predominantly perpendicular to the magnetic field. This indicates a complete conversion to
the Lorentz force, leading to a more pronounced damping effect.

In addition, employing the initial dimensionless governing equations allows us to estimate the
horizontal flow rate within the conducting cavity. From the above analysis, it is evident that the
convection demonstrates a Q2D pattern that remains consistent along the z-direction, particularly
observed when the magnetic field strength is high or the conductivity is substantial, and we focus on
the flow in the plane perpendicular to B. To derive the vorticity equation, we take the curl of Eq. (2)
and examine its field-aligned component ωz, which can be written as(

∇ × ∂u⊥
∂t

)
z

= ∇2ωz + Gr
∂T

∂x
+ Ha2 ∂ jz

∂z
. (11)

When Ha 	 1, the flow is primarily governed by the balance between the buoyancy and Lorentz
force terms, while the inertial and viscous terms are disregarded. During this phase, convective ef-
fects become less significant, leading to an approximately linear horizontal temperature distribution,

−∂ jz
∂z

= ∂2φ

∂z2
= Gr

Ha2

∂T

∂x
≈ Gr

Ha2 . (12)

Integrating Eq. (12) along field lines provides the potential distribution and its mean value over z as

φ = φ0 + Gr

2Ha2

(
z2 − 1

4

)
and φ = φ0 − Gr

12Ha2 , (13)
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FIG. 8. Flow rate estimation of the horizontal jet in the cavity.

where φ0 is the potential at the Hartmann wall, and the actual potential is not uniformly distributed
along the field lines. The dimensionless flow estimate for the horizontal jet can be written as

Qh = 2
∫

z

∫
δsh

u dy dz = −
∫

δsh

∂φ

∂y
dy = φδ − φw = Gr

6Ha2 . (14)

For perfectly conducting walls, φw = 0. Figure 8 illustrates the ratio between the actual statistical
flow rate and the theoretically calculated counterpart for each parameter. In cases of high conduc-
tivity (Cw = 1), the theoretical predictions align well with the actual flow once the magnetic field
reaches a certain strength, as assumed during the derivation process. However, for low Cw values,
the temperature profile shift caused by intense convection becomes significant, i.e., ∂T/∂x �= const.
Consequently, the potential at the side layer’s edge becomes spatially correlated, leading to error in
estimating the average potential. As stated in the previous analysis of currents, the magnetic field’s
impact on flow is overestimated for low Cw, causing the actual flow rate to exceed the theoretical
prediction significantly.

To acquire a deeper comprehension of the impact of conductive walls on the dimensionality of
natural convection, we will investigate the spanwise distribution of relevant physical quantities at
the peak position of the jet. Remarkably, as Cw increases, the induced current components generated
by both the potential gradient and the fluid motion decrease [Fig. 9(a)], while the actual current
generated by the difference between the two escalates ( jx = uyBz − ∂φ/∂x). The velocity disparity
between the wall vicinity and the core region diminishes, indicating that the three-dimensional
feature attributed to the no-slip boundary of the Hartmann wall is attenuated. The distribution of
the Lorentz force within the core region and the Hartmann layer, as depicted in Fig. 9(b), presents
several intriguing properties. The damped Lorentz force in the core region, corresponding to the
highly conductive wall, exhibits a more evenly dispersed alignment along the spanwise direction,
coupled with a heightened amplitude. The curvature displayed by each Fy profile generally conforms
to the parabolic distribution of the current component. It is noteworthy that a driving Lorentz force
that is an order of magnitude larger compared to the core region occurs within the Hartmann layer,
which is particularly evident at the low-conducting walls. The current distribution in the vicinity of
the Hartmann wall gives the answer: the currents tend to form loops through the Hartmann layer,
resulting in a phenomenon of current accumulation, thereby generating an exponentially increasing
velocity distribution within this layer. However, the potential gradient exhibits smooth variation
and consistently remains significantly larger than the motional current within the Hartmann layer.
Conversely, in the context of the high-conductivity wall, the current consistently traverses through
the Hartmann layer, permeates into the solid domain, and completes a circuit at the corners of the
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FIG. 9. The spanwise distribution of physical quantities at the peak of jet for Gr = 107 and Ha = 400.

