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Robust microstructure of self-aligning particles in a simple shear flow
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A self-aligning particle (SAP) attains a permanent orientation without application of ex-
ternal torques in a low Reynolds number simple shear flow in contrast with the continuous
rotation exhibited by most rigid bodies including thin fibers and disks. SAPs align close
to the fluid lamellae, and we characterize the robustness of this flow alignment to sec-
ondary disturbances such as perturbation to the shear flow, Brownian motion, interparticle
interactions, or the presence of a wall using dynamic simulations of representative SAP
geometries. The robustness of the flow alignment of SAPs at all concentrations generates
highly aligned microstructures inaccessible to traditional particle suspensions.
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I. INTRODUCTION

Self-aligning particles (SAPs) are defined as rigid bodies that attain an equilibrium orientation
without applying any external forces or torques in a simple shear flow (SSF), which is a linear
approximation to the pressure-driven flow found in many natural and industrial processes [1,2].
While most other high-aspect ratio rigid bodies, including fibers and disks, spend long times
aligned near the flow-vorticity plane, the particles eventually perform a quick tumble (referred
as the tumbling phase), repeating the align-tumble cycles continuously [3,4]. The large change
in the particle orientation during the tumbling phase has the greatest impact on the orientational
microstructure of the underlying suspensions, resulting in significant deviations from a perfectly
flow-aligned state [5–7]. On the contrary, SAPs [4,8,9] permanently align close to the shear flow
lamellae, and this could allow for material fabrication with nearly perfect anisotropy using existing
processing-flow techniques like injection molding or casting. Permanent alignment of geometries
described in [9] has been demonstrated in preliminary experiments [10].

Managing the orientation of individual particles can help to engineer functional materials with
precise control over the mechanical, optical, or electrical properties of the final product [2,11–
13]. For instance, SAPs embedded during the curing process can be used to fabricate lightweight
materials with a layered microstructure for withstanding crack propagation [14,15]. Conducting
SAPs could provide an easier route for making optical films with uniform planar conductivity
desirable in electronics [16]. This study aims to advance our understanding of the behavior of SAP
suspensions to realistic perturbations and lay a foundation for their use in these applications.

We compute the orientational microstructure of individual SAPs and then describe changes in the
microstructure caused by perturbations to the imposed shear flow, Brownian motion, interparticle
interactions, or a wall through dynamic simulations. Half the extent of the ring in its plane, R, and
the shear rate of the SSF, γ , are used to nondimensionalize all properties of interest. The aspect ratio
A � 1 is defined as the ratio of 2R and the extent of the ring along its axis of symmetry.
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FIG. 1. Coordinate systems, schematic of a T ring, and the stable (±pS) (solid ring) and unstable (±pU )
(translucent ring) nodes of the SAP. All distances are in nondimensional units.

II. ISOLATED PARTICLE MICROSTRUCTURE

Rings with a blunt inner and sharper outer edge, such as the one shown in Fig. 1, can self-align
without application of any external torques. SAPs when oriented near the flow-vorticity plane utilize
the fluid pressure to generate an O(A−1) countervorticity rotation [8,9] that balances the O(A−2)
shear stress-induced covorticity rotation experienced by all slender particles. The rate of change of
orientation of the axis of symmetry, p, equals

ṗ = ω∞ × p + λ(E∞ · p − E∞ : ppp), (1)

where λ is the rotation parameter that depends on the particle shape [3,4,8,9], ω∞ = ∇ × u∞/2,
E∞ = (∇u∞ + (∇u∞)T )/2 is the rate of strain tensor, and u∞ is the velocity field of the imposed
SSF. λ for high aspect ratio rings is given by

λ = −1 + Cλ

1

εA2

(
1 − 3

2
ε

)
− Cα

A
, (2)

where ε = 1/ ln(8A) � 1 is a small parameter arising in the slender-body-theory (SBT) treat-
ment of the ring [17,18]; Cλ > 0 and Cα are constants that depend only on the cross-sectional
shape. A ring self-aligns only when Cα > 0, and the magnitude of Cα > 0 quantifies the ease
of alignment. A ring attains an equilibrium orientation p = ±pS = ±(− sin(δ), cos(δ), 0) when
λ � −1, δ = (1/2)cos−1(−1/λ) and rotates in periodic Jeffery orbits [3,4] with a time period
T = 4π/

√
1 − λ2 ≈ 2πδ−1

T when −1 < λ < 0. Here δT = √
(1 + λ)/(1 − λ) is a measure of the

average tilt of a tumbling ring during its periodic trajectory. Figure 2(a) shows the orientation
trajectories of an A = 55 torus for different initial conditions. These trajectories are periodic and
termed Jeffery orbits. Figure 2(b) shows the orientation trajectories of an A = 55 SAP with the
shape illustrated in Fig. 1, for different initial conditions. All trajectories approach the stable nodes
at pS and −pS .

