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Finite speed of sound effects on asymmetry in multibubble cavitation
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Three-dimensional direct numerical simulations are used to revisit the experiments on
multibubble cavitation performed by Bremond et al., Phys. Fluids 18, 121505 (2006);
Phys. Rev. Lett. 96, 224501 (2006). In particular, we aim at understanding the asymmetry
observed therein during the expansion and collapse of bubble clusters subjected to a
pressure pulse. Our numerical simulations suggest that the asymmetry is due to the force
applied by the imposed pressure pulse and it is a consequence of the finite effective speed
of sound in the liquid. By comparing our numerical results to the experiments, we found
that the effective speed of sound under the experimental conditions was smaller than that
of degassed water due to microbubbles in the system which resulted from prior cavitation
experiments in the same setup. The estimated values of the effective speed of sound are
consistent with those derived from the classical theory of wave propagation in liquids with
small amounts of gas. To support this theory, we also present evidence of tiny bubbles
remaining in the liquid bulk as a result of the fragmentation of large bubbles during the
prior cavitation experiments. Furthermore, we find that this asymmetry also alters the
direction of the liquid jet generated during the last stages of bubble collapse.

DOI: 10.1103/PhysRevFluids.9.043602

I. INTRODUCTION

Cavitation bubbles are key components in a plethora of applications such as ultrasound imag-
ing, high-intensity focused ultrasound treatment, drug delivery, lithotripsy, etc. [1,2]. In many of
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(a) (b)

FIG. 1. Top view of multiple cavitation bubbles nucleating from pits (4 µm diameter) and collapsing in
contact with a rigid wall. (a) A pair of bubbles nucleating from two pits separated by distances of 200 and
400 µm are shown in the left and right panels, respectively. (b) A cluster of 37 bubbles nucleating from the
pits drilled in a hexagonal configuration having a pitch distance of 200 µm. This figure is adapted from the
experiments of Bremond et al. [4,5].

these applications, multiple cavitation bubbles are exposed to pressure waves [3–6]. To achieve a
well-controlled process, it is important to understand the interaction among those bubbles, their
surrounding medium, and the pressure waves that drive their motion. Several studies have con-
tributed to a better understanding and modeling of this intricate phenomenon [7–11]. Bremond et al.
[4,5] conducted comprehensive and well-controlled experiments by fixing the bubble locations using
micropits, which allowed them to study the dynamics of a bubble cluster and its interaction with the
pressure pulse. However, the numerical modeling therein was limited to a modified Rayleigh-Plesset
model and an axisymmetric boundary integral method due to the very high computational costs of
three-dimensional direct numerical simulations. In this study, we numerically revisit the multibubble
cavitation problem from Refs. [4,5] using three-dimensional, compressible flow, direct numerical
simulations, with the volume of fluid (VOF) method. The objective is to study the breaking of
spherical symmetry and the compressibility effects emerging from the interaction between the
bubbles and the pressure pulse.

Figure 1 shows snapshots taken from the experiments of Bremond et al. [4,5] in which 4 µm pits
were etched on a silicon plate and were later submerged in a large water tank. A pulse generated
by a piezo transducer caused a pressure drop, leading to the growth of the nuclei in the pits into
large bubbles up to 100 µm in size. The top views from three cases are shown: two pits drilled at a
distance of 200 µm [left panel of Fig. 1(a)], two pits separated by a distance of 400 µm [right panel of
Fig. 1(a)], and 37 pits etched in a hexagonal arrangement of 200 µm pitch [Fig. 1(b)]. The symmetry
breaking effects in the direction of wave propagation can be observed at 22–24 µs in the bubble pair
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case. In the absence of compressibility effects, the bubble dynamics would exhibit mirror symmetry
about the y = y0 line. However, this symmetry is broken in the experiments since water is slightly
compressible. We speculate that this symmetry breaking could be a result of the force induced by
the pressure gradient due to the applied pressure pulse and/or due to a Rayleigh-Taylor instability.
It is well known that when a single bubble in the liquid bulk is exposed to a pressure wave, this
wave induces a force that is responsible for the translational motion of the bubble [12–17]. The
instantaneous force induced by pressure gradient ∇p(x, t ) on a bubble of volume V (t ) is

