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We provide an experimental framework to measure the flow rate–pressure drop relation
for Newtonian and shear-thinning fluids in two common deformable configurations: (i) a
rectangular channel and (ii) an axisymmetric tube. Using the Carreau model to describe
the shear-dependent viscosity, we identify the key dimensionless rheological number Cu,
which characterizes shear thinning, and we show that our experiments lie within the
power-law regime of shear rates. To rationalize the experimental data, we derive the flow
rate–pressure drop relation taking into account the two-way-coupled fluid-structure in-
teraction between the flow and its compliant confining boundaries. We thus identify the
second key dimensionless number α, which characterizes the compliance of the conduit.
We then compare the theoretical flow rate–pressure drop relation to our experimental
measurements, finding excellent agreement between the two. We further contrast our
results for shear-thinning and Newtonian fluids to highlight the influence of Cu on the flow
rate–pressure drop relation. Finally, we delineate four distinct physical regimes of flow and
deformation by mapping our experimental flow rate–pressure drop data for Newtonian and
shear-thinning fluids into a Cu − α plane.
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I. INTRODUCTION

Elucidating the relationship between the pressure drop �p and the flow rate q in different
geometries plays a central role in understanding hydrodynamic features across a diverse set of
scientific fields, ranging from mechanical [1,2] and biomedical [3–5] engineering to wearable
diagnostics [6], soft robotics [7,8], and flow control in plants’ vasculature [9,10], to name a few.
However, while the flow rate–pressure drop relations for laminar flow of Newtonian fluids in
common geometries are well understood [11], this is not the case for non-Newtonian fluids flowing
through either rigid [12] or deformable [13] conduits. Even as microfluidic techniques for shear
viscometry of complex fluids are gaining popularity [14,15] (in particular, to study nonlinear flow
rate–pressure drop relationships [16]), a complete understanding of how the interplay between
shear-thinning rheology and wall compliance sets the flow rate–pressure drop relation for steady
low-Reynolds-number flow of a shear-thinning fluid in a deformable configuration is still lacking.
Furthermore, there are no thorough quantitative comparisons of the theoretical predictions for
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the flow rate–pressure drop relation with experimental data. Thus, the twofold aim of our study
is to understand the interplay between shear-thinning rheology and wall compliance via detailed
quantitative comparisons between theory and experiments.

Previous studies of the pressure-driven flow of shear-thinning fluids in deformable configurations
at low Reynolds numbers were either solely experimental [17–20] or theoretical [21,22]. For exam-
ple, Raj and Sen [23] and Del Giudice et al. [17] measured the pressure drop due to shear-thinning
fluid flow through a microchannel with a deformable wall, yet no theory was proposed to capture
the experimental observations. Raj M et al. [18,19] conducted experiments of non-Newtonian fluid
flow in a compliant cylindrical conduit using a shear-thinning xanthan gum solution. However,
their experiments exhibited only weak fluid-structure interaction (FSI), and thus deviations from the
rigid-tube q − �p relation for a shear-thinning fluid (within the power-law regime) were negligible.
Motivated by experimental observations, Anand et al. [21] and Anand and Christov [22] initiated the
development of predictive theory for flow-induced deformation of compliant rectangular channels
and axisymmetric tubes, respectively. They considered a power-law model for the shear-dependent
viscosity to describe shear thinning and validated their theoretical predictions for the nonlinear flow
rate–pressure drop relation against simulations.

Any theoretical prediction in non-Newtonian fluid mechanics inherently relies on a specific
constitutive model that aims to describe a certain rheological behavior, such as shear thinning,
viscoelasticity, etc. However, theoretical predictions do not always agree with the experimental ob-
servations, sometimes even qualitatively. In fact, there are many discrepancies between experimental
and theoretical results of non-Newtonian fluid flows, for example, the flow rate–pressure drop
relation for viscoelastic Boger fluids flowing through rigid contraction and contraction-expansion
geometries [24,25]. While experiments show a nonlinear increase in the pressure drop with the
flow rate [26,27], theory and numerical simulations based on continuum dumbbell models predict
a nonlinear decrease in the pressure drop [28–30]. Therefore, given these discrepancies between
theory and experiments, a quantitative comparison of any theoretical result with experimental data
is of fundamental importance since it provides insight into the adequacy of the constitutive model
that is used. However, despite the importance of quantitative assessments, no prior study has made
this comparison for the flow rate–pressure drop relation of shear-thinning fluids in deformable con-
figurations. One possible reason is that previous experimental works did not have a complete
theory, identifying the key dimensionless parameters governing this multiphysics problem, to guide
a systematic experimental investigation.

