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Vortex dynamics: A variational approach using the principle of least action
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The study of vortex dynamics using a variational formulation has an extensive history
and a rich literature. The standard Hamiltonian function that describes the dynamics of
interacting point vortices of constant strength is the Kirchhoff-Routh (KR) function. This
function was not obtained from basic definitions of classical mechanics (i.e., in terms
of kinetic and potential energies), but it was rather devised to match the already known
differential equations of motion for constant-strength point vortices given by the Bio-Savart
law. Instead, we develop a variational formulation for vortex dynamics based on the
principle of least action. As an application, we consider two-dimensional massive vortices
of constant strength. Interestingly, the obtained equations of motion are second-order
differential equations defining vortex accelerations, not velocities. The resulting dynamics
are more complex than those obtained from the KR formulation. For example, a pair
of equal-strength, counter-rotating vortices could be initialized with different velocities,
resulting in interesting patterns. Also, the developed model easily admits external body
forces. When an electrodynamic force is considered, the interaction between it and the
hydrodynamic vortex force leads to a rich, counterintuitive behavior that could not be
handled by the KR formulation.

DOI: 10.1103/PhysRevFluids.9.034701

I. INTRODUCTION

Vortex dynamics represents one of the main pillars of fluid mechanics. The theoretical edifice has
been growing since the seminal papers of the founder Helmholtz [1,2]. He introduced the vorticity
equations and established the circulation conservation laws when the fluid motion emerges from a
potential force. The analogy between potential flow and electricity, discovered by Maxwell [3], has
led to simple models of vortex dynamics [4,5]. For example, the standard law that is ubiquitously
used in the literature to describe the motion of two-dimensional vortices (infinite vortex filament)
is the Biot-Savart law [6], which provides first-order ordinary differential equations (ODEs) in the
positions of the vortices, in contrast to the second-order ODEs describing any typical dynamics
problem. Therefore, it does not permit consideration of arbitrary forces and arbitrary initial veloci-
ties of the vortex system.

Kirchhoff and Hensel [7] studied N free-point vortices of constant strength in an unbounded
domain and described their motion based on the Biot-Savart law. Interestingly, the resulting ODEs
possessed a Hamiltonian structure [8,9]. Based on this finding, they defined a Hamiltonian function
(the Kirchhoff function) for constant-strength point vortices. Interestingly, this Hamiltonian was
not derived from basic definitions or first principles. It is not defined in terms of the physical
quantities (e.g., kinetic and potential energies) that typically constitute the Hamiltonian function
for a mechanical system. It was constructed from the reciprocal property of the stream function
of point vortices. Therefore, its use outside this case is questionable and its extension to other
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scenarios may not be clear, except for a few cases as described below. To account for the interaction
with a body, Lin [10,11] provided the most generic and complete formulation of point vortices
interacting with a body in two dimensions. He was able to show the existence of a hybrid function
W composed of Kirchhoff’s and Routh’s functions, which described the Hamiltonian dynamics of
a system of vortices and called it the Kirchhoff-Routh (KR) function. Arguably, the W function
could be considered as the underlying foundation of every application and study that includes
constant-strength point vortices [12–14]. Nevertheless, in all these representations [7,10,11], the
resulting ODEs were first order in the position variables.

In this paper, we rely on the principle of least action and its application to the dynamics of
a continuum inviscid fluid by Seliger and Whitham [15]. Exploiting this variational principle,
we develop a variational formulation for the dynamics of massive vortices of constant strength
that are modeled as circular patches (Rankine vortices) with a negligible core size. This effort
is considered as a first-order extension of the common vortex dynamics models using the KR
function and Bio-Savart law, which takes into account the inertia inside the vortex core. In contrast
to previous efforts, the defined Lagrangian and the dynamical analysis are derived from first
principles. Interestingly, the formulation presented here results in a second-order ODE defining
vortex accelerations, consequently allowing for richer dynamics if the initial velocity is different
from the Biot-Savart induced velocity. Moreover, the resulting dynamics recover the KR ODEs in
the limit of a vanishing core size. Also, since the model emerges from a formal dynamical analysis,
it could take into account different body forces arising from a potential energy. Such a capability is
demonstrated in this study by considering an electromagnetic force acting on charged vortices cores.
The resulting interaction between the electrodynamic force and the hydrodynamic vortex force leads
to a rich, nonlinear behavior that could not be captured by the standard KR formulation.