F(t ) ∝ −V (t )∇p(x, t ). (1)

If the bubble is attached to a wall, the viscous dissipation hinders the motion of the contact line.
Therefore, this force can break the spherical symmetry of the bubble. For the multibubble case, the
neighboring bubbles can also alter the pressure field, thus inducing pressure gradients, increasing
the asymmetry further. On the other hand, small nonspherical perturbations in the bubble shape
can grow unstable during the deceleration phase of the collapsing bubble, which is known as
Rayleigh-Taylor (RT) instability [18,19]. Thus, we postulate that the asymmetry is initiated during
the expansion phase due to the pressure gradient and that this asymmetry can get amplified during
the collapse phase due to RT instabilities.

This article is organized as follows: Sec. II outlines the governing equations and the problem
setup. Section III delves into the dynamics of bubble pairs and provides a detailed investigation of
the asymmetrical bubble response. Section IV presents the results for the inception and collapse of
arrays of more than two bubbles. Finally, we draw conclusions in Sec. V and present an outlook for
future studies.

II. METHOD

We use a compressible all-Mach solver that was recently developed and implemented in the free
software program BASILISK [20–22]. The software is equipped with octree-based mesh refinement
capabilities which are essential in performing three-dimensional simulations. This all-Mach solver
has been extensively used to study various bubble dynamics problems [23–27]. The governing
equations are the conservation of mass, momentum, and energy. In the absence of heat and mass
transfer, these equations can be written for a two-phase flow as

∂ρi

∂t
+ ∇ · (ρiui ) = 0, (2)

∂ (ρiui )

∂t
+ ∇ · (ρiuiui ) = −∇pi + ∇ · τ i, (3)

∂ (ρiEi )

∂t
+ ∇ · (ρiEiui ) = −∇ · (piui ) + ∇ · (τ i·ui ), (4)

where the subscript i ∈ {l, g} denotes the liquid and gas phases, respectively; ρi is the density; ui is
the velocity vector field; pi is the pressure field; Ei is the total energy per unit volume, defined as
the sum of the internal and kinetic energies Ei = ei + 1

2 u2
i ; and τ i = μi[∇ui + (∇ui )T − 2

3∇ · uiI]
is the viscous stress tensor, with I being the identity tensor. The system of equations is then closed
by the stiffened gas equation of state (EOS), defined as

ρiei = pi + �i�i

�i − 1
, (5)

where �i and �i are empirical parameters obtained by fitting the speed of sound. For water �l = 5.5,
and �l = 4921 bars [28]. In Sec. III, we vary the parameter � to change the effective speed of sound
in the medium. The speed of sound ci in the medium is defined by the EOS as

ci =
√

�i
pi + �i

ρi
. (6)
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For an ideal gas, �g = γ is the ratio of specific heats, and �g = 0.
The interface conditions couple the motion of fluids in each phase. In the absence of mass transfer

the velocity is continuous across the interface such that [[u]] = 0, where [[·]] represents the jump in
the particular quantity across the interface. The pressures in both phases are related by the Laplace
equation [[p]] = −σκ + [[nI · τ · nI ]], where σ is the surface tension coefficient, κ is the curvature,
and nI is the unit vector normal to the interface. We also assume that no heat is transferred across
the interface, which implies that the normal derivative of the internal energy remains continuous,
i.e., [[∂e/∂n]] = 0.