The orientational dynamics described by Eq. (1) in the geometric space defined by A and
Cα/Cλ is constructed from boundary-element-method simulations [8,9] for rings with various cross
sections as shown in Fig. 3 (symbols). The symbol color represents T relative to the time period
of an equivalent torus (Tt ) for tumbling particles, and the magnitude of the equilibrium angle δ for
SAPs. The curve CαA∗ = Cλ/[ln(8A∗) − 3/2], corresponding to λ = −1, represents the boundary

043301-2



ROBUST MICROSTRUCTURE OF SELF-ALIGNING …

FIG. 2. Orientational trajectories of an isolated (a) Equivalent torus and (b) SAP of aspect ratio A = 55.
(c) Orientation trajectories of an isolated SAP near the stable pS and unstable pU nodes.

between self-aligning and tumbling rings. A ring with a cross section with Cα > 0 rotates like an
equivalent torus (ET) for 	A = A∗ − A = O(1) > 0, rotates much slower than an ET for 	A � A∗,
and self-aligns for A � A∗. Small changes in A near A∗ drastically change the orientational dynamics
of the particle and lead to sharp changes in the orientational microstructure of the underlying
suspension. We use a family of T rings, shown in Fig. 1, as a model geometry to elucidate differences
in suspension microstructure arising from the bifurcation in the orientation dynamics at A = A∗. T
rings were also chosen due to accessibility to fabrication using multistep photolithography [19,20]
and because A∗ had a moderate value of 26. The divergence of T near A = A∗ for T rings is shown
in Fig. 4(a), and the value for an ET is shown for reference. The alignment angle δ increases rapidly
from zero near A = A∗ to a peak value at A = 55 and thereafter decreases slowly with increasing A.
The qualitative trend of a diverging time period near A = A∗ and a rapid increase in δ near A = A∗
followed by a slower decrease for larger A holds true for all rings with Cα > 0 as shown in Fig. 3.

The alignment of a ring relative to the flow-vorticity plane is quantified through a flow-alignment
parameter k = k0 + O(n) = (3/2)〈1 − p2

2〉J shown in Fig. 4(b). Here n is nondimensional number
density normalized by R−3; and 〈·〉J is the ensemble average taken over the steady-state orientation
distribution determined by pairwise interactions or weak Brownian motion (Dr � γ δ3

T ) (both
giving similar results [21]) for tumbling rings and described by the deviation from the equilibrium
orientation for SAPs, i.e., k0 = (3/2)(1 − p2

S,2). Here Dr is the rotary diffusivity of the ring. k equals
one for an isotropic suspension and zero if all particles are aligned in the flow-vorticity plane.
Although an ET remains aligned near the flow-vorticity plane for long O(δ−1

T ) = O(A) times, the
short O(1) tumbling phase has the greatest contribution to k, making k proportional to the O(A−1)
tumbling frequency [5]. The value of k for tumbling T rings away from A = A∗ is similar to k for
ETs. k sharply drops for tumbling T rings near A = A∗ suggesting greater flow alignment caused
by the rapid increase in the rotational time period shown in Fig. 4(a). SAPs are always aligned
near the flow-vorticity plane and therefore possess a much smaller value of k0 = (3/2) sin2(δ) =
O(	AA−3) � δT = O(A−1) compared to an ET. The flow-alignment parameter of equivalent fibers,
k0 f = (3/2)〈1 − p2

1〉J = O(A−1), is also shown in Fig. 4(b) [22] to demonstrate that SAPs also have
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FIG. 3. State of the orientational dynamics of rings in the (A,Cα/Cλ) space. Color represents T/Tt for
tumbling rings and the equilibrium angle δ for SAPs. Symbols with the same value of Cα/Cλ correspond to
rings with the same cross-sectional shape. Cross sections of the rings are also shown with transparent gray
background. These cross sections are illustrated such that the axis of symmetry of each ring is on the left side
of the cross section.

better flow alignment than fibers. By virtue of their permanent alignment, SAPs were found to have
the highest degree of flow alignment among all slender-particle geometries of the same size and
aspect ratio.

Recall that a SAP also has an unstable node pU , i.e., a ring’s orientation rotates away from pU

when it is in close proximity. The unstable node is at an angular separation of 2δ = O(A−1√	A/A)
from the stable node pS as shown in Fig. 2(c). If φ becomes larger than δ, then p will move towards
the stable node −pS and cause the SAP to tumble, disturbing the microstructure. This suggests
the possibility that small disturbances, such as those induced through perturbations to the SSF,
Brownian motion, interparticle interactions, or walls, could rotate a SAP towards its unstable node.
We now describe the impact of each of these secondary perturbations on the flow alignment of
SAPs.
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FIG. 4. Isolated particle properties (a) T for tori and T rings (A < A∗) and δ for T rings (A � A∗) as a
function of A. (b) k0 as a function of A for T rings, tori, and fibers. All order of magnitude scalings are derived
from the SBT treatment of rings.

