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Mutual interaction of a collapsing bubble and a nearby viscoelastic solid
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The interaction between a microscale collapsing bubble and a nearby viscoelastic solid
is investigated numerically. The bubble initiates rapid expansion with high initial pressure,
and the stand-off parameter is set to be near 1.0. The viscoelastic properties of the solid
are described using the Kelvin-Voigt model, with its elastic modulus E and viscosity
η, varying several orders of magnitude (E = 20–2000 kPa and η = 2–1000 Pa s). The
influence of solid viscoelasticity on bubble behavior and solid deformation are analyzed
throughout the entire life cycle of the bubble, from its initial expansion to the moment
of liquid jet impingement. The Deborah number, which quantifies the relative timescales
of solid deformation and bubble expansion, is employed to characterize the bubble–solid
interaction. As the Deborah number increases from the order of 10−2 to 102, the dynamics
of the bubble converge toward those observed in the cases of a rigid solid; while the
solid deformation displacement reduces to a value close to zero, the maximum expansion
radius of the bubble increases by up to 8%, and the speed of the liquid jet decreases
by approximately 80%. The temporal distribution of energy components within the fluid
domain reveals that the maximum expansion radius of the bubble and the kinetic energy
of the liquid jet are inversely related to the energy transferred from the fluid to the solid.
The imbalance in pressure surrounding the contracting bubble and the narrow region of
the liquid jet are responsible for the enhancement of the liquid jet speed for small solid
viscosity. Upon the impingement of the liquid jet onto the solid surface, the width and
depth of the crater formed by the jet become greater for large jet speed and small solid
viscosity.

DOI: 10.1103/PhysRevFluids.9.043603

I. INTRODUCTION

The asymmetric collapse of a gas bubble surrounded by a liquid induces a fast liquid jet. Even a
microscale bubble can generate a liquid jet moving at a few hundred meters per second, exerting a
large impulse onto nearby structures [1–3]. For this reason, collapsing bubbles and the resultant
liquid jets are of great interest in various fields of engineering. For example, the suppression
of bubble jets is a crucial issue because of their potential to damage underwater structures and
erode their surfaces [4–12]. In biomedical applications, there have been attempts to utilize the
directionality and high speed of bubble jets for targeted drug delivery [13–19]. Other engineering
applications of bubble jets include printing [20–22] and surface cleaning [23–26].

To take advantage of the features of bubble jets, or to prevent or annihilate their negative effects,
it is essential to understand the dynamic behaviors of bubbles near different types of boundaries.
Numerous studies have revealed the variations in bubble dynamics in accordance with the properties
of proximate boundaries. Blake [27] analytically explained the bubble jet dynamics that occur
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with different boundaries using the concept of the Kelvin impulse, which successfully predicts the
direction of a bubble jet near a rigid solid boundary or free surface. When a bubble collapses near a
free surface, the liquid jet is directed away from the free surface [28–31]. By contrast, a bubble that
collapses near a rigid surface induces a liquid jet directed towards the rigid surface [32–37]. In both
cases, the speed of the liquid jet is primarily determined by the maximum bubble radius and the
initial distance between the bubble center and the boundary. Moreover, Supponen et al. [38] used
an anisotropy parameter to describe the bubble jet dynamics caused by different inducers, such as
a free surface or a rigid wall. Using the data reported by previous studies and applying the Kelvin
impulse theory, they built an elegant and unified framework that covers the majority of liquid jet
dynamics. Several studies have found that different wall geometries such as crevices [39], parallel
walls [40], curved walls [41], and mesoscale riblets [42] also play a substantial role in influencing
the collapsing behavior of a bubble and the distribution of wall pressure.

Unlike a free surface or a rigid boundary, the case of an elastic surface produces a bubble jet
that can be either away from the surface, towards the surface, or even split into two opposite axial
directions. These behaviors of a bubble jet near an elastic boundary involve the complex change in
bubble morphology and the influence of the elastic boundary. Therefore, the bubble jet dynamics
near an elastic surface cannot be predicted simply by the Kelvin impulse theory [43,44], and their
characteristics have been identified by various experimental and numerical studies [44–50]. These
studies have revealed that the bubble jet dynamics, including the direction and speed of the jet,
depend not only on the dimensionless stand-off parameter (the ratio of the initial distance between
the bubble center and the boundary to the maximum expansion radius of the bubble) but also on the
elasticity of the boundary represented by elastic modulus. When the elastic modulus is relatively
small, the collapse of a bubble results in a liquid jet directed away from the boundary. However,
a boundary with a high degree of stiffness creates a liquid jet moving towards the boundary.
Additionally, an elastic boundary generates a faster liquid jet than a rigid boundary for a broad
range of the stand-off parameter [51].

The control of bubble jets near viscoelastic surfaces is an important issue in many applications
involving viscoelastic materials, such as in vivo drug delivery [52] and histotripsy [53]. In contrast
to elastic materials, viscoelastic materials exhibit delayed deformations in response to stress input
and release. Incorporating this retardation enables more accurate modeling of a wide range of soft
materials, including biological tissues [54], silicones, and polymers [55,56]. While many studies
have primarily focused on the effect of the elasticity of a nearby solid surface, relatively few studies
have considered surfaces with viscoelastic properties. Early studies done by Shima et al. [57] and
Duncan et al. [58] examined the dynamics of a collapsing bubble near a viscoelastic composite
rubber surface. However, the surface was modeled as an elastic solid in the analysis, and thereby
the effect of viscoelasticity was not considered. Gong and Klaseboer [59] numerically studied the
interaction between a viscoelastic surface and a collapsing bubble, in which circular and rectangular
Zener-type viscoelastic plates were used as the boundary. Although changes in the viscosity of
the boundary had an insignificant effect on the temporal evolution of the bubble shape, this result
was far from being general because only single values were considered for the solid elasticity and
stand-off parameter. Rodriguez [60] reported that, for a collapsing bubble near a surface coated with
an elastomer made of a Kelvin-Voigt material, both the bubble volume and liquid jet speed decreased
as the distance between the bubble and the surface and the thickness of the coating increased.
Even in these two studies, parameters such as the standoff distance and the surface thickness were
addressed instead of the viscoelasticity. Therefore, it remains unclear how the viscoelastic properties
represented by the delay in solid deformation affect the bubble-boundary interactions over the entire
lifecycle of a collapsing bubble.

In this paper, we numerically investigate the coupled mechanics between a bubble and a vis-
coelastic solid surface in an attempt to unravel the salient features of the interactions from the
expansion of the bubble to the deformation of the solid following the impact of the liquid jet. The
parameters that characterize the viscoelastic properties, namely, the elastic modulus and viscosity,
are varied in the Kelvin-Voigt model chosen for the solid. Our numerical model and methods
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FIG. 1. (a) Schematic of a bubble immersed in water over a viscoelastic solid. (b) Grid layout of axisym-
metric two-dimensional fluid domain.

are described in Sec. II. In Sec. III, the bubble dynamics and solid deformation are discussed in
sequential order: First, the expansion of the bubble and initial deformation of the solid (Sec. III A);
second, the rebound of the solid and contraction of the bubble (Sec. III B); third, the collapse of the
bubble and formation of the liquid jet (Sec. III C); and fourth, the deformation of the solid by the
liquid jet (Sec. III D). Finally, our findings are summarized in Sec. IV.