The above equations are discretized using a finite volume method while satisfying the interface
conditions. We use a geometric VOF method to track the interface between the two fluids [29]. In
the VOF method, the phase characteristic function is represented by the color function Ci in the
discrete cells. It is equal to 1 in the reference phase, to 0 in the nonreference phase, and to a
fractional value between 0 and 1 in the cells containing both liquid and gas phases. The conserved
quantities (density Ciρi, momentum Ciρiui, total energy CiρiEi) are advected consistently with the
color function (see Ref. [30]). The interface is reconstructed at each time step using piecewise-linear
constructions. Besides this, we use a one-fluid formulation to solve the equation for the average
momentum

∂ρu
∂t

+ ∇·(ρu u) = −∇p + ∇·τ + σκδsnI , (7)

where 
 represents the average value of a particular quantity 
, defined as 
 = C
1 + (1 − C)
2;
δs is the delta function; and nI is the unit vector normal to the interface. The capillary forces are
added as continuum surface forces, where δs is approximated as the gradient of the color function
|∇C| [31]. This method is well balanced and ensures momentum conservation [32]. For more details
about the numerical method, the reader is referred to Fuster and Popinet [22]. The motion of the
contact line is regularized by the Navier-slip model,

u − (u · n)n = λnum(τ·n − [(τ·n)·n]n), (8)

where u is the velocity vector at the wall, τ is the stress tensor at the wall, n is the unit vector normal
to the wall, and λnum is the slip length. In the Appendix, we show that our results are independent of
the contact line dynamics. We also use a static contact angle model implemented using the approach
of Afkhami and Bussmann [33]. For other boundaries, we use reflecting boundary conditions, i.e.,
u · n = 0, ∇·[u − (u · n)n] = 0, and n·∇p = 0. The numerical domain is made large enough (see
Fig. 2) to prevent any reflected pressure waves from influencing the bubble dynamics.

A simplified schematic (top view) of the problem is depicted in Fig. 2(a). The initial nuclei,
represented as circles of radii R0, are separated by a distance d and exposed to a one-dimensional
(1D) pressure pulse of amplitude �p ≈ 1.5 MPa that propagates with an effective speed of sound
towards the nuclei, along the y axis. This pulse is applied for constant duration Tp; hence, one can
readily define a characteristic length for the pulse as Lp = ceTp, where ce is the effective speed of
sound in the liquid. Note that the geometry exhibits mirroring symmetry about the y axis.

Figure 2(b) shows the computational setup. We use a cubic domain of size varying from 26 mm
in the case of bubble pairs to 130 mm in the case of a bubble cluster. The color map shows
the projection of the initial pressure field which is taken from the hydrophone measurements
of Bremond et al. [4]. The temporal pressure perturbation p′(t ) at y0 is transformed into the
spatial domain (y = y0 + cet ) using p(y0 + cet ) = p0 + p′(y0 + cet ). Initial density and velocity
perturbations are calculated from p′ as ρ ′ = p′/c2

e and u′
y = p′/ρce using linear wave propagation

theory. The bottom boundary is considered a solid wall where we place the hemispherical nuclei
of radii R0. For the particular case of the bubble pair, a zoomed-in view of the bottom boundary is
also given, showing the initial nuclei and the projection of the grid on the bottom boundary. The
grid is progressively refined from 40 µm far from the bubbles to the smallest grid size of 5 µm
near the nuclei. The mesh refinement capabilities of Basilisk allow us to resolve the large-scale
separation from the characteristic length Lp of the pressure pulse to the bubble radius (up to 3 orders
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(a) (b)

FIG. 2. (a) The simplified schematic (top view) of the problem where the initial nuclei (shown with circles)
of radii R0 are separated by a distance d and exposed to a 1D pressure pulse of amplitude �p = 1.5 MPa and
a characteristic length Lp (defined from the pulse duration Tp given from hydrophone measurements). The
direction of wave propagation is shown by the red arrow. (b) The 3D computational setup used in the current
study where the projected color map corresponds to the initial pressure field taken from the experiments [5].
A zoomed-in view of the initial nuclei and the projection of the numerical grid on the bottom boundary of the
domain are shown.

of magnitude). The simulations were performed on the Swiss supercomputer Piz Daint, on which
a typical three-dimensional (3D) simulation takes around 15 h on 7200 processors and solves for
approximately 1.3 million grid points.