fluid-solid junctions. In this scenario, the current density within the fluid domain remains relatively
diminished, without the manifestation of a prominently driven Lorentz force. It is crucial to highlight
that despite the relatively minor magnitude of the spanwise Lorentz force within the core region in
contrast to the Hartmann layer, its impact on both convective intensity and velocity profiles remains
pivotal, and the seemingly modest lift of the high conductive wall compared to the low conductive
wall is significant in attenuating the jet amplitude.

B. Wall effects on the temperature

In this section, the investigation focuses on elucidating the influence of wall effects specifically
on temperature-correlated physical fields. First, the time series of temperature fluctuations, acquired
in the vicinity of the thermal boundary layer adjacent to the hot wall, are presented in Fig. 10. The
analysis is centered around fixed Gr = 1 × 108 and Ha = 100, exploring the impact of varying wall
conductivity on the statistical characteristics of MHD thermal convection. Additionally, the case
without magnetic field is included as a reference. In the baseline scenario with Ha = 0, the temper-
ature signal displays the highest amplitude and showcases random fluctuations. The corresponding
power spectral density (PSD) exhibits noise across the frequency spectrum, conforming to the
thermal energy spectra characteristic of fully developed thermal turbulence. This spectrum includes
a −5/3 slope in the inertial-convective subregion and a −17/3 slope in the inertial-conducting
subregion [42], which aligns with the established scale often utilized in experimental determinations
of the thermal turbulence state [43,44].

Upon application of a magnetic field under insulated wall conditions (Cw = 0), the amplitude of
temperature fluctuations experiences some suppression, although high-frequency components and
sharp peaks persist. In cases of weak wall conductivity (Cw = 0.01), the substantial reduction of
high-frequency oscillation results in a flow state characterized by low-frequency chaotic oscillation.
With a further increase in wall conductivity, fluctuations transition to quasiperiodic oscillations
of reduced power until they ultimately cease entirely. Importantly, all temperature PSDs manifest
prominent peaks representing the dominant oscillatory frequency of the system, fOS. Drawing
from previous research, we compare the timescale of a convective vortex overturning cycle to fOS.
Estimates of the overturning frequency fTO are derived using circular paths within the cavity, with
the maximum mean velocity. The dotted lines in the PSDs denote estimates of the overturning
frequency, closely aligning with the oscillatory frequency, affirming the coherence of the large-scale
flow structure in the context of vertical convection.

Figures 11 and 12 provide visualization of the temperature field. For low Cw, the influence
of magnetic field variations is relatively minor, always with thin thermal boundary layers and a
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FIG. 10. Time series of temperature fluctuations monitored at the thermal boundary layer and the PSD for
Gr = 1 × 108.

FIG. 11. The distribution of the mean temperature along the x-axis for Gr = 108.
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FIG. 12. The isothermal surface inside the fluid zone for Gr = 8 × 107.

well-mixed bulk region. The temperature distribution does not exhibit a monotonic rise from T =
−0.5 at the cold wall to T = 0 in the bulk due to stable thermal stratification, causing an overshoot
phenomenon in the temperature profile. Despite the diminished fluctuations in the temperature
isosurfaces along the magnetic field direction, the three-dimensional flow characteristics remain
apparent. Conversely, for high Cw, distinct current distributions induce temperature profiles that
exhibit greater sensitivity to changes in Ha. The vertical thermal stratification gradually diminishes,
indicating that the convective motion is strongly suppressed. The nearly oblique distribution of
isothermal surfaces also depicts a stable Q2D flow.