II. PROBLEM DESCRIPTION

A. Model and parameters

Initially, a vapor bubble with a radius of R0 = 50 µm and a high internal pressure of pg,0 =
1.32×108 Pa = 1300 atm is surrounded by water at atmospheric pressure and is positioned directly
above a viscoelastic solid [Fig. 1(a)]. The distance from the center of the bubble to the flat surface
of the solid is set to h0 = 660 µm. Under these conditions, the bubble expands to have a maximum
radius of 620–670 µm, depending on solid properties. This sub-micrometer scale is similar to the
setups used in previous studies that explored the interaction between bubbles and solid boundaries
with various characteristics [5,14,34,37,47]. Moreover, this length scale is relevant to the collapse of
bubbles near biological tissues for in vivo drug delivery although the bubbles employed in vivo are
generally smaller than the bubble of our numerical setup. To facilitate a strong interaction between
the bubble and the solid, the initial height h0 is chosen to be a value similar to the maximum
expansion radius of the bubble. Cases with smaller h0, which correspond to wall-attached bubbles,
are not included in the scope of this paper because the current numerical algorithm for the fluid-solid
interaction becomes highly unstable for these cases.

The Kelvin–Voigt model is used as a viscoelastic model for the solid in this paper, as this provides
a reasonably simplified constitutive relation for organic tissues [61–63]. This constitutive model
consists of one viscous damper and one elastic spring in parallel, and the constitutive equation for
three-dimensional deformation is given as

σ = λ(Tr(ε) + τλTr(ε̇))I + 2G(ε + τS ε̇), (1)

where σ and ε are stress and strain tensors, respectively. λ is the Lamé’s first parameter and G is
the Lamé’s second parameter or the shear modulus. The Lamé’s first parameter λ and the shear
modulus G can be calculated from Young’s modulus E (termed the elastic modulus in this study)
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and Poisson’s ratio ν as follows:

λ = Eν

(1 + ν)(1 − 2ν)
and G = E

2(1 + ν)
. (2)

τλ and τS in Eq. (1) are the characteristic times which are normally determined by experiments.
The full derivation and detailed explanation of Eq. (1) can be found in Lemaitre and Chaboche
[64]. For the numerical Kelvin-Voigt model used in this paper, each value is set to be τλ = 3η/E
and τS = η/G, where η is the shear viscosity of the solid [65]. The choice of τλ and τS is justified
by the comparison with an analytical solution in Appendix B. The Kelvin-Voigt model is a linear
viscoelastic model, and the maximum strain of the solid until the collapse of the bubble is within
10% in this study. Therefore, one should be aware that for materials exhibiting nonlinear viscoelastic
behaviors within this strain range, different results may arise.

In all cases, the density and Poisson’s ratio of the solid are set to be 1100 kg/m3 and 0.4,
respectively. Five values of E = [20, 100, 200, 1000, 2000] kPa and five values of η = [2, 5, 10,
100, 1000] Pa s are considered. These values of the solid properties are arbitrarily selected within
the range corresponding to various kinds of human tissue [63,66–69]. Additionally, a rigid solid
and five purely elastic solids with different elastic moduli are included for comparison with the
viscoelastic solid cases.

B. Fluid solver

A revised OPENFOAM code [70] is used to solve the mass and momentum conservation equa-
tions for the multiphase compressible flow of a Newtonian fluid in an axisymmetric two-dimensional
domain [Fig. 1(b)]. To reduce computational cost, a two-dimensional domain is adopted under the
assumption that the fluid flow and solid deformation are axisymmetric. The axisymmetric condition
in bubble collapse simulations can be justified by the results of experimental studies [32,34,43].
Also, this condition has been frequently employed in numerical studies [22,31,37,71],

∂ρ

∂t
+ ∇ · (ρU ) = 0, (3a)

∂ (ρU )

∂t
+ ∇ · (ρUU ) = −∇p + ρg + ∇ · τ + f s, (3b)

where ρ is the fluid density, U is the fluid velocity, p is the pressure, g is the gravitational
acceleration, τ is the viscous stress tensor, and f s is the surface tension force per unit volume.
Note that the bulk viscosity of the fluid is assumed to be zero when accounting for the viscous
stress tensor. On the two edges of the fluid domain, one of the following two boundary conditions
is applied, depending on the flow direction, for a nonreflective boundary: zero velocity-gradient
condition when the flow is outward from the domain and zero velocity condition when there is an
inward flow.

To capture the interface between the gas and the liquid, the volume-of-fluid method is employed
[71,72],

∂α

∂t
+ ∇ · (αU ) + ∇ · (α(1 − α)U r ) = α(1 − α)

(
ψg

ρg
− ψl

ρl

)
Dp

Dt
+ α∇ · U , (4)

where α denotes the volume fraction of the liquid phase, which ranges from 0–1. ψg and ψl are
defined as Dρg/Dpg and Dρl/Dpl , respectively; the subscripts g and l denote the gas and liquid
phases, respectively. U r denotes the relative velocity between the gas and the liquid [73].

At the interface, the effective density and viscosity for solving the mass and momentum conser-
vation equations [Eq. (3)] are calculated as

ρ = αρl + (1 − α)ρg and μ = αμl + (1 − α)μg. (5)
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The surface tension force f s in Eq. (3b) is calculated by the continuum surface force model [74],
using

f s = −ϒκ∇α, (6)

where ϒ is the surface tension coefficient and κ is the curvature of the gas–liquid interface,
determined from

κ = −∇ ·
( ∇α

|∇α|
)

. (7)

The phase change between the gas and the liquid is not considered in this paper because it does not
play a significant role when the bubble collapses violently in a short duration [75].

For the solution in the transient state, the PISO algorithm is employed [76]. In each iteration,
the volume fraction α is calculated before the main PISO algorithm, including the computations of
the momentum equation, pressure equation, and corrections, is executed. For spatial discretization,
the second-order linear scheme is used for gradient terms, Laplacian terms, the divergence of the
deviatoric part of the viscous stress tensor, and the interpolations of values between cell centers.
The second-order van Leer scheme is used for the remaining divergence terms. The backward Euler
method is used for time marching to ensure numerical stability for shock wave propagation and
fluid-solid coupling. The first-order accuracy of the scheme is complemented by the very small time
step of the fluid solver, as mentioned in Sec. II C.

The vapor bubble is assumed to be isentropic, neglecting the effect of temperature on vapor
density. This assumption is based on the rapid expansion and collapse of the bubble within a
very short time, allowing us to neglect the influence of heat exchange between the bubble and the
surrounding liquid [31,37,71,77],

pg

ρg
γisen

= pg,ref

ρg,ref
γisen

= const, (8)

where γisen is the ratio of specific heats (γisen = 1.33). The reference values are the vapor pressure
and density at 100 ◦C, which are pg,ref = 1.01×105 Pa and ρg,ref = 0.6 kg/m3, respectively. The Tait
equation of state, written in the form

pl + B

ρl
γTait

= pl,ref + B

ρl,ref
γTait

= const, (9)

is used for water. The reference values and coefficients of the equation are pl,ref = 1.01×105 Pa,
ρl,ref = 998.21 kg/m3, γTait = 7.15, and B = 3.05×108 Pa. The surface tension coefficient is con-
stant as ϒ = 0.073 N/m.

The two-dimensional axisymmteric fluid domain is a square with side lengths of 3 mm in both
the radial (r) and axial (z) directions, and the initial bubble center is located on the z axis above
the solid surface [Fig. 1(b)]. For the fluid domain, rectangular and nonuniform 350×350 grids are
constructed. Along the r direction, 60% of the grid cells are uniformly distributed in 40% of the
domain length from the left side. The remaining 40% of the grid cells have a growth rate of 1.1.
Along the z direction, 93% of the grid cells are uniformly distributed in 62% of the domain lengths
from the bottom, and the remaining 7% of grid cells have a growth rate of 1.14.