III. BUBBLE PAIR

In this section, we investigate the problem of a pair of bubbles separated by a distance d . Our aim
is to understand the effect of ce and R0 on the dynamic response of bubbles to the driving pressure
pulse. The speed of sound in pure water is 1480 m/s; however, even a tiny concentration of small
bubbles can drastically lower this value, thus slowing down the propagation of pressure waves in the
liquid. Henceforth, we assume a homogeneous and isotropic distribution of monodispersed bubbles,
enabling us to represent the system as an equivalent medium in which the effective speed of sound
ce is given as a function of the volume fraction of the dispersed bubbly phase αg [19,34],

1

c2
e

= [αgcg + (1 − αg)cl ]

[
αg

ρgc2
g

+ 1 − αg

ρl c2
l

]
, (9)
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(a) (b)

FIG. 3. (a) The dramatic decrease in the effective speed of sound for a mixture of liquid and dispersed gas is
shown as a function of the volume fraction of the gas phase αg given by Eq. (9). The point obtained by matching
Ay from experiments and numerical simulations is shown by a black cross, and its coordinates are specified
in parentheses. (b) The tiny fragmented bubbles seen during the cavitation experiments are highlighted with
red circles along with the bigger bubbles nucleating from the pits for the cases of two pits (top) and five pits
(bottom). The scales in the top left corners of the top and bottom panels is 40 µm.

where cl and cg are the speeds of sound in pure liquid and in the gas phase, respectively. In Fig. 3(a),
Eq. (9) is plotted on a log-log scale, showing that a tiny volume fraction (αg ∼ 10−3) of dispersed
microbubbles can decrease the speed of wave propagation to a few hundred meters per second.
These microbubbles can nucleate due to rarefaction waves and/or can also result from the bubble
fragmentation during a series of experiments carried out at very short time intervals (∼1 µs). It
must be stated that these experiments were rapidly repeated to capture the images of bubbles from
the consecutive experiments using the stroboscopy technique (owing to the high reproducibility).
Additionally, in Fig. 3(b), we show the presence of extremely small bubbles of the order of 1 µm in
the liquid. In numerical simulations, we model the effect of these small 1 µm bubbles by assuming
a lower effective speed of sound compared to that of pure water in the bulk phase.

Equation (9) is applicable when the pulse has a small amplitude and a characteristic frequency
much smaller than the bubble’s resonance frequency (ωp/ωb � 1). In the experiments, the size
of the fragmented small bubbles is of the order of 1 µm, and the characteristic timescale of the
pressure pulse (duration of negative pressure) is approximately 5 µs, resulting in a small frequency
ratio ωp/ωb ≈ 0.037. It is also important to note that the theory assumes a homogeneous dispersion
of gas in liquid, while in experiments, the gas concentration can vary locally. Both nonlinear effects
and concentration gradients will certainly introduce some uncertainties in the simplified model used
here. Nonetheless, we can safely assume that the experiments were done in a regime where the
results were significantly influenced by the presence of very small amounts of the gas in the bulk
phase and the resulting microbubbles due to the experimental procedure of repetitively sending the
rarefaction waves through the liquid.

We will begin by discussing the numerical results for four different cases obtained with combi-
nations of pit distances d ∈ {200, 400} µm and effective speeds of sound ce ∈ {500, 1500} m/s. The
radii of the nuclei in these simulations are fixed to 20 µm. In Figs. 4(a) and 4(b), we show top view
snapshots of the bubbles at various times for d = 200 and 400 µm, respectively. The left column in
each panel corresponds to ce = 1500 m/s, while the right column corresponds to ce = 500 m/s. The
isobars are depicted with color contours. The pressure pulse travels in the y direction, resulting in a
pressure drop that causes the rapid expansion of the bubbles and their subsequent collapse at the end
of the pulse. For both d = 200 and 400 µm, the bubble shapes observed in experiments (Fig. 1) are
better represented by the numerical results for ce = 500 m/s, especially during the collapse stage,
when the bubbles exhibit an asymmetric behavior that is insignificant for ce = 1500 m/s.
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(a) (b)

