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Cuboid drop: A low-dimensional model of drop dynamics on a substrate
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Liquid drops placed on substrates may vibrate, slide, take history-dependent shapes,
and even detach or break up when subjected to external forces. Although CFD tools can
nowadays reproduce these motions, they are affordable for at most a few drops at a time.
This work provides a low-dimensional model of such drops, in which the drop shape is
approximated by a rectangular cuboid. The model results in three ordinary differential
equations per drop. It is sufficiently simple to allow closed-form solutions in a variety
of configurations. By systematically comparing the cuboid predictions to experimental,
numerical, and theoretical results previously obtained with real drops, we discuss the extent
to which the cuboid approximation reproduces the order of magnitude and qualitative
dependence on parameters of a series of phenomena. The latter include natural drop
vibrations, the detachment of pendant drops, multiple drop shapes allowed by contact
angle hysteresis, the nonlinear retraction of drops after spreading, the sliding or climbing
of drops on inclined substrates, and drop-induced damping of substrate vibrations. The
cuboid model therefore provides a low-cost representation of drop motion on a substrate in
response to arbitrarily complex external forcing.

DOI: 10.1103/PhysRevFluids.9.043601

I. INTRODUCTION

Raindrops may impact partially wetting surfaces, such as young plant leaves [1–4] or glass
windows [5,6]. Subsequently, these surfaces may be covered with sessile water drops of various
sizes (Fig. 1). The surfaces often exhibit significant contact angle hysteresis, so the shape of these
drops is not uniquely determined; they may be strongly distorted [7] in a way that depends on
their history [8]. The drops may vibrate, slide on the substrate, or even fragment in response to
various forces, including gravity on an inclined surface [9], wind [5], or mechanical vibrations of
the underlying substrate [10,11]. As they move, they may merge with others and form larger clusters
with complex shapes that will respond differently to external forces [9]. The overall dynamics of
these raindrop residues is complex.

The shape of sessile drops were modeled with various approaches, including geometrical ap-
proximations [12–14] or surface energy minimization [15]. Numerical simulations of drop sliding
were made with various strategies, including with volumes of fluid [16] or through a lubrication
approximation for thin films [17]. These approaches involve the numerical resolution of nonlinear
partial differential equations on a mesh much finer than the drop size. They are appropriate to
reproduce the unsteady motion and interactions of a few drops. However, using them to model
hundreds of such interacting drops (as in Nezlobin et al. [9]) would be very demanding in terms
of numerical resources. Inferring the statistical behavior of, e.g., raindrop residues on a plant
leaf, would require running hundreds of such simulations and is likely out of reach. Alternatively,
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FIG. 1. (Left and center) Sessile raindrop residues on the aerial parts of plants: leaf blade of Acer palmatum
(left), and flower petals of Senecio speciosus Willd. (center). (Right) A sessile drop is modeled by a rectangular
cuboid of length �, width w, and height h, placed on a solid substrate. The face on the substrate is centered in
(x, y, z) = (xG, 0, 0). Positions x = A and x = B correspond to the left and right boundaries of the cuboid drop.
Inertial forces corresponding to accelerations ax (along x) and az (along z) are applied at the center of mass of
the cuboid.

low-dimensional approaches of drop dynamics model each drop with a mass connected to one or a
few linear springs [18–21]. These low-dimensional models were checked to capture the dependence
to parameters, at least qualitatively and in the few drop configurations for which they were designed.
As they only require to solve a few ordinary differential equations per drop, they may be appropriate
for the statistical investigation of the interactions of a large number of drops with a moving substrate.

In this paper, we investigate a low-dimensional model of drop dynamics on solid surfaces, in
which the drop is approximated by a rectangular cuboid (Fig. 1). This simple shape is described
with only two independent variables (length and width, once the volume is fixed) and allows an
immediate analytic evaluation of the potential energy associated to both interfaces and external
forces. Moreover, the internal flows can be modeled in such a way that analytic expressions for both
the kinetic energy and the viscous dissipation are available. Consequently, the drop dynamics can be
obtained by solving the corresponding Lagrange equations. A similar approach was considered by
Molacek and Bush [22]: the drop shape was decomposed in spherical harmonics, but the interaction
with a solid substrate was not considered. In the present work, with only two shape variables, the
rectangular cuboid approximation does only capture two deformation modes and it does not include
drop rocking [19,23]. More modes could be added by considering less regular cuboids, with more
degrees of freedom. However, the flows therein would be harder to model, and less results would be
available in a closed form. The model is described in Sec. II. In Sec. III, it is benchmarked in several
configurations, from static drop shapes to natural vibrations and dynamics on moving substrates.

II. THEORETICAL MODEL

All the variables used in this work are listed in Table I. A sessile liquid drop of constant volume
� is considered, as represented in Fig. 1. Every length of the model is systematically normalized
by �1/3 and every time is normalized by

√
ρ�/σ , where ρ and σ are the density and surface

tension of the liquid, respectively. Consequently, speed, acceleration, force, energy, and power are
normalized by σ 1/2ρ−1/2�−1/6, σρ−1�−2/3, σ�1/3, σ�2/3, and σ 3/2ρ−1/2�1/6, respectively. The
model assumes a laminar flow inside a drop that does not break up, namely, a flow in which inertia
does not dominate other forces. Therefore, it is restricted to a Weber number ρ�1/3V 2/σ � 10 and
a Reynolds number ρ�1/3V/μ � 100, where V is a characteristic speed of the flow inside the drop
and μ is the dynamical viscosity of the liquid. These upper bounds are only orders of magnitude
above which inertial instabilities and liquid breakup are regularly encountered.
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TABLE I. List of variables.

A, B Contact line positions β Oscillation decay rate
as Forced substrate acceleration β̃ β/ω

Cj , Dj , Ej Coefficients γ Surface energy ratio
F Shear function ζ Force per unit length at contact line
f Dimensional substrate frequency η, ξ Perturbations of �, w
g Acceleration of gravity θ Young’s contact angle
h Cuboid height θa, θr Advancing, receding contact angles
Ij Flow integrals κ Substrate stiffness/surface tension
j, m, n Integer indices κ̃ Normalized κ

� Cuboid length � Slip length
�e Cuboid length at equilibrium λ Lagrange multiplier
p, q Lagrange coordinates μ Dynamic viscosity
s Laplace variable ρ Density
t Time σ Surface tension
w Cuboid width χ Substrate mass/drop mass
x, y, z Cartesian coordinates � Contact line dissipation
xG x-position of cuboid center of mass � Cuboid volume
Z Substrate vertical position ω Oscillation frequency
z̃ z/h ωs Forced substrate frequency

Index b At bifurcation ex , ey, ez Unit vectors in cartesian directions
Index i At initial time u, ux , uy, uz Fluid velocity

Box , Boz Bond numbers (external forces) D Dissipation function
Ca Capillary number E Potential energy
Oh Ohnesorge number K Kinetic energy
Õh Normalized Oh L Lagrangian

Axes x and y are in the plane of the substrate, while the axis z is perpendicular to the substrate
(with z = 0 on the substrate). The drop is on the side of the substrate corresponding to z > 0. The
drop is approximated by a rectangular cuboid of dimensionless length � along x, width w along y,
and height h along z. Volume conservation implies �wh = 1 at any time. The center of mass of this
cuboid drop is in (x, y, z) = (xG, 0, h/2). The contact lines (cuboid boundaries on the substrate) are
in x = xG ± �/2 and y = ±w/2.

