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A rotating or stratified fluid supports waves that propagate in fixed directions. If the fluid
is uniformly rotating around an axis Oz with a rotation rate � and/or uniformly stratified
along the same axis with a Brunt-Väisälä frequency N , then harmonic waves of frequency
ω propagate along characteristic lines that make an angle θ with respect to the horizontal
plane Oxy with θ satisfying the relation ω2 = 4�2 cos2 θ + N2 sin2 θ. Any infinitesimal
oscillation of the boundary is a source of waves, but when this boundary is tangent to a
direction of propagation of the waves, a singularity generically appears. This critical slope
singularity propagates along the critical ray tangent to the boundary. When weak viscous
effects are considered, this singular ray forms a concentrated self-similar wave beam with
an amplitude that depends on the nature of the singularity and a width of order (νx‖/ω)1/3,
where ν is the kinematic viscosity and x‖ the distance to the critical point measured along
the beam. The goal of the present work is to provide information on the type of singularities
that can be generated in an infinite domain and therefore on the amplitude and nature
of the concentrated wave beams that can be created from critical points. We analyze in
a two-dimensional framework two generic configurations corresponding to oscillations
normal and tangent to the boundary, respectively. In the first case (oscillations normal
to the boundary), we obtain an amplitude scaling in [ωr3

c /(νx‖)]1/6 corresponding to an
inviscid singularity in x−1/2

⊥ , where x⊥ is the distance to the critical ray and rc the radius
of curvature at the critical point. In the second case (oscillations tangent to the boundary),
a weaker beam in [νr3

c /(ωx5
‖ )]1/12 is obtained corresponding to a stronger singularity in

x−5/4
⊥ . In that case, the beam is generated by the particular viscous boundary layer flow

obtained close to the critical point and the problem can be completely solved by a local
analysis. A general expression for the beam amplitude is derived that depends on the fluid
characteristics (�, N), the wave frequency ω, the velocity amplitude of imposed tangential
oscillations, and the local radius of curvature at the critical point. Finally, the first-order
viscous correction to the critical slope beam induced by the no-slip boundary condition on
the surface is also calculated.

DOI: 10.1103/PhysRevFluids.9.034803

I. INTRODUCTION

In a fluid rotating and uniformly stratified along a same axis Oz, inertia-gravity waves have
the particularity of propagating along characteristic directions making an angle θ with respect to
the horizontal plane that depends only on the ratio of the wave frequency with the background
characteristic frequencies (Brunt-Väisälä frequency N and rotation rate �). When one of these
directions of propagation is tangent to a surface which is potentially a source of waves, a singularity
generically appears along this direction. This so-called critical slope singularity is the subject of the
present paper.
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FIG. 1. Illustration of the ray accumulation on the critical line. Rays (thin black lines) are emitted from
equidistant points on an arc of circle (thick black line) in the characteristic directions (here θ = −π/6,

π/6, 5π/6). The distance between consecutive rays is the smallest close to the critical line (red solid line)
tangent to the surface at the critical point (blue circle).

Figure 1 illustrates the mechanism responsible of the singularity. It shows that if sources were
equidistantly placed on the surface of an object, then the rays emitted from these sources will tend to
accumulate along the characteristic line tangent to the object. The same phenomenon occurs when
a plane wave is reflected by supercritical topography [1].

The footprint of this singularity is clearly visible in experiments. It corresponds to the Saint
Andrews cross that is formed when a small object is oscillated at a frequency in the inertia-gravity
wave frequency range [2,3]. The wave structure obtained from an oscillating cylinder or an
oscillating sphere has been analyzed in several studies (see, for instance, Refs. [4–6]). The reader
is referred to Voisin’s work [7,8] for more references and a comprehensive discussion of the
literature.

In the ocean, this singularity is expected to appear when the oscillating tide interacts with a
supercritical topography, that is a topography which exhibits a critical slope. This interaction has
been studied experimentally (see, for instance, Ref. [9]), theoretically [10], and numerically [11].

The structure of the concentrated wave beam associated with this singularity has been the
subject of many works in both rotating fluids [12–15] and stratified fluids [16,17]. The self-similar
expression introduced in Refs. [14,17] was shown to describe correctly both the far-field of a
localized wave source [18,19], and the intense shear layer emitted from sharp edges [20] and critical
slopes [13].

In the present work, we focus on the generic features of the critical slope singularities. Our goal
is to provide informations on these singularities and show how they completely govern the structure
and strength of the intense shear layers along the critical line.

The paper is organized as follows. In Sec. II, we first show how the outward radiation condi-
tion and the inviscid nonpenetration condition on the boundary close to a critical point provide
informations on the amplitude and strength of the critical slope singularity. In Sec. III, we explain
how the inviscid singularity is smoothed by viscosity. The amplitude and structure of the intense
shear layer obtained along the critical line is thus given in this section. Two generic configurations
corresponding to a normal and a tangential oscillation of the boundary are then analyzed in details in
Sec. IV. The singularity generated by the tangential oscillation is due to the Ekman pumping in the
viscous boundary layer. The calculation of the Ekman pumping close to a critical point is provided
in Appendix. In Sec. V, we provide the first-order viscous correction to the solution derived in
Sec. III. A brief discussion of the results and their possible extension is finally given in Sec. VI.
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II. INVISCID ANALYSIS OF CRITICAL SLOPE SINGULARITIES

We consider a weakly viscous incompressible fluid, of kinematic viscosity ν, uniformly rotating
around a vertical axis ez (oriented upwards) at a constant rotation rate �, and uniformly stratified
along the same axis with a constant Brunt-Väisälä frequency N . The buoyancy diffusivity is
neglected and the reference density is fixed to unity.

We are interested in the properties of waves generated by small oscillations of a finite object in an
infinite domain. The domain and all the fields are assumed to be independent of the spatial variable
y so that the analysis can be performed in the (Oxz) plane.