In this work, we combine experiments and theory to elucidate the interplay between shear-
thinning rheology and wall compliance on the flow rate–pressure drop relation of deformable
configurations and to enable a quantitative comparison between the theoretically predicted q − �p
curves and the experimental data. For two common configurations, (i) a rectangular channel and
(ii) an axisymmetric tube, we identify two key dimensionless numbers, the Carreau number Cu
and the compliance number α, which characterize shear thinning and compliance of the conduit,
respectively, and utilize them to delineate four distinct physical regimes of flow and deformation of
the q − �p data.

II. PROBLEM FORMULATION

We study the steady fluid-structure interaction between incompressible Newtonian and shear-
thinning fluids and two different complaint geometries, as shown in Fig. 1. We consider a
three-dimensional (3D) channel of initially rectangular cross section with a top deformable wall
[Figs. 1(a) and 1(c)] and a 3D cylindrical exclusion within a large rectangular slab, exhibiting
axisymmetric radial deformation [Figs. 1(b) and 1(d)]. The configurations have a compliant sec-
tion of length �. Two pressure ports are introduced, as shown in Fig. 1, measuring the pressure
drop �p over a streamwise distance ��p. The rectangular channel has width w and height h, where
h � w � �; the undeformed height is h0. The tube has a radius a; the undeformed radius is a0.
We impose the volumetric flow rate q at the inlet, which produces a flow with velocity field v
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FIG. 1. Illustration of the configurations used for experiments and modeling. (a),(c) Image of the (a) exper-
imental device and (c) schematic of a 3D channel of an initially rectangular cross section with a top deformable
wall. (b),(d) Image of the (b) experimental device and (d) schematic of a 3D tube extruded from a large block of
elastic material, exhibiting radial deformation. Both configurations have a deformable section of length � and
contain either a Newtonian or shear-thinning fluid steadily driven by the imposed flow rate q. Our interest is to
determine the pressure drop �p over a streamwise distance ��p between two pressure ports. For the channel,
we have � ≈ ��p, while for the tube, � > ��p.

and pressure distribution p. In this work, we experimentally characterize the steady-state relation
between the pressure drop �p and the flow rate q for Newtonian and shear-thinning fluids in two
configurations and then perform a quantitative comparison between the experimental results and
theoretical predictions.

III. EXPERIMENTAL SETUP AND MATERIAL CHARACTERIZATION

A. Design and fabrication of the deformable configurations

For the rectangular channel with a deformable top wall, we first used a 3D printing technique
(ELEGOO Mars Resin 3D Printer) to fabricate the mold with the designed channel dimensions. We
prepared the polydimethylsiloxane elastomer (PDMS, Sylgard 184, Dow Corning) with a mixing
ratio of 10:1 (w/w) between the silicone elastomer base and the curing agent. Then we poured the
PDMS mixture onto the 3D printed mold and degassed the mixture under vacuum for an hour to
remove excess air bubbles. We cured the mixture in an oven at 90 ◦C for 12 hours. After curing,
we carefully peeled off the PDMS channel from the mold and punched holes to provide flow
inlets, outlets, and pressure sensing ports (diameter d = 1.07 ± 0.05 mm). We also fabricated a
thin PDMS film using a Petri dish with the same mixing ratio of 10:1 (w/w) as the top deformable
wall. We controlled the thickness of the film by the total deposited mass. After degassing, the film
was cured in the oven at 90 ◦C for 30 minutes, with a shorter curing time compared to the thick
sidewalls of the channel. Next, we treated the channel and the PDMS thin film with a 4.5 MHz
hand-held corona treater (BD-20AC, Electro-Technic Products) for 30 seconds and brought them
together into conformal contact for bonding. To confine the deformation solely to the region of
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TABLE I. Physical parameters and dimensions of the two experimental systems (rectangular channel and
axisymmetric tube), for which the pressure drop �p was measured as a function of the flow rate q. Here, the
Young’s modulus for the channel corresponds to that of the top deformable wall.