A. Potential energy

The potential energy comprises the surface energy associated to interfaces and the energy
associated to conservative external forces. We define the surface energy ratio

γ = σSG − σSL

σ
, (1)

where σSG and σSL represent the energy per unit area associated to solid-gas and solid-liquid
interfaces, respectively. The cuboid drop is subjected to inertial forces resulting from accelerations
ax and az, along x and z, respectively. These accelerations include the components of gravity. Once
normalized by σρ−1�−2/3, they correspond to Bond numbers

Box = ρax�
2/3

σ
and Boz = ρaz�

2/3

σ
. (2)

The potential energy, normalized by σ�2/3, is then

E = 2

�
+ 2

w
+ (1 − γ )�w − BoxxG − Boz

2�w
, (3)
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FIG. 2. Velocity profile u inside the cuboid drop, as a function of normalized coordinates (x − xG )/� ∈
[−0.5, 0.5] and z/h ∈ [0, 1], according to Eqs. (4) and (19). The left graph corresponds to the translation of
the cuboid drop (shear flow), while the right graph corresponds to the flattening of the cuboid drop (stagnation
point flow). The general velocity field inside the cuboid includes a linear combination of both shear flow and
stagnation point flow. In both graphs, the function F corresponds to Eq. (19).

where the first two terms represent the surface energy of the liquid-air interface and the third term
represents the surface energy of the solid-liquid interface.

As explained in many textbooks (e.g., Sec. 2.1.4 in Myshkis et al. [24]), the Young-Laplace
law, that relates the local discontinuity of normal stress at the liquid-air interface to the local
mean curvature, is directly derived from the minimization of the potential energy associated to
the interface shape. The cuboid approximation is a strong constraint on the interface shape that may
seem unrealistic. Indeed, the mean curvature (and corresponding pressure jump across the interface)
is uniformly zero on the flat sides of the cuboid, and it is infinite at the cuboid corners. Nevertheless,
we will show that minimizing the potential energy under this cuboid constraint yields a shape with
an aspect ratio that is close to that of real drop shapes.

B. Flow pattern and kinetic energy

To predict the cuboid drop dynamics, we need to estimate how much kinetic energy corresponds
to the flows generated by the cuboid drop motion and vibration. Solving the full 3D unsteady
Navier-Stokes equations does not seem possible analytically, even for a cuboid liquid shape.
Therefore, we aim at building an ad hoc flow velocity profile u(x, y, z, t ) = uxex + uyey + uzez that
satisfies at least the continuity equation (∇ · u = 0, as the flow is assumed incompressible) and
approximates some expected flow patterns. More specifically, we assume that the liquid inside the
cuboid drop experiences a stagnation-point flow associated to changes of dimensions (proportional
to �̇ or ẇ) and a translation associated to sliding in the x direction (proportional to ẋG). Including
some translation and corresponding shear flow in the y direction would be straightforward. The
corresponding velocity field is a linear combination of shear flow and stagnation-point flow, namely,

ux =
[

ẋG + �̇

�
(x − xG)

]
dF

dz̃
, uy = ẇ

w
y

dF

dz̃
, uz = −

(
�̇

�
+ ẇ

w

)
hF (z̃), (4)

where F (z̃) is a function of z̃ = z/h that results from the shear induced by the substrate (no-slip
condition). The shear and stagnation-point contributions to the velocity profile of equation (4) are
represented in Fig. 2. Flow recirculation, as observed, e.g., in rolling drops on superhydrophobic
substrates [25] is here neglected.
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The no-slip boundary condition on the solid substrate yields

lim
z→0

u = 0 ⇒ lim
z̃→0

dF

dz̃
= 0. (5)

The no-shear boundary condition at the free surface in z = h yields

lim
z→h

∂ux

∂z
= lim

z→h

∂uy

∂z
= 0 ⇒ lim

z̃→1

d2F

dz̃2
= 0. (6)

The kinematic condition at this free surface yields

lim
z→h

uz = ḣ ⇒ F (1) = 1. (7)

The boundary condition on the lateral faces of the cuboid drop should ideally be

lim
x→xG±�/2

ux = ẋG ± �̇

2
, lim

y→±w/2
uy = ± ẇ

2
. (8)

However, owing to the presence of shear, the velocity field of Eq. (4) cannot exactly satisfy these
boundary conditions. For a real drop, there should be some additional flow in the z direction that
redistributes the fluid around the lateral boundaries. Modeling these flows intimately associated to
contact line dynamics is still very challenging [26] and beyond the scope of this work. Nevertheless,
the condition F (1) = 1 ensures that the boundary conditions on the lateral faces are satisfied on
average over z, namely,

lim
x→xG±�/2

1

h

∫ h

0
uxdz = ẋG ± �̇

2
, lim

y→±w/2

1

h

∫ h

0
uydz = ± ẇ

2
. (9)

There is no need for a local dynamic boundary condition associated to the normal stress
discontinuity across the liquid-air interface. Indeed, the local stress and its influence on the velocity
field through the Navier-Stokes equations are not considered here. By ensuring a global balance
of momentum at the cuboid scale, the Lagrange equations will effectively replace this dynamic
condition. The model may also be extended to include pressure and shear stress that would be
applied to the drop boundaries (e.g., from some wind pushing and shearing the droplet). The surface
integral of the pressure would be taken into account as a contribution to Box and Boz (this is valid
provided that the drop motion does not significantly modify this pressure in return), while the shear
stress would be included directly in Eq. (6).

The kinetic energy associated to this flow, again normalized by σ�2/3, is

K =
∫ xG+�/2

xG−�/2
dx

∫ w/2

−w/2
dy

∫ h

0

u · u
2

dz = I1

2

(
ẋ2

G + �̇2 + ẇ2

12

)
+ I2

2�2w2

(
�̇

�
+ ẇ

w

)2

, (10)

with

I1 =
∫ 1

0

(
dF

dz̃

)2

dz̃, I2 =
∫ 1

0
F 2dz̃. (11)

C. Viscous dissipation

The viscous dissipation in a drop comprises a contribution from the shear in the bulk, and another
contribution from the shear at the moving contact line [27,28]. The dissipated power in the bulk,
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normalized by σ 3/2ρ−1/2�1/6, is given by

Dbulk = Oh
∫ xG+�/2

xG−�/2
dx

∫ w/2

−w/2
dy

∫ h

0
dz

·
[

2

(
∂ux

∂x

)2

+ 2

(
∂uy

∂y

)2

+ 2

(
∂uz

∂z

)2

+
(

∂ux

∂z

)2

+
(

∂uy

∂z

)2
]

= Oh

[
4I1

(
�̇2

�2
+ ẇ2

w2
+ �̇ẇ

�w

)
+ I3�

2w2

(
ẋ2

G + �̇2 + ẇ2

12

)]
, (12)

where

I3 =
∫ 1

0

(
d2F

dz̃2

)2

dz̃, (13)

and where Oh = μ/
√

ρσ�1/3 is the Ohnesorge number. Velocity derivatives that are identically
zero are not explicitly written in Eq. (12). The dissipation at the contact line depends on a
characteristic slip length � ∼ 10 nm at which the contact line singularity is resolved [29]. It is
here modeled in a way similar to Huh and Scriven [27], Kim et al. [29]:

DCL = Oh�(θ )
4wẋ2

G + w�̇2 + �ẇ2

4
, (14)

where θ is the contact angle and

�(θ ) = sin2 θ

θ − sin θ cos θ
ln

(
�1/3

�

)
. (15)

Millimeter-sized drops are considered in this work, for which �1/3 ∼ 105�. Therefore, it is assumed
that

ln

(
�1/3

�

)
= 11.5.