C. Coupling of fluid and solid solvers

The deformation of a viscoelastic surface is simulated using the finite element method. The
code is a revised version of CALCULIX [78]. The solid domain is set to be axisymmetric and
two-dimensional with dimensions of 3 mm×1 mm. For the solid domain, rectangular and uniform
350×50 grids are constructed, and four-node axisymmetric bilinear CAX4 solid elements are used
for the discretization. The bottom and side boundaries of the solid domain are fixed, and the top
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boundary is allowed to deform according to the interaction with the fluid domain. The validation of
the solid solver and the Kelvin–Voigt model is described in Appendix B.

The fluid solver and solid solver are coupled such that they exchange data with each other. We
modified the source code of preCICE [79], an open-source library for fluid-structure interaction
simulations, for the coupling of the two solvers. Once the flow field has been computed, the pressure
data of cell centers located at the bottom of the fluid domain are transferred to the top nodes of
the solid domain. When transferring the pressure data, the viscous stress is neglected because its
magnitude is much smaller than the stagnation pressure [80] and thereby hardly affects the solid
deformation during the growth and collapse of a bubble, which is the main scope of this paper.
During data transfer, linear interpolations are performed between the fluid cell centers and the solid
nodes if their arrangements do not match. The solid solver then computes the deformation of the
solid. Next, the coupling code uses the displacement of the top of the solid to calculate the velocity
of the bottom of the fluid domain for the following coupled iteration.

For the coupling code and the solid solver, each time step is fixed at 2×10−9 s. For the fluid
solver, an additional condition is imposed for the time step, limiting the maximum Courant number
to 0.2. This is because flow phenomena in the fluid domain, such as shock waves, involve dramatic
changes in physical properties. The time step can be adjusted during runtime to satisfy that the
Courant number does not exceed 0.2 and to ensure the accuracy of the simulation. Therefore, for
each coupled iteration, the fluid solver performs multiple sub-cycles if the time step size is below
2×10−9 s. On the other hand, the time step size of 2×10−9 s is sufficiently small for the solid solver.
The highest wave propagation speed in the solid, c = (E/ρs)1/2, is calculated to be 44 m/s when the
elastic modulus E is 2000 kPa. The length of the smaller side of a single cell in the solid domain,
xs, is 8.5×10−3 mm. The maximum Courant number in the solid domain is thereby calculated
to be ct/xs ≈ 0.01. For the fluid-solid coupling, such a small time step guarantees numerical
stability and accuracy near the fluid-solid interface.

D. Grid convergence test and validation

To ensure that the simulation results are independent of grid resolution, a grid convergence test
is performed for a viscoelastic case (E = 1000 kPa, η = 10 Pa s) by varying the numbers of grid
points, N , along each side of the fluid domain; the cell size is inversely proportional to N . While the
maximum radius Rmax of the expanding bubble increases as N increases from 69 to 156, it exhibits
little variation when N � 350, with a percentage difference of less than 0.1% [Fig. 2(a)]. When the
bubble expands in a nonspherical form, the bubble radius R is defined as half the distance between
the topmost and bottommost locations of the bubble. The maximum downward displacement δmax

of the solid surface at r = 0 during the bubble expansion has an error of less than 0.5% relative to
the N = 350 case when N � 350 [Fig. 2(b)]. For a time-resolved comparison, the time histories of
pressure at the center of the solid surface, pc, are shown in Fig. 2(c). The differences in pc between
the cases of N � 350 are negligible. These results confirm that grid independence is achieved in
both the fluid and solid domains by using grids with N = 350.

To validate our fluid solver, simulation results are compared with the experimental results of Ma
et al. [43] for a bubble expanding near a rigid solid surface with the stand-off parameter γ = 1.56
[Fig. 3(a)]. In the simulation, the initial radius of the bubble is set as 120 µm by trial and error
to match the experimental condition. The temporal changes in the positions of the topmost and
bottommost parts of the bubble in the simulation agree well with those of the experiment, which
ensures that the fluid solver accurately predicts the actual behavior of a bubble. The fluid solver
can also accurately calculate shock waves induced by the sudden expansion of a bubble. A detailed
validation for the accuracy of shock capturing is presented in Appendix A.

For the validation of our fluid-structure coupling algorithm, numerical simulations of a collapsing
bubble near an elastic solid are conducted. The values of the elastic modulus, stand-off parameter,
and maximum expansion radius for the simulations are set to be those of the experiments by Brujan
et al. [51]. The simulation results are compared with the image frames from Brujan et al. [51]
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FIG. 2. Grid convergence test results for (a) maximum radius Rmax of the expanding bubble near a vis-
coelastic solid (E = 1000 kPa, η = 10 Pa s) and (b) maximum downward displacement δmax of the viscoelastic
solid during bubble expansion. (ci) Temporal change in pressure at solid center, pc, for different grid sizes; the
graph is zoomed in for the moments (cii) when the shock wave reaches the solid surface and (ciii) when the
bubble expands above the surface. The number of grid points N = 69−788.

[Fig. 3(b)]. The shapes of a bubble during its growth and shrinkage are very similar between the
experiments and our simulations. The simulation can also successfully capture the intricate effect of
the solid elasticity and stand-off parameter on the jetting behavior. If the solid elasticity is absent,
the two bubbles shown in Figs. 3(bi) and 3(bii) should generate liquid jets directing towards the
solid surface. In the simulations, the deformation of the solids due to the pressure exerted by the
fluid motion is accurately computed. As a result, it is possible to produce a split jet [Fig. 3(bi)] and
a jet away from the solid boundary [Fig. 3(bii)] through the simulations, which are also observed in
the experiments.

At the final frames in Figs. 3(bi) and 3(bii), the sizes of the bubbles are greater to some extent
than those of the experiments. This discrepancy in the bubble sizes during the secondary bubble
expansion is attributed to neglecting phase change between gas and liquid as previously reported
by Zeng et al. [37]. Although this issue can be resolved by artificially increasing the polytropic
exponent of the gas right after the first bubble collapse [37], our simulations are conducted without
such numerical technique because the scope of this paper is confined to the first expansion and
collapse phases for a bubble. Also, a nonlinear deformation behavior of the polyacrylamide gel
used in the experiments of Brujan et al. [51] might be one of the reasons for the small differences in
bubble shapes because the simulations employ the linear elastic model for validation. In summary,
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FIG. 3. (a) Comparison of bubble evolution near a rigid solid between experiment [43] and simulation.
(b) Comparisons of bubble evolution near an elastic solid between experiments [51] (upper) and simulations
(lower): (i) E = 124 kPa, γ = 0.87; (ii) E = 1040 kPa, γ = 1.22. Frame interval is 40 µs, and frame width is
3.5 mm.

the fluid-structure coupling algorithm used in this paper can reliably compute the interaction of
a bubble with a deformable solid for the phases of our interest. In addition to the elastic model,
the Kelvin-Voigt viscoelastic model is adopted in our simulations, and the deformation of this
viscoelastic model is rigourously validated in Appendix B.