Channel
h (mm) w (mm) � (mm) ��p (mm) t (mm) d (mm) E (MPa) νs (–)

0.25 ± 0.02 5.0 ± 0.2 26.0 ± 0.3 26.0 ± 0.3 0.48 ± 0.05 1.07 ± 0.05 0.92 ± 0.05 0.47 ± 0.1

Tube
a0 (µm) w (mm) h (mm) � (mm) z1 (mm) ��p (mm) d (mm) E (MPa) νs (–)

45 ± 1 15 ± 0.1 7 ± 0.1 28.7 ± 0.2 1.4 ± 0.1 23.0 ± 0.2 0.43 ± 0.03 1.58 ± 0.08 0.47 ± 0.1

interest, we further attached rigid glass slides on top of the thin PDMS film, except for the region of
interest to allow a deformable top wall [thickness t , see Fig. 1(a)].

For the radially deformable tube, we fabricated a cylindrical tube using a pull-out soft lithography
process [18]. Specifically, we made a rectangular acrylic cavity to hold a PDMS block. We used a
lumbar puncture needle of a nominal diameter of 110 µm as the replicating mold to fabricate the tube
inside the PDMS block. We poured PDMS, with a 10:1 mixing ratio (w/w) of the silicone elastomer
base and the curing agent, into the cavity over the needle mold, which was held in position. To
provide the pressure sensing ports (diameter d = 0.43 ± 0.03 mm) [see Fig. 1(c)], we used two
additional blunt stainless needles as molds. After degassing and curing in the oven at 90 ◦C for 12
hours, we gently removed all the needles and the acrylic cavity from the PDMS block.

In addition, we confirmed all the dimensions of the two fabricated flow geometries by microscope
visualization (Table I). We further measured the Young’s modulus of the PDMS, E (both the thin
film, i.e., the top wall for the rectangular channel, and the PDMS block from which we fabricated
the tube geometry), with a dynamic mechanical analyzer (DMA 850, TA instruments) at 23 ◦C.

B. Pressure drop measurement

To achieve steady flow, we use a syringe pump (11 Pico Plus Elite, Harvard Apparatus) with
Teflon tubes. The syringe pump provides a steady fluid flow at a constant volumetric rate q into the
inlet of the channel or tube. For the xanthan gum solution, the range of flow rates in experiments was
0.3 < q < 10 mL min−1 (channel) and 5 < q < 50 µL min−1 (tube), while for the glycerin solution,
the ranges were 1 < q < 10 mL min−1 (channel) and 1 < q < 50 µL min−1 (tube). The two geome-
tries have different hydraulic resistances, which necessitates different orders of magnitude of the
flow rate to achieve pressure drops that lead to similar FSI regimes. The differential pressure drop
�p over the streamwise length ��p was recorded by a pressure sensor (PX26-005DV, OMEGA)
with a data acquisition system (DP8PT-006-C24, OMEGA), which continuously acquires the raw
data at a rate of 20 Hz. The channel was constructed so that the distance between the pressure ports
��p was as close as possible to the streamwise length of the deformable portion �, i.e., � ≈ ��p. For
the tube, the total length � of the compliant section (between the rigid inlet and outlet connectors)
is larger than the distance between the pressure ports ��p, i.e., � > ��p.

C. Preparation and characterization of the shear-thinning and Newtonian fluids

We used 0.3 wt% xanthan gum (XG, G1253, Sigma Aldrich, molecular weight ≈106 g/mol)
in deionized (DI) water (pH ≈7) as a representative non-Newtonian shear-thinning fluid with
negligible viscoelasticity [18,31,32]. Meanwhile, we used a mixture of 62 wt% of glycerin (Gly)
concentration in DI water as a representative viscous Newtonian fluid. We prepared the aqueous
solutions by gradually dissolving a known weight of powder or liquid into DI water in a cylindrical
beaker. Then, the mixture was continuously stirred for 24 hours until a clear and homogeneous
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FIG. 2. Experimental data for viscosity as a function of shear rate for the xanthan gum (×) and the glycerin
(◦) solutions. The solid black curve represents the fit of the xanthan gum solution’s rheological data to the
Carreau model (1). The rheological parameters obtained from the fitting are summarized in the figure. Error
bars are smaller than the symbols.

solution was produced. We performed rheological measurements of the xanthan gum and glycerin
solutions using a controlled-stress rheometer (DHR-3, TA Instruments), which employs a cone-plate
geometry (with a diameter of 40 mm and a cone angle of 1◦) at a controlled temperature of 25 ◦C.
The experimentally measured viscosity η(γ̇ ) as a function of the shear rate γ̇ for the xanthan gum
and glycerin solutions, each averaged across different batches of the solution, is shown in Fig. 2.