Changing either � or �1/3 by a factor of 10 would only change � by 20%. The total dissipation is

D = Dbulk +DCL. (16)

D. Shear function F(z̃)

We propose a polynomial shear function that satisfies the boundary conditions (5) to (7):

F (z̃) = 1 − n

n − 1
(1 − z̃) + (1 − z̃)n

n − 1
, (17)

with n ∈ N, n � 3. It also satisfies

lim
z̃→1

d (m)F

dz̃(m)
= 0, m ∈ [2, n − 1].

Higher values of n yield more uniform velocity profiles around z = h, and consequently more shear
at the wall in z = 0. The integrals involved in Eqs. (11) and (13) are

I1 = 2n

2n − 1
, I2 = n2(2n + 5)

3(n + 1)(n + 2)(2n + 1)
, I3 = n2

2n − 3
. (18)
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The case n = 3, which is considered in the remainder of this work, corresponds to the simplest
polynomial that satisfies all boundary conditions,

F (z̃) = z̃2

2
(3 − z̃). (19)

It yields I1 = 6/5, I2 = 33/140, and I3 = 3. Another, more realistic, choice for F (z̃) could be
the function describing a Hiemenz flow (stagnation-point flow with boundary layer). This flow
profile would satisfy the Navier-Stokes equations, at the condition that the flow is steady (i.e.,
∂t ux = ∂t uy = ∂t uz = 0). However, F would have to be calculated by solving an ordinary differential
equation and analytic solutions could not be sought anymore.

E. Lagrange equations

The LagrangianL = K− E is a function of the generalized coordinates (xG, �,w) and their time
derivatives. The possible pinning of contact lines translates into constraints on these coordinates, that
are expressed more easily if the generalized coordinates actually correspond to the position of the
contact lines. Therefore, we prefer the generalized coordinates qj = (A, B,w), where A = xG − �/2
and B = xG + �/2 correspond to the positions of the left and right contact lines along the x axis,
respectively.

Lagrange’s equations are

d

dt

(
∂L
∂ q̇ j

)
= ∂L

∂q j
− ∂D

∂ q̇ j
− λ j p j, (20)

where p j = (w,w, �), is the length of the contact line associated to qj , and λ j is the force per
unit length exerted at that contact line (counted positive in the direction of decreasing qj), owing to
contact angle hysteresis. The Lagrange equations ensure that momentum variations at the drop scale
obey Newton’s second law, even though the chosen velocity profile does not satisfy local momentum
balance (Navier-Stokes equations). Each Lagrange equation must be customized, depending if the
corresponding contact lines are pinned or not. When the contact lines associated to qj are pinned,
λ j is adapted to guarantee that q̇ j = q̈ j = 0. When these contact lines move, λ j = ζ sign(q̇ j ), where
ζ > 0 is the magnitude of the force per unit length exerted by the moving contact line. The
customized equations (20) can be integrated in time until any contact line changes regime (between
pinned, advancing and receding). Then equations (20) must be customized again according to the
new contact line conditions.

To illustrate this, we consider the example of a pinned contact line in x = B, an advancing contact
line in x = A (i.e., Ȧ < 0) and advancing contact lines in y = ±w/2 (i.e., ẇ > 0). The equations to
be solved are then[

Ä
ẅ

]
=

[
∂2L
∂Ȧ2

∂2L
∂Ȧ∂ẇ

∂2L
∂Ȧ∂ẇ

∂2L
∂ẇ2

]−1([
∂L
∂A − ∂D

∂Ȧ
+ ζw

∂L
∂w

− ∂D
∂ẇ

− ζ�

]
−

[
∂2L
∂A∂Ȧ

∂2L
∂w∂Ȧ

∂2L
∂A∂ẇ

∂2L
∂w∂ẇ

][
Ȧ
ẇ

])
,

λB = 1

w

(
∂L
∂B

− ∂D
∂Ḃ

−
[

∂2L
∂Ȧ∂Ḃ

∂2L
∂ẇ∂Ḃ

][
Ä

ẅ

]
−

[
∂2L
∂A∂Ḃ

∂2L
∂w∂Ḃ

][
Ȧ
ẇ

])
, (21)

with Ḃ = B̈ = 0. These equations can be integrated in time until any contact line changes regime.
The contact line in x = B will remain pinned as long as |λB| < ζ and unpinning will occur when
|λB| → ζ . Contact lines in x = A and y = ±w/2 will possibly become pinned as soon as they stop,
i.e., as soon as Ȧ → 0 or ẇ → 0, respectively.

F. Numerical implementation

The Lagrange equations (20) were solved in Matlab. First, the functions of (A, B,w) involved in
these equations were calculated symbolically. Then the resulting Lagrange equations were solved
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FIG. 3. Region of existence of equilibrium positions in a (Boz, γ ) diagram. The curves represent the
maximal Bond number Bozb beyond which no equilibrium can be found, for the cuboid drop (thin red line)
and for an axisymmetric drop (solution of Young-Laplace equation—thick black line). The shape of the liquid
interface is represented for five points (black dots) corresponding to different pairs (Bo, γ ), for the cuboid drop
(light red boxes) and for the axisymmetric drop (black lines). The solid (respectively, dotted) lines correspond
to stable (respectively, unstable) solutions of the Young-Laplace equation.

numerically, thanks to the function ode45 and the associated event detection tool. The script is
given in Supplemental Material [30].

III. TEST CASES

In the remainder of this work, several test cases are considered to compare the predictions of the
cuboid drop to either experimental or theoretical results obtained for real drops.

A. Static cuboid drop, Box = 0, ζ = 0

The first considered equilibrium case is a static cuboid drop (ẋG = �̇ = ẇ = 0), only submitted to
external forces normal to the substrate (Box = 0) and without any contact angle hysteresis (ζ = 0).
At equilibrium, the Lagrange equations reduce to ∂E/∂� = ∂E/∂w = 0. Since E is symmetric, the
equilibrium solutions must satisfy (�,w) = (�e, �e ), where �e is a positive root of the fourth-order
polynomial

P(�) ≡ 2(1 − γ )�4 − 4� + Boz, P(�e ) = 0. (22)

This polynomial P(�) has only one minimum, in

�b ≡ [2(1 − γ )]−1/3 > 0. (23)

Consequently, equilibrium solutions can only be found when

Boz < Bozb ≡ 3

[2(1 − γ )]1/3
. (24)