(c)

(d)

FIG. 4. Comparison of the numerical results for two different values of the effective speed of sound, i.e.,
ce = 1500 m/s and ce = 500 m/s. The bubble pair evolves from hemispherical nuclei with radii of 20 µm.
In (a) and (b), the top view of the bubble shape and pressure field are displayed at subsequent times shown.
(a) Separation distance d = 200 µm between the nuclei, with ce = 1500 m/s on the left and ce = 500 m/s on the
right. (b) Separation distance d = 400 µm between the nuclei, with ce = 1500 m/s on the left and ce = 500 m/s
on the right. (c) A particular snapshot showing the definition of the asymmetry parameter Ay(t ), which is
defined as the shift of the bubble centroid in the y direction. (d) The time evolution of Ay(t ) obtained from
the numerical simulations for all the cases discussed in (a) and (b) along with a comparison with experimental
data. The error bars are equal to one pixel size (1.53 µm) in the experiment snapshots.

In order to quantify the asymmetric response of the bubbles, we define the asymmetry parameter
Ay(t ) as the shift of the bubble’s centroid in the direction of motion of the pressure pulse, such
that Ay(t ) = yc(t ) − y0, where yc(t ) is the bubble’s centroid at an instant t [see Fig. 4(c)]. The
numerical results (lines) shown in Fig. 4(d) reveal that when the wave approaches the bubbles, the
latter experience a negative pressure gradient and hence a force towards the negative y direction
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and thus negative values of Ay(t ). Successively, as the pressure rises back to ambient values, the
gradient of pressure becomes positive, and hence, the direction of the force applied by the wave
on the bubbles and Ay(t ) change signs. Clearly, the experimentally observed asymmetric response
(dots) of the bubbles is better captured numerically by ce = 500 m/s.

We will now explore in detail the influence of the speed of sound and the initial bubble radii on
the asymmetry in the following sections.

A. Effect of the speed of sound

We consider the particular case of a pair of hemispherical nuclei with radii R0 = 20 µm, separated
by a distance d = 200 µm, and vary ce from 208 to 3333 m/s. Then, we analyze the temporal
evolution of the asymmetry parameter Ay(t ) for different values of ce [see Fig. 5(a)]. The evolution
of Ay(t ) is similar in all the cases and varies as described before. The experimental measurement
of Ay(t ) (black crosses) is also plotted to compare with our numerical results. It is found that
ce ≈ 500 m/s best reproduces the asymmetry in the experiments, which had motivated the choice
of this value of ce in Fig. 4. The inset of Fig. 5(a) shows a comparison between the numerical
(red points) and experimental bubble shapes at t = 22 and 23 µs, confirming that the choice is a
good fit.

As discussed in the Introduction (Sec. I), during the expansion phase, the asymmetry can be the
result of force induced by a pressure pulse on the bubbles or by each bubble on its neighbor. But
since the problem is symmetric in the y-z plane, the pressure gradient due to the neighboring bubble,
acting in the x direction, is expected to have a negligible effect on Ay. Therefore, we postulate that
the force due to the finite length scale of the pressure pulse Lp is the main asymmetry mechanism
during the expansion process. The component of this force in the y direction Fy at a given instant is

Fy(t ) � −Vb
∂ p

∂y
≈ −Vb

�p

Lp
, (10)

where Vb is the bubble volume. In writing this expression, we assume that the pressure induced by
the pulse varies linearly in the y direction. Equation (10) therefore states that a reduction in the pulse
length Lp (∝ ce) yields stronger pressure gradients and thus a stronger force. This leads to a more
pronounced asymmetry, as observed in Fig. 5(a). We assume that the motion of the bubble centroid
scales with the force Fy as