A. Background

The study of point vortices interacting with a body has enjoyed significant interest due to
its relevance to many applications, e.g., the unsteady evolution of lift over an airfoil due to the
interaction of the starting vortex with the body [16,17]. Ramodanov [18] studied the interaction of
a point vortex with a cylinder (the Föppl problem), then Borisov and Mamaev [19] inspected the
integrability of this problem. Moreover, Borisov et al. [20,21,22], and Ramodanov and Sokolov [23]
extended this setup to allow for multiple point vortices to interact with a cylinder. In another classic
article by Shashikanth et al. [24], the authors investigated the Hamiltonian dynamics of a cylinder
interacting with a number of point vortices. In all of these efforts, the W function was considered
as the main underlying foundation—the Hamiltonian function for the motion of constant-strength
point vortices. If time-varying point vortices are considered instead of constant-strength ones, then
the W function will not be applicable because a point vortex of constant strength moves with the
local flow velocity (the Kirchhoff velocity) according to Helmholtz laws of vortex dynamics [1],
while a vortex with time-varying strength does not, as is well known in the unsteady aerodynamics
literature [16,25–29]. As a remedy, Brown and Michael [30] developed a convection model (a
first-order ODE in the vortex position) to describe the motion of time-varying point vortices. An
alternative model, named the impulse matching model, was proposed by Tchieu and Leonard [16]
and Wang and Eldredge [26]. Nevertheless, the resulting ODEs from Brown and Michael [30],
Tchieu and Leonard [16], and Wang and Eldredge [26] do not have a Hamiltonian structure; they
cannot be described by the KR function. An intuitive reasoning for the failure of the KR function in
predicting the motion of unsteady point vortices is that, formally, it does not contain any information
beyond the Biot-Savart law, and when considered as a Hamiltonian, it is not derived from basic
definitions. This argument reveals one of the needs for a variational dynamical framework that is
constructed from first principles and capable of describing vortex dynamics, which is the main goal
of this article.

While there have been numerous efforts on the Hamiltonian formulation of point vortices, little
has been done to develop a Lagrangian framework. This fact may be intuitive given the lack
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of veritable dynamics in these Hamiltonian formulations. A true mechanical system will possess
both Lagrangian and Hamiltonian formulations, mutually related through the Legendre transforma-
tion [8]. However, having an arbitrary Hamiltonian function that happens to reproduce a given set
of ODEs does not necessarily represent a mechanical system. As Salmon [31] put it, “the existence
of a Hamiltonian structure is, by itself, meaningless because any set of evolution equations can be
written in canonical form.” These nonstandard Hamiltonians may not be associated with Lagrangian
functions. However, there are a few exceptions. For example, Chapman [32] devised a Lagrangian
function that reproduces the set of ODEs dictated by the KR Hamiltonian. However, this Lagrangian
was not derived from basic definitions or first principles in mechanics (i.e., it is not defined based on
the kinetic and potential energies of the system), so it had to be in a nonstandard form (e.g., bilinear
in velocity, not quadratic) to result in first-order ODEs, in contrast to the second-order ODEs that
typically result from a standard Lagrangian. In a similar spirit, Hussein et al. [29] introduced a
Lagrangian that reproduces the first-order ODEs of the Brown and Michael [30] model, describing
the motion of point vortices with time-varying strength. They used it to study the motion of the
starting vortex behind an airfoil and its effect on the lift evolution similar to Wang and Eldredge [26]
and Tchieu and Leonard [16].