The Bond number Bozb corresponds to a saddle-node bifurcation. As it physically represents the
moment where inertial forces outbalance capillary forces, it may be seen as the analog of some
Rayleigh-Taylor instability threshold. It is represented in Fig. 3 as a curve that delimits the region of
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existence of equilibrium solutions in the two-dimensional diagram (Boz, γ ). In the same figure, the
equilibrium shapes of the cuboid drops are shown for different pairs (Boz, γ ). They are compared
to the solutions of the axisymmetric Young-Laplace equation, which correspond to the shapes of
the liquid interface that exactly minimizes the free energy (cf. Supplemental Material [30]). The
cuboid approximation is relatively close to the exact interface shape, and its aspect ratio varies
consistently with either γ or Boz. The bifurcation curve associated to the Young-Laplace equation is
qualitatively similar to that of the cuboid drops: in both cases, Bozb is a monotonically increasing
function of γ that is close to Bozb � 2.3 for γ = 0, and equilibrium shapes can only be found
for Boz < Bozb. However, the cuboid approximation provides solutions to drops accelerated away
from a hydrophobic substrate (Boz > 0, γ < 0) while the Young-Laplace equation does not always
have some. Real drops in the same conditions (e.g., pendant drops) would simply detach from the
substrate. Conversely, the maximum Boz at which equilibria can be found for drops accelerated
away from a hydrophilic substrate is significantly underestimated by the cuboid approximation.
Finally, the cuboid approximation predicts an unphysical divergence of Bozb at γ → 1.

In the particular case of Boz = 0 (no acceleration), the equilibrium solution of the cuboid drop is
given by

�e = �0 ≡
[

2

1 − γ

]1/3

. (25)

The analog of contact angle for a cuboid drop is therefore

cos θ = γ = 1 − 2

�3
e

. (26)

The corresponding aspect ratio is

h

�
= 1 − γ

2
. (27)

This function is very close to the aspect ratio of a real drop, which in similar conditions would be
shaped as a spherical cap (cf. Supplemental Material [30]).

Normalizing Eq. (22) by 4�0 yields

Boz

4�0
= �e

�0
−

(
�e

�0

)4

. (28)

This polynomial relation between �e/�0 and Boz/(4�0) is represented in Fig. 4, together with the
similarly normalized solutions of the Young-Laplace equation (assuming that � is equivalent to the
diameter at the drop basis, cf. Supplemental Material [30]). The equilibrium curve of the cuboid
drop described by Eq. (28) is remarkably close to the envelope of the Young-Laplace solutions.

B. Cuboid drop stability and vibrations, Box = 0, ζ = 0

The linear stability of the aforementioned equilibria can be inferred from perturbations � =
�e(1 + η), w = �e(1 + ξ ), with |η| 	 1 and |ξ | 	 1 [31]. The linearized Lagrange equations are[

C1 C2

C2 C1

][
η̈

ξ̈

]
+ Oh

[
C3 C4

C4 C3

][
η̇

ξ̇

]
+

[
C5 C6

C6 C5

][
η

ξ

]
=

[
0
0

]
, (29)

with

C1 = I1

12
+ I2

�6
e

, C3 = 8I1

�2
e

+ I3�
4
e

6
+ ��e

2
, C5 = 2(1 − γ ),

C2 = I2

�6
e

, C4 = 4I1

�2
e

, C6 = 2(1 − γ ) − 2

�3
e

.
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FIG. 4. Equilibrium solutions as a function of the Bond number. The red curve represents the equilibrium
length � = �e of the cuboid drop, normalized by the solution �0 obtained at Boz = 0. The solid (respectively,
dashed) part of this curve corresponds to stable (respectively, unstable) solutions. The black dots represent the
solutions of the Young-Laplace equation in the full range γ ∈ [−1, 1], assuming that the diameter at the drop
basis is equivalent to � (cf. Supplemental Material [30]).

These differential equations admit solutions of the form η = ηiest and ξ = ξiest , where s is a Laplace
variable and (ηi, ξi ) are the initial perturbation amplitudes. The latter are not identically zero if s is
a complex solution of either

(C1 − C2)s2 + Oh(C3 − C4)s + (C5 − C6) = 0 (30)

or

(C1 + C2)s2 + Oh(C3 + C4)s + (C5 + C6) = 0. (31)

Equation (30) corresponds to antisymmetric perturbations η = −ξ , while Eq. (31) corresponds to
symmetric perturbations η = ξ . These vibration modes are illustrated in movies 1 and 2, available
in the Supplemental Material [30]. Antisymmetric perturbations are overdamped when the discrim-
inant of Eq. (30) is positive, namely when

Oh2 >
4(C1 − C2)(C5 − C6)

(C3 − C4)2
, (32)

and they are underdamped otherwise. In the latter case, s = −β + iω, the decay rate is

β = Oh

[
24

�2
e

+ I3

I1
�4

e + 3��e

I1

]
, (33)

and the squared natural frequency is

ω2 = 24

I1�3
e

− β2. (34)

In any case, equilibrium solutions are always linearly stable to antisymmetric perturbations. The
damping of symmetric perturbations depends on the sign of

C5 + C6 = 4(1 − γ ) − 2

�3
e

. (35)
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When C5 + C6 > 0, symmetric perturbations are overdamped when

Oh2 >
4(C1 + C2)(C5 + C6)

(C3 + C4)2
(36)

and underdamped otherwise. In the latter case, s = −β + iω, the decay rate is

β = Oh
12I1
�2

e
+ I3

6 �4
e + ��e

2
I1
12 + 2I2

�6
e

, (37)

and the squared natural frequency is

ω2 =
4(1 − γ ) − 2

�3
e

I1
12 + 2I2

�6
e

− β2. (38)

When C5 + C6 < 0, the discriminant of Eq. (31) is always positive, and one of the real solutions s is
positive, so symmetric perturbations grow exponentially. The equilibrium solutions corresponding
to

�3
e <

1

2(1 − γ )
(39)

are therefore unstable. The case C5 + C6 = 0 corresponds to the previously discussed saddle-node
bifurcation. Beyond the bifurcation point, the symmetric perturbation grows exponentially, which
yields an infinite cuboid elongation in the direction normal to the substrate. A real drop in similar
conditions would break into one or several droplets [32].

The symmetric perturbation is analog to the zonal vibration mode of a sessile drop corresponding
to the spherical harmonic Y 0

2 [33]. Similarly, the antisymmetric perturbation is analog to the sectoral
vibration mode of a sessile drop corresponding to the spherical harmonic Y 2

2 . However, a sessile drop
may exhibit a variety of other vibration modes [34] that, by definition, cannot be captured by the
cuboid model. These missed modes include the rocking mode Y 1

2 , as well as modes Y m
� with � > 2,

m ∈ [−�, �].
The natural frequencies predicted for the cuboid drop by Eqs. (34) and (38) are compared to

the corresponding frequencies for a sessile drop in Figs. 5 and 6. Those sessile drop frequencies
are mostly obtained from numerical simulations of an inviscid sessile drop (Zhang et al. [35] and
previous studies cited therein). We could also find one experimental study [36] that considered
sessile drop vibrations with a sufficiently low contact angle hysteresis (and therefore a freely moving
contact line) [37]. These experiments were made at γ � −0.95 for variable drop volume (i.e.,
variable Boz < 0). In Fig. 5, data from Mettu and Chaudhury [36] are extrapolated to Boz → 0.