Fy(t ) ∼ ρb,0Vb,0Ay(t )

T 2
p

, (11)

which can be interpreted as Newton’s second law for the motion of the bubble centroid. We obtain
from Eqs. (10) and (11) that the asymmetry parameter scales as

Ay(t ) ∼ − Lp

ρb,0

�p

c2
e

∼ − Tp

ρb,0

�p

ce
. (12)

In Fig. 5(b), we plot the evolution of nondimensional Ay, obtained using the scaling given by
Eq. (12), as a function of the dimensionless time t∗ = tUc/R0, where Uc = √

�p/ρl . The curves for
the different values of ce nicely collapse, pointing out the influence of the pressure gradient on the
development of the asymmetry, especially during the expansion phase (t∗ � 6.5). Some differences
are detectable during the collapse phase (t∗ � 6.5) that can be attributed to the RT instability, which
is known to grow when the liquid decelerates during the collapse phase (Ṙ < 0, R̈ > 0). Figure 5(c)
shows that the maximum value of the asymmetry max(Ay) also varies inversely with the effective
speed of sound (∝c−1

e ), similar to the instantaneous Ay(t ) predicted by Eq. (12). The bubble shapes
at the instant of maximum asymmetry (t ≈ 11.5 µs) are also shown in Fig. 5(c) for different values
of ce.

We now discuss the effect of the asymmetry on the well-known jets which form during the
collapse of the interacting bubbles [4,35,36]. Indeed, during the last stages of the collapse, the
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(a) (b)

(c)

(d)

(e)

FIG. 5. Effect of the effective speed of sound on the asymmetry for the particular case where the bubbles are
nucleating from a pair of hemispherical nuclei with radii of 20 µm separated by a distance d = 200 µm. (a) The
time evolution of Ay is shown for different values of the effective speed of sound (color map), alongside the
experimentally obtained values (black crosses). The experimental bubble shapes overlaid with their numerical
counterparts (red dots) at t = 22 and 23 µs are illustrated in the inset. (b) The evolution of the dimensionless
Ay(t ) as a function of dimensionless time (t∗ = tUc/R0) obtained using the scaling predicted from Eq. (12) for
different values of ce. (c) The maximum value of the asymmetry parameter max(Ay ) is plotted on a log-log
scale as a function of the effective speed of sound along with the experimental point where its ce is obtained
by matching max(Ay ) with the numerical data. A fit of all data (dashed line) is also plotted to demonstrate that
max(Ay ) decays like c−1

e as predicted by Eq. (12) for given Tp. (d) The bubble shapes at the instant of max(Ay )
are shown for different effective speeds of sound in the liquid. (e) Semitransparent bubble shapes are shown to
visualize the jet generated during the last stages of collapse, whose direction is highlighted with red arrows.

bubble pair forms liquid jets parallel to the wall, as shown in Fig. 5(e). The direction of these
jets is a function of the asymmetry, as highlighted with the arrows. At sufficiently small values
of Ay, the jets are directed along the x direction. However, for large values of Ay, the jets shift
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(a) (b)

FIG. 6. The numerical results for the particular case where the effective speed of sound is assumed to be
333 m/s and d = 200 µm for varying R0. (a) The time evolution of the asymmetry parameter Ay(t ) is shown
for different sizes of nuclei depicted with the color map. A zoomed-in view around max(Ay ) is shown in the
inset. (b) The value of max(Ay ) corresponding to the maximum in (a) is plotted as a function of the sizes of
the nuclei. The color code in (a) and (b) characterizes the radii of nuclei R0.

towards the direction of the propagation of the pressure pulse (y axis). The jets themselves were
not directly visible in the experiments of Bremond et al. [4,5]; however, the observed kinks in the
bubble interface in the experimental images [for instance, the left panel of Fig. 1(a) at 22 s] serve as
indicators of the presence of these jets in experiments.