III. RESULTS AND DISCUSSION

A. Bubble expansion and initial solid deformation

When a bubble starts to expand, the surrounding fluid is radially pushed away and its pressure
increases dramatically. The high-pressure fluid is also transported towards the liquid-solid interface,
deforming the viscoelastic solid downwards. The magnitude of this initial downward deformation
induced by bubble expansion varies by several orders, depending on the solid viscosity, for a given
elastic modulus [Fig. 4(a)]. The z coordinate is normalized by the initial distance between the bubble
center and solid surface, h0, as depicted in Fig. 1(a). As the solid viscosity increases from zero to
1000 Pa s, the magnitude of the maximum deformation of the solid decreases from z/h0 = 0.35 to
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E = 20 kPa; (ii) E = 20 kPa, η = 10 Pa s; (iii) E = 20 kPa, η = 1000 Pa s. The profiles are captured every
tδmax/5 up to the time corresponding to maximum deformation, t = tδmax . (b) Surface profiles normalized by
maximum displacement δmax at the solid center and (c) bubble shapes at t = tδmax for one elastic case and five
viscoelastic cases. All cases have the same elastic modulus, E = 20 kPa.

0.0013 at the solid center, r/h0 = 0, for the given elastic modulus of 20 kPa. Throughout this paper,
the results for E = 20 kPa are mainly used to examine the effects of solid viscosity, because the most
noticeable bubble-solid interaction is produced by the smallest elastic modulus and the greatest solid
deformation. Since the degree of the solid deformation changes broadly with the solid viscosity, a
direct comparison of the surface profiles between the cases is inappropriate. Instead, each profile
at the instant of maximum deformation is normalized with its maximum deformation length from
the initial horizontal surface, δmax, and illustrated in Fig. 4(b). When the solid surface reaches the
state of maximum deformation, the overall normalized deformation profiles of the surface are quite
similar in the range r/h0 = 0 − 2, regardless of the viscosity [Fig. 4(b)]. However, with increasing
viscosity, the surface in the region of r/h0 > 2 moves upwards from the initial position, having
distinct deviations in the profiles.

In viscoelastic cases with E = 20 kPa, the bubble center, which is defined as the middle
point between the topmost and bottommost points of the bubble, (ztop + zbot )/2, is positioned
slightly above its initial position at the time corresponding to maximum displacement, t = tδmax :
1.04 � z/h0 � 1.09 [Fig. 4(c)]. By comparison, the bubble center of the purely elastic case is lower
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(z/h0 = 1.00) than in the viscoelastic cases because the downward deformation of the solid is much
greater. The bubble size at t = tδmax decreases monotonically with increasing viscosity because the
solid reaches its maximum deformation sooner when the viscosity is greater.

In Eq. (1), the two parameters that describe the behavior of the Kelvin–Voigt model are the shear
modulus G = E/(2(1 + ν)) and shear viscosity η of the solid. If a constant stress σzz,0 is imposed
axially on the Kelvin-Voigt material, the characteristic time, τS (= η/G = 2(1 + ν)η/E ), is the time
at which the strain reaches 63.2% of the strain in the purely elastic response, εzz,E (Fig. 5); also see
Appendix B. For a given value of E , τS determines how slowly the Kelvin–Voigt material responds
to the stress input.

Although this delay in the deformation makes viscoelastic materials distinct from elastic materi-
als, the fluid–structure interaction including a bubble and a viscoelastic solid cannot be sufficiently
characterized by τS alone. Along with the timescale of the viscoelastic deformation, the represen-
tative timescale of the bubble dynamics should also be considered to fully describe the interaction.
If τS is much greater than the lifecycle of a bubble, the deformation of the solid would be hardly
detectable until the bubble grows and collapses. Therefore, it is evident that the bubble dynamics
would be very smaller to those of the rigid solid case. On the other hand, if τS is very small compared
to the life cycle of the bubble, the delay in the solid deformation would be negligible and the
overall fluid–structure interaction is expected to be similar to that of the elastic solid case. From
this conjecture, we argue that the timescale τS of the viscoelastic solid relative to the reference time
tref of the expanding bubble, τS/tref , can be regarded as a representative dimensionless parameter
for describing the fluid–structure interaction between the viscoelastic solid and the bubble. This
dimensionless parameter actually corresponds to a specific form of the Deborah number De [81].
In this paper, the quantities that characterize the bubble dynamics and solid deformation, such as
the speed of the bubble jet and the maximum deformation of the solid, will be analyzed using the
Deborah number:

De = τS

tref
= 2(1 + ν)η/E

tref
. (10)

In the Deborah number [Eq. (10)], the reference time tref of the bubble is determined to be
the time taken for a bubble in an ambient condition (in the absence of a solid) to reach its
maximum radius Rref . Both tref and Rref in the absence of a solid are obtained by solving the
Gilmore equation [82], which is a modified version of the Rayleigh-Plesset equation to consider
the compressibility effect, with the fifth-order Runge–Kutta method:

R
d2R

dt2

(
1 − 1

c

dR

dt

)
+ 3

2

(
d2R

dt2

)2(
1 − 1

3c

dR

dt

)
= H

(
1 + 1

c

dR

dt

)
+ R

c

dH

dt

(
1 − 1

c

dR

dt

)
, (11)
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FIG. 6. (a) Normalized maximum displacement δmax,V E/δmax,E and (b) normalized time at maximum
displacement, tδmax,V E /tδmax,E , with respect to the Deborah number De.

where

H = γTait

(
p∞ + B

(γTait − 1)ρl

)⎡
⎣

(
pl + B

p∞ + B

) γTait−1
γTait − 1

⎤
⎦, (12a)

c = c∞

(
pl + B

p∞ + B

) γTait−1
2γTait

, (12b)

pg = pg,0

(
R0

R

)3γisen

+ pv − 2ϒ

R
− 4μg

1

R

dR

dt
, (12c)

c∞ =
[
γTait

(
p∞ + B

ρl

)] 1
2

. (12d)

p∞ is the far field pressure, pv (=3.17×103 Pa) is the vapor pressure of water, and R0 is the initial
radius of the bubble. The pressure inside the bubble is calculated from the radius R of the bubble,
assuming isentropic expansion. From the initial conditions considered in this paper, the solution of
Eq. (11) is tref = 66.6 µs and Rref = 0.71 mm, which are consistent with the simulation result using
our fluid solver: 65.0 µs and 0.72 mm, respectively.

Figure 6 presents the maximum displacement δmax of the solid and the corresponding time tδmax

with respect to the Deborah number De. The values of δmax and tδmax for the viscoelastic solids
are normalized by those of the elastic solid with an identical elastic modulus, respectively. This
provides a better understanding of the effects of solid viscosity on δmax and tδmax in comparison with
the purely elastic solid. The subscripts V E and E denote viscoelastic and elastic solids, respectively.
Both δmax,V E/δmax,E and tδmax,V E /tδmax,E have an inverse relationship with De. That is, a viscoelastic
solid with a greater characteristic time τS (= 2(1 + ν)η/E ) exhibits a weaker response to bubble
expansion, which is consistent with the preceding statement associated with Fig. 5(b) regarding the
general property of the Kelvin-Voigt material. For the discussion of the dimensional δmax and tδmax

with respect to the solid viscosity η, readers are referred to Appendix C.

B. Surface rebound and bubble contraction

The downward displacement of the solid reaches its maximum value before the bubble has fully
expanded. Thus, the dynamics of the solid can be divided into two stages before the full expansion
of the bubble: subsidence before the maximum deformation and rebound after the maximum
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FIG. 7. Graphical description of the special numerical simulation. A viscoelastic solid with E = 100 kPa
and η = 2 Pa s is switched to a rigid solid after it reaches the maximum downward deformation (vertical dashed
line). zc is the z coordinate of the solid surface center.

deformation. To determine which of these stages is the dominant influence on the full expansion
and subsequent collapse of a bubble, a special numerical simulation was conducted, where the solid
was artificially prescribed to stop rebounding after reaching its maximum downward deformation
(Fig. 7). Although such behavior is physically infeasible, this artificial method is a straightforward
and intuitive means of removing the effect of solid rebound and solely considering the effect of solid
subsidence.