The variations of ω with γ and Boz are always qualitatively reproduced by the cuboid model. In
particular, Fig. 5 confirms that: (i) the dimensionless frequency of the zonal mode (2,0) increases
with γ for γ � 0.3, experiences a maximum ω ∼ 4 at γ ∼ 0.3, and decreases for higher γ , and (ii)
the frequency of the sectoral mode monotonically decreases with increasing γ . The experimental
data point at γ � −0.95 is at mid-way between the extrapolation of the numerical prediction of
Zhang et al. [35] and the cuboid prediction. Figure 6 indicates that, for Boz < 0, similarly for
the cuboid prediction and the calculation of Zhang et al. [35], the frequency of the zonal mode
increases with increasing |Boz| (except for γ = √

2/2 where Zhang et al. [35] predicts a slightly
decrease), while those of sectoral modes decrease with increasing |Boz|. In the particular case of
γ = 0 and Boz = 0, a real sessile drop would take the shape of a hemisphere, and the corresponding
Rayleigh frequency would be ω = 4

√
π/3 � 4.1 for both modes. For the cuboid drop in the same

conditions, the symmetric mode yields ω = √
840/61 � 3.7 and the antisymmetric mode yields

ω = √
10 � 3.2.

043601-11



TRISTAN GILET

FIG. 5. Variation of the natural frequency ω of a sessile drop with γ , for Boz = 0. Red lines correspond to
cuboid drops, while dark blue lines correspond to the numerical solution of Zhang et al. [35] for real drops.
Thick lines represent the zonal (2,0) mode, while thin lines represent the sectoral (2,2) mode. The dark blue
dot corresponds to the experimental data from Mettu and Chaudhury [36].

C. Contact angle hysteresis

Contact angle hysteresis is defined as the difference between the contact angle θa of advancing
contact lines, and the contact angle θr of receding contact lines. It was here indirectly introduced in

FIG. 6. Variation of the natural frequency ω of a sessile drop with the Bond number Boz, relative to the
frequency ω0 at Boz = 0. Red lines correspond to cuboid drops, while dark blue lines correspond to the
numerical solution of Zhang et al. [35] for real drops. Thick lines represent the zonal (2,0) mode, while thin
lines represent the sectoral (2,2) mode. Solid, dashed, and dash-dotted curves correspond to γ = √

2/2, γ = 0
and γ = −√

2/2, respectively.
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FIG. 7. Region of the phase space (�, w) in which a cuboid drop remains static thanks to contact angle hys-
teresis, for Boz = 0, γ = 0 and ζ = 0.1. Thick lines are exact solutions of Eq. (40) while thin lines correspond
to the approximate solutions (41). The dark blue (respectively, red) lines represent variations of λ� ∈ [−ζ , ζ ]
(respectively, λw ∈ [−ζ , ζ ]). Solid blue (respectively, red) lines correspond to λw = 0 (respectively, λ� = 0).
Dashed blue (respectively, red) lines correspond to λw = ζ (respectively, λ� = ζ ). Dotted blue (respectively,
red) lines correspond to λw = −ζ (respectively, λ� = −ζ ).

Lagrange equations (20) thanks to an additional force per unit length λ applied at the contact line.
Values of λ in the range ] − ζ , ζ [ correspond to pinned contact lines, while λ = ζ (respectively,
λ = −ζ ) corresponds to an advancing (respectively, receding) contact line. The link between ζ , θa

and θr is established in the Supplemental Material [30] for the case of a drop shaped as a spherical
cap. We associate λ� and λw to variations of � and w, respectively. At equilibrium, the Lagrange
equations for � and w are

∂E
∂�

= −λ�w ⇒ (1 − γ + λ�)�2 = 4w − Boz

2w2
,

∂E
∂w

= −λw� ⇒ (1 − γ + λw )w2 = 4� − Boz

2�2
. (40)

Each pair (λ�, λw ) corresponds to a different solution (�,w) of these Lagrange equations, repre-
sented in Fig. 7.

Approximate solutions to Eq. (40) can be obtained in the limit ζ 	 1:

� = �e

[
1 + �6

e (1 − γ )(λw − λ�) − �3
eλw

4�3
e (1 − γ ) − 2

+ O(ζ 2)

]
,

w = �e

[
1 + �6

e (1 − γ )(λ� − λw ) − �3
eλ�

4�3
e (1 − γ ) − 2

+ O(ζ 2)

]
. (41)

In real life, sessile droplets frequently take nonaxisymmetric shapes [7,8]. However, to the best
of our knowledge, the range of length � and width w accessible to sessile droplets has not been
systematically determined yet as a function of contact angle hysteresis.

When a cuboid drop starts at rest in a symmetric configuration different from equilibrium,
i.e., with �i = wi 
= �e, it relaxes towards an equilibrium solution within the range defined by
contact angle hysteresis according to Eq. (40). The reached equilibrium position depends on initial
conditions, as shown in Fig. 8 for the specific case γ = 0, Boz = 0, Oh = 0.1, and ζ = 0.1.
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FIG. 8. Time evolution of the length �(t ) of a symmetric cuboid drop (� = w), for different initial
conditions �i, and parameters γ = 0, Boz = 0, Oh = 0.1, and ζ = 0.1. (Inset) Reached equilibrium position
�e as a function of �i. In both the main graph and the inset, the grey shading represents the region in which
cuboid drops may remain static owing to hysteresis. In the inset, each color corresponds to trajectories that are
qualitatively similar to the trajectory represented in the main graph. The dashed line is the bisector �e = �i.

With such relatively high dissipation, cuboid drops that are initially spread more than allowed by
hysteresis (i.e., �i > 1.3) retract monotonously until they reach the receding boundary (λ� = −ζ ).
By contrast, cuboid drops that start from rest with a sufficiently oblong shape (namely, here with
�i < 0.58) may still spread beyond the hysteresis region and subsequently retract (i.e., the contact
line stops at the receding limit).

D. Retraction speed at different Oh

Bartolo et al. [38] provided extensive measurements of the maximal retraction rate experienced
by drops after impact and spreading on a slightly hydrophilic substrate, for different water-glycerol
mixtures (i.e., different Oh, cf. Fig. 9). We simulated the retraction of cuboid drops in the same con-
ditions, starting from rest at maximal spreading �i. The considered wetting parameters are γ = 0.17
(contact angle θr = 80◦) and ζ = 0.01 [39]. The drop radius was experimentally varied between
1.1 and 1.4 mm, which corresponds to Boz ∈ [−0.72,−0.45]. For the simulations with cuboid
drops, we consider Boz = −0.6 and check that its influence on the following results is negligible.
The maximum retraction speed is normalized by the capillary time and by the radius from which
the drop starts retracting. In the simulations, it corresponds to maxt (|�̇|/�i ). In the experiments, the
diameter at initial spreading was in the range [6, 10] once normalized in the same way as �i, so in
the simulations, we consider both �i = 6 and �i = 10.

The cuboid model predicts a maximum retraction rate that is qualitatively similar to that observed
experimentally, and with the same order of magnitude (Fig. 9). Nevertheless, the dissipation seems
systematically overestimated in the model (the predicted rate is lower than observed, for a given
Oh), especially for large initial spreading �i. This lower dissipation in experiments may result from
the presence of a thick rim that is not captured by the model. It is mostly the fluid inside this rim that
moves inward, and the corresponding dissipation is comparatively small because the rim thickness
is larger than the corresponding cuboid thickness.
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FIG. 9. Maximum retraction rate |�̇/�i| experienced by a sessile drop, as a function of Oh, for Boz =
−0.6, γ = 0.17 and ζ = 0.01. The dots correspond to measurements from Bartolo et al. [38] (with Boz ∈
[−0.72, −0.45] and initial normalized spreading diameter between 6 and 10). The thick red line (respectively,
thin orange line) corresponds to numerical simulations of cuboid drops with �i = 6 (respectively, �i = 10).