B. Effect of the nuclei radii

The experiments discussed by Bremond et al. [4] were performed for cylindrical pits, yet the
bubble evolution could be adequately predicted from a Rayleigh-Plesset model assuming hemi-
spherically shaped nuclei. The radii R0 of these nuclei were calculated from the pit diameter D and
height H as R0 = (3HD2/8)1/3, which gives R0 ≈ 5 µm. However, in the current study, we could not
initialize nuclei smaller than 20 µm in radius due to limited computational resources. For a single
bubble, changing the initial radius from 5 to 20 µm for a fixed pressure pulse does not significantly
affect the temporal evolution of the bubble radius (see Fig. 3(a) of Ref. [4]). In order to understand
the effect of the nuclei radii on the asymmetry in multibubble cavitation, we performed a parametric
study for the case where a pair of nuclei are separated by a distance d = 200 µm with ce = 333 m/s
while varying the initial radii R0 in the range (20, 50) µm. The evolution of asymmetry Ay(t ) and the
maximum value of the asymmetry max(Ay) are shown in Figs. 6(a) and 6(b), respectively. Similar
to the bubble radius evolution in the case of a single bubble, the asymmetry Ay(t ) varies slightly
with the size of the nuclei; thus, its effect is secondary in comparison to the effect of the effective
speed of sound ce. The maximum asymmetry max(Ay) increases with decreasing nuclei size and
saturates for smaller R0. This behavior is likely due to the increased shielding effect caused by the
neighboring bubbles, which becomes increasingly important for larger nuclei at a fixed interbubble
distance d . If we extrapolate these results to 5 µm nuclei, the result would indicate that the previous
values of ce are underestimated, implying that the asymmetry in the experiments could be explained
by even smaller gas concentrations.

IV. MULTIPLE BUBBLES

We now consider the cases with five bubbles arranged in a line and with a cluster of 37 bubbles
arranged in a hexagonal pattern [4,5]. Like before, we investigate the influence of the effective speed
of sound ce on the asymmetry by fixing R0 = 20 µm and finding the values of ce that compare best
with the experimental data.
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(a)

(b)

FIG. 7. (a) Top view of the five bubbles in a straight line configuration, as discussed in Ref. [4]. The
numerical results are shown in the left panel, where the bubble expands from 20 µm hemispherical nuclei and
the effective speed of sound is set to 667 m/s. The experimental bubble shapes are shown in the right panel.
(b) The evolution of the asymmetry parameter Ay(t ) obtained from the numerical simulations (solid line) and
the experiments (crosses). The error bar is equal to one pixel size (i.e., 1.53 µm) in the experiment snapshots.

In the case of the five bubbles, the best correspondence between the numerical and experimental
results is obtained for ce = 667 m/s. In Fig. 7(a), we show the top views of both experimental and
numerical bubble shapes in the left and right panels, respectively. The snapshots exhibit very similar
bubble dynamics, except at t = 4 µs, where the numerical bubbles are comparatively bigger due to
the difference in the initial radii. Like for the bubble pair, we observe deformed bubble shapes during
the collapse stage. We again use the asymmetry parameter Ay to quantify the asymmetry [Fig. 7(b)],
which is shown to match well with the experiments for ce = 667 m/s.

Finally, we investigate the most challenging problem of a cluster of 37 bubbles in a hexagonal
pattern, for which we repeat the same procedure of varying ce for hemispherical nuclei with radii
of 20 µm in order to reproduce the experimental measurements. Remarkably, the largest admissible
value of ce = 1480 m/s is better at reproducing the experimental results than the lower values of
ce. However, the numerical results show good resemblance only during the expansion stage [see
Figs. 8(a) and 1(b)]. The bubble shapes during the collapse phase do not match well the experiments
in which the collapse process is very chaotic and random [see Fig. 1(b)]. In Fig. 8(b) we plot the
asymmetry parameter Ay(t ) as a function of time. Consistent with our previous observations, the
value of Ay(t ) computed from the numerical simulations changes sign during the collapse phase,
whereas that is not observed in the experimental data, where Ay remains negative. Furthermore, the
agreement is not as satisfactory as in the previous cases.