The velocity U, pressure P, and buoyancy B are assumed to be governed by the Navier-Stokes
equations under the Boussinesq approximation,

DU
Dt

+ 2�ez × U = −∇P + Bez + ν�U, (1a)

DB

Dt
+ N2ez · U = 0, (1b)

∇ · U = 0, (1c)

where D/Dt = ∂/∂t + U · ∇.
We are interested in linear time-harmonic fluctuations that can be written as

(U, P, B) = (u, p, b)e−iωt + c.c. (2)

where c.c. denotes the complex conjugate. The amplitudes u = (ux, uy, uz ), p, and b satisfy the
following system deduced from the linearization of (1a)–1(c):

−iωu + 2�ez × u = −∇p + bez + ν�u, (3a)

−iωb + N2w = 0, (3b)

∇ · u = 0. (3c)

Equation (3c) reads, for a velocity field independent of y, as ∂xux + ∂zuz = 0. This allows us to
introduce a stream function ψ (x, z) for the 2D velocity field u2D = (ux, uz ) such that ux = −∂zψ and
uz = ∂xψ . In an inviscid framework (ν = 0), this function is found to satisfy the Poincaré equation,[

−ω2

(
∂2

∂x2
+ ∂2

∂z2

)
+ 4�2 ∂2

∂z2
+ N2 ∂2

∂x2

]
ψ = 0 . (4)

For a rotating fluid (� �= 0), the velocity component uy along y is nonzero and given by

uy = −2i�

ω
ux = 2i�

ω

∂ψ

∂z
. (5)

Similarly, for a stratified fluid (N �= 0), there is a buoyancy perturbation given by

b = − iN2

ω
uz = − iN2

ω

∂ψ

∂x
. (6)

We shall assume that the frequency ω is between N and 2�. In that case, Eq. (4) is a homogeneous
hyperbolic equation whose characteristics are the lines that make an angle θ with respect to the
horizontal plane given by

ω2 = 4�2 cos2 θ + N2 sin2 θ. (7)

We can assume that 0 � θ � π/2. The three other solutions of (7) are −θ , π + θ , and π − θ .
We shall consider solutions above a 2D y-independent surface whose cross section in the plane

(Oxz) will be defined by a curve S . Only the three directions θ , π − θ , and −θ will correspond to
possible directions of propagation from the surface to the fluid domain. They will be denoted by
NE (north-east), NW (north-west), and SE (south-east), respectively. It is useful to introduce several
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FIG. 2. (a) Coordinate systems near the critical point C. Two orthogonal bases (eNW
‖ , eNW

⊥ ) and (eNE
‖ , eNE

⊥ )
are introduced to characterize the solutions propagating along characteristic lines in the NW and NE directions,
respectively. The vector eNW

‖ is tangent to the boundary at the critical point and the line xNW
⊥ = 0 defines the

critical line. The orthogonal basis (t, n) is constructed using the local tangent and normal vector to the curve S
at the point xS . The radius of curvature of the curve S at C is rc. [(b) and (c)] Relation between phase velocity
and group velocity orientations in the different directions of propagation for (b) N < 2� and (c) 2� < N .

orthogonal vector bases associated with the boundary curve S and the directions of propagation.
These different bases are sketched in Fig. 2(a) for a generic configuration close to a critical point C.
The local Frenet basis (t, n) at the point xS on the curve S is defined such that the normal vector
n is oriented towards the fluid domain. The bases (eNW

‖ , eNW
⊥ ) and (eNE

‖ , eNE
⊥ ) are associated with

the solutions propagating in the NW and NE directions, respectively. We also define the coordinate
systems (xNW

‖ , xNW
⊥ ) and (xNE

‖ , xNE
⊥ ) associated with these bases such that the origin in both frames

is at the critical point C. Vectors and coordinates associated with the directions of propagation can
be expressed in term of Cartesian quantities as

eNW
‖ = − cos θ ex + sin θ ez, eNW

⊥ = sin θ ex + cos θ ez, (8a)

eNE
‖ = cos θ ex + sin θ ez, eNE

⊥ = − sin θ ex + cos θ ez, (8b)

xNW
‖ = − cos θ x + sin θ z, xNW

⊥ = sin θ x + cos θ z, (8c)

xNE
‖ = cos θ x + sin θ z, xNE

⊥ = − sin θ x + cos θ z. (8d)

We have not introduced the local basis associated with SE direction. The solution propagating in
that direction will be described using the basis (eNW

‖ , eNW
⊥ ) and the variables (xNW

‖ , xNW
⊥ ).

With these new variables, Eq. (4) can simply be written as

∂

∂xNE
⊥

∂

∂xNW
⊥

ψ = 0, (9)

so its general solution can be written as

ψ (x, z) = F (xNE
⊥ ) + G(xNW

⊥ ), (10)

where F and G are two arbitrary functions. The velocity field u2D [in the (x, z) plane] becomes

u2D = −F ′(xNE
⊥ )eNE

‖ + G′(xNW
⊥ )eNW

‖ . (11)

In general, G describes waves propagating in both eNW
‖ and eSE

‖ = −eNW
‖ . The part that is

propagating in a given direction is obtained by splitting the Fourier decomposition of G into positive
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and negative wave numbers

G(xNW
⊥ ) =

∫ +∞

0
Ĝ(k)eikxNW

⊥ dk +
∫ 0

−∞
Ĝ(k)eikxNW

⊥ dk. (12)

The first part, associated with positive k, describes a wave packet with phase velocities oriented
along eNW

⊥ (assuming ω > 0). The group velocity of this wave packet, that gives the direction of
propagation, is oriented along eNW

‖ if N < 2� but along −eNW
‖ if N > 2� [see Figs. 2(b) and 2(c)].

This means that if N < 2�, then the wave packet composed of positive wave numbers propagates
in the direction of eNE

‖ and the one with negative wave numbers propagates in the direction −eNW
‖ .

The opposite holds if N > 2�.
As explained by Baines [21], the condition of causality can be directly expressed as a condition

on the functions F and G. For instance, the function G defines a wave packet that propagates in the
NW direction if

G(xNW
⊥ ) = − iε

π
P

∫ ∞

−∞

G(η)

η − xNW
⊥

dη , (13)

where the P in front of the integral means that the Cauchy principal part of the integral is taken. The
wave packet propagating in the SE direction satisfies

G(xNW
⊥ ) = iε

π
P

∫ ∞

−∞

G(η)

η − xNW
⊥

dη . (14)

In these equations, ε = sgn(2� − N ). When ε = −1, we recover the conditions obtained by Baines
[21] for the nonrotating case. As we are going to see, these equations are useful to implement the
outward boundary condition on the solutions emitted from the neighborhood of the critical point.

Let us now consider the constraints that we obtain on the solution by applying the boundary
conditions close to the critical point C. We assume that the waves are generated by the displacement
of the boundaries. In an inviscid framework, at any point xS of the boundary S , the velocity field
amplitude u should satisfy the no-penetration condition,

u(xS ) · n(xS ) = u2D(xS ) · n(xS ) = U0n(xS ), (15)

where U0n(xS ) and n(xS ) are the normal velocity amplitude and normal vector of the
boundary at xS .