III. PERTURBATIONS TO SIMPLE SHEAR FLOW (SSF)

We studied the impact of time-varying fluctuations on each component of ω∞ and E∞, with the
perturbations taking the form εs f̂s(t )/2 with the initial condition p = pS . Here f̂s(t ) = sin(2πζst +
ds); and εs, ζs, and ds are the amplitude, frequency, and phase angle of the perturbation, respectively.
The subscript s ∈ {ω1, ω2, ω3} ∪ {E11, E12, E13, E22, E23} corresponds to the component of
the vorticity vector and straining tensor, respectively. The disturbance to the microstructure was
quantified by the change in the orientation parameter kε = (3/2)(p2

S,2 − 〈p2
2〉ε ), where 〈·〉ε is the

time average of the orientation moments over a long period of time.
The perturbation to ω3 causes a small oscillatory change in the magnitude of the vorticity vector

of the SSF and causes rotation of p in the flow-gradient plane. Figure 5(a) shows the value of kε/δ
2

(color/contour) as a function of εω3 and ζω3 for an A = 55 SAP. The orientational dynamics can be
divided into two qualitatively different regimes in which (1) p wobbles around pS causing an O(δ2)
change in kε (dark region) and (2) p tumbles in the flow-gradient plane after being pushed near
the unstable node pU causing an O(1) change in kε and greatly disturbing the microstructure (light
region). The critical amplitude of the perturbation separating these two regimes can be obtained
analytically by solving Eq. (1) in the vicinity of the equilibrium orientation using rescaled variables
for time τ = tδ, azimuthal angle η = φ/δ = O(1), and polar angle χ = (θ − π/2). The evolution
equations for η and χ are given by

dη

dτ
= η2 − 1 − 1

2δ2
(εω3 f̂ω3 + εE12 f̂E12) + χ

1

2δ2
(εω2 f̂ω2 − εE13 f̂E13)

− η
1

2δ
(εE11 f̂E11 − εE22 f̂E22) + χη

1

2δ
(εω1 f̂ω1 + εE23 f̂E23), (3)

dχ

dτ
= χη + 1

2δ
(εω1 f̂ω1 − εE23 f̂E23) − η

2
(εω2 f̂ω2 + εE13 f̂E13)

× χ

2
(εE11 f̂E11 + 2εE22 f̂E22) + χηεE12 f̂E12 + χ2εE23 f̂E23

+ ηχ2εE13 f̂E13 + δ

2
η2χεE11 f̂E11 − χ3(εE11 f̂E11 + εE22 f̂E22). (4)

Equation (3) suggests that SAPs will not tumble from perturbations to ω3 at all frequencies if
εω3 < 2δ2, shown by the dotted line in Fig. 5(a). Linear stability analysis of Eq. (3) around η = −1
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FIG. 5. Effect of perturbations to the SSF. Contours of kε/δ
2 as a function of varying amplitude and

frequency of the perturbation for different modes: (a) (εω3, ζω3), (b) (εω1, ζω1), (c) (εE13, ζE13), and (d) (εω1, ζω1)
with (εω3, ζω3, dω3) = (δ2, 0.1δ2, 0.1δ).

provides the condition for the critical perturbation as εω3 � 8δ2[1 + (πζω3/δ)2]1/2 (see see Section
S5 in [23] for details). Linear stability analysis provides only the qualitative dependence of the
critical εω3 on ζ3 because the analysis ignores the existence of an unstable node at η = 1 [29]. The
dashed curve in Fig. 5(a) is given by εω3 = 2δ2[1 + (πζω3/δ)2]1/2, where the functional dependence
on ζω3 was taken from the prediction of the linear stability analysis and the constant was obtained
from the global stability condition described earlier, valid as ζω3 → 0. The above condition is also
consistent with numerical simulations which suggest that SAPs are more stable to higher frequency
perturbations.

Figure 6 shows the orientational trajectory of a A = 55 SAP (solid curve) in the (φ, θ )
plane at different times for ζω3 being near the critical amplitude value, εω3 = 0.95 ×
2δ2

√
(1 + (πζω3/δ)2) ≈ 1.8 × 10−3, and ζω3 = 10−2δ and dω3 = 0.0. The orientational velocity

field (φ̇, θ̇ ) is also shown (vectors). The orientation (x) moves from the stable node (◦) towards the
unstable node (�) of the unperturbed flow at t = 0. The stable and unstable nodes of the perturbed
flow also oscillate, moving closer to each other [Fig. 6(a)] and moving away from each other
[Fig. 6(c)]. Figure 6(b) corresponds to the state of minimum separation between the stable and
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FIG. 6. Orientational trajectory (solid curve) of a A = 55 SAP in the (φ-θ ) plane for
εω3 = 1.05

√
2δ2[1 + (πζω3/δ)2] ≈ 1.8 × 10−3, ζω3 = 10−2δ and dω3 = 0.0 at times (a) t = 0.05ζ−1