The variations of the thermal stratification level can be quantified using the mean stratification
parameter denoted Sθ , which is defined as the time-averaged nondimensional vertical temperature
gradient at the center [45]:

Sθ = 〈(L/�T )/(∂T/∂y)c〉t . (15)

As illustrated in Fig. 13, the stratification parameter values for all simulations can be transformed
into a single curve via the parameter Ha/Gr1/2, which is essentially equivalent to the parame-
ter combination Q/Gr commonly used in MC, where Q = Ha2 is the Chandrasekhar number.
These three curves reveal distinct degrees of nonmonotonic variation trends. Here, Ha/Gr1/2 can
be regarded as the relative magnitude of Lorentz force and buoyancy force, while Sθ can gauge
the changes in the bulk temperature profile shape, indirectly reflecting the strength of convective
motions. The apex of Sθ delineates the interval of Lorentz force enhancement and suppression on
thermal convection in the core region. When Cw = 0.01, the alteration of Sθ is relatively uniform,

FIG. 13. The evolution of stratification parameter Sθ vs Ha/Gr1/2.
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FIG. 14. Contours of pressure distribution with streamlines (black lines) and isothermals (white lines) at
the midplane z = 0 for Gr = 8 × 107.

and the overall improvement of thermal stratification prevails. When Cw = 0.1 and 1, following
a brief phase of enhancement interval, the vertical stratification generated by thermal convection
decays rapidly. The transition to heat conduction leads to horizontal stratification, following the
temperature distribution shown in Fig. 12(d).

As previously discussed, stable thermal stratification can induce both overshoot and undershoot
phenomena within the vertical boundary layer [38]. In the vicinity of the heated wall, for instance,
when the fluid ascends vertically, the heat transfer rate from the wall to the outer boundary layer is
insufficient to maintain temperature synchronization with the exterior. Consequently, a cooler fluid
relative to the core emerges, descending and separating from the horizontal wall as it passes through
the corners, forming loops. However, in low-Pr fluids, the higher heat diffusion coefficient leads to
shorter survival times for localized hot and cold plumes [46], resulting in a smoother temperature
field overall. The isotherms depicted in Fig. 14 indicate minimal overshooting and undershooting in
the corner region, except at the midheight, which relates to the fully thermally conductive boundary,
in contrast to the adiabatic horizontal boundary. The extension of cold (hot) fluids downstream from
the vertical wall diminishes as Ha increases, and the corner vortices surrounding them dissipate
entirely after being retained at the lower-left and upper-right positions. Additionally, the locations
of the corner structure correlate closely with the pressure distribution. Localized high pressure stems
from the geometrically restricted turning of the vertical boundary layer into the horizontal boundary
layer. Generally, thinner boundary layer thicknesses facilitate more pronounced transitions and the
formation of flow-separated structures. Hence, we quantify both horizontal and vertical boundary
layer thicknesses using spatiotemporally averaged velocity profiles (〈uy〉yz, 〈ux〉xz), and we compare
these measurements to the actual flow states.

As depicted in Fig. 15, the horizontal boundary layer thickness generally exceeds the vertical
boundary layer thickness, and the trend of δu with increasing magnetic field is not consistent. At
small Gr numbers, δu decreases monotonically with increasing magnetic field. During this phase,
the damping effect of the Lorentz force takes precedence, causing δu to approach the scaling of the
side layer thickness, ∼1/

√
Ha. And this decline occurs more rapidly in the case of highly conductive

walls. At larger Gr numbers, the main circulation is enhanced due to the rectification effect of the
magnetic field, and δu increases slightly. But for high Cw, this exists only in the weak magnetic field,
presenting a nonmonotonic variation. Moreover, the relative magnitudes of the two boundary layer
thicknesses exhibit a certain degree of association with the corner vortex configurations. In the phase
diagrams shown in Fig. 16, we plot the corner vortex distribution for each parameter in conjunction
with the boundary layer thickness information. The different symbols used in the diagrams serve
as indicators: squares denote the presence of four corner vortices in the main circulation plane,
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FIG. 15. Horizontal and vertical boundary layer thicknesses calculated using surface-time-averaged veloc-
ity profiles for Cw = 0.01 and 1 [δu = U/(du/dx|wall )].