To characterize the rheological measurements and the shear-thinning behavior of the xanthan
gum solution, we use the Carreau model for the viscosity [33],

η(γ̇ ) = η∞ + (η0 − η∞)[1 + (λr γ̇ )2](n−1)/2. (1)

This model captures the three experimentally observed regimes (in Fig. 2) in the viscosity, namely,
the plateaus at low and at large shear rates towards η0 and η∞, respectively, and the power-law
dependence in-between. The noninteger index n characterizes the degree of shear thinning (0 <

n � 1) in the power-law regime, and λr is the inverse of a characteristic shear rate at which shear
thinning becomes apparent. The case n = 1, λr = 0, or η0 = η∞ represents the Newtonian fluid
with a constant viscosity η0. The solid black curve in Fig. 2 represents the fit of the xanthan gum
solution’s rheological data to the Carreau viscosity model (1).

The three regimes of shear thinning can be quantified by the Carreau number Cu (see, e.g.,
[34–36]), defined as the ratio of the characteristic shear rate of the flow, q/h2

0w (channel) or
q/πa3

0 (tube), to the characteristic shear rate of the fluid, λ−1
r . Specifically, for the two geometries

considered,

Cuch = λrq

h2
0w

, Cutb = λrq

πa3
0

. (2)

We note that unlike the rheological parameters n, λr , η0, η∞, and β = η∞/η0 that remain fixed
for the xanthan gum solution, the Carreau number Cu changes through the flow rate q, which we
vary in our experiments. Using the values of the geometrical (Table I) and rheological (Fig. 2)
parameters for the range of flow rates achieved in each configuration, we estimated the range of
Carreau numbers as 288 < Cuch < 9600 and 5240 < Cutb < 52 397.
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From (1), it is clear that for sufficiently small values of Cu, η(γ̇ ) ≈ η0, while for sufficiently
large values of Cu, η(γ̇ ) ≈ η∞. For intermediate values of Cu, (1) can be approximated as

η(γ̇ ) ≈ m|γ̇ |n−1 with m = η0λ
n−1
r , (3)

which is the well-known power-law model for viscosity with consistency index m. The transition
from this power-law regime to the high-Cu plateau can be characterized by a critical Carreau number
Cuc = λr γ̇c = β1/(n−1) estimated by equating η(γ̇ ) from (3) with η∞. Based on Fig. 2, we have
Cuc ≈ 1.72 × 105, which is an order of magnitude larger than our estimated values of Cuch and
Cutb based on the experimental conditions. Therefore, we conclude that our experiments lie in the
power-law regime of shear thinning.

IV. THEORY FOR THE FLOW RATE–PRESSURE DROP RELATION
INCORPORATING SHEAR THINNING

In this section, we provide the theoretical framework required to rationalize the experimentally
obtained q − �p relation and enable a quantitative comparison between the two. We consider
low-Reynolds-number flow of incompressible fluids in slender geometries (a/�, h/� � 1), which
allows the use of the lubrication approximation. In this limit, fluid inertia and longitudinal gradients
are negligible, and the flow is approximately unidirectional with v = vzez and p = p(z) (see, e.g.,
[37]). Using the generalized Newtonian model to describe shear thinning, the fluid’s momentum
equations [13] reduce to

0 = −d p

dz
+ ∇⊥ · [η(γ̇ )∇⊥vz], (4)

where ∇⊥ is the gradient in the cross-sectional (x, y) or (r, θ ) coordinates. In (4), the viscosity
η(γ̇ ) depends only on the instantaneous shear rate γ̇ = √

2E : E, where E = [∇v + (∇v)T]/2 is
the rate-of-strain tensor. Under the lubrication approximation, γ̇ = ∂vz/∂y (channel) or γ̇ = ∂vz/∂r
(tube).