It is noteworthy that the effective speed of sound required to replicate the experiments with
a small number of bubbles (500 m/s in the case of bubble pairs, 667 m/s in the case of bubble
quintets) was significantly lower than the speed of sound in clean water without bubbles (1480
m/s). The reason for this lies in the presence of the many small microbubbles which emerged from
prior cavitation events. It is nearly impossible to quantitatively model these bubbles due to the
poor quantitative reproducibility. We expect the concentration of these microbubbles to be higher
in the liquid volume surrounding the pits due to the continuous fragmentation of the bubbles over
successive experiments and to decrease quickly with the distance. Assuming that (1) the number
of bubbles produced by fragmentation is proportional to the number of bubbles Nb and (2) the
overall response of the bubble cluster is mainly influenced by the effective compressibility of the
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(a)

(b)

FIG. 8. (a) Top view of the cluster of 37 bubbles in a hexagonal arrangement expanding from 20 µm
hemispherical nuclei. The effective speed of sound in the liquid is 1480 m/s. Isobars are shown with a color
map. (b) The evolution of the asymmetry parameter Ay(t ) obtained from the numerical simulations (solid line)
and the experiments (crosses).

medium at a distance that scales with the characteristic length of the bubble cluster Lc, we find
that the effective concentration of tiny bubbles in the medium surrounding the region with pits
is inversely proportional to a power law of the number of bubbles Nb with a positive power law
exponent. This is probably the reason why, for systems with a large number of bubbles, the influence
of tiny bubbles on the dynamics of the system is less important and approaches that of a pure
liquid.

V. CONCLUSIONS AND OUTLOOK

The asymmetry appearing due to the interaction of cavitation bubbles with the driving pressure
pulse was studied in detail using three-dimensional direct numerical simulations of the compressible
Navier-Stokes equations. The numerical results were compared to the experiments available in
the literature. Our results demonstrate that a lower effective speed of sound in the medium better
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FIG. 9. The time evolution of parameter Ay(t ) is shown for varying values of the numerical slip length for
the bubble pair case. The plot demonstrates the robustness of the results.

represents the experimental observations, particularly the asymmetry induced by the pressure pulse.
This asymmetry is shown to scale with the pressure gradient imposed by the pressure pulse during
the expansion phase. It also influences the direction of the jet generated during the last stages of the
bubble collapse. As a physical justification for the change in the speed of sound, we postulate that
the medium is polluted by small gas bubbles originating from prior cavitation events. A simplified
calculation based on the linear theory of wave propagation indeed suggests that a very small gas
content can influence the results significantly. The effect of the radii of nuclei on the asymmetry
remains secondary to the effect of the speed of sound. The same conclusions are valid for the setup
with five bubbles, but the predicted effective speed of sound in the medium increases. On the other
hand, for the cluster of 37 bubbles the numerical results do not agree well with the experimental
results, which are very chaotic. The effective speed of sound ce computed by the comparison of
experimental and numerical data suggests that in this case direct bubble interactions play a more
important role than the large-scale interactions of the bubble cluster with the pressure pulse. As a
future outlook, one should try to systematically vary the bubble nuclei size or concentration and
perform local measurements of the speed of sound to correlate with the present numerical results.
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APPENDIX: EFFECT OF THE NUMERICAL SLIP LENGTH

We also study the effect of the slip length on the asymmetry (see Fig. 9) for the particular case
of a pair of nuclei with radii R0 = 20 µm separated by d = 200 µm. The speed of sound is set to
ce = 333 m/s, and the slip length λnum is varied in the range (1.1, 17.5) µm. As expected, the effect
of the slip length and the contact line motion is local and does not influence the bubble shapes. This
is an indirect verification that the results discussed in this article are not sensitive to the modeling of
the contact line. Similar conclusions were drawn in Ref. [26] for jetting during the bubble collapse
problem using the current method.
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