circles represent solely two vortices on the lower-left and upper-right sides, and triangles signify
the absence of corner structures. Additionally, these symbols are color-coded based on the ratio
of horizontal to vertical boundary layer thickness. Notably, regardless of conductivity, when the
ratio between horizontal and vertical boundary layer thicknesses is large, allowing the appearance
of vortices in all four corners of the cavity, the number of these vortices decreases as this ratio
diminishes. When the ratio approaches 1, the flow-separated structure no longer emerges. This
phenomenon is independent of the absolute value of δu, considering solely the relative size of δx

and δy. Indeed, a greater discrepancy between δx and δy leads to a more pronounced curvature of
the boundary layer as it turns in the corner, rendering it more susceptible to the formation of a
vortex. This finding provides a new perspective on understanding the flow separation phenomenon
of low-Pr fluids under a weak nonlinear or laminar regime.

C. Wall effects on the global transport

The normalized global heat and momentum transport for different wall conductance ratios
are depicted in Fig. 17. The calculated (NuB − 1)/(Nu0 − 1) can be formulated as a function of
Ha/Gr1/3, a ratio derived from the Lorentz force term in the modified momentum equation:

du∗

dt∗ = −∇∗ p∗ − Pr∇∗2u∗ + PrT ∗ey − PrHa2Ra− 2
3 ( j∗ × B∗). (16)

FIG. 16. Phase diagram representing the corner vortex morphology in the cavity at each parameter. Squares
represent the presence of four corner vortices, circles denote only two vortices, lower left and upper right, and
triangles signify the absence of vortices. The symbols are colored by the ratio of the thickness of the horizontal
and vertical boundary layers.
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FIG. 17. Normalized global heat and momentum transports as functions of the control parameter Ha/Gr1/3.

The difference between Eqs. (16) and (2) is the selection of the characteristic length as Ra−1/3L,
leading to the actual Rayleigh number of 1. This specific value reflects a critical state between
conduction and convection. By adopting this characteristic length, the coefficients in front of the
original buoyancy term are normalized, and Ra is effectively integrated into the Lorentz force term
alongside Ha, thereby highlighting the interplay between the magnetic field and buoyancy-driven
convection. A further simplification of PrHa2Ra−2/3 yields Pr1/3(Ha/Gr1/3)2. Given that conducting
walls affect current distribution more directly compared to insulating walls, we have extended the
applicability of Ha/Gr1/3 to describe heat transfer rates. The universal scaling behavior,

NuB − 1

Nu0 − 1
= a + b

[1 + (cHa/Gr1/3)n]
, (17)

is supported by our data. The values of the parameters at different conductance ratios are shown in
Table II. The rigid lines displayed in Fig. 17(a) exhibit an excellent fit to data groups for various
conductance ratios.

In Fig. 17(a), dashed lines demarcate the parameters where the magnetic field impacts heat
transfer efficiency positively and negatively. Notably, for Cw = 0.01 and 0.1, specific intervals exist
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TABLE II. Parameter values for the universal scaling law, Eq. (17), at different values of Cw .

Cw a b c n

0.01 −0.156 1.263 0.715 2.406
0.1 −0.088 1.202 1.616 2.329
1 −0.017 1.035 2.731 3.016

where (NuB − 1)/(Nu0 − 1) > 1, while this phenomenon is absent for Cw = 1. This nonmonotonic
variation of the Nusselt number with increasing magnetic field was observed similarly in earlier
studies on MHD natural convection [47]. Tagawa and Ozoe [48] provided a theoretical justification
for this flow-rectifying effect in terms of the current distribution combined with the Lorentz force,
arguing that this effect “increase the heat transfer rate due to the smooth flow.” Furthermore,
analyzing the flow field in Sec. III A unveils that low-conducting walls experience a transition from
three-dimensional to quasi-two-dimensional behavior as the magnetic field intensifies. This process
is marked by the inverse energy cascade, attenuating the small-scale, three-dimensional flow to
sustain system-scale flow. The rectification effect gains more energy than what Joule damping dis-
sipates, thereby bolstering convection and elevating jet velocity. Conversely, for highly conducting
walls, the altered current distribution renders the response to the magnetic field highly sensitive. The
augmented Lorentz force prompts the flow to attain a state close to Q2D even at minimal magnetic
field strengths. During this phase, Hartmann braking emerges as the dominant magnetic damping
mechanism. Specifically, the dissipation of the main vortex energy through boundary layer friction
operates on the timescale τH = H