In contrast to the previously mentioned efforts, there are a few studies that represented a
mechanical structure (i.e., second-order ODEs in position) for the vortex motion. Ragazzo et al. [33]
considered point vortices with finite masses (i.e., massive-point vortices). Using an analogy with
electromagnetism, they constructed a Hamiltonian of the massive-point vortices based on that of
point charges in a magnetic field. Interestingly, the nonzero inertia of the point vortices (similar to
the nonzero charge) resulted in second-order ODEs in position, leading to a richer behavior than
that obtained using the KR function. However, the fact that the authors completely relied on the
analogy between hydrodynamics and electrodynamics to develop their dynamical model perhaps
sets no greater advantage over the devised KR Hamiltonian as far as first principles are concerned.
Interestingly, Olva [34] was able to show that their resulting ODEs reduce to those described by the
KR function in the limit to a vanishing vortex mass, which, in turn, shows that the KR first-order
ODEs is a singularly perturbed representation of Ragazzo et al. [33] second-order dynamics. More
recently, Richaud et al. [35] also considered massive-point vortices, but in a superfluid medium
(i.e., Bose-Einstein condensate) using direct numerical simulation of the Gross-Pitaevskii (GP)
equation. In addition, they modeled the motion of such vortices using variational principles where
the Lagrangian is constructed based on analogy with charged particles subject to magnetic field.
They compared the resulting dynamics from both approaches [36,37], which resulted in an almost
identical match. Moreover, similar to the results of Ragazzo et al. [33], both approaches showed
richer dynamics than that obtained by the KR function.

While we did our best to present the relevant literature to the reader, it is certain that we
are far from providing a complete account of the perhaps unfathomable literature on the topic.
Nor is it our goal here to provide a comprehensive review of such a rich topic. For a thorough
review and more information about point-vortex dynamics, the reader is referred to multiple sources
[4,5,12–14,25,38–45].

In conclusion, although the previously discussed efforts were quite legitimate and spawned very
interesting results [see 14], they suffer from the following drawbacks: (1) the defined Hamiltonian
and Lagrangian functions were neither derived from basic definitions in mechanics nor from the
available rich literature on variational principles in fluid mechanics [15,31,46–55]; (2) they were
either devised to reproduce the already known ODEs or developed based on an analogy with another
discipline; (3) as such, the resulting ODEs have no more content beyond the Biot-Savart law; (4) the
fact that these functions were not derived from first principles does not allow extension to cases
beyond free, constant-strength point vortices. Indeed, one would hope to see a straightforward
derivation of the Hamiltonian (or Lagrangian) of point vortices from basic definitions of mechanics
(i.e., from kinetic and potential energies) or from the rich legacy of variational principles of
continuum fluid mechanics [15,31,46–55], which is the main goal of this work. Such a model
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will resolve the drawbacks listed above, resulting in second-order dynamics, allowing extension
to unsteady vortices and admitting arbitrary forces (e.g., gravity, electromagnetic, etc).

II. HAMILTONIAN OF POINT VORTICES: THE KIRCHHOFF-ROUTH FUNCTION

In this section, the KR function for free, constant-strength point vortices in an unbounded flow
is presented, demonstrating its Hamiltonian role for constant-strength point vortices. The specified
KR function is given by [41]

W = −1

4π

∑
i

∑
j

i �= j

�i� j ln ri j, (1)

where �’s represent the strengths of the vortices, and ri j is the relative distance between the ith and
jth vortices. To show how this function serves as the Hamiltonian of free, constant-strength point
vortices, let us recall the stream function describing the flow field at any particular point (x, y) in
the domain

�(x, y) = − 1

2π

∑
i

�i ln ri, (2)

where ri is the distance between the point (x, y) and the ith vortex. As such, the total induced velocity
at the jth vortex (ignoring the vortex self-induction) is given by

u j = dx j

dt
= −1

2π

∑
(i �= j)

�i
(y j − yi )

r2
i j

, v j = dy j

dt
= 1

2π

∑
(i �= j)

�i
(x j − xi )

r2
i j

. (3)

Then, multiplying Eq. (3) by � j allows one to write its right-hand side in terms of the scalar function
W as

� j
dx j

dt
= ∂W

∂y j
, � j

dy j

dt
= −∂W

∂x j
. (4)