As explained above, the geometry of the problem close to the critical point can generically be
sketched as shown in Fig. 2(a). The origin of the different coordinate systems has been chosen at the
critical point. The critical line, tangent to the surface at the origin is given by the equation xNW

⊥ = 0.
The line xNE

⊥ = 0 divides the domain into two regions.
We are looking for solutions close to the critical point. Close to that point, the equation of the

curve S has a simple generic expression when it is expressed in terms of the variables xNE
⊥ and xNW

⊥ ,

xNW
⊥ ∼

xNE
⊥ →0

− (xNE
⊥ )2

2rc(sin 2θ )2
for xNW

⊥ < 0 (16)

or

xNE
⊥ ∼

xNW
⊥ →0

⎧⎨
⎩

√
2rc|xNW

⊥ | sin 2θ for xNE
⊥ > 0, xNW

⊥ < 0

−
√

2rc|xNW
⊥ | sin 2θ for xNE

⊥ < 0, xNW
⊥ < 0

, (17)

where rc is the radius of curvature at the critical point. Note that these equations only depend
on the angle θ and on rc. They break down when sin 2θ = 0, that is, θ = 0 and θ = π/2, which
corresponds to the situation where the vectors eNW

‖ and eNE
‖ are parallel.
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Close to the critical point, we can also express the Cartesian components of n(xS ) in terms of
xNE
⊥ ,

nx(xS ) ∼
xNE
⊥ →0

sin θ − xNE
⊥

2rc sin θ
, nz(xS ) ∼

xNE
⊥ →0

cos θ + xNE
⊥

2rc cos θ
. (18)

Using (11) for u2D and the expressions (8a) and (8b) for eNW
‖ and eNE

‖ , u2D · n can then be written
close to the critical point as

u2D(xS ) · n(xS ) ∼ − sin 2θ F ′(xNE
⊥ ) + xNE

⊥
rc sin 2θ

G′(xNW
⊥ ). (19)

As the relation between xNE
⊥ and xNW

⊥ depends on the sign of xNE
⊥ , we expect two expressions for

ψ and u2D,

ψ+ = F (xNE
⊥ ) + G+(xNW

⊥ ), u2D+ = −F ′(xNE
⊥ )eNE

‖ + G′
+(xNW

⊥ )eNW
‖ , for xNE

⊥ > 0, (20a)

ψ− = F (xNE
⊥ ) + G−(xNW

⊥ ), u2D− = −F ′(xNE
⊥ )eNE

‖ + G′
+(xNW

⊥ )eNW
‖ , for xNE

⊥ < 0. (20b)

Note that only the function G(xNW
⊥ ) describing the propagation in the NW and SE directions

need two expressions for xNW
⊥ < 0 because we have two different boundary conditions (17) for the

same xNW
⊥ < 0 according to the sign of xNE

⊥ . By contrast, a single function F (xNE
⊥ ) can be used as

the boundary conditions are on two different intervals of xNE
⊥ .

The condition (15) implies that close to the critical point for xNW
⊥ < 0

− sin 2θF ′(xNE
⊥ ) +

√
2|xNW

⊥ |
rc

G′
+(xNW

⊥ ) ∼ U0n(xS )

with xNE
⊥ ∼

√
2rc|xNW

⊥ | sin 2θ, when xNE
⊥ > 0, (21a)

− sin 2θF ′(xNE
⊥ ) −

√
2|xNW

⊥ |
rc

G′
−(xNW

⊥ ) ∼ U0n(xS )

with xNE
⊥ ∼ −

√
2rc|xNW

⊥ | sin 2θ, when xNE
⊥ < 0. (21b)

The function F defines a wave packet propagating in the north-east direction. This condition is
written as

F ′(xNE
⊥ ) = −ε

i

π
P

∫ ∞

−∞

F ′(η)

η − xNE
⊥

dη, (22)

where ε = sgn(2� − N ).
Similarly, the function G+ and the function G− define wave packets propagating in the north-west

direction and in the south-east direction, respectively. The function G+ must then satisfy (13) while
G− must satisfy (14)

G′
+(xNW

⊥ ) = −ε
i

π
P

∫ ∞

−∞

G′
+(η)

η − xNW
⊥

dη, (23a)

G′
−(xNW

⊥ ) = ε
i

π
P

∫ ∞

−∞

G′
−(η)

η − xNW
⊥

dη. (23b)

Moreover, for xNW
⊥ > 0, there is a single domain, so G+ and G− define the same function

G+(xNW
⊥ ) = G−(xNW

⊥ ) for xNW
⊥ > 0. (24)
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Equations (21a), (21b), (22), (23a), (23b), and (24) are the constraints obtained from the bound-
ary conditions on the surface close to the critical point and at infinity for the 2D velocity field defined
by (11). We can now look at what they imply for singular fields.

Assume for instance that the forcing normal velocity U0n(xS ) behaves close to the critical point
as

U0n(xS ) ∼
xNE
⊥ →0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C+
(xNE

⊥ )β
for xNE

⊥ > 0,

C−
(−xNE

⊥ )β
for xNE

⊥ < 0.

(25)

The boundary conditions (21a) and (21b) indicate that F ′(xNE
⊥ ) and G′

±(xNW
⊥ ) should behave for

small values of their argument as

F ′(xNE
⊥ ) ∼

xNE
⊥ →0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D+
(xNE

⊥ )β
for xNE

⊥ > 0,

D−
(−xNE

⊥ )β
for xNE

⊥ < 0,

(26)

and

G′
+(xNW

⊥ ) ∼
xNW
⊥ →0

E+
(−xNW

⊥ )(β+1)/2
for xNW

⊥ < 0, (27a)

G′
−(xNW

⊥ ) ∼
xNW
⊥ →0

E−
(−xNW

⊥ )(β+1)/2
for xNW

⊥ < 0. (27b)

We also expect for xNW
⊥ > 0 a behavior of G+ = G− = G of the same nature

G′(xNW
⊥ ) ∼

xNW
⊥ →0

Eo

(xNW
⊥ )(β+1)/2

for xNW
⊥ > 0 . (28)

Equations (26), (27a), (27b), and (28) define the velocity field u2D close to the lines xNW
⊥ = 0 and

xNE
⊥ = 0. The other components uy and b are obtained using (5) and (6). The velocity field u2D

depends on five coefficients D−, D+, E−, E+, and Eo. The relations between these coefficients are
obtained by applying the constraints derived above from the boundary conditions.