E. Sliding along x at constant speed (ẍG = 0) and shape (�̇ = ẇ = 0)

Several experimental studies quantified the steady sliding of drops on inclined substrates. We
compare the numerical predictions of the cuboid model to the measurements of Kim et al. [29],
Podgorski et al. [40], Podgorski [41], and Le Grand et al. [42]. In the present model, the cuboid
drop is assumed to slide in the direction of increasing x, so the contact line advances in B and
recedes in A. Consequently, the forces at the contact line do not contribute to the dynamics of �

(i.e., λ� = 0), but they contribute to the dynamics of xG, the corresponding force being −2ζw. In
the width direction, the force per unit width at the contact line is still λw�, with λw ∈ [−ζ , ζ ]. Under
the assumption of sliding at constant speed ẋG, the Lagrange equation for xG becomes

∂E
∂xG

= − ∂D
∂ ẋG

− 2wζ ⇒ Ca = Box − Boxc

2I3�2w2 + 2�w
, (42)

where Ca = OhẋG is the capillary number associated to the cuboid sliding speed, and Boxc = 2wζ

is the critical Bond number (in the direction tangent to the substrate) at which the cuboid drop starts
sliding. This critical Bond number corresponds to the body force that is required to oppose the
capillary force at the contact lines in A and B.

Both the normalized sliding speed Ca and the critical bond number Boxc depend on w, which
may take any value in a range prescribed by contact angle hysteresis, through Eq. (40) with
λ� = 0 and λw ∈ [−ζ , ζ ]. The corresponding range of Ca is shown in Fig. 10. Simulations
with various initial cuboid drop shapes (�i,wi ) converge to steady sliding within that range.
The speed is maximal when the width is minimal, i.e., when λw = ζ (advancing lateral contact
line).

The normalized mobility of the drop, defined as ∂Ca/∂Box, is represented in Fig. 11. This parity
plot compares the mobility predicted by the cuboid model Eq. (42) to the mobility inferred from
sliding velocity measurements. The cuboid model correctly predicts the order of magnitude of the
mobility of oil drops (experiments of Podgorski et al. [40], Podgorski [41], and Le Grand et al. [42]).
However, it fails at reproducing the mobility measurements of Kim et al. [29], which are an order
of magnitude lower than predicted. These measurements involved ethylene-glycol drops sliding on
polycarbonate. Ethylene-glycol is a polar liquid with a molecular mass an order of magnitude lower
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FIG. 10. Normalized speed Ca of a steadily sliding cuboid drop, as a function of the normalized body
force Box tangential to the substrate. The parameters are Boz = −2, Oh = 0.02, γ = 0.7, and ζ = 0.1. The red
shaded area (collapsed in red line at low Box) corresponds to different λw in steady state, that can be reached
from different initial conditions (�i, wi ). The dashed (respectively, dotted) blue line represents equation (42)
with λw = ζ (respectively, λw = −ζ ).

than the oils considered in the other experiments. Consequently, the slip length � should be smaller,
and the factor � involved in the viscous dissipation at the contact line [Eq. (15)] should be larger.
Nevertheless, this expected increase of � is estimated at 20%, so it cannot explain the observed
discrepancy. We took additional measurements with ethylene-glycol drops on at the bottom of an

FIG. 11. Parity plot of the normalized mobility ∂Ca/∂Box for the cuboid drop vs experiments from
Podgorski et al. [40] and Podgorski [41] (dark blue dots), Le Grand et al. [42] (red dots), Kim et al. [29]
(light blue dots) and original measurements reported in the Supplemental Material [30] (orange dots). The
error bars correspond to λw ∈ [−ζ , ζ ] in the cuboid model [Eqs. (40) and (42)] and the dots are in λw = 0. The
black line is the bisector of the first quadrant.
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FIG. 12. Parity plot of the critical Bond number Boxc for the cuboid drop vs experiments from Podgorski
et al. [40] and Podgorski [41] (dark blue dots), Le Grand et al. [42] (red dots), and original measurements
reported in Supplemental Material [30] (orange dots). The error bars correspond to λw ∈ [−ζ , ζ ] in the cuboid
model [Eqs. (40) and (42)] and the dots are in λw = 0. The black line is the bisector of the first quadrant.

inclined polystyrene Petri dish (cf. Supplemental Material [30]). The cuboid prediction is much
closer to these new mobility measurements.

The parity plot comparing cuboid predictions and drop measurements of the critical Bond
number Boxc at the onset of sliding is represented in Fig. 12. Contact angle hysteresis was not
reported in the experimental data from Kim et al. [29], so their data cannot be included. Again, the
cuboid model predicts the correct order of magnitude, but fails at capturing the subtle variations of
Boxc observed experimentally.

F. Lateral motion upon forced substrate vibrations

Several experimental studies investigated drop motion on vibrated substrates (e.g., Noblin et al.
[19], Costalonga and Brunet [43]). Among them, Brunet et al. [44] considered drops on an inclined
substrate that is vibrated in the vertical direction. In a specific range of vibration amplitude and
frequency, the drop may climb uphill instead of sliding downhill. The observed drop vibration
involves a strong component of rocking mode that, by definition, cannot be captured by the cuboid
model. Nevertheless, some climbing can be reproduced for the cuboid drop, that mostly involves
the zonal, symmetric mode described in Sec. III B. The considered parameters are similar to
those for which Brunet et al. [44] observed climbing. The drop volume was � = 5 µL, and the
liquid properties were ρ = 1190 kg/m3, μ = 36.9 cP, σ = 66 mN/m, θa = 77◦, and θr = 44◦. The
corresponding surface energy ratio, hysteresis and Ohnesorge number are γ = 0.472, ζ = 0.25 and
Oh = 0.1, respectively. The substrate was inclined at 45◦ and vibrated with a frequency f = 30 Hz
and an acceleration amplitude as = 30 (expressed in g). This corresponds to a dimensionless
frequency ωs = 2π f

√
ρ�/σ = 1.79 and Bond numbers Box = Boz = (Bo/

√
2)[as sin(ωst ) − 1]

with Bo = 0.517. A typical trajectory is represented in Fig. 13, and illustrated in Movie 3 available
in the Supplemental Material [30]. The drop indeed moves upward on the substrate (increasing xG).
We checked that the initial conditions do not significantly influence this steady climbing regime
to which the drop converges. The capillary number corresponding to the time-averaged climbing
speed 〈ẋG〉 is Ca = Oh〈ẋG〉 � 8.8 × 10−3, which is of the same order of magnitude as the capillary
numbers observed in Brunet et al. [44].
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FIG. 13. Time evolution of the position xG of the cuboid center of mass for parameters γ = 0.47, ζ =
0.25, Oh = 0.1, ωs = 1.79, Bo = 0.517, as = 30, and Box = Boz = (Bo/

√
2)[as sin(ωst ) − 1]. The thick line

represents xG vs time normalized by the vibration period, ωst/(2π ). The dashed line passes through the maxima
of xG (starting from the second) and corresponds to climbing at the time-averaged velocity 〈ẋG〉 of the cuboid
drop. (inset) Time evolution of the contact line A (thick orange line), the contact line B (thick light blue line),
the cuboid length � (dashed dark blue line) and its width w (dashed red line) over one forcing period. The black
line corresponds to sin(ωst ), which varies linearly with the forcing acceleration.