The normalized parameters of the bubble, which characterize the bubble expansion (Rmax and
tRmax ) and jet formation after bubble collapse (Uj and tcollapse), are compared in Table I for three
different cases: the normal viscoelastic case, the viscoelastic case where the rebound of the solid
is artificially paused after maximum deformation, and the rigid solid case. Rmax is the maximum
radius of the bubble at full expansion and tRmax is the time corresponding to the full expansion
phase; the bubble radius is defined as half the distance between the topmost and bottommost
points of the bubble. Uj and tcollapse will be discussed later in Sec. III C. Uj is normalized by
U0(= ((p∞ − pv )/ρl )

1
2 = 9.92 ms−1), where p∞(=1.01×105 Pa) is the far-field pressure and

pv(=3.17×103 Pa) is the vapor pressure of water. Rmax and tRmax differ in the normal and no-rebound
cases because the bubble can continue to expand even after the beginning of solid rebound. If the
solid rebound is prohibited, the parameter values in Table I change significantly from those of the
normal case and become rather closer to those of the rigid solid. This indicates that the rebound of
the solid affects the full expansion and contraction of the bubble more strongly than its subsidence.

The change in the maximum expansion radius Rmax is not always monotonic with respect to
elasticity or viscosity [Fig. 8(a)]. For a large E (E � 1000 kPa), Rmax increases with η. However,
for E � 100 kPa, the trend is no longer monotonic: Rmax drops as η increases from 2 Pa s to
10 Pa s, and then rises when η > 10 Pa s. Furthermore, while E has a negligible influence on Rmax

at large viscosity (η � 100 Pa s), the variations in Rmax with respect to E become remarkable in the
small-viscosity range (η � 10 Pa s), and the cases with small E tend to produce larger Rmax. Large

TABLE I. Comparison of major parameters characterizing bubble expansion and bubble jet formation
between three cases: normal viscoelastic solid, viscoelastic solid with no rebound, and rigid solid. For both
the normal and no-rebound cases, the viscoelastic properties are E = 100 kPa and η = 2 Pa s.

Normal No rebound Rigid

Rmax/Rref 0.83 0.88 0.89
tRmax/tref 0.80 0.91 0.96
Uj/U0 21.06 10.43 8.48
tcollapse/tref 1.65 1.80 1.92
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FIG. 8. (a) Maximum expansion radius Rmax and (b) time at maximum expansion, tRmax , of the bubble for
different solid properties.

values of Rmax produced by a small elastic modulus and viscosity (i.e., E = 20 kPa, η � 10 Pa s)
can be explained by the huge compliance of the solid, as reported in Fig. 19(a) of Appendix C.
The initial downward deformation of the solid changes the pressure distribution of the water around
the bubble, indirectly affecting the expansion of the bubble. Compared with the rigid solid, which
acts only as a restriction that keeps the lower side of the bubble from expanding, the downward
displacement of the deformable solid allows more space for bubble expansion. For a fixed viscosity,
Rmax approaches that of the rigid solid case when the elastic modulus increases because the solid
deforms less.

Similar to Rmax, the time at which maximum expansion occurs, tRmax , tends to increase and
approaches that of the rigid solid as the viscosity increases [Fig. 8(b)]. The variations in tRmax with
respect to E are also negligible at large viscosity (η � 100 Pa s). However, in contrast to Rmax, it is
difficult to identify any clear relationship between tRmax and E at smaller viscosities (η � 10 Pa s).

As can be seen from Fig. 8(a) and Ref. [19], Rmax exhibits no correlation with the parameters
relevant to solid deformation, δmax and tδmax . To further investigate the change in Rmax with respect
to these solid properties, a quantitative analysis of the energy components in the fluid and solid
domains is conducted. The energy present in the fluid domain can be largely categorized as the
kinetic energy of the gas and liquid, EK , and the potential energy of the bubble, EP. These are
calculated as follows [83]:

EK =
∫

V

1

2
ρ|U |2dV, (13a)

EP = (p∞ − pv )(Vg − Vg,0) + pg,0Vg,0

γisen − 1

(
Vg,0

Vg

)γisen−1

+ ϒAg + (ρg − ρl )gVgzg, (13b)

where |U | is the velocity magnitude of the fluid and V is the entire volume of the fluid. Vg is the
volume of the bubble and Vg,0 is the volume of the bubble at the initial time. Ag is the surface
area of the bubble,and zg is the location of the bubble center with respect to the initial position.
The last two terms in Eq. (13b) represent the interfacial energy and gravitational energy of the
bubble, respectively. These two terms are negligible as their magnitudes are much smaller than the
remaining terms of EP in Eq. (13b). In all cases, the interfacial energy is approximately 0.1%, and
the gravitational energy is only 0.001% of the total value of EP. The energy loss in the fluid domain
is primarily caused by acoustic radiation, including a shock wave, ER, and energy transfer from the
fluid domain to the solid domain, ES . ES is calculated on the fluid-solid interface S as

ES =
∫ t

0

(∫
S
(−pn) vdS

)
dt, (14)
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where p is the hydrodynamic pressure acting on the solid surface, n is the unit normal vector on
the interface into the fluid domain, and v is the velocity of the interface. As can be seen from
the integration over time in Eq. (14), ES is the cumulative sum of the energy transferred from the
moment of cavitation inception. Hence, this term includes the energy transfer not only by the jet
impact but also by the gradual deformation of the interface throughout the entire time.

The potential energy of the bubble at the initial time, EP0, should be balanced by the total energy
budget of the fluid domain:

EP0 = EK + EP + ER + ES. (15)

At the instant of full expansion of the bubble (t = tRmax ), ER is almost invariant between all cases
because the acoustic energy radiating to the far field is hardly affected by the solid properties.
Additionally, when the bubble has fully expanded, the kinetic energy EK in the fluid domain is
almost zero in all cases; the temporal changes in the energy components are discussed later using
Fig. 14 in Sec. III C. As the maximum radius Rmax is directly related to the potential energy EP

of the bubble, Rmax depends on the remaining energy term, which is the total energy transferred
to the solid domain, ES,Rmax , until the bubble reaches its full expansion. Indeed, in Fig. 9, there is
an inverse relationship between the normalized parameters Rmax/Rref and ES,Rmax/EP0, albeit there
are some deviations in the data points. As the solid domain absorbs more energy from the initial
potential energy of the bubble, the bubble grows to a smaller size. Furthermore, in most cases, the
maximum radius of the bubble is less than that of the rigid solid case because there is zero energy
transfer to the rigid solid: ES = 0. Obviously, the surface deformation becomes greater in cases with
smaller elastic modulus and viscosity [Fig. 19(a)]. However, the elastic modulus and viscosity have
opposite effects on ES,Rmax . ES,Rmax is generally greater when the solid has a large elastic modulus
and a small viscosity (Fig. 9).

As the solid surface rebounds after its maximum downward deformation, the bubble reaches its
maximum expansion and begins to contract under a high-pressure field created around the bubble.
For a given elastic modulus, a solid with a smaller viscosity (and thus lower De) rebounds a longer
distance with a higher speed [Fig. 10(a)]. This longer and faster rebound induces a stronger upward
flow above the solid surface and increases the pressure between the surface and the bubble.