Defining qj = √� jx j and p j = √� jy j , it is clearly seen that if � j is constant, then the ODEs (4)
are in the Hamiltonian form,

q̇ j = ∂W

∂ p j
, ṗ j = −∂W

∂q j
, (5)

with W serving as the Hamiltonian.
As demonstrated above, the KR Hamiltonian is not derived from basic definitions of mechanics

in terms of kinetic and potential energies. This nonstandard Hamiltonian reproduces the Biot-Savart
equations in the Hamiltonian form (5). However, one can relate this function W to the regularized
kinetic energy (KE), as shown in [4,41–43]. The KE (T ) of the flow field is given by

T = − ρ

4π

∑
i

∑
j

i �= j

�i� j ln ri j − ρ

4π

(∑
�2

i

)
ln ε + ρ

4π

(∑
�i

)2
ln r∞, r∞ → ∞, ε → 0, (6)

where ε is a radius of an infinitesimal circle centered at every point vortex and r∞ is the radius of
the external boundary, which extends to infinity. It is clearly seen that the first term is exactly the
W function scaled by the density ρ and the last two terms are unbounded as r∞ → ∞ and ε → 0.
However, these two unbounded terms are constants and do not depend on the coordinates (i.e.,
positions of the vortices). As a result, the first term (the regularized KE) represents the only variable
portion of the infinite KE and was satisfactorily considered as the Hamiltonian of point vortices,
while the last two terms are dropped. The previous analysis is notably valid only for constant-
strength point vortices and suffers from the several drawbacks discussed in the previous section.
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Alternatively, we rigorously develop a model for vortex dynamics from formal variational principles
of continuum fluid mechanics, developed by Seliger and Whitham [15].

III. VARIATIONAL APPROACH AND THE PRINCIPLE OF LEAST ACTION

A. The principle of least action

There have been numerous efforts that developed variational principles of Euler’s inviscid
dynamics [15,31,46–55]. The reader is referred to the thorough review articles of Salmon [31] and
Morrison [54]. Also, there have been many efforts that aimed at extending these variational formu-
lations to account for dissipative and/or viscous forces [56–62]. In the current study, we mainly rely
on the variational formulation of Euler’s equation developed by Seliger and Whitham [15] using the
principle of least action.

The principle of least action is typically stated as [8] “The motion of the system from time t1 to
time t2 is such that the action integral J is stationary,”

J =
∫ t2

t1

L(qi, q̇i, t ) dt, (7)

where L is the Lagrangian function, defined as L = T − V where T and V are the kinetic and poten-
tial energies, respectively, and qi’s are the system generalized coordinates. A necessary condition for
the functional J to be stationary is that its first variation must vanish: δJ = 0, which, after applying
calculus of variation techniques [63], results in the well-known Euler-Lagrange equation

d

dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, . . . , n. (8)

Noticeably, the representation in Eq. (8) describes the dynamics of discrete particles only. However,
if a continuum of particles is considered instead, the action integral J is written in terms of a
Lagrangian density Ld as

J =
∫ t2

t1

∫
	

Ld (q, q̇, qx, x, t ) d	dt, (9)

where x are the spatial coordinate variables and 	 is the spatial domain. In this case, the gener-
alized coordinates q are field variables [i.e., q = q(x, t )] and Eq. (8) should be generalized to the
continuous system representation [8].

B. Variational formulation of Euler’s inviscid dynamics: The Lagrangian density is the pressure

The straightforward definition of the action integral for a fluid continuum is

J =
∫ t2

t1

∫
	

[
1

2
ρu2 − ρE (ρ, S)

]
d	dt, (10)

where the first term in the integrand represents the KE, E is the internal energy per unit mass,
which represents the potential energy of the fluid continuum, and S is the entropy whose changes
are related to those of E as

dE = 
dS − pd (1/ρ), (11)

where p is the pressure and 
 is the temperature. Starting with the action (10), through a long
and rigorous proof that makes use of Clebsch representation and Lin’s constraints, Seliger and
Whitham [15] managed to show that the functional J can be written in the Eulerian formulation
as

J = −
∫ t2

t1

∫
	

p d	dt . (12)

034701-5



NABIL M. KHALIFA AND HAITHEM E. TAHA

FIG. 1. Schematic drawing for the problem formulation; ci is the boundary of the ith vortex in solid blue,
σi is the corresponding branch cut (barrier) in dashed red, and R is the boundary of flow domain in black.