Specifically, the lubrication approximation and (4) apply when the reduced Reynolds number is
small. Using a characteristic axial velocity scale Vz, the reduced Reynolds number Re is the ratio
of fluid inertia, ρV2

z /�, to viscous stress, η(γ̇ )Vz/h2
0 (channel) or η(γ̇ )Vz/a2

0 (tube). For a shear-
thinning fluid in the power-law regime, using (3), we have Re = ReNewtCu1−n � 1. For a channel,
ReNewt = ρVzh2

0/η0� = ρqh0/η0w� and Cu is given in (2). For a tube, ReNewt = ρVza2
0/η0� =

ρq/η0π� and Cu is given by (2). Using the values of the geometrical (Table I) and rheological
(Fig. 2) parameters for the range of flow rates (Sec. III B) achieved in each configuration, and
estimating all working fluids’ density as ρ ≈ 103 kg/ m3 , we find that for the xanthan gum solution,
Rech < 3 × 10−2 and Retb < 2 × 10−3, while for the glycerin solution, ReNewt,ch < 3 × 10−2 and
ReNewt,tb < 10−3, and thus the fluid inertia is indeed negligible.

Certain models for η(γ̇ ) allow us to integrate (4) to find an analytical expression for vz [33].
From the velocity profile, the volumetric flow rate is obtained as

q =
∫∫

Adeformed

vz dA⊥. (5)

The cross-sectional domain is either Adeformed = {(x, y) | − w/2 � x � +w/2, 0 � y � h0 + uy}
with dA⊥ = dxdy for the channel (uy is the vertical displacement of the fluid-solid interface) or
Adeformed = {(r, θ ) | 0 � r � a0 + ur, 0 � θ < 2π} with dA⊥ = rdrdθ for the tube (ur is the radial
displacement of the fluid-solid interface). We consider only steady flows, thus q = const. Then,
specifically, we obtain the solution for the axial velocity vz from the lubrication momentum Eq. (4)
using the power-law model (3) for the viscosity, as in [21,22]. We obtain the solution for the
fluid-solid interface displacement uy or ur from the equations of linear elasticity suitable for each
geometry (a Reissner-Mindlin plate theory for the channel [21] and a large block with a circular
exclusion under a plane strain configuration for the tube [38]). Then, substituting the latter into
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(5) yields a nonlinear ordinary differential equation (ODE) for the pressure, from which the flow
rate–pressure drop relation is determined. We do not repeat all calculation steps here as they are
standard and given in detail in the cited references.

A. Flow rate–pressure drop relation for a deformable channel

For a shear-thinning fluid within the power-law regime, the pressure drop over a streamwise
distance ��p of a rigid rectangular channel is known [33] and can be written as

�prigid,ch = 2(4 + 2/n)n η0��p

λrh0
Cun

ch, (6)

where Cuch is defined in (2). In a slender channel with a deformable top wall [for which the dis-
placement uy(x, z) obeys Reissner-Mindlin plate theory, such that maxx,z uy � t < w but t/w �→ 0],
Anand et al. [21] showed that the pressure satisfies the nonlinear ODE,

−d pch

dz
= �prigid,ch

��p

{
1 +

∞∑
k=1

c(k, n)

[
1

384t̃

αch

Cun
ch

pch(z)

η0�/λrh0

]k

2F1

(
1

2
,−k;

3

2
+ k; t̃

)}−n

, (7)

where c(k, n) = √
π�(3 + 1/n)/[2�(3 + 1/n − k)�(3/2 + k)] is related to the generalized bi-

nomial coefficient, � is the Gamma function, and 2F1 is Gauss’ hypergeometric function. For
convenience, we defined t̃ = [1 + 8(t/w)2/(1 − νs)]−1, where νs is Poisson’s ratio. The ODE for a
Newtonian fluid is obtained by setting n = 1, in which case λr cancels out in (6) and (7).

From (6), the characteristic pressure scale for a shear-thinning fluid flow in the power-law regime
is Pflow,ch = Cun

ch(η0�/λrh0). We remind the reader that the values of the rheological parameters
η0, λr , and n are provided in the inset of Fig. 2. Meanwhile, for a platelike top wall, Pdeform,ch =
Bh0/w

4 is a characteristic pressure scale for deformation (spanwise bending of the wall), where B =
Et3/[12(1 − ν2

s )] is the plate’s bending rigidity and E is Young’s modulus. This ratio of pressure
scales is the key dimensionless parameter characterizing the flow-induced deformation [13],

αch = Pflow,ch

Pdeform,ch
=

(
λrq

h2
0w

)n(
η0�/λrh0

Bh0/w4

)
= Cun

ch

(
η0�/λrh0

Bh0/w4

)
, (8)

which can be termed the compliance number for shear-thinning fluids. For n = 1, (8) reduces to the
compliance number αNewt,ch = η0�qw3/Bh4

0 for a Newtonian fluid in a channel with a compliant top
wall [39,40].