ω3 ,
(b) t = 0.25ζ−1

ω3 , and (c) t = 0.8ζ−1
ω3 . Vectors represent the orientational velocity field (φ̇, θ̇ ), and symbols

represent: stable node (◦), unstable node (�), and position at the given time (x).

unstable nodes for this perturbation. Supplemental Movie 1 shows the animation of this wobbling
trajectory in the (φ, θ ) plane. For higher perturbation frequencies, i.e., ζω3 � O(δ), the amplitude of
the wobbling motion decreases (see Supplemental Movie 2). For amplitudes higher than the critical
value, the stable and unstable nodes annihilate each other for a period of time during which the
particle tumbles towards the stable node located at −pS (see Supplemental Movie 3). The value
of kε/δ

2 as a function of the amplitude and frequency of perturbations to E12 component of the
straining tensor has a similar behavior [see Fig. S2(a) in the Supplemental Material [23]].

Perturbation to ω1 (or E23) causes p to rotate close to the gradient-vorticity plane of the
SSF. SAPs can sustain O(1) changes in θ without φ ever approaching the value at the unstable
node, δ, as described by the trajectory of the particle in the (φ, θ ) space shown in Fig. S3 of
the Supplemental Material [23]. The phase diagram of dη/dτ and η described by Eq. (3) [see
Eq. (S5.8) of the Supplemental Material [23]] also indicates the presence of a stable node that
oscillates around η = −1. Although the SAP does not tumble by crossing the unstable node, the
O(1) wobbling amplitudes could disturb the microstructure of SAPs. This is qualitatively different
from the effect of perturbations to ω3 wherein a tumbling event was necessary to disturb the
microstructure. The dependence of kε/δ

2 on the frequency and amplitude of the oscillation is shown
in Fig. 5(b). Linearizing Eqs. (3) and (4) around η = −1 suggests that amplitudes of the oscillation
satisfying εω1 � 2δ2[1 + (πζω1/δ)2]1/2 ensure that the wobbling in the θ direction is O(δ) and the
microstructure changes remain small. The variation of kε/δ

2 due to perturbation to E23 is also similar
and is shown in FIg. S2(b) of the Supplemental Material [23].

The perturbation to ω2 drives rotation of p around the gradient axis. Although a high enough
value of εω2 can drive φ to be larger than δ, causing p to move past the unstable node, the rotational
motion curves p back towards the stable node. The orientation trajectory and the velocity field (φ̇, θ̇ )
shown in Fig. S4 of the Supplemental Material [23] describe this behavior. kε/δ

2 as a function of
εω2 and ζω2 is shown in Fig. S2(c) of the Supplemental Material [23], which suggests that a SAP is
stable to large perturbations to εω2. The perturbation to E13 drives an extensional flow which causes
p to move towards the extensional axis of the perturbed flow field. p oscillates with the change in
the magnitude of the perturbation as shown by a sample trajectory in Fig. S5 of the Supplemental
Material [23]. The amplitude of the wobbling driven by perturbation to E13 can cause a large change
in kε/δ

2 as shown by its variation with εE13 and ζE13 in Fig. 5(c). Solution of Eqs. (3) and (4),
such that |η + 1| � 1 and χ = O(δ), provides the condition that εE13 � √

2δ[1 + (2πζω3/δ)2]1/2.
Notice that the amplitude of perturbations to E13 needs to be smaller than O(δ) rather than
O(δ2) described for the previous two perturbations. Numerical simulations indicate that SAPs
retained their equilibrium orientation if εω3 < O(δ2), εE12 < O(δ2), εω1 < O(δ), εE23 < O(δ), and
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εE12 < O(δ). Figure 5(d) shows kε as a function of εω1 and ζω1 for (εω3, ζω3, dω3) =
(δ2, 0.1δ2, 0.1δ), and other modes having zero amplitude.

IV. BROWNIAN MOTION

The randomizing effect of rotary Brownian motion competes with the flow-aligning effect of
the SSF, and the relative strength is quantified through the Péclet number Pe = γ /Dr . Brownian
dynamics (BD) simulations [30,31] of an A = 55 T ring were used to study the differences between
Brownian SAPs and ETs. This SAP has the highest value of δ and thus the greatest resistance to
Brownian motion. The motion of p in the flow-gradient plane (θ = π/2), i.e., the change in the
azimuthal angle φ, provides a framework to qualitatively understand the influence of Brownian
motion on a SAP. p should not move past the unstable node if the diffusive flux is much smaller
than the convective flux for φ = O(δ). This condition is satisfied for Pe � δ−3 as seen from the
one-dimensional Fokker-Plank equation for P(φ), the steady-state probability density function of φ

[22,32]. The one-dimensional Fokker-Plank equation for the probability density Pφ for the particle
having an azimuthal angle φ is given by