2B

√
ρ

σν
, significantly surpassing the timescale τJ = ρ

σB2 of Joule
damping. Consequently, Hartmann braking in the quasi-two-dimensional flow is much weaker than
Joule dissipation in the three-dimensional flow. However, at this juncture, further increments in the
magnetic field cease to enhance flow coherence. Under the escalating magnetic damping effect, flow
strength can only decay monotonically, with no observed interval of heat transfer augmentation.

Nonetheless, an unresolved question concerns the exact process by which enhanced flow inten-
sity and coherence contribute to increased heat transfer efficiency in the system. Prior research
indicates that augmenting either the shear rate appropriately or increasing plume coverage can
amplify the system’s heat transfer rate. Jin [49] posited that the application of external shear
could strengthen the LSC and facilitate interaction with secondary flows within the cavity. Huang
et al. [50] and Chong et al. [8] reported that plume coherency and the condensation of coherent
structures can be promoted through suitable geometric constraints. In addition to constrained RBC,
research involving inclined convection and thermal convection with rough boundaries has verified
that increasing plume coverage stands as a pivotal factor in enhancing heat transfer.

We seek to comprehend the roles played by wall shear and large-scale convective vortex (self-
organizing plumes) in the heat transport process. To begin with, examining the impact of wall
shear, snapshots portraying the heat flux q = − ∂T

∂x and shear stress τ f =
√

( ∂v
∂x )2 + ( ∂w

∂x )2 at the
heated wall x = 0.5 are illustrated in Figs. 18(a) and 18(b). Take note of the comparison in the
distribution of brightly colored regions representing local peaks. Also plotted in Fig. 19(a) are the
Nusselt number and the mean shear rate as a function of different conductivity at Gr = 1 × 108,
Ha = 100, normalized by the value of no magnetic field.

The snapshots exhibit very similar instantaneous field structures, and both the Nu and mean shear
rate display consistent patterns. However, it might be premature to assert that increasing the wall
shear definitively enhances the overall heat transfer. A meticulous comparison of the bright patches
on the snapshots provides some further intuition. The counterclockwise rotation of the primary
convective vortex induces a horizontal cold flow close to the bottom, directly impacting the hot
wall, and generating an intense local heat flux—referred to as the “impact region.” Above the impact
region lies the “shear region,” formed by the vertical wind of the LSC sweeping over the hot wall.
Further upwards, the fluid moves away from the hot wall due to geometrical constraint, and no
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FIG. 18. Cross-sections of various quantities at Gr = 1 × 108. The parameters from left to right are as
follows: Ha = 0 ;Cw = 0.01, Ha = 100 ;Cw = 0.05, Ha = 100 ;Cw = 0.1, Ha = 100 ;Cw = 1, Ha = 100.

additional plume emission is observed in the laminar or weakly chaotic state. Consequently, the
local heat transfer exhibits a monotonic decrease in this direction. We note that in the impact region,
the area exhibiting the highest heat flux (bright yellow) is typically accompanied by the lowest
localized shear rate (black). Additional shear stress extremes emerge in the upper corner, but this
region contributes little to the heat transfer, and it seems that strong shear does not correspond well
to strong heat transfer.
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FIG. 19. Statistics of dimensionless physical quantities related to heat transfer. The Cw corresponding to
the parameter points in the figures are 0.01, 0.05, 0.1, and 1 from left to right, using a logarithmic treatment.
(a) Volume-averaged Nusselt number Nu/Nu0 and mean shear rate |τ f |/|τ f |0 at the heated wall x = 0.5.
(b) Plume area S/S0 in the mid-yz plane extracted from the mean field and the actual heat flux content Qp/Qp,0

transported within the plume region.