Let us first consider the radiation condition (22) for F ′. If F ′ exhibits the singular behavior (26)
with a β satisfying 0 < β, then the integral on the right-hand side of (22) is expected to be dominated
by the contribution coming from the neighborhood of xNE

⊥ = 0. The function F ′ in this integral can
be replaced by its singular expression (26) if β also satisfies β < 1 so that the integral remains finite.
If we do this replacement and use the following equalities:

i

π
P

∫ ∞

0

dη

(η − x)ηβ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i cos(πβ )

sin(πβ )xβ
x > 0

i

sin(πβ )(−x)β
x < 0

, (29a)

i

π
P

∫ 0

−∞

dη

(η − x)(−η)β
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− i

sin(πβ )xβ
x > 0

− i cos(πβ )

sin(πβ )(−x)β
x < 0

, (29b)

valid for 0 < β < 1, then we obtain a relation between D+ and D−,

D+ = eiπβεD− . (30)
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This relation is a priori valid for 0 < β < 1. If β � 0, then F ′(xNE
⊥ ) vanishes or is finite at xNW

⊥ = 0.
In that case, an estimate of the integral on the right-hand side of (22) cannot be obtained using
the local behavior of F ′ close to 0. However, if β is not a negative integer, then one just has to
differentiate F ′ once or several times so that its derivative satisfies (26) with a value of β between 0
and 1. Similarly, if β > 1, then the integral on the right-hand side of (22) does not converge, so this
equation cannot be used. However, as above, if β is not a positive integer, then one can integrate F ′
once (or several times) so that the primitive of F ′ is less singular, and satisfies (26) with 0 < β < 1.
In both cases, one can then use the relation (30) for the coefficients of either derivatives or primitives
of F ′. Since differentiation and integration just change β by an integer, (30) is thus valid for any β

provided β is not an integer. Finally, note that if β = 0, then (30) would prescribe no jump, that is
no singularity.

The above relation obtained between D+ and D− demonstrates that the outward boundary
condition induces a strong constraint on a singular solution. It implies that if the singular behavior
is known on one side of the singularity, then the solution on the other side is immediately known: It
has a similar singular behavior with the same singularity index and a phase-shifted amplitude.

The same analysis can be applied to the radiation conditions for G′
+ and G′

−. It leads to two other
relations among Eo, E+, and E−,

Eo = iεeiεπβ/2E+, (31a)

Eo = −iεe−iεπβ/2E−, (31b)

provided that (β + 1)/2 is not an integer. These two equations also imply that

E+ = −e−iεπβE− . (32)

The last relations between the coefficients are obtained by applying the boundary conditions
(21a) and (21b) on the surface,

− sin 2θ D+ +
√

2

rc
(
√

2rc sin 2θ )βE+ = C+, (33a)

− sin 2θ D− −
√

2

rc
(
√

2rc sin 2θ )βE− = C−. (33b)

Equations (30), (31a), (31b), (33a), and (33b) define a linear inhomogeneous system of five
equations for the five unknown coefficients E+, E−, Eo, D+, and D−. It admits a unique solution
whatever C+ and C− if and only if

e2iπβ �= 1, (34)

that is β is not an integer. This condition was already required to derive Eq. (30).
In that case, the unique solution is given by

D+ = ε
C− − eiεπβC+

2i sin πβ sin 2θ
, (35a)

D− = ε
e−iεπβC− − C+
2i sin πβ sin 2θ

, (35b)

E+ = ε
C− − e−iεπβC+

2i(
√

2rc sin 2θ )β sin πβ

√
rc

2
, (35c)

E− = ε
C+ − eiεπβC−

2i(
√

2rc sin 2θ )β sin πβ

√
rc

2
, (35d)

Eo = eiεπβ/2C− − e−iεπβ/2C+
2(

√
2rc sin 2θ )β sin πβ

√
rc

2
. (35e)
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It depends only on the angle θ , the radius of curvature of the boundary at the critical point, and
the behavior of U0n(xS ) close to the critical point via the coefficients C+, C−, and the singularity
exponent β.

When β is an integer, the above analysis breaks down. However, the special case β = 0 has
a solution. In that case, since (21a) and (21b) still apply, one can expect a singularity of G′ in
(−xNW

⊥ )−1/2 but F ′ should remain regular and simply given by a constant F ′(0). This means
that we should still have (26), (27a), (27b), and (28) with (30) and (31a) and (31b) for β = 0.
Equations (33a) and (33b) obtained for β = 0 are then still valid. They admit a solution only if
C+ = C− = U0n(0). This solution is

E+ = (U0n(0) + sin 2θF ′(0))

√
rc

2
, (36a)

E− = −E+, (36b)

Eo = iεE+, (36c)

D+ = D− = F ′(0). (36d)

It depends on an undetermined constant F ′(0) which is the opposite of the velocity of the wave
packet emitted in the direction eNE

‖ on the critical ray [see expression (11)].

III. VISCOUS SMOOTHING OF THE CRITICAL SLOPE SINGULARITY

In a real fluid, diffusion or viscosity is expected to smooth inviscid singularities. Critical slope
singularities can be smoothed as well.

We have seen that the singular inviscid solution that propagates in the north-west direction can
be written (for xNE

⊥ > 0) as

uNW
‖ ∼

xNW
⊥ →0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eo

(xNW
⊥ )μ

for xNW
⊥ > 0,

Eoe−iεπμ

(−xNW
⊥ )μ

for xNW
⊥ < 0.

(37)

The viscous smoothing of a singularity of this form has already been studied by Moore and Saffman
[14] for rotating fluids and Thomas and Stevenson [17] for stratified fluids. An expression valid for a
general rotating and stratified fluid has been given in Le Dizès [22]. For a 2D configuration without
buoyancy diffusion (infinite Prandtl number), this expression is

uNW
‖ ∼ CNWHμ(ζ NW, xNW

‖ ) = CNW hμ(ζ NW)

(xNW
‖ )μ/3

, (38)

where ζ NW is the self-similar variable

ζ NW = ε
xNW
⊥

(xNW
‖ �ν/ω)1/3

, (39)

with

� = 2γ 2 cos2 θ + sin2 θ

sin 2θ |γ 2 − 1| , γ = 2�/N, (40)

and hμ(ζ ) is the Moore-Saffman Thomas-Stevenson function

hμ(ζ ) = e−iμπ/2

(μ − 1)!