∂Pφ

∂t
+ d

dφ

(
φ̇JPφ − 1

Pe

dPφ

dφ

)
= 0, (5)

where φ̇J = (1/2)[1 + λ cos(2φ)] is obtained from the solution of Eq. (1). The steady-state ori-
entation distribution P = limt→∞ Pφ for SAPs with Pe � δ−3 can be obtained by asymptotically
matching P from an outer region where φ = O(1) and an inner region where φ = O(δ). Following
the procedure in Petrich et al. [33], the uniformly valid solution is given by

P = Co

D̂δ2
exp

[
1

D̂

(
φ3

3δ3
− φ

δ

)] ∫ ∞

φ/δ

dx′ exp

[
− 1

D̂

(
x′3

3
− x′

)]
+ 2Co

1 + λ cos(2φ)
− Co

φ2 − δ2
, (6)

where D̂ = Pe−1δ−3 and Co is a constant obtained by the normalization condition,
∫ π/2
−π/2 dφP =

(1/2) (see section (S3) of the Supplemental Material [23] for derivation).
The shape of P(φ) is shown in Fig. 7(a) at different Pe, where the thin dark lines are the

semianalytical solution given by Eq. (6) and the thick transparent lines are the full-BD simulation
results. Figure 7(b) shows the flow-alignment parameter k0 as a function of the shear rate through
Pe. k0 equals (3/2)δ2 for Pe � δ−3 = 3.7 × 104, and in this flow-aligned regime there is a clear
distinction between the microstructure of suspensions of SAPs and ETs. For these high Pe values,
p of a SAP wobbles around pS as evident from the probability distribution (red line) in Fig. 7(a),
and Brownian motion is too weak to induce any noticeable tumbles. With decreasing Pe = O(δ−3),
as seen from Fig. 7(a), the dynamics transitions from a state of wobbling around pS at Pe = 105

(green) to a state of noticeable flips (Pe = 104) (violet) wherein Brownian kicks are strong enough
to move p beyond pU . In this flow regime, a SAP still retains greater alignment than an ET because
of the stabilizing angular velocity φ̇ = φ2 − δ2 provided by the SSF when p is close to the gradient
direction, i.e., |φ| � 1. This can be see from the probability distribution for SAPs and ETs at the
same Pe as shown in Fig. 7(c). SAPs at Pe = 104 (green curve) remain significantly more aligned
than ETs at the same Pe (gray curve). The rotational period of SAPs also changes by three orders
of magnitude in this flow regime as shown in Fig. 7(d). For lower shear rates with Pe � δ−3, the
self-aligning behavior of a SAP is lost and the orientational structures of SAP and ET suspensions
are nearly identical. Thus, SAPs provide greater resistance to Brownian motion than ETs above a
critical Pe = O(δ−3) for geometries studied here. In dimensional terms, a A = 55 T ring with a 1 µm
radius will retain its self-alignment in a viscous fluid like glycerin (1 Pa s) for shear rates larger than
47 s−1 corresponding to Pe = 105 [see Eq. (S3.7) in the Supplemental Material]. For the special
case of A = A∗, k0 decreases to zero as Pe−1/3 for Pe � 1, while geometries away from A = A∗
have a behavior similar to the A = 55 SAP.
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FIG. 7. Brownian motion effects. (a) P, the probability distribution function of φ, for an A = 55 SAP at
various Pe using theory (thin line) and BD simulations (thick translucent line); inset shows the peak value of P,
Pmax as a function of Pe. (b) Flow-alignment parameter, k0 as a function of Pe for SAPs and ETs with A = 55.
(c) P for a SAP and an ET of A = 55 at Pe = 104 and Pe = 105. (d) Tumbling period as a function of Pe for
SAPs and ETs with A = 55.

V. PAIRWISE INTERACTIONS BETWEEN SAPs

Permanent alignment of non-Brownian SAPs can be disturbed by interactions with other particles
in the suspension, and this is captured using slender-body theory (SBT) [18,34] (see section S1 of the
Supplemental Material [23] for a brief summary of the numerical implementation). SBT has been
used to predict the microstructure in fiber suspensions [5,35–37] and has also recently been used
to analyze interactions of tumbling rings [21]. Mechanical contact of tumbling rings which leads
to an δT = O(A−1) mean-squared change in p is crucial, in addition to hydrodynamic interactions
(HIs), in establishing the orientational structure even at dilute concentrations [21]. However, in a
suspension of SAPs the O(δ2) = O(	AA−3) collision frequency is so small that mechanical contacts
have little contribution to changes in p compared to HIs. Figure 8(a) shows the collision frequency,
βc of SAPs and ETs as a function of their aspect ratio. This confirms our assertion that particle
collisions are rare in a suspension of SAPs compared to a suspension of ETs, and SAPs mainly have
purely hydrodynamic interactions. The scaling of βc for SAPs is obtained from the ideal-collision
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FIG. 8. Pairwise interactions (PIs). (a) Collision frequency, 〈βc〉, and (b) effect of PIs on the orientational
dispersion k1, as a function of A. (c) φ and θ of a SAP as a function of 	r1 during an interaction with
another SAP initially separated with 	r1 = 103, 	r2 = 0.15, 	r3 = −0.13. (d) Schematic of hydrodynamic
interactions of two SAPs in shear flow explaining the shape of the φ trajectory in (c).