The quantitative assessment of flow coherence relies on statistical plume coverage. We refer
to Huang’s definition [50] in RBC to establish a criterion applicable to vertical convection:√

RaPr |uxT | > λNu. It is required that the hot and cold plumes efficiently transport more heat
flux in the horizontal direction. This stands in contrast to the temperature-based definition typically
employed in RBC: ±(T − 〈T 〉x,y) > λTrms, which necessitates the cold (or hot) plume to be cooler
(or hotter) than the surrounding fluid. Here, λ is an empirical parameter set at the value of λ = 1.
The choice of the convection criterion is based on the fundamental disparity between VC and RBC:
in vertical convection, heat transfer occurs horizontally, orthogonal to gravity’s vertical direction.
The simple upward and downward fluid movement driven solely by temperature differences fails
to portray the intensity of horizontal heat transport. Additionally, the heat flux content within the
plume-covered area has been quantified as a further assessment of flow coherence under magnetic
fields (Qp = ∫

uxT dSplume, the ability of the plume to undertake heat transport). Figures 18(c), 18(d)
and 19(b) depict the respective results of the time-averaged field at the central yz-plane. Observa-
tions reveal minimal alterations in the plume coverage following the magnetic field application,
despite changes in conductivity. The ratio of the plume coverage to the area without the magnetic
field remains approximately 0.76. However, the heat flux carried by almost the same area of the
plume is quite different, and a smaller plume coverage than that of the magnetic-field-free case
can take up a stronger convective transport, notably for Cw = 0.01 and 0.05. This suggests that
the horizontal heat transport contributed by the plume per unit area (Qp/S) can be increased by the
rectification effect of the magnetic field in MHD vertical convection, essentially generating better
self-organized and more energetic clusters of hot and cold plumes, which increases the degree of
coherence of the global flow and thus improves the heat transfer efficiency. In this process, the
alteration in wall shear is more a result of vertical winds sweeping across the sidewalls as the flow
strength of the LSC increases. As Howland et al. [12] mentioned, the wall shear stress in VC is not
predetermined but emerges as a responsive parameter within the system.

Except for Nu, the scaling behavior of Re is also estimated in Fig. 17(b). Here we adopt the defini-
tion based on the kinetic energy, Re = L

√〈uu〉/ν, and 〈·〉 denotes the averaging in time and volume.
Referring to the empirical equations for Nu, we assume that the Reynolds number normalized by its
reference value at Ha = 0 satisfies a similar scaling relationship, ReB/Re0 = 1/[1 + α(Ha/Gr1/3)β].
So we plot Re0/ReB − 1 versus Ha/Gr1/3 on a logarithmic scale, and all data collapse into a universal
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FIG. 20. The critical conditions to approach heat conduction for various wall conductance ratios. The inset
represents the threshold C∗

w as a function of Ha and Gr. If Cw > C∗
w , heat transfer degenerates into thermal

conduction, as shown in the shaded area.

power law, which can verify our assumption. The cases shown in Fig. 17(b) are the reduction of
kinetic energy by an external magnetic field. But as shown in Fig. 17(a), when Cw = 0.01, the
presence of a weak magnetic field enhances the main circulation and thus increases the heat transfer
rate. This is also shown in the inset, where the increase in Re makes the result negative instead,
which also proves that the variation trend of Nu and Re is consistent. A similar scaling behavior has
also been confirmed for RBC in cylindrical cells [51].