That is, the vanishing of the first variation of J yields the conservation equations of an inviscid
fluid,

∂ρ

∂t
+ ∇ · (ρu) = 0, (13a)

ρ
Du
Dt

= −∇p, (13b)

DS

Dt
= 0. (13c)

Hence, Eq. (12) implies that the Lagrangian density of a continuum of inviscid fluid is the pressure.
Since the flow outside vortex patches is irrotational by definition, one can use the unsteady

Bernoulli equation to write the pressure in terms of the velocity potential φ. As such, the principle
of least action will then imply that the first variation of the functional,

J =
∫ t2

t1

∫
	

ρ

{
∂tφ + 1

2
(∇φ)2

}
d	dt, (14)

must vanish [15]. This statement is the cornerstone in our analysis for vortex dynamics.

IV. VARIATIONAL DYNAMICS OF MASSIVE VORTICES

We apply the proposed variational formulation to develop a model for the dynamics of massive
vortices with small core sizes. In particular, we consider N Rankine vortices; a Rankine vortex is a
vortex patch in the two-dimensional plane with a nonzero core size which has a circular boundary;
and the fluid inside the core undergoes a rigid-body rotation (i.e., it has constant vorticity over the
core). As such, the vortex possesses a nonzero mass (i.e., a massive vortex), in contrast to point
vortices which have no mass. The induced flow field outside the vortex core is irrotational [42]. In
our formulation, each vortex must have a core (of radius ai) to ensure a finite KE and allow the
vortex inertial effects to appear. It is important to mention that constant strengths and radii sizes are
considered for simplicity and facilitating comparison with available models in the literature.

The domain consists of an irrotational flow in region A outside the vortex core and fluid under
rigid-body motion inside the core, as shown in Fig. 1. Knowing the vortex strengths a priori, the
flow velocity u at any point (x, y) in the domain can be written in terms of the locations (xi, yi ) of
the vortices and their derivatives,

u(x, y) = u(xi, yi, ẋi, ẏi; �i ). (15)

This representation is the foundation of the current analysis; the flow velocity in the entire domain
depends only on a finite number of variables (xi, yi ). That is, Eq. (15) represents a model reduction
from an infinite number of degrees of freedom down to only 2N. As such, the principle of least
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action, and analytical mechanics formulation in general, are especially well suited for this problem
because it allows one to accept the given kinematical constraints (15) and focus on the dynamics of
the reduced system (2N degrees of freedom), in contrast to the Newtonian-mechanics formulation
where such a reduction is not possible. Rather, the large system must be retained (i.e., a partial
differential equation (PDE) for the infinite system at hand) and the kinematic constraint (15) will be
associated with an unknown constraint force in the equations of motion of the large system (in the
PDE).

The above description implies that the Lagrangian has two contributions,

L = Lφ + LC, (16)

where Lφ is the Lagrangian of the irrotational flow outside the cores and LC is the core Lagrangian.
The action integral is then given by

J =
∫ t2

t1

(∫
A
Ldφ

dA + LC

)
[xi(t ), yi(t ), ẋi(t ), ẏi(t ); �i]dt, (17)

where Ldφ
is the Lagrangian density of the continuum field, which is −p, as shown by Seliger and

Whitham [15] and presented in the previous section. After integrating the fluid Lagrangian density
Ldφ

over space, the problem could be treated as one with finite degrees of freedom (xi, yi )—akin to
particle mechanics.

The Lagrangian of the core flow under rigid-body motion in the horizontal plane (i.e., no active
gravitational forces) is

LC =
∑ mi

2
ui · ui +

∑ Ii

2
θ̇i

2
, (18)

where mi is the fluid mass inside the ith vortex core and Ii is its moment of inertia. As mentioned
before, constant-strength vortices are considered. Hence, the angular velocity θ̇i of each rigid core
(which is proportional to �i) is constant. This immediately forces the θ coordinate to be an ignorable
(i.e., cyclic) coordinate [9]. In other words, the corresponding momentum ∂LC/∂θ̇ is constant. It
now remains to compute the Lagrangian of the continuum fluid outside the cores in terms of the
generalized coordinates q = (x1, y1, . . . , xN , yN ).