The upward flow and pressure increment during the rebound stage produce different contraction
behaviors in the bubble [Figs. 10(bi)–10(biii)]. The dependency of the contraction shape on the
elastic modulus has already been reported for the interaction with elastic solids [43], and here
we affirm that the solid viscosity also affects the contraction shape. For the purely elastic case
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FIG. 10. (a) Temporal change in the z coordinate zc/h0 of the solid surface at r = 0 for a purely elastic
solid and five viscoelastic solids. All cases have the same elastic modulus, E = 20 kPa. (b) Evolution of bubble
shape during contraction for a purely elastic solid and two viscoelastic solids: (i) purely elastic, E = 20 kPa;
(ii) E = 20 kPa, η = 2 Pa s; (iii) E = 20 kPa, η = 1000 Pa s.

[Fig. 10(bi)], the surface rebound is much greater and faster than any viscoelastic case, as shown
in Fig. 10(a). This is because the elastic strain energy of the solid has no viscous dissipation.
Therefore, the lower part of the bubble contracts much faster than its upper part. Regarding the
viscoelastic cases [Figs. 10(bii) and 10(biii)], while the overall bubble shape is nearly elliptical with
quite symmetric upper and lower parts in the smaller η case, the lower part is almost flat in the larger
η case because of the weak surface rebound, leading to distinctly asymmetric upper and lower parts.
The curvature radius of the bubble’s lower part with the smaller η is less than with the larger η. In
Fig. 10(b), three cases with E = 20 kPa are chosen to demonstrate how the bubble shape is affected
by the solid viscosity. The influence of η on the bubble shapes becomes less distinct as E increases
and the solid deformation is weaker.

C. Bubble collapse and liquid jet generation

After contraction, the bubble collapses, creating a fast liquid jet. The notable difference in the
contraction shapes of the bubble between the elastic cases and the viscoelastic cases, as exemplified
in Figs. 10(bi)–10(biii), leads to different jet directions. In the elastic cases, the jet is directed
upwards away from the solid for E = 20 and 100 kPa, and splits into upward and downward
directions for E = 200 kPa or higher [Figs. 11(a)–11(e)]; these results are consistent with the exper-
imental results of Brujan et al. [51]. By contrast, the jet created in the viscoelastic cases is directed
towards the solid, except in two cases (E = 1000 kPa, η = 2 Pa s and E = 1000 kPa, η = 5 Pa s)
[Figs. 11(g)–11(k)]. In the rigid solid case, the jet is directed toward the solid, as expected
[Fig. 11(f)].

The speed of the liquid jet is relevant to the degree of damage imposed on the solid surface
and also affects the efficient utilization of the jet in applications such as drug delivery and surface
cleaning. A single representative value of the liquid jet speed, Uj , is defined as the maximum speed
of the liquid jet before the upper part of the bubble surface contacts its lower part. To obtain the exact
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solid case (f). Black and grey denote the gas bubble and water areas, respectively. The number on the top right
corner of each panel indicates the time at which each case is captured. See Supplemental Material movie 1
[84].

value of Uj , the travel distance z of the tip of the liquid jet, the location of which corresponds to
the upper part of the bubble interface on the z axis, during a single simulation frame is divided by
the frame time (1 µs); see the schematic on the right of Fig. 12. The collapse time of the bubble,
tcollapse, is defined as the time interval from its initial explosion to the instant at which the upper and
lower parts of the bubble contact each other just before collapse.

For comparison with the purely elastic solid, Uj and tcollapse are normalized by their values in
the elastic case with an identical elastic modulus E , respectively, and are presented with respect to
the Deborah number De (Fig. 12); the subscripts V E and E denote viscoelastic and elastic cases,
respectively. Note that the viscoelastic cases with E = 20 kPa are omitted in Fig. 12(a) because of
the abnormally low jet speed for the purely elastic solid with E = 20 kPa; this will be addressed in
more detail in Fig. 13. The discussion of the dimensional Uj and tcollapse versus the solid viscosity
η is also presented in Appendix C. Except for E = 20 kPa, the liquid jet speeds of the viscoelastic
cases are smaller than that of the purely elastic solid with the same elastic modulus, while the
bubble collapse times of the viscoelastic cases exceed that of the corresponding purely elastic
solid. Uj,V E/Uj,E exhibits a decreasing trend with increasing De, while tcollapse,V E/tcollapse,E shows an
increasing trend. From Fig. 12, Uj and tcollapse are found to be inversely related to each other. Such
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an inverse relationship between these two variables has been reported with respect to other input
parameters, such as the stand-off parameter or the initial pressure of the bubble, under boundary
conditions including a flat rigid solid [85] and a curved rigid solid [86]. This is because highly
anisotropic pressure around the bubble results in its faster and more violent collapse [38].

The pressure around the bubble throughout its life cycle is now analyzed to reveal how the
anisotropic pressure distribution around the bubble affects the jet speed and bubble collapse time.
Figures 13(a) and 13(b) illustrate the time history of the pressures acting on the topmost and
bottommost points of the bubble, ptop and pbot. The pressures are normalized by the far-field pressure
p∞, and the time t is normalized by tref . The pressure imbalance across the bubble, ptop − pbot,
begins to grow drastically just before the collapse [Fig. 13(c)]. After the collapse, the curves are cut
off at the instant when the bubble forms a toroidal shape because the two points on the z axis used
to measure the pressure are no longer available.

For most of the purely elastic solids, the pressure imbalance ptop − pbot far exceeds that of the
viscoelastic solids with an identical elastic modulus during contraction. Accordingly, the jet speed
Uj of these purely elastic cases is much greater than that of the viscoelastic cases (Fig. 12). An
exception is the value of ptop − pbot for the purely elastic solid with E = 20 kPa, which remains
near zero although both ptop and pbot are much greater than in the viscoelastic solids (Fig. 13). This
case has the smallest elastic modulus among all cases in the present paper and has no viscoelastic
damping. Thus, the bubble is least affected by the existence of the solid, and the pressure distribution
is highly symmetric at these two points throughout the entire process. Such a low value of ptop − pbot

for E = 20 kPa is also responsible for the abnormally low jet speed (Uj = 122.23 ms−1) and the
formation of a relatively blunt upward jet, as shown in Fig. 11(a). For the rest of the elastic cases
(E � 100 kPa), pressure anisotropy is much greater than viscoelastic cases with the same elastic
modulus, which is the reason for the high jet speed. For viscoelastic solids, with decreasing η, the
peak value of ptop − pbot generally increases and occurs at an earlier time [Fig. 13(c)]. The stronger
pressure anisotropy in the case of lower η leads to a higher liquid jet speed and faster bubble collapse
[Fig. 12].