The motion of the cuboid drop during one forcing period is shown in the inset of Fig. 13. The drop
vibration is essentially symmetric (w � �), which corresponds to the zonal mode. The drop moves
downward and spreads (increasing � and w) when the acceleration is downward (sin ωst < 0), and
it moves upward and recoils when the acceleration is upward. The contact line A is slightly in
advance with respect to the contact line B over the whole forcing period, which is consistent with
the observations of Brunet et al. [44] (although the phase shift is here significantly smaller than in
Brunet et al. [44]).

Climbing cuboid drops are obtained for forcing parameters in the upper-left corner of the (ωs, as )
phase space, i.e., for sufficiently small frequency and sufficiently large acceleration, consistently
with the observations of Brunet et al. [44]. However, the region of climbing is significantly reduced
for the cuboid drop, which may result from the absence of rocking mode. Significant sliding of the
cuboid drop was also observed outside of the climbing zone, while in similar conditions, Brunet
et al. [44] observed marginal sliding.

G. Damping induced by a sessile drop on a vibrating cantilever beam

The last test case of this work is a configuration investigated experimentally by Erfanul Alam and
Dickerson [45]: a drop was placed on a cantilever beam and the damping of this beam under natural
vibrations was measured (Fig. 14). The drop also vibrated in response to the beam vibration, and
contributed significantly to the damping. In first approximation, this contribution can be estimated
from Erfanul Alam and Dickerson [45] by subtracting the measured decay rate induced by a beam
without drop from decay-with-drop measurements.

In our lumped-element model of this experiment, the real drop is replaced by a cuboid drop and
the beam is replaced by a proof mass supported by a linear spring (Fig. 14). The beam-induced
damping is neglected. We consider only the mass and stiffness associated to the first mode of
deformation (cf. Supplemental Material [30]). Other beam modes could be included, but it would
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FIG. 14. Lumped-element model of the coupled vibration of a drop on a cantilever beam. (Left) The
configuration investigated by Erfanul Alam and Dickerson [45]. (Right) The associated lumped-element model.
The real drop is replaced by a cuboid drop of height h(t ). The beam is replaced by a rigid board (proof mass)
of mass χ at vertical position Z (t ) supported by a spring of stiffness κ . All variables in the lumped-element
model are dimensionless.

increase the number of variables in the Lagrangian, which limits the possibility to obtain insightful
analytic results. We define the dimensionless proof mass χ (normalized by drop mass ρ�) and
the dimensionless spring stiffness κ (normalized by surface tension σ ). The observed drop vibration
modes were mostly axisymmetric, so we may assume that the cuboid drop evolves with w = � at any
time, i.e., only the zonal mode (2,0) is excited. Significant hysteresis was present in the experiments
of Erfanul Alam and Dickerson [45], with θa = 139◦ and θr = 119◦. Nevertheless, we neglect this
hysteresis in the model (γ = −0.63, ζ = 0, no contact line pinning), again for the sake of finding
an analytic solution. Erfanul Alam and Dickerson [45] did not observe significant lateral motion of
the drop in response to the centrifugal force induced by the beam vibration. Consequently, we take
Box = ẋG = 0. Finally, the beams investigated in Erfanul Alam and Dickerson [45] experienced
accelerations much higher than gravity (at least during the first part of the vibration), so we assume
Boz � 0.

We choose to describe the system with the generalized coordinates h(t ) and Z (t ), the former
being the cuboid thickness and the latter being the vertical position of the proof mass. Volume
conservation of the cuboid drop implies h = 1/�2. The potential energy of the system is

E = 4h1/2 + (1 − γ )h−1 + κZ2

2
. (43)

The vertical fluid velocity is

uz = F (z̃)ḣ + Ż,

from which we deduce the kinetic energy of the system

K =
(

I1

24h3
+ I2

)
ḣ2

2
+ I4Ż ḣ + (1 + χ )

Ż2

2
, (44)

where

I4 =
∫ 1

0
F (z̃)dz̃ = 3/8 (45)

for the considered shear function. The dissipation inside the cuboid drop,

D = Oh

(
6I1

h2
+ I3

12h5
+ �

4h7/2

)
ḣ2

2
, (46)

does not explicitly depend on the proof mass position Z . The resulting Lagrange equations are

(1 + χ )Z̈ + I4ḧ = −κZ,

I4Z̈ +
(

I1

24h3
+ I2

)
ḧ = I1ḣ2

16h4
− 2h−1/2 + (1 − γ )h−2 − Oh

(
6I1

h2
+ I3

12h5
+ �

4h7/2

)
ḣ. (47)
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TABLE II. Asymptotic regimes of the two families of roots (s1 = −β1 ± iω1 and s2 = −β2 ± iω2) of the
characteristic polynomial (52) describing the vibrations of the cuboid drop on mass-spring system, when either
(Õh 	 1 and κ̃ 	 1), (Õh 	 1 and κ̃ � 1), or (Õh � 1).

Õh 	1 	1 �1
κ̃ 	1 �1 –

ω2
1

1
E1

κ̃ E2κ̃
1

E1
κ̃

β1
E1E2−1

2E3
1

κ̃2Õh E1E2−1
2E2

Õh E1E2−1
2E2

1
κ̃Õh

−1

ω2
2 E1

1
E2

0

β2
E1
2 Õh 1

2E2
Õh Õh

−1
, E1Õh

We consider vibrations of small amplitude, h = �−2
0 (1 + η), |η| 	 1. Consequently, the Lagrange

equations can be linearized:[
D1 D2

D2 D3

][
Z̈
η̈

]
+ Oh

[
0 0
0 D4

][
Ż
η̇

]
+

[
κ 0
0 D5

][
Z
η

]
=

[
0
0

]
, (48)

with

D1 = 1 + χ, D2 = I4

�2
0

, D3 = I1�
2
0

24
+ I2

�4
0

, D4 = 6I1 + I3�
6
0

12
+ ��3

0

4
, and D5 = 3

�0
.

(49)
Natural linear vibrations correspond to solutions Z = Ziest , η = ηiest , where s is a complex root of
the fourth-order characteristic polynomial(

D1D3 − D2
2

)
s4 + OhD1D4s3 + (κD3 + D1D5)s2 + OhκD4s + κD5 = 0. (50)

The coefficient of s4, D1D3 − D2
2, is strictly positive since∫ 1

0
(F − I4)2dz̃ = I2 − I2

4 > 0.