cross section in the gradient vorticity plane [38] and the scaling for tumbling particles is available
[21]. Thus, SAPs mainly have weak HIs driven by the O(εδ) velocity disturbance produced by
a neighboring SAP, where the scaling is derived from SBT [34]. This leads to O(εδ) changes in
p during each pairwise interaction (PI), and this displacement is much smaller than the angular
separation between the stable and unstable nodes, 2δ. Therefore, flow alignment of SAPs is expected
to be retained even with HIs, and this was confirmed by dynamic PI simulations of SAPs. We
consider the O(ε) change in the linear and angular velocity, and the O(ε2) change in the force
distribution on a SAP due to the O(ε) velocity disturbance generated by a neighboring SAP. A brief
description of the simulation strategy is provided in section S1 of the Supplemental Material [23],
and all details can be found in Sec. 2 of Borker and Koch [21].

Figure 8(b) shows the variation k − k0 = nk1 + O(n2) = −(3/2)〈p2
2 − p2

J,2〉, with A, where 〈·〉
represents the ensemble average over all possible realizations of PIs and pJ represents the Jeffery
trajectory of isolated particles for tumbling rings [3,4] while pJ = pS for SAPs. The magnitude of
nk1 quantifies deviations in the orientational microstructure during PIs, and a positive k1 indicates
degradation in flow alignment. k1 for T rings with A < A∗ is similar to the O(A−1) value for
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FIG. 9. Impact of tumbling impurities and wall. (a) k in a SAP-ET mixture as a function of χ at n = 0.1
for A = 40 particles. (b) (φ + δ)/δ as a function of h.

ETs, wherein major contributions arise from O(1) changes in p during the O(nA−1) times when
particles make mechanical contact [21]. SAPs, which interact through weak HIs, have a much
smaller k1 = O(ε2δ2) = O(ε2|	A|A−3) than ETs. SAPs were found to only wobble around their
equilibrium orientation due to PIs with other SAPs in the suspension. Figure 8(c) shows this
wobbling motion through the variation of φ and θ as a function of the relative position of the
particles in the flow direction 	r1. The initial separations in the gradient and vorticity directions
were 	r2 = 0.15 and 	r3 = −0.13, respectively. The shape of the change in φ can be explained
from the qualitative nature of the velocity disturbances generated by the two particles shown by
the schematic in Fig. 8(d). A SAP pulls fluid in the plane of the ring and pushes fluid out along
its axis of symmetry [21] [see Fig. S1(b) of the Supplemental Material [23]]. As the particles
approach each other, HIs between the nearest ends of the rings should induce a covorticity rotation
as shown in Fig. 8(d). As the particles pass across each other in the flow direction, the nature of the
hydrodynamic interaction changes and HIs should cause a countervorticity rotation. As the particles
start moving apart, the nearest ends of the rings have the strongest interactions causing a covorticity
rotation whose magnitude keeps decaying as the particle separation increases in the flow direction.
This explains the slow increase in φ with increasing 	r1 which is followed by a rapid decrease, a
rapid increase, and an eventually decay towards the equilibrium orientation. Overall, the magnitude
of the fluctuation was smaller than 2δ, and thus PIs did not disturb the aligned microstructure of a
SAP suspension.

The effect of tumbling impurities in a suspension of SAPs was also studied using dynamic PI
simulations of SAP-SAP, SAP-ET, and ET-ET interactions for A = 40 particles (see section S4
of the Supplemental Material [23]). One might expect the long-range O(ε) velocity disturbance
generated by an ET during its tumbling phase [5,34] to induce multiple tumbling events of SAPs.
However, our simulations suggest that around 90% of the SAP tumbling events involved mechanical
contact between an ET and a SAP. Furthermore, only (2 ± 0.014)% involved two flips during the PI.
The average separation between the two particles was (0.16 ± 0.16) when φ first became larger than
δ. Physically this means that an ET flowing in a dilute SAP suspension would induce only occasional
local tumbling of SAPs, and a cascade of tumbling events would not occur. The tumbling frequency
of a SAP was (0.098 ± 0.025)nχ , which was much smaller than the tumbling frequency of the ET,
i.e., 2π/T = 0.045 + O(n2), for tumbling particle fraction χ � 1 and n � 1. Figure 9(a) shows k
as a function of χ , at n = 0.1. For a given n, k is linear in χ and such linear control could help to
obtain precise microstructures in a large-scale manufacturing process.
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The effect of a bounding wall on SAPs was also captured using SBT [39–41]. A SAP slowly
drifts towards the wall and changes its equilibrium orientation with h, the distance of its center of
mass from the wall, as shown in Fig. 9(b). The wall pushes p away from pU , thereby retaining flow
alignment. One could use fore-aft asymmetric SAPs, which also have a mean drift in the gradient
direction [8,9], to get particles close to the walls of the flow channel and systematically deposit them
to impart surface properties like scratch or wear resistance to the final component [42,43].