To elicit a deeper understanding of the liquid jet speed, we consider the energy components
(EP, EK , ES) introduced in Eq. (15) up to the collapse time of the bubble. The overall trend of
Esum(= EP + EK + ES ), EP, and EK in the rigid solid case [Fig. 14(c)] is in good agreement with
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the results reported by Wang [83]; ES = 0 for the rigid solid. In all three cases shown in Fig. 14, the
energy sum Esum suddenly drops by approximately 15% upon the emission of a shock wave right
after the initial explosion. Note that Esum in Eq. (15) does not include ER. Esum then remains almost
constant before dropping again near the collapse time, because the amount of acoustic radiation is
negligible after the shock wave and no energy other than ES exits the fluid domain. The potential
energy EP of the bubble suddenly drops after its inception because of rapid loss of its potential
energy in the form of a shock wave. Then, the potential energy increases until t/tcollapse ≈ 0.5,
which is the time at which the bubble attains its full expansion, and decreases almost symmetrically
afterwards in the contraction phase. Because the potential energy of the bubble is heavily dependent
on the bubble volume, the change in EP over time is quite similar to the change in the bubble
volume over time. By contrast, the trend in fluid kinematic energy EK over time is the opposite to
that of EP. Near t = 0, the sudden burst of the bubble and the creation of the shock wave elevate the
kinetic energy in the fluid domain. A very short time delay exists between the decrease in EP and
the increase in EK due to the compressibility effect of the liquid, which may be responsible for the
occurrence of a minor spike in Esum. When the bubble reaches the maximum expansion, it remains
almost stationary, and thereby the fluid kinetic energy is nearly zero. As the bubble collapses, the
bubble interface and the surrounding water undergo violent movement, and thus the fluid kinetic
energy at this instant is elevated to its second peak.

As explained in Sec. III B, some of the energy is transferred from the fluid domain to the solid
domain through the deformation of the solid; the total energy transferred up to a certain time is
denoted as ES . During the initial explosion, ES increases steeply and continues to increase thereafter
with a lower growth rate during the expansion and contraction phases [Figs. 14(a) and 14(b)].
Although both EK and ES increase during the contraction phase, the kinetic energy of the fluid at the
instant of bubble collapse, EK,collapse, has an inverse relationship with the total energy transferred to
the solid domain up to the time of bubble collapse, ES,collapse, for viscoelastic solids [Fig. 15(a)].

At the bubble collapse time, more than 95% of the kinetic energy in the whole fluid domain is
concentrated in the narrow liquid jet region. Therefore, EK,collpase can be approximated as the kinetic
energy of the liquid jet. Interestingly, the liquid jet speed Uj reduces as EK,collpase becomes greater
[Fig. 15(b)]. A liquid jet with a higher Uj is relatively narrow compared with a slower liquid jet, as
illustrated by the three examples in Fig. 15(c), and thus has a smaller EK,collpase. In the figure, the dark
grey and black regions correspond to the downward liquid jet. The liquid jet speed in Fig. 15(ciii)
is roughly three times that in Fig. 15(ci); Uj/U0 = 8.77, 13.80, and 29.10 for Figs. 15(ci)–15(ciii),
respectively. However, the kinetic energy of Fig. 15(ciii) is much smaller because the jet itself is
much thinner; EK,collpase/EP0 = 0.44, 0.29, and 0.16 for Figs. 15(ci)–15(ciii), respectively.
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FIG. 15. (a) Relationship between fluid kinetic energy at bubble collapse time, EK,collpase, and total energy
transferred to the solid up to collapse time, ES,collapse, for viscoelastic solids. (b) Relationship between liquid
jet speed Uj and EK,collapse. (c) Contours of velocity magnitude for viscoelastic cases at bubble collapse time:
(i) E = 20 kPa, η = 1000 Pa s; (ii) E = 20 kPa, η = 10 Pa s; (iii) E = 20 kPa, η = 2 Pa s. See Supplemental
Material movie 2 for (c).

D. Impact of liquid jet on a solid surface

As a liquid jet with a high momentum impacts a solid surface, the surface rapidly deforms
downwards, creating a crater near its center. Although the highly nonlinear behavior of the liquid
jet makes it difficult to find consistent trends regarding its interaction with the solid, some notable
features regarding the solid surface deserve to be reported. Upon the impact of the liquid jet, the
responses of the elastic and viscoelastic solids are markedly different [Fig. 16]. In the figure, the
profiles of the solid surface are drawn every 5 µs from the collapse time of the bubble to the end
of the simulation (t = 160 µs). The elastic solids tend to deform smoothly over an extensive area
around the impact zone [Figs. 16(a)–16(c)], while the deformation of the viscoelastic solids is more
concentrated near the surface center [Figs. 16(d)–16(i)]. This tendency differs dramatically from
that of the initial downward deformation phase of the surface mentioned in Sec. III A. In the initial
downward deformation phase, the effect of the solid viscosity on the profile of the solid surface is
minor, although the solid viscosity influences the degree of surface deformation [Fig. 4(b)].
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

FIG. 16. Sequential profiles of solid surface after liquid jet impact for (a)–(c) purely elastic solids and
(d)–(i) viscoelastic solids: (a) E = 20 kPa; (b) E = 100 kPa; (c) E = 2000 kPa; (d) E = 20 kPa, η = 2 Pa s;
(e) E = 100 kPa, η = 2 Pa s; (f) E = 2000 kPa, η = 2 Pa s; (g) E = 20 kPa, η = 5 Pa s; (h) E = 20 kPa,
η = 100 Pa s; (i) E = 20 kPa, η = 1000 Pa s. The profiles are captured every 5 µs.

The liquid jet of the elastic cases creates a certain distance above the solid surface, while the
liquid jet of the viscoelastic cases is formed closer to the solid surface (Fig. 11). Moreover, in the
elastic solids, the jet is either directed away from the solid surface or split into two directions,
depending on the elastic modulus. That is, the relative location and direction of the liquid jet
generation strongly affects the profile of the surface. As the magnitude of the jet momentum varies
nonlinearly with the elastic modulus, no correlation between the degree of surface deformation and
the elastic modulus can be identified.

In contrast to the elastic solids [Figs. 16(a)–16(c)], a small solid viscosity creates a very narrow
and deep crater under the same elastic modulus [Figs. 16(d)–16(f)]. When the liquid jet is formed
closer to the solid surface and is directed towards the surface, a more concentrated deformation is
induced. The crater becomes wider as the solid viscosity increases [Figs. 16(d), 16(g), 16(h), and
16(i)]. The width of the crater scales with the width of the liquid jet, as observed in a comparison
of the liquid jet in Figs. 15(ci) and 15(ciii) and the corresponding surface deformations after jet
impact in Figs. 16(i) and 16(d). Furthermore, the penetration depth of the surface decreases as the
solid viscosity increases, which matches the trend of the initial downward deformation [Fig. 4(a)].
According to Fig. 12(a), the liquid jet speed Uj decreases with increasing solid viscosity. In
summary, the increase in the solid viscosity contributes to shallower surface penetration in two
ways: by inducing a slower liquid jet with low momentum and by making the solid itself respond
more slowly to the jet impact.

In Fig. 16(f) (E = 2000 kPa, η = 2 Pa s, De = 0.04), a transverse surface wave with a small
amplitude propagates outwards in the radial direction. This phenomenon is not observed in the
other viscoelastic cases with lower elastic moduli and the same viscosity [Figs. 16(d) and 16(e)].
The Deborah number of this case is exceptionally small, so the viscoelastic solid behaves more
like an elastic solid with weak attenuation of the surface wave [87]. In the purely elastic solid
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[Figs. 16(a)–16(c)], actually no surface wave is observed because the liquid jet is not directed
towards the surface and the surface deforms over an extensive area. However, the elastic solid with
E = 200 kPa, which is not included in Fig. 16, induces a relatively large portion of the liquid jet
to be directed towards the solid surface [Fig. 11(c)], thereby creating a narrow penetration in a
concentrated area and resultant surface wave propagation.