∫ +∞

0
eipζ−p3

pμ−1d p, (41)
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defined for μ > 0. The function hμ(ζ ) satisfies [14]

hμ(ζ ) ∼ 1

|ζ |μ as ζ → +∞, (42a)

hμ(ζ ) ∼ e−iμπ

|ζ |μ as ζ → −∞. (42b)

A simple matching of (38) with (37) then gives

CNW =
( ω

ν�

)μ/3
ei π

2 μ(1−ε)Eo. (43)

The expression (38) with (39) and (43) describes a localized beam of width (xNW
‖ �ν/ω)1/3 and

velocity amplitude [ω/(ν�xNW
‖ )]μ/3Eo. Note in particular that the beam becomes wider and weaker

as we get away from the critical point.
A similar analysis can be done for the beam propagating in the south-east direction. If we define

eSE
‖ = −eNW

‖ and eSE
⊥ = −eNW

⊥ , then the inviscid solution propagating in the SE direction that agrees
with (37) is

uSE
‖ ∼

xSE
⊥ →0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Eoeiεπμ

(xSE
⊥ )μ

for xSE
⊥ > 0,

−Eo

(−xSE
⊥ )μ

for xSE
⊥ < 0.

(44)

We then immediately obtain

uSE
‖ ∼ CSEHμ(ζ SE, xSE

‖ ), (45)

with CSE = −eiεμπCNW.
It is worth mentioning that the above analysis is valid only if the nonviscous approximation (37)

applies when |x⊥| 
 (x‖�ν/ω)1/3 close to the critical point. This property is satisfied for the beams
propagating in the NW and SE directions because the width of the viscous boundary layer remains
of order ν2/5 [which corresponds to xNW

⊥ = O(ν2/5)] at a distance xNW
‖ = O(ν1/5) from the critical

point [12,23,24].
By contrast, for the beam propagating in the NE direction, viscous effects are expected to appear

close to the critical point as soon as xNE
⊥ = O(ν1/5). The beam propagating in that direction is

possibly larger and not described by the similarity solution.

IV. CRITICAL SLOPE SINGULARITIES GENERATED BY NORMAL
AND TANGENTIAL DISPLACEMENTS

A. Normal displacement

This situation corresponds to a generic configuration where the object is displaced in translation
or subject to an external oscillating flow. In the linear regime, these two configurations are equiva-
lent. What is important is the normal velocity of the object boundary close to the critical point with
respect to the fluid. When there is a normal displacement, this velocity is nonzero and given by the
projection of the boundary velocity along the normal vector at the critical point,

U0n
(
xSc

) = U0 · n
(
xSc

) = U0x sin θ + U0z cos θ, (46)

if U0 = (U0x,U0z ) is the velocity in the (x, z) plane of the object boundary with respect to the
fluid. The normal velocity is therefore not singular and given by expression (25) with β = 0 and
C+ = C− = U0n(xSc ).

The nature of the singularity along the critical line is therefore expected to be always of the same
nature with a velocity diverging as (xNW

⊥ )−1/2. However, its amplitude cannot be obtained in closed
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form. It depends on the velocity along the line xNE
⊥ = 0 from the critical point, that is, the constant

F ′(0). As shown above, the velocity close to the critical line xNW
⊥ = 0 is given by

u ∼ G′(xNW
⊥ )eNW

‖ , (47)

where

G′(xNW
⊥ ) ∼

xNW
⊥ →0

⎧⎪⎪⎨
⎪⎪⎩

E+(−xNW
⊥ )−1/2 for xNW

⊥ < 0; xNE
⊥ > 0

−E+(−xNW
⊥ )−1/2 for xNW

⊥ < 0; xNE
⊥ < 0

iεE+(xNW
⊥ )1/2 for xNW

⊥ > 0

, (48)

with

E+ = [U0x sin θ + U0z cos θ + sin 2θF ′(0)]
√

rc/2. (49)

As an illustration, one can look at the flow generated by an oscillating circular cylinder in a
nonrotating fluid. The general solution has been provided by Hurley [5] for an elliptic cylinder. For
a circular cylinder of radius rc, the solution is

u(σ+, σ−) = u+(σ+)eNE
‖ + u−(σ−)eNW

‖ , (50)

with

u±(σ±) = α±

⎛
⎜⎝1 − σ±√

σ 2± − r2
c

⎞
⎟⎠, (51)

where the constants α± are given by

α± = 1
2 (iU0z ± U0x )e−iθ , (52)

and the coordinates σ± are related to our coordinates xNE
⊥ and xNW

⊥ by

σ+ = −xNE
⊥ − rc cos(2θ ), (53)

σ− = xNW
⊥ + rc. (54)

The definition of the square root depends on the position with respect to the critical lines σ+ =
±rc and σ− = ±rc. Close to the critical point (xNE

⊥ , xNW
⊥ ) = (0, 0), we get

u+(σ+) ∼ α+[1 − i cot(2θ )] = (U0z − iU0x )eiθ

2 sin 2θ
= −F ′(0), (55)

and

u−(σ−) ∼

⎧⎪⎪⎨
⎪⎪⎩

−i
√ rc

2 α−(−xNW
⊥ )−1/2 for xNW

⊥ < 0, xNE
⊥ > 0

i
√ rc

2 α−(−xNW
⊥ )−1/2 for xNW

⊥ < 0, xNE
⊥ < 0

−√ rc
2 α−(xNW

⊥ )−1/2 for xNW
⊥ > 0

, (56)

which is in agreement with formula (48) for the nonrotating case (ε = −1) if one uses (55) for F ′(0)
in E+ and (52) for α−.

As explained above, from the inviscid solution close to the singularity, one can immediately get
the viscous solution smoothing the singularity. Along the NW and SE directions, this gives

uNW
‖ ∼ ei π

4 (1+ε)E+
( ω

ν�

)1/6
H1/2(ζ NW, xNW

‖ ), (57a)

uSE
‖ ∼ ei π

4 (1−ε)E+
( ω

ν�

)1/6
H1/2(ζ SE, xSE

‖ ), (57b)
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where the function Hμ has been defined in (38)–(41), and E+ is given by (49). These expressions
show that the velocity field generated by a normal displacement is O(ν−1/6) larger near the critical
line than the forcing amplitude. The amplitude nevertheless decreases as x−1/6

‖ with the distance x‖
from the critical point.