A. Irrotational flow Lagrangian computation

The Lagrangian density of the inviscid fluid, as discussed in Sec. III B, is the pressure. It is given
by Eq. (14), where the second term is the flow KE and the first term is due to the ∂tφ term.

1. Flow KE

Consider the flow KE of the irrotational flow field in Fig. 1,

T = ρ

2

∫
A

u · u dA = ρ

2

∫
A

(∇φ)2 dA, (19)

where A is the irrotational flow field domain. After following the analysis in Appendix A, the KE
can be written as

T = −ρ

2

⎡
⎣∑∑

i �= j

�iψ j |i +
∑

�iψi|ci + �|R�R +
∑

�i�|R
⎤
⎦, (20)

where ψ j |i is the stream function of the irrotational flow induced by the jth vortex evaluated at the
center of the ith one (this is applicable as long as ri j � a), ψi|ci is the ith vortex stream function
evaluated over its boundary ci, �|R is the total stream function (due to all vortices; i.e., � =∑ j ψ j)
evaluated at the boundary R, and �R is the circulation over the same boundary. For an irrotational
flow, �R is the sum of all circulations inside the domain (i.e., �R =∑i �i). The fourth term results
from the multivalued nature of the potential function φ when evaluated over the fictitious barrier σi

034701-7



NABIL M. KHALIFA AND HAITHEM E. TAHA

for the ith vortex. Equation (20) is then written as

T = − ρ

4π

∑∑
i �= j

�i� j ln ri j − ρ

4π

(∑
�2

i

)
ln a + ρ

4π

(∑
�i

)2
ln r∞ − ρ

2
�|R�R, (21)

where a is the core radius. The terms in Eq. (20) can be compared to the regularized KE presented
in Eq. (6). The first term is exactly the KR function for free N point vortices, while the second terms
in both match with the core radius a taking the place of the limit circle radius ε. Also, the third terms
match, which will blow up for unbounded flows unless the total circulation is zero. The fourth term
in Eq. (20) is an additional term that is not captured in Eq. (6). However, similar to the third term,
it is infinite for unbounded flows unless �R = 0. In fact, the main reason behind the boundedness
of the last two terms in the case of zero total circulation is that the velocity will be of the order of
∼O(1/r2) in contrast to ∼O(1/r) for a nonzero total circulation [12].

It is important to mention that if the vortex boundary deforms, it will result in a time-varying
moment of inertia I (t ), precluding the cyclic nature of the angular motion θ even for constant-
strength vortices. In this study, however, we ignore such changes in the vortex boundary shape.
This is a reasonable assumption as long as the distance between the vortices is considerably larger
than the vortex core size [4]. In other words, vortex patches could interact and deform when they
are close to each other; this behavior is studied as a contour dynamics problem [42,64,65], where
Melander et al. [66] provided a Hamiltonian representation for it. However, in this first-order study,
we are concerned with vortex patches concentrated in tiny cores and hence ignore the effect of shape
deformation, which is one step beyond the point-vortex model. Luckily, it was shown by Deem and
Zabusky [67], Pierrehumbert [68], and Saffman and Szeto [69] that any vortex pairs distantly apart
from each other, as long as a/b << 1 where b is half the distance between the two vortices center,
will behave as if they were point vortices and not deform the boundary of each other.

2. ∂tφ contribution to the Lagrangian

The total flow potential function is defined as

φ =
∑

i

φi, (22)

where φi is the potential function of the flow associated with the ith vortex, which depends
on [x, y, ; xi(t ); yi(t ); �i]. That is, it does not have an explicit time dependence. Rather, its time
derivative will be a convectivelike term with respect to the Lagrangian coordinates (xi, yi ),

∂tφ =
∑

i

ui · ∇iφi. (23)