For a given q, the ODE (7) subject to pch(�) = 0 is solved numerically for pch(z) using solve_ivp
from the SCIPY stack [41], and the pressure drop for the deformable channel is calculated as �pch =
pch(0). The stiff LSODA (Livermore Solver for Ordinary Differential Equations) integration method
is used with relative and absolute tolerances of 10−12, and the series in (7) is truncated at 50 terms,
having verified that �pch has become independent of the maximum k value.

B. Flow rate–pressure drop relation for a deformable tube

For a shear-thinning fluid within the power-law regime, the pressure drop over a streamwise
distance ��p of an axisymmetric, rigid tube is known [33] and can be written as

�prigid,tb = 2(3 + 1/n)n η0��p

λra0
Cun

tb, (9)

where Cutb is defined in (2). For a deformable tube extruded from a large block of elastic material,
such that a � w and a � h, the displacement solution ur (z) was found by Wang et al. [38] from
the equations of linear elasticity under a plane strain configuration. Combining the latter with the
results of Anand and Christov [22], we obtain the appropriate analytical solution for the pressure
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FIG. 3. Comparison between our “soft” theory (solid curves), based on (7) and (10), and the experimental
data (symbols) for the flow rate–pressure drop relation in (a) the channel and (b) the tube. The shaded regions
indicate the combined uncertainty in (a) h0 or (b) a0 and the viscosity of the glycerin solution. Dashed curves
denote the respective rigid-conduit relations (6) and (9). Error bars represent the standard deviation based on
more than three individual experiments.

profile of a shear-thinning fluid, under the power-law viscosity model (3), in this geometry:

ptb(z) = �prigid,tb

��p

�

2(3 + 1/n)nαtb
{[1 + (2 + 3n)2(3 + 1/n)nαtb(1 − z/�)]1/(2+3n) − 1}. (10)

Here, G = E/[2(1 + νs)] is the elastic shear modulus. In (10), � is the total length of the deformable
section of the tube, subject to the gauge pressure condition at its end, p(�) = 0. To compare to
the experimental measurements, a partial pressure drop is computed as �ptb = ptb(z1) − ptb(z1 +
��p) from (10). The solution for a Newtonian fluid is obtained by setting n = 1, in which case λr

cancels out in (9) and (10). As in Sec. IV A, we observe from (9) that Pflow,tb = Cun
tb(η0�/λra0)

is the characteristic pressure scale for a shear-thinning fluid flow in the power-law regime, while
Pdeform,tb = 2G is the characteristic pressure scale for deformation (radial expansion of the tube).
Thus, the shear-thinning compliance number for our tube configuration is

αtb = Pflow,tb

Pdeform,tb
=

(
λrq

πa3
0

)n(
η0�/λra0

2G

)
= Cun

tb

(
η0�/λra0

2G

)
, (11)

where, for a Newtonian fluid with n = 1, we have αNewt,tb = η0�q/2πGa4
0.

V. QUANTITATIVE COMPARISON BETWEEN THEORY AND EXPERIMENT AND DISCUSSION

In Fig. 3, we present a comparison of our theory and the experimental measurements for the flow
rate–pressure drop relation of the xanthan gum solution (shear-thinning) and the glycerin solution
(Newtonian) in the rectangular channel with a deformable top wall [Fig. 3(a)] and the axisymmetric
deformable tube [Fig. 3(b)]. Clearly, there is good agreement between our “soft” theoretical predic-
tions and the experimental results, yet theory slightly overpredicts the experimental pressure drop.
The major source for this discrepancy is uncertainty in the measurements of h0 and a0 (see Table I).
For the glycerin solution, we also have an uncertainty in the viscosity (see Fig. 2). We, therefore,
added shaded regions about the curves in Fig. 3 that incorporate the combined uncertainty, obtaining
a much better agreement between theory and experiments.