B. Tangential displacement

When the surface displacement is tangent to the surface, there is no inviscid forcing. The forcing
of the wave is due in that case to the Ekman pumping generated by viscous effects close to the
boundary. The Ekman pumping corresponds to the normal velocity uEP

n that is generated outside
the boundary layer by the viscous boundary layer solution. This quantity has been calculated in
Appendix for a general tangential displacement U0t t + U0yey of the boundary. It is given by (A19).
This normal velocity provides the forcing term U0n(xS ) = uEP

n of the waves.
Close to a critical point, the Ekman pumping exhibits a singular behavior which can be written

in terms of the variable xNE
⊥ as

xNE
⊥ ∼

s→sc

− sin 2θαc(s − sc) (58)

and

uEP
n ∼

xNE
⊥ →0

∓
√

νrc

ω

e∓εiπ/4(sin 2θ )3/2

|xNE
⊥ |3/2

[F̄t (θ, 2�/N )U0t + iF̄y(θ, 2�/N )U0y], (59)

where

F̄t (θ, γ ) = γ 2 cos2 θ + sin2 θ

2[sin 2θ (2γ 2 cos2 θ + sin2 θ )|γ 2 − 1|]1/2
, (60a)

F̄y(θ, γ ) = γ cos θ

2

[
γ 2 cos2 θ + sin2 θ

sin 2θ (2γ 2 cos2 θ + sin2 θ )|γ 2 − 1|

]1/2

. (60b)

The normal velocity is therefore of the form (25) with β = 3/2 and

C+ = eiεπ/2C− = −e−iεπ/4

√
νrc

ω
(sin 2θ )3/2(F̄tU0t + iF̄yU0y) . (61)

Applying formulas (35a)–(35e) gives

D+ = D− = 0, (62a)

Eo = −eiεπ/4E+ = −e−iεπ/2E− =
√

ν

ω

r1/4
c

25/4
(F̄tU0t + iF̄yU0y). (62b)

A tangential displacement of the boundary then gives rise to a critical slope singularity in
|xNW

⊥ |−5/4 with an amplitude of order ν1/2.
As explained above, such a singularity, when smoothed by viscous effect produces a thin internal

shear layer that can be described by the Moore-Saffman Thomas-Stevenson self-similar solution.
The north-west and south-east critical slope beams are then given by

uNW
‖ ∼ CNW

0 H5/4(ζ NW, xNW
‖ ), (63a)

uSE
‖ ∼ CSE

0 H5/4(ζ SE, xSE
‖ ), (63b)

with

CNW
0 = ei 5π

8 (1−ε)
( ν

ω

)1/12( rc

2

)1/4
(ḠtU0t + iḠyU0y), (64a)

CSE
0 = eiεπ/4CNW

0 , (64b)
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and

Ḡt = F̄t

2�5/12
= (γ 2 cos2 θ + sin2 θ )

4(sin 2θ )1/12|γ 2 − 1|1/12(2γ 2 cos2 θ + sin2 θ )11/12
, (65a)

Ḡy = F̄y

2�5/12
= γ cos θ (γ 2 cos2 θ + sin2 θ )1/2

4(sin 2θ )1/12|γ 2 − 1|1/12(2γ 2 cos2 θ + sin2 θ )11/12
, (65b)

where γ = 2�/N and Hμ has been defined in (38)–(41).
Expressions (63a) and (63b) with (64a) and (64b) mean that the localized beam on the critical

line has a velocity amplitude scaling as [νr3
c /(ωx5

‖ )]1/12 where x‖ is the distance from the critical
point.

Without stratification, we recover the expression obtained for a librating sphere [13,25,26] (note
that He et al. [25] corrected a sign error in the expressions first given in Le Dizès and Le Bars
[13]). This is not surprising as this expression was obtained by matching directly the boundary
layer solution to the self-similar solution around the critical line. It was then implicitly assumed
in Ref. [13] that nothing was emitted in the NE direction close to the critical point. The present
analysis which gives D+ = D− = 0 permits one to justify this hypothesis.

V. HIGHER-ORDER CORRECTIONS TO THE CRITICAL SLOPE SINGULARITY

We have discussed above how an inviscid singularity is generically formed from a critical slope
and how this singularity is possibly smoothed by viscosity.

We have seen that the mechanism of generation is essentially inviscid as the singularity properties
(index and amplitude) are directly related to the velocity component normal to the boundary. The
amplitude of the inviscid waves that are generated is such that their normal velocity matches the
normal velocity of the boundary. These waves also possess velocity components that are tangential
to the boundary. This tangential velocity is in principle cancelled in a viscous boundary layer. But
this process also generates, via Ekman pumping, a normal velocity correction that is responsible of
a correction to the emitted inviscid waves. It is the expression of this higher-order viscous correction
that we want to calculate in this section.

The singular inviscid beam propagating in the north-west direction that is created from the
critical point has a velocity component along eNW

‖ given by an expression of the form (37). The
corresponding transverse velocity uy is given by (5). This gives a velocity tangent to the boundary
surface S near the critical point which can be expressed as uT = ut t + uyey with

ut (xS ) ∼ −uNW
‖ (xS ), (66a)

uy(xS ) ∼ 2i� cos θ

ω
uNW

‖ (xS ). (66b)

This tangential velocity has to be canceled in a boundary layer by adding a boundary layer solution
satisfying the boundary conditions u(0)

t (0) = −ut (xS ) and u(0)
y (0) = −uy(xS ).

Such a solution has been calculated in Appendix. It is given by (A8) with (A10a), (A10b), and
(A13) for the coefficients. It leads to an expression for the Ekman pumping given by (A14) and
(A15). Close to the critical point, expression (A18) for ũ− reduces to

ũ− ∼ uNW
‖ (xS ). (67)
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As both ũ− and λ− are singular, the last two terms of (A15) now contribute to Ekman pumping. We
obtain, in terms of the coordinate xNE

⊥ ,

uEP
n ∼

xNE
⊥ →0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−C(v)e−iεπ (μ+1/4)

|xNE
⊥ |2μ+3/2

for xNE
⊥ > 0,

C(v)eiεπ (μ+1/4)

|xNE
⊥ |2μ+3/2

for xNE
⊥ < 0,

(68)

with

C(v) = Eo

√
ν�

ω
(μ + 1/4)

(
2

rc

)1/4

(
√

2rc sin 2θ )2μ+3/2, (69)

where � has been defined in (40).
If we apply the formula (35a)–(35e) with

C+ = −C(v)e−iεπ (μ+1/4), (70a)

C− = C(v)eiεπ (μ+1/4), (70b)

and β = 2μ + 3/2, then we get

D(v)
+ = D(v)

− = 0, (71)

and

E (v)
o = Eo

√
ν�

ω

( rc

2

)1/4
(μ + 1/4), (72a)

E (v)
+ = −e−iεπ (μ+1/4)E (v)

o , (72b)