As such, the ∂tφ contribution to the Lagrangian can be written as

Lφt = ρ

∫
A
∂tφdA = ρ

∫
A

∑
i

ui · ∇iφi dA, (24)

whose direct computation is cumbersome. Instead, we will apply Eq. (8) first. For example, consider
the term ∂Lφt /∂ ẋi, which is needed for the xi equation of motion. By definition, we have

∂Lφt

∂ ẋi
= ρ∂ẋi

∫
A

∑
i

ui · ∇iφi dA, (25)

where the differentiation can be pushed forward within the integral because the integral bounds are
independent of the vortex velocity ẋi. As such, all terms will vanish except

∂Lφt

∂ ẋi
= ρ

∫
A
∂xiφi dA. (26)
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Moreover, since there is no explicit time dependence and assuming constant-strength vortices, the
time derivative of Eq. (26) is

d

dt

(
∂Lφt

∂ ẋi

)
= ρui · ∇i

(∫
A
∂xiφi dA

)
= ρ

{
ẋi∂xi

∫
A
∂xiφi dA + ẏi∂yi

∫
A
∂xiφi dA

}
. (27)

Similarly, the other derivative ∂Lφt /∂xi needed for the xi equation is written as

∂Lφt

∂xi
= ρ∂xi

∫ ∑
j

u j · ∇ jφ j dA = ρ

{
ẋi∂xi

∫
A
∂xiφi dA + ẏi∂xi

∫
A
∂yiφi dA

}
. (28)

Consequently, subtracting Eq. (28) from Eq. (27) will result in the cancellation of the first term in
the xi equation of motion. As such, we have

d

dt

(
∂Lφt

∂ ẋi

)
− ∂Lφt

∂xi
= ρẏi

[
∂yi

∫
A
∂xiφi dA − ∂xi

∫
A
∂yiφi dA

]
, (29)

which, after the detailed computation presented in Appendix B, yields

d

dt

(
∂Lφt

∂ ẋi

)
− ∂Lφt

∂xi
= ρẏi

⎡
⎢⎢⎢⎣
∑

j
i �= j

(∫
c j

∂xiφi dx −
∫

c j

∂yiφi dy

)
− �i

⎤
⎥⎥⎥⎦, (30)

where the final integrals are evaluated numerically over the jth vortex boundary c j . Also, for clarity
and brevity, the numerical integrals are denoted as

Ixi j =
∫

c j

∂xiφi dx, Iyi j =
∫

c j

∂yiφi dy, (31)

resulting in the final form

d

dt

(
∂Lφt

∂ ẋi

)
− ∂Lφt

∂xi
= ρẏi

⎡
⎢⎢⎢⎣
∑

j
i �= j

(
Ixi j − Iyi j

)− �i

⎤
⎥⎥⎥⎦. (32)

Similarly, the yi equation is

d

dt

(
∂Lφt

∂ ẏi

)
− ∂Lφt

∂yi
= ρẋi

⎡
⎢⎢⎢⎣
∑

j
i �= j

(
Iyi j − Ixi j

)+ �i

⎤
⎥⎥⎥⎦. (33)

B. Equations of motion

We are now ready to write the final form of the equations of motion from the Euler-Lagrange
equation (8), where q = (x1, y1, . . . , xN , yN ), the Lagrangian L = Lφ + LC , and the contributions
of different terms are given in Eqs. (21), (18), (32), and (33).

Substituting Eqs. (21), (18), (32), and (33) into the Euler-Lagrange equation (8), while assuming
the motion taking place in a horizontal plan, we obtain

miẍi + ρ�i

2π

∑
j

i �= j

� j
(xi − x j )

r2
i j

+ ρẏi

⎡
⎢⎢⎢⎣
∑

j
i �= j

(
Ixi j − Iyi j

)− �i

⎤
⎥⎥⎥⎦ = 0, (34)
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miÿi + ρ�i

2π

∑
j

i �= j

� j
(yi − y j )

r2
i j

+ ρẋi

⎡
⎢⎢⎢⎣
∑

j
i �= j

(
Iyi j − Ixi j

)+ �i

⎤
⎥⎥⎥⎦ = 0, (35)

with noting mi = ρπa2, which results in

ẍi = − �i

2π2a2

∑
j

i �= j

� j
(