In addition, we can establish that convection is entirely suppressed when (NuB − 1)/(Nu0 −
1) → 0, and heat transfer relies solely on heat conduction. Based on Fig. 20, we can infer that
the critical values of Ha/Gr1/3 for different conductive walls are proportional to C−1/5

w . To ensure
the universality of the data, we consider additional threshold conditions for Cw=0.05, 0.5, and
5. Remarkably, the points converge excellently with the straight line on the logarithmic plot.
Upon reintegrating this scaling relation, we can derive a dimensionless parameter C1/5

w Ha/Gr1/3

representing the relative magnitude of the Lorentz force to the buoyancy force under the condition
of conductive boundary, with 1.182 as the threshold for distinguishing between heat conduction and
convection. Here the power exponent 1/5 of Cw is a positive value less than unity, aligning with
the fundamental physical principle that wall conductivity acts as positive feedback on the Lorentz
force, but it cannot continue indefinitely, and the results will no longer change significantly after
Cw increases to a certain value. Similarly, we can introduce critical C∗

w as a function of Ha and Gr:
C∗

w = 2.31(Ha/Gr1/3)−5. If Cw > C∗
w, the heat transfer degenerates into thermal conduction (shaded

area in the inset of Fig. 20), and conversely, convection exists or even dominates. It should be
emphasized that the above scaling is based on statistical results within the parameter range of this
study, and all three independent parameters Ha, Gr, and Cw are significant. Even if their combination
C1/5

w Ha/Gr1/3 is identical, it does not guarantee that the system will exhibit the same flow state.

IV. CONCLUSIONS

Through 3D numerical simulations, we have investigated the vertical convection of liquid metal
in a cavity, with different magnetic field strengths and wall conductivities. Our primary objective
was to elucidate the physical mechanisms that give rise to the wall effect on the flow and to provide
a quantitative correlation between Nu, Re and Ha, Gr. The key findings, which address the research
questions raised in the Introduction, are presented as follows.

For low-conducting walls, the flow visualization shows a transition to the Q2D state with an
increasing magnetic field. Small-scale structures subject to main vortex entrainment develop into

043701-20



EFFECTS OF WALL CONDUCTIVITIES ON …

highly correlated side vortices along the field lines. System-scale structures acquire more energy
from this ordering effect than is dissipated by magnetic damping. The flow intensity of the main
roll increases at a certain range of magnetic field. However, for high-conducting walls, the current
distribution within the side layers is essentially perpendicular to the magnetic field and features
a greater current density, rendering the flow more susceptible to magnetic field variation. The
feasibility of three-dimensional flow is markedly constrained, preventing further enhancement in
flow coherence. Consequently, convection undergoes rapid attenuation due to Hartmann braking,
which is also reflected in the flow topology. Considering that the steady flow at this state is
dominated by the equilibrium between the Lorentz force and the buoyancy force, it can be deduced
that the flow of the horizontal jet satisfies the scaling Qh = Gr/6Ha2 and agrees with the simulation
results.

As the wall conductivity increases, the convection evolves from high-frequency, high-amplitude
oscillation to lower-frequency, quasiperiodic oscillation, culminating in its complete suppression.
The predominant frequency of these oscillations aligns with the vortex overturning frequency,
underscoring the coherence of large-scale structures in vertical convection. The thermal stratification
parameters within the core region exhibit nonmonotonic behavior. Furthermore, the development of
corner vortices is intricately linked to the dynamics of the boundary layer. A more pronounced
disparity between δx and δy intensifies the curvature of the boundary layer at the corners, thereby
facilitating flow separation and recirculation.

The correlation function involving Ha/Gr1/3 effectively models the average heat and momentum
transfer coefficient, thus enabling an extension of the scaling behavior from insulating to conducting
walls. The enhancement of convection observed in low-conducting walls is attributed to augmented
flow coherence. Building upon the traditional understanding, where the condensation of coherent
structures typically manifests as increased plume coverage, we find that in the unique context of
a magnetic field, the flow’s self-organization does not significantly alter the plume area S. Rather,
it fosters the generation of more energetic clusters of hot and cold plumes, thereby elevating the
horizontal heat transport per unit area of the plume Qp/S. This process plays a pivotal role in the
amplification of overall heat transfer efficiency.
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