E (v)
− = −eiεπ (μ+1/4)E (v)

o . (72c)

This means that the viscous correction associated the critical slope singularity in |xNW
⊥ |−μ gives

rise to a stronger singularity in |xNW
⊥ |−(μ+5/4). However, the amplitude has decreased by a factor

proportional to
√

ν/ω. In the north-west direction, it then gives a viscous self-similar correction of
the form

uNW(v)
‖ ∼ CNW(v)Hμ+5/4(ζ NW, xNW

‖ ), (73)

with

CNW(v) = ei π
2 (μ+ 5

4 )(1−ε)
( ω

ν�

)μ/3+5/12
E (v)

o , (74)

which can be written, using (43) and (72a), as

CNW(v) = CNWei 5π
8 (1−ε)

(
ν�

ω

)1/12( rc

2

)1/4
(μ + 1/4). (75)

Similarly, in the SE direction, we get

uSE(v)
‖ ∼ CSE(v)Hμ+5/4(ζ SE, xSE

‖ ), (76)

with CSE(v) = eiεπ (μ+1/4)CNW(v).
In both NW and SE directions, the viscous correction is therefore smaller by a nondimensional

factor of order [νr3
c /(ωx5

‖ )]1/12 compared to the leading-order beam. Interestingly, no viscous
correction is generated in the north-east direction.
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VI. DISCUSSION

In this paper, we have analyzed the generic properties of the singularity generated by critical
slopes on waves in a stratified and rotating unbounded fluid. We have shown that this singularity
is of inviscid nature and results from a geometric focusing of the normal velocity forcing on the
characteristic line tangent to the boundary. By applying the inviscid boundary conditions on the
normal velocity close to the critical point and outwards boundary conditions at infinity, we have been
able to obtain relations between coefficients on either side of the singularity lines. Two generic con-
figurations have been considered: an oscillating translation leading to direct normal velocity forcing
and a tangential boundary oscillation for which the normal velocity forcing results from Ekman
pumping. For the first case, we have seen that the velocity singularity is in |x⊥|−1/2 but its amplitude
cannot be obtained in closed form. For the second case, the velocity singularity is in |x⊥|−5/4 and an
explicit expression for the amplitude is derived. This stronger singular behavior for the tangential
forcing comes from the singular behavior of the Ekman pumping close to the critical point.

We have shown how the inviscid singularity can be smoothed by viscosity using the self-similar
expression introduced by Moore and Saffman [14] and Thomas and Stevenson [17]. It leads to a
thin shear layer of width of order (νx‖/ω)1/3 and to a velocity amplitude in [ωr3

c /(νx‖)]1/6 for the
first case and in [νr3

c /(ωx5
‖ )]1/12 for the second case.

A viscous correction in ν1/12 generated by corrections in the viscous boundary layer has also been
calculated for each case. This correction is larger than the next-order correction to the self-similar
solution which is in ν1/3 [14] and also larger than the viscous correction in ν1/6 obtained when such
a solution reflects on a fixed boundary [22].

The analysis has neglected buoyancy diffusivity. It is not an issue to add this effect in the smooth-
ing of the critical slope singularity. The form of the self-similar Moore-Saffman Thomas-Stevenson
solution in a rotating and stratified fluid when both viscosity and buoyancy diffusivity are present has
been given in Ref. [22]. The same expression can be used here. Including buoyancy diffusivity in the
boundary layer analysis is also possible. It leads to a sixth-order problem which can also be solved
without difficulty if for instance the boundary condition on the buoyancy perturbation is b(xS ) = 0.
Another expression for the Ekman pumping is obtained but the analysis should be qualitatively
similar if the background stratification is not modified close to the boundary. This is actually the
issue if buoyancy diffusivity is present. The isopycnals are not expected to remain horizontal close
to an inclined boundary. None of the classical boundary conditions b0(xS ) = 0 (isothermal) and
∇b0(xS ) · n = 0 (no flux) is indeed compatible with our background stratification (horizontal isopy-
cnals) close to the critical point. So in principle one should either add the transitory flow created
in the boundary layer by the mismatch between the background stratification and the boundary
condition [27] or modify the background stratification close to the boundary so that it is in agreement
with the boundary condition of the problem. In both cases, the extension is then not trivial.

The analysis has focused on 2D unbounded geometries. The extension to 3D axisymmetric
geometry should not be a problem. In that case, there is no global expression for the velocity, but as
long as we are far from the vortex axis, curvature effects are negligible for singular behaviors.
Moreover, a self-similar expression describing viscous smoothing also exists in axisymmetric
geometries far from the axis (see Ref. [26], for instance). The analysis that has been done for a
librating axisymmetric object in a rotating fluid in Le Dizès and Le Bars [13] can then be extended to
other types of forcing and to a stratified fluid without difficulty using the results of the present study.

The extension to a closed domain is by contrast a much more complicated issue. In a closed
domain, characteristic lines emitted from the critical point may come back to the critical point
after reflections on the domain boundary. The condition of outward waves can then not be used
anymore, and the analysis a priori breaks down. Depending on the frequency and on the geometry,
the characteristics may be periodic, space filling or may converge towards an attractor. Each case is
expected to be different for a given forcing. Nevertheless, He et al. [25,26] have demonstrated that,
in a spherical shell, the linear periodic solution obtained by librating the inner sphere can still be
related in many situations to the critical slope singularity generated from the critical point as if the
fluid was unbounded.
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Finally, it is worth mentioning that other boundary singularities such as corners or discontinuities
could probably be treated by the same approach. The singularity generated by a boundary disconti-
nuity is in particular expected to be in |x⊥|−1. It should then give rise to internal shear layers with a
velocity amplitude in ν−1/3. It would be interesting to provide a complete theory for this case, and
extend the present analysis to all possible singular boundary features.

APPENDIX: EKMAN PUMPING

In this section, we discuss the Ekman pumping coming from tangential displacement of a surface.
We provide a general expression for the Ekman pumping close to a critical point, that is a general
expression for the normal velocity that is generated by the boundary layer flow outside the boundary
layer.