VI. MULTIPARTICLE INTERACTIONS BETWEEN SAPs

We showed that SAPs retain flow alignment for n � 1 where interactions are primarily pairwise
in nature. At sufficiently large value of n = O(1), multiple particles will simultaneously interact with
a SAP. We investigated the changes in the microstructure of SAP suspensions at such concentrations
by using periodic box simulations following the procedure previously used for fiber suspensions
[36,37,44–46]. We start with a box containing SAPs with isotropic initial orientations and random
spatial positions after avoiding all states with contacting and entangled particles. The particles are
then allowed to interact till the moments of the orientation vector reach a value that is statistically
invariant (section S2 of the Supplemental Material [23] for details). Our simulations indicate that
randomly oriented SAPs moved near the equilibrium orientation pS in an O(δ−1) time as shown by
the variation of 〈k〉t , the value of k averaged over all particles inside the periodic box, as a function of
time, t , in Fig. 10(a) at n = 0.09. During the transient phase most SAPs closely follow the trajectory
described by Eq. (1) with some deviations induced by mechanical contacts. SAPs eventually wobble
around the equilibrium orientation, and the velocity disturbances generated by temporarily tumbling
particles are too weak to induce a cascade of tumbling of SAPs, consistent with our PI simulation
results. We also simulated other initial conditions where the particle orientation was not isotropic to
reach higher particle concentrations and found that the particle orientation vectors also neared the
equilibrium orientation after times of O(δ−1).

For obtaining the average values of the flow-alignment parameter, all SAPs were initially in an
orientation of p = pS . The variation of the flow-alignment parameter, k = (3/2)〈1 − p2

2〉MI , with n
is shown in Fig. 10(b), where 〈·〉MI is the value of (3/2)(1 − p2

2) averaged over all particles in the
periodic box and averaged over time. The time averaging was carried out until the results reached a
statistical steady state which typically took O(102–103) nondimensional time (see section S2 of the
Supplemental Material [23] for details). The value of k is consistent with the PI simulation results
for n < 0.1. In the concentration range of n < 0.1, MIs are mainly hydrodynamic in nature and
cause SAPs to wobble around their equilibrium orientation. This behavior is qualitatively similar to
wobbling of a weakly Brownian SAP described earlier and the equivalent orientation distribution
is shown in Fig. 7(b) with n−1 serving the role of Pe. For concentrations n � n∗ ≈ 0.2, MIs are
strong enough to cause φ > δ for a significant portion of time but particle contacts restrict free
tumbling. The existence of a critical concentration can be understood if the role of MIs is captured
through a rotatory diffusivity of order nε2δ2, obtained from the PI scaling argument that diffusivity
is proportional to the square of the O(εδ) orientational displacement and the O(n) interaction
frequency [5]. A critical concentration n∗ = δε−2 would be akin to a critical Péclet number of
δ−3 described earlier for Brownian SAPs. To confirm the existence of this critical concentration,
we also performed MI simulations allowing particles to pass through each other by ignoring the
contact forces. Values of k for this artificial scenario were within 10% of values shown in Fig. 10(b)
for n < 0.1 and over two orders of magnitude higher for n > 0.2. This suggests the importance of
mechanical contacts for larger values of n.

VII. MICROSTRUCTURE AND MATERIAL CONDUCTIVITY

At a given n, k for ETs, shown by the inset in Fig. 10(b), is much larger than k for SAPs. k
for SAPs was 0.0013 at n = 0.09, which is much smaller than the corresponding value of 0.19 for
ETs. This difference is shown in Fig. 11, where the highly aligned microstructure of SAPs can be
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FIG. 10. Multiparticle interactions (MIs) (a) Variation of 〈k〉t with time. (b) k for SAPs using MI (�) and
PI (-) simulations; and k for ETs from PIs (- - dashed) and MIs (o) as a function of n. Shaded region and
errorbars represent 95% confidence intervals. (c) P(φ) at various n for A = 40 SAPs.

visually contrasted by the dispersed microstructure of ETs. For a suspension of ETs to obtain a
microstructure of the above SAP suspension requires an ET to have an impractical aspect ratio of
2500 (obtained by extrapolating the scaling for k in [21]). This demonstrates that the highly aligned
microstructures of SAP suspensions, such as the one shown in Fig. 11, are inaccessible to tumbling
particle suspensions.