Dashed curves in the figure represent the rigid conduit q − �p relations. For the case of a channel
[Fig. 3(a)], we observe “strong” fluid-structure interaction, corresponding to large values of com-
pliance numbers in this geometry: 45.9 < αch < 162 (xanthan gum solution) and 12.6 < αch < 126
(glycerin solution). Therefore, unsurprisingly, the rigid theory prediction (6) for the channel fails
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FIG. 4. The experimental data from Fig. 3 shown on a Cu − α qualitative diagram, in which four regimes
of low-Reynolds-number fluid-structure interaction of Newtonian and shear-thinning fluids can be identified
(shaded regions). Note the truncated horizontal axis.

to capture the flow rate–pressure drop relation. In contrast, for the case of a tube [Fig. 3(b)], the
xanthan gum solution exhibits negligible FSI (3.2 × 10−3 < αtb < 7.4 × 10−3), and thus the rigid
conduit q − �p relation (9) is valid (the blue solid and dashed curves are almost indistinguishable),
while the glycerin solution exhibits weak but measurable fluid-structure interaction (3.4 × 10−4 <

αtb < 1.7 × 10−2). The apparent difference in the strength of the FSI between the channel and tube
geometries lies in the fact that the width of the channel has a strong effect (appearing as w3 in αch),
allowing us to “increase” the compliance effect without changing the height. Such a “compliance
tuning” is not possible for the tube, for which the only cross-sectional dimension is a0, thus making
it challenging to measure significant FSI for shear-thinning fluids in this geometry, consistent
with previous experiments [18,19]. Furthermore, as both shear thinning and compliance lead to
a sublinear q − �p relation, an appropriate estimation of α, based on (8) and (11) obtained in this
work, is required to rationalize which of the two effects is responsible for this nonlinear behavior.

To further delineate the interplay between the rheology of the fluid and the compliance of the
deformable conduit, we present in Fig. 4 the experimental data on the Cu − α qualitative diagram,
showing four distinct regions (physical regimes). The lower half of the diagram corresponds to
weak FSI, while the upper half corresponds to strong FSI. Similarly, the left half of the diagram
corresponds to negligible shear thinning (Newtonian behavior), while the right half corresponds
to significant shear thinning in the power-law regime. The slanted line denoting “Weak FSI” is a
guide to the eye, as the threshold of “weak” is not a strict definition. Our experimental data span all
four regimes and confirm the power-law scaling α ∼ Cun from (8) and (11), for the xanthan gum
solution. Nevertheless, we do not observe the transition from the low-Cu to the power-law behavior
and the transition from the power-law to the high-Cu behavior, as our q − �p data correspond to
intermediate values of the Carreau number (see Sec. III C). For example, in the case of the channel,
achieving the low-Cu regime with a non-negligible FSI would require providing very small flow
rates while increasing the length of the channel. On the other hand, the high-Cu regime would
require providing large flow rates, resulting in large shear rates that may lead to inertial effects and
viscous heating [42].

VI. CONCLUDING REMARKS

In this work, we analyzed the interplay between shear-thinning rheology and wall compliance
and provided a quantitative comparison between theory and experiments on low-Reynolds-number
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shear-thinning fluid flows in two canonical deformable geometries. We showed good agreement for
the steady flow rate–pressure drop relation given by the theory, which has no fitting parameters, and
experiments, which we ensured are in the regime of significant flow-induced deformation. Given
common discrepancies between theory and experiments for complex fluids (see, e.g., [25]), we
believe that such a quantitative comparison is of fundamental importance in non-Newtonian fluid
mechanics since it, and not a comparison of theory with simulations, serves as a real validation of
the adequacy of the constitutive model that is used.

Having experimentally demonstrated the quantitative predictive power of our theory of the flow
rate–pressure drop relation of Newtonian and shear-thinning fluids in two canonical deformable
geometries with experiments, as a future research direction, it would be interesting to perform
experiments in the rectangular geometry used herein with viscoelastic fluids. Similar to previous
experimental studies in rigid nonuniform geometries [26,27,43,44], the experimental setup for
viscoelastic fluids will consist of two long straight channels connected to the deformable region
upstream and downstream to eliminate the entrance and exit effects. Furthermore, since the flow
of viscoelastic fluids may become unstable above a certain flow rate due to the fluid’s complex
rheology [45–48], the experiments will require extra care in measuring the flow rate–pressure drop
relation in steady and stable flows. Such experiments will enable a quantitative comparison with a
recent theory of Boyko and Christov [49].
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