We consider the situation illustrated in Fig. 2. The curve S in the (x, z) plane is parametrized by
s, and at any point xS on S , we define the tangent and normal vectors t and n, as shown in Fig. 2.
At the critical point at s = sc, the tangent vector t is oriented along −eNW

‖ ,

t(sc) = −eNW
‖ = cos θex − sin θez . (A1)

We dimensionalize length and timescales using a characteristic length l and the forcing frequency
ω. Defining the Ekman number as

E = ν

ωl2
, (A2)

the governing equations are

−iωu + 2�ez × u = −∇p + bez + E�u, (A3a)

−iωb + N2u · ez = 0, (A3b)

∇ · u = 0. (A3c)

Defining the tangent and normal velocity components,

ut = x′u + z′w
α

, un = −z′u + x′w
α

, with α =
√

x′2 + z′2, (A4)

where the prime denotes differentiation with respect to s, and introducing the boundary layer
scalings

(ut , uy, un, b, p) = (
u(0)

t (s, η), u(0)
y (s, η),

√
Eu(0)

n (s, η), b(0)(s, η),
√

E p(0)(s, η)
)
, (A5)

with

η = xn√
E

, (A6)

we get from (A3a)–(A3c) at leading order,

−iωu(0)
t − 2�

x′

α
u(0)

y = ∂2u(0)
t

∂η2
+ z′

α
b(0), (A7a)

−iωu(0)
y + 2�

x′

α
u(0)

t = ∂2u(0)
y

∂η2
, (A7b)

2�
z′

α
u(0)

y = −∂ p(0)

∂η
+ x′

α
b(0), (A7c)

−iωb(0) + N2 z′

α
u(0)

t = 0, (A7d)

1

α

∂u(0)
t

∂s
+ ∂u(0)

n

∂η
= 0. (A7e)
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Equations (A7a), (A7b), and (A7d) form a homogeneous system for the functions u(0)
t , u(0)

y , and
b(0). The general solution can be expressed as a sum of four exponential functions. Only two of
these functions are bounded as η → +∞, so we get

u(0)
t = ũ−e−λ−η + ũ+e−λ+η, (A8a)

u(0)
y = ṽ−e−λ−η + ṽ+e−λ+η, (A8b)

b(0) = b̃−e−λ−η + b̃+e−λ+η, (A8c)

where λ± are the solution of positive real part satisfying

λ2
± = − i

ω

[
ω2 − N2z′2

2α2
± 1

2

(
N4z′4

α4
+ 16�2x′2ω2

α2

)1/2
]
. (A9)

Moreover, the amplitudes ũ±, ṽ±, and b̃± are related to each other by

(λ2
± + iω)ṽ± = 2�x′

α
ũ±, (A10a)

iωb̃± = N2z′

α
ũ±. (A10b)

This general solution is not valid up to the critical point where one of the λ± vanishes. As shown
by Roberts and Stewartson [24], the boundary layer becomes larger with a width of order E2/5 when
we get to a distance of order E1/5 from the critical point, and a different ansatz should be used in
that region. In the following, we then assume that we are at a distance from the critical point that is
large compared to E1/5.

We assume that the velocity at the boundary is tangential and given by

ut (xS ) = U0t (s), (A11a)

uy(xS ) = U0y(s). (A11b)

This gives two additional equations

ũ− + ũ+ = U0t , (A12a)

ṽ− + ṽ+ = U0y. (A12b)

They can be used together with (A10a) to obtain ũ±

ũ± = (λ2
± + iω)U0t − (λ2

± + iω)(λ2
∓ + iω)U0yα/(2�x′)

λ2± − λ2∓
, (A13)

from which we can also deduce ṽ± and b̃± using (A10a) and (A10b).
The Ekman pumping is related to the value u(0)

n∞ of u(0)
n as η goes to infinity. It is given in

dimensional form by the expression

uEP
n = ωl

√
Eu(0)

n∞. (A14)

The function u(0)
n is obtained from (A7e) using the expression of u(0)

t that we have just obtained and
the condition u(0)

n (η = 0) = 0. The calculation is straightforward and gives

u(0)
n∞ = lim

η→∞ u(0)
n = − ũ′

+
αλ+

+ ũ+λ′
+

αλ2+
− ũ′

−
αλ−

+ ũ−λ′
−

αλ2−
. (A15)

In (A14), this gives the general expression of Ekman pumping from any surface. We are
interested in the behavior close to a critical point. At such a point sc,

x′(sc) = x′
c = αc cos θ, z′(sc) = z′

c = −αc sin θ, (A16)
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and one of the two λ± vanishes. More precisely, as we get close to sc

λ2
+ ∼

s→sc

λ2
+c = −i

N2 sin2 θ + 8�2 cos2 θ

ω
= −iω − i

4�2 cos2 θ

ω
, (A17a)

λ2
− ∼

s→sc

−i
sin 2θ (4�2 − N2)ω

ω2 + 4�2 cos2 θ

αc(s − sc)

rc
. (A17b)

These behaviors show that u(0)
n∞ is dominated by the last term of (A15). Taking into account that

(A13) for ũ− reduces close to sc to

ũ− ∼
s→sc

−i
ωU0t + i2� cos θU0y

λ2+c

= ω2U0t + i2ω� cos θ U0y

ω2 + 4�2 cos2 θ
, (A18)

we obtain from (A14) and (A15) an Ekman pumping that can be written close to the critical point
as

uEP
n ∼

s→sc

√
νrc

ω

∓e∓εiπ/4

(αc|s − sc|)3/2
(F̄tU0t + iF̄yU0y), (A19)

where F̄t and F̄y are functions of θ and γ = 2�/N only

F̄t (θ, γ ) = γ 2 cos2 θ + sin2 θ

2
[
sin 2θ (2γ 2 cos2 θ + sin2 θ )|γ 2 − 1|]1/2 , (A20a)

F̄y(θ, γ ) = γ cos θ

2

[
γ 2 cos2 θ + sin2 θ

sin 2θ (2γ 2 cos2 θ + sin2 θ )|γ 2 − 1|

]1/2

. (A20b)

In (A19), the upper sign is taken if (s − sc) < 0, the lower sign if s − sc > 0. We recall that the
parameter ε is equal to +1 if 2� > N , −1 otherwise.

For γ = 0 (that is � = 0) and γ = ∞ (that is N = 0), we therefore have

F̄t (θ, 0) =
√

tan θ

8
, F̄y(θ, 0) = 0, (A21a)

F̄t (θ,∞) = F̄y(θ,∞) = 1

4
√

tan θ
, (A21b)

which gives for the Ekman pumping

uEP
n (� = 0) ∼

√
νrc

N

∓e±iπ/4

(αc|s − sc|)3/2

U0t

2
√

2
√

cos θ
, (A22a)

uEP
n (N = 0) ∼

√
νrc

2�

∓e∓iπ/4

(αc|s − sc|)3/2

U0t + iU0y

4
√

sin θ
. (A22b)
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