We would like to mention that this paper has a limitation in accurately describing solid de-
formation during this stage. Our numerical method does not account for nonlinear deformations
of the solid that may occur by the liquid jet. Moreover, it neglects the effect of viscous stress
on solid deformation although the magnitude of wall shear stress at this jet impingement stage
increases to approximately 10% of stagnation pressure. Further research is required to understand
the influence of these factors on solid deformation. Nevertheless, the overall shapes of jet-induced
solid deformation, which are reported in this paper, are expected to be similar to those of actual
scenarios.

IV. CONCLUDING REMARKS

We have investigated the dynamics of a bubble and the deformation of a nearby viscoelastic
solid in four sequential stages, from the expansion of the bubble to the impingement of a liquid
jet onto the solid surface. Compared with a purely elastic solid, the viscosity of the viscoelastic
solid dramatically changes its response to bubble expansion and collapse, which in turn affects
the behaviors of the bubble and liquid jet. The Deborah number has been used to characterize
the interactions between the bubble and viscoelastic solid. As the Deborah number increases, the
response of the solid becomes slower and weaker. This causes the parameters relevant to the bubble
(such as the liquid jet speed) and the parameters relevant to the solid (such as the maximum
displacement) to converge to the values of the rigid solid case. Some part of the energy in the
fluid domain is transferred to the solid domain through deformation, leading to the decrease in the
bubble potential energy at the instant of maximum expansion, and the amount of energy transfer is
inversely related with the maximum bubble radius. As the solid viscosity decreases, the rebounding
speed of the solid boundary grows, altering the shape of the contracting bubble. With the smaller
solid viscosity, the stronger pressure anisotropy around the contracting bubble contributes to a faster
jet speed, and the jet speed can be further enhanced by the formation of a narrow jet region, although
the jet kinetic energy may drop due to the greater amount of energy transferred to the solid domain.
The solid viscosity remarkably changes the penetration shape formed on the solid surface upon the
impingement of the liquid jet. With a small viscosity, the liquid jet is concentrated near the solid
center, creating a sharp and deep crater.

This paper has primarily focused on revealing the effects of solid viscoelasticity for given initial
bubble conditions. To further validate the characterization of bubble-viscoelastic solid interactions
using the Deborah number, different initial conditions for the bubble should be comprehensively
examined. Future study requires diverse initial pressures and stand-off parameters for the bubble
and new viscoelastic models, such as the Maxwell model, to elaborate on the physical mechanisms
underlying the complex interactions between a viscoelastic solid, a gas bubble, and a surrounding
liquid.
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APPENDIX A: VALIDATION OF SHOCK WAVE PROPAGATION

The capability of the fluid solver to resolve shock waves is validated by comparing results of
a two-phase shock-tube problem with its analytical solutions. The specific configuration of the
problem is set identical to that of Miller et al. [71]. The computational domain is one-dimensional
and has a length of 1, with an array of 1000 cells. The time step is fixed to t = 10−4. Initial
conditions are set to be

p(x, 0) =
{

1.0, x < 0.5
0.1, x > 0.5 , u(x, 0) = 0, α(x, 0) =

{
1, x < 0.5
0, x > 0.5, (A1)

where p, u, and α represent the pressure, velocity, and volume fraction, respectively. The polytropic
equation of state for the gas is

p

ργ
= ac, (A2)

where γ = 1.25 and ac = 1.35. For the liquid state, the isothermal equation of state is used as

ρ − ρ0 = ψ (p − p0), (A3)

where ρ0 = 0, p0 = 0, and ψ = 1. Pressure, velocity, and volume fraction fields at t = 0.25 of our
simulation results are compared with those of analytical results in Fig. 17, confirming that the fluid
solver can accurately capture shock-wave dynamics.

APPENDIX B: VALIDATION OF THE SOLID SOLVER AND THE KELVIN-VOIGT MODEL

The solid solver and the KelvinVoigt model used for the finite element method are validated
by comparing a viscoelastic behavior with that of an analytical solution. In the absence of a fluid
domain, a solid domain with the size and grid layout identical to the main simulation is exposed to a
uniform compressive stress of 100 kPa along the axial direction from t = 0 − 1.0 s. Unlike the main
simulation, only the bottom surface of the solid is fixed while the side surface is free to deform. Five
different values of the viscosity, η = [5, 10, 50, 100, 1000] Pa s, are used with the fixed values of
the elastic modulus and Poisson’s ratio (E = 1000 kPa, ν = 0.4).

To obtain the analytical solution, the axial stress–strain relation for a Kelvin-Voigt solid under a
uniaxial stress is obtained from Eq. (1):

σzz = [λ(1 − 2ν) + 2G]εzz + [λ(1 − 2ν)τλ + 2GτS]ε̇zz. (B1)

In Eq. (B1), the coefficient of the strain rate corresponds to the extensional viscosity ηE :

ηE = λ(1 − 2ν)τλ + 2GτS. (B2)
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lines) and analytical solution (red dashed lines) for five different viscosities.

Using Eq. (2) and Eq. (B2), Eq. (B1) is simply rewritten as

σzz = Eεzz + ηE ε̇zz. (B3)

The axial strain of the Kelvin-Voigt solid is obtained as a function of time by solving Eq. (B3):

εzz(t ) = σzz

E
(1 − e−Et/ηE ). (B4)

Here, the characteristic time of the Kelvin–Voigt solid under a uniaxial stress is ηE/E . Since the
value of ηE is unknown, it needs to be changed into the form which consists of known variables
such as G and η. According to Linn [65], ηE is defined as

ηE = ζ (1 − 2ν)2 + 4
3η(1 + ν)2, (B5)

where ζ is the bulk viscosity. ζ is also expressed as ζ = 2+2ν
3−6ν

η [88]. After substituting this into
Eq. (B5) and conducting some algebraic procedures, it comes to the conclusion that

ηE

E
= η

G
. (B6)

This shows that the extensional characteristic time τE (= ηE/E ) is identical to the characteristic time
τS (= η/G) defined in Sec. II A. It should be noted that Eq. (B6) only holds for a Kelvin-Voigt solid
under a uniaxial stress.

Using Eq. (B6), the analytical solution Eq. (B4) is expressed as

εzz(t ) = σzz

E
(1 − e−Gt/η ) = σzz

E
(1 − e−Et/2(1+ν)η ). (B7)
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FIG. 19. (a) Maximum displacement δmax and (b) time at maximum displacement tδmax for viscoelastic
solids with different properties.
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FIG. 20. (a) Liquid jet speed Uj and (b) bubble collapse time tcollapse for different solid properties. The
dashed horizontal line denotes the value for the rigid solid case.

According to Fig. 18, our numerical method accurately computes the viscoelastic deformation of
the solid over a wide range of η.

APPENDIX C: RESULTS PLOTTED WITH DIMENSIONAL PARAMETERS

Figure 19 presents the maximum displacement δmax of the solid and the corresponding time tδmax

with respect to the solid viscosity η. For each value of the elastic modulus E , both δmax and tδmax

tend to decrease as η increases, having relatively greater variations with respect to E at a given De
compared with Fig. 6. For a given value of η, the solid generally undergoes greater deformation at
smaller values of E , and the deformation process accordingly takes more time.

For a given elastic modulus E , as the solid viscosity η increases, the jet speed Uj decreases
sharply and converges to that of the rigid solid case [Fig. 20(a)]. Figure 20(b) shows that tcollapse

increases with η and approaches that of the rigid solid. The convergence of Uj and tcollapse to values
corresponding to the rigid solid with increasing η is consistent with the converging tendency of δmax

and tδmax with increasing η, which is depicted in Fig. 19.
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