The aligned microstructure of SAPs can be used to make composite materials with anisotropic
material properties such as thermal conductivity. We calculated the thermal conductivity tensor K
of a composite material of highly conductive aligned rings relative to the conductivity of the base
material k f using an effective medium theory [47]. The value of K is given by

K
k f

=
(

1 + 4π2n

A2

)
I + 2π2n

ln(8A) − 2

(
1 + 1

2A2

)
(I − 〈pp〉), (7)
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FIG. 11. Orientational microstructure of A = 40 SAPs and ETs viewed in the flow-gradient plane.

where we have ignored contributions from contacting particles, which is a good approximation at
low concentrations. Because of the high degree of alignment in the flow-vorticity plane, we can ex-
pect the in-plane conductivity, (K11 + K33)/2, to be much larger than the out-of-plane conductivity,
K22. Figure 12(a) shows the in-plane and out-of-plane conductivity values for composites made of
A = 40 SAPs as a function of the volume fraction of particles, nVp, Vp being the nondimensional

(a) (b)

FIG. 12. Conductivity of a composite made of A = 40 SAPs or ETs. (a) Conductivity in the flow vorticity
plane (in-plane) and conductivity in the gradient direction (out-of-plane) as a function of the particle volume
fraction for SAPs and ETs. (b) Ratio of in-plane and out-of-plane conductivities for a composite of SAPs and
ETs. Lines use the average values of the orientational moments from PI simulations, and symbols use the values
from MI simulations.
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volume of the particle. Thin sheet composites with low conductivity in the thickness, i.e., insulating,
and high conductivity in the plane of the sheet can be useful as heat spreader materials. Such
composite films can be used between cells of modern day electric vehicle battery packs, providing
high thermal conductivity for efficient cooling during normal operations and thermal insulation
across the thickness during a thermal runaway event to prevent propagation of heat to adjacent cells
[48,49]. The ratio of in-plane and out-of-plane conductivities is shown in Fig. 12(b) as a function of
the volume fraction of the particles. Composites made of SAPs will have much higher anisotropy
than composites made of ETs as shown in Fig. 12(b).

VIII. CONCLUSION

In conclusion, our work characterizes the robustness of the microstructure of SAP suspensions to
perturbations from Brownian motion, particle interactions, small tumbling impurities, perturbations
of the imposed velocity field, or a nearby wall. SAPs influenced by Brownian motion retained their
alignment for shear rates greater than O[δ−3(2 − 3ε)kB�(8π2μεR3)−1], where � is the temperature
of the suspension, μ is the fluid viscosity, and kB is the Boltzman constant. At these shear rates, a
SAP wobbles around its equilibrium orientation, and the particles remain aligned close to the fluid
lamellae. A SAP also wobbled around its equilibrium orientation due to interactions with other
particles in the suspension or due to small perturbations to the imposed shear flow. The robust
alignment allows SAP suspensions to access highly anisotropic orientational microstructures, such
as the one shown in Fig. 11, which are inaccessible to traditional particle geometries (including
high-aspect ratio fibers [7,33]). Highly anisotropic materials made from SAP suspensions could
include high-conductivity films for flexible electronics [50], or highly porous films for CO2 capture
[51–53] or catalysis [54–56] obtained by solvent evaporation [57].

We also observed that excluded volume interactions become increasingly important to retain the
aligned microstructure of SAPs beyond a number density of O(δε−2). However, the orientational
structure of rings at concentrations higher than the ones studied here [O(1) < n = O(A)] remains
an open question. The microstructure of SAP suspensions at such high concentrations is expected
to be influenced by excluded volume interactions similar to disk suspensions [58–61], and there
is a possibility of particle jamming. The initial orientation distribution would be dependent on the
balance between translational and orientational entropy of the rings for Brownian rings [62], and the
initial microstructure would also be strongly dependent on the processing steps used to concentrate
the suspension for both non-Brownian and Brownian systems.

The effect of attractive van der Waals forces on SAP microstructure also needs further investi-
gation. Attractive forces between high-aspect ratio rings should be similar to interactions between
two thin fibers. The importance of attractive forces could be determined by the ratio of the torque
from viscous and adhesive forces on a ring when it is aligned near the flow vorticity plane [63],
βR = 2π2μγ R3|λ + 1|/Fa, where Fa is a measure of the adhesive force. The adhesive forces should
play a small role when βR � 1, and the microstructure should be well described by the current work.
For the case of βR � 1, it is unclear if adhesive forces aid or disturb the aligned microstructure
of SAPs. Some of the particle aggregates formed from adhesive contact could also lose their
self-alignment property, and the rate of aggregate formation and breakage would also be relevant.

The aforementioned questions could potentially be answered using experiments. Rings can be
fabricated using a variety of materials from organic polysaccharides to inorganic colloidal silica us-
ing the vortex ring freezing technique [64]. T rings studied here could be fabricated using multistep
photolithography [19,20] and tested in a Couette cell with a gap of at least five particle diameters
to ignore wall effects and observe alignment for a time that is at least ten times the rotational
period of an ET. 3D printed ring-shaped SAPs with triangular cross sections [9] were experimentally
observed to sustain permanent alignment compared to a torus that rotated continuously [10]. This is
an encouraging result suggesting the possibility of experimentally confirming some of the findings
in the present work.
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