We define

E1 = D1D5

D1D3 − D2
2

, E2 = D3

D5
, Õh = D4

D5
Oh, κ̃ = D5

D1D3 − D2
2

κ, (51)

so the polynomial can be rewritten as

s4 + E1Õhs3 + (E1 + E2κ̃ )s2 + Õhκ̃s + κ̃ = 0. (52)

The roots s of the characteristic polynomial (52) can be written s = −β ± iω, where β is the
decay rate and ω is the angular frequency. The decay rates associated to the different vibration
modes are represented in Fig. 15, for the case κ̃ � 1. Roots s can be obtained analytically in the
asymptotic regimes associated to Õh and κ̃ , as summarized in Table II. When Õh 	 1, there are
two sets of complex-conjugated roots. The first frequency ω1 satisfies

ω2
1 = κ̃

E1
= κ

1 + χ
(53)

when κ̃ 	 1, and

ω2
1 = E2κ̃ = κ

1 + χ − I2
4

I2+ I1�6
0

24

(54)
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FIG. 15. Decay rates β1 (dark blue) and β2 (red) of the vibration modes associated to the cuboid drop on
mass-spring system, as a function of the Ohnesorge number Oh, for χ = 2.1 and κ = 160. The solid lines
correspond to the cuboid drop while the dark blue dots correspond to values inferred from the data of Erfanul
Alam and Dickerson [45], for their beam of intermediate thickness. The corresponding asymptotic regimes are
given in Table II.

when κ̃ � 1. It essentially corresponds to the vibration of both proof mass and drop together as a
rigid body, i.e., without drop deformations. The second frequency ω2 satisfies

ω2
2 = E1 = 6�−3

0

I1
12 + 2I2

�6
0

− 2I2
4

(1+χ )�6
0

(55)

when κ̃ 	 1, and

ω2
2 = 1

E2
= 6�−3

0
I1
12 + 2I2

�6
0

(56)

when κ̃ � 1. It essentially corresponds to the symmetric deformation of the drop only, and it is
highly similar to the vibration frequency of a cuboid drop on a fixed substrate, given by equa-
tion (38). When Õh � 1, the first set of roots s associated to the rigid body vibration at frequency
ω1 remains, while the two other roots, associated to the drop deformation, are now real (overdamped
vibration), with decay rates β2 � Õh

−1
or β2 � E1Õh.

The damping ratio β̃ = β/ω is proportional to Õh when Õh 	 1 and inversely proportional to
Õh when Õh � 1. Consequently, there is a finite value of Õh that maximizes β̃:

max
Oh

β̃ �
{

E1E2−1
2E2

1
κ̃ in Õh = E1/2

1 κ̃−1/2 when κ̃ 	 1,

E1E2−1
2(E1E2 )3/4 in Õh = (E2

E1

)3/4
κ̃1/2 when κ̃ � 1.

(57)

The damping ratio obtained for κ̃ � 1 corresponds to the maximum achievable damping ratio β̃.
It increases with decreasing χ and with decreasing γ . Consequently, the largest possible damp-
ing correspond to the limit χ → 0 and γ → −1, so to E1E2 = I1+24I2

I1+24(I2−I2
4 )

� 1.97 and it yields

β̃ � 0.29.
The decay rate inferred from the experiments of Erfanul Alam and Dickerson [45] is compared

to the cuboid prediction in Fig. 15. Both modes are excited in experiments (cf. videos online in
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Ref. [45]), with unknown initial amplitudes, so the measured decay rate should be a combination
of the rates of each mode. This may explain why the dots of Fig. 15 are not preferentially captured
by either theoretical curve. Nevertheless, the predicted decay rate is in qualitative agreement with
the corresponding measurements: it is of the same order of magnitude, and its nonmonotonous
dependence on Oh is retrieved.

IV. CONCLUSION

In this paper, we introduced a low-dimensional model of the dynamics of a drop on a substrate.
The drop shape was approximated by a rectangular cuboid. This shape was sufficiently simple
to allow closed-form expressions of the potential and kinetic energy, and the viscous dissipation
(in bulk and at contact lines). The time evolution of the position and dimensions of the cuboid
drop was given by the corresponding Lagrange equations, thereby ensuring momentum balance
at drop scale even though the chosen velocity profile did not satisfy Navier-Stokes equations.
Contact angle hysteresis was included as an additional force that was adjusted in a finite range to
possibly constraint the contact line position (pinning). The model yielded a system of three ordinary
differential equations that could be solved numerically to predict the motion and deformation of the
drop in response to time-varying external forces.

Many closed-form solutions to the Lagrange equations could be found, in steady states or for
small perturbations (linearized equations). In particular, analytic expressions could be obtained to
describe the stability limit of pendant drops, the first zonal and sectoral vibration modes, and the
sliding of drops at constant speed.

Existing low-dimensional models of drops [18,19], mostly based on a proof mass and one or
several linear springs, could already capture the dynamical coupling between drop position and
drop deformation (e.g., during bouncing, or in response to substrate vibrations). By comparison,
the cuboid model offers additional capabilities: it qualitatively captures, e.g., the instability of drops
pulled away from the substrate, the history-dependent shape of drops in the presence of contact
angle hysteresis, or the nonlinear retraction of drops after large spreading. Surprisingly, it could
also reproduce the climbing of drops on vibrated inclined substrates [44], though not in a range
of parameters as extended as observed experimentally. This discrepancy is likely due to the lack
of rocking mode in the rectangular cuboid approximation. Other modes, absent in this rectangular
cuboid, would also have to be considered to model specific drop-substrate interactions, e.g., the
rolling mode associated to drop motion parallel to the substrate [46].

An extension of the model to more general shapes with additional degrees of freedom would
possibly allow to capture these missing modes, including rocking or rolling. Such extension is
left to future work. Necessarily, the more freedom is given to the drop shape, the less likely
closed-form solutions are to be found for the elementary cases considered in this study. In the same
direction, in an exact model of a sessile drop, the interface shape would have an infinite number of
degrees of freedom, the velocity profile would be obtained from Navier-Stokes equations, and the
corresponding pressure field would satisfy the Young-Laplace equation at the liquid-air interface.

Finally, we demonstrated that the cuboid model can be easily coupled to other lumped elements.
In particular, the cuboid drop could be placed on a proof-mass connected to a spring, to model the
vibrations of a drop on a cantilever beam [45]. The adaptation only required a slight modification
of the Lagrangian to include the energy associated to the motion of the proof-mass. Closed-form
expressions for the decay rate of natural vibrations could be inferred in asymptotic regimes, and the
parameters that maximize damping could be identified analytically.

The detachment of drops from the substrate was only considered in the static case of a pendant
drop. Nevertheless, drops are expected to either break up or fully detach from the substrate in a
variety of other conditions, including when bouncing at low Weber number [47]. Determining the
criterion on cuboid shape that best captures the moment of drop detachment or breakup requires
a thorough comparison to the large amount of literature on contact time at impact [22,48–52] and
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is left to future work. Nevertheless, it is hoped that with such criterion, the model will be able to
reproduce the main features of low-Weber drop impacts, including on flexible substrates [53–56].

In conclusion, this work introduced the cuboid drop as a low-dimensional model of drops
on substrates. It predicts relevant orders of magnitude and qualitatively captures the dependence
on parameters in a variety of classical configurations (vibrations, sliding, etc.). Moreover, it can
reproduce some complex dynamics of drops on moving substrates. This cuboid model has likely
the appropriate level of complexity to run low-cost simulations of numerous interacting drops on a
substrate, after minor adaptations to allow drop merger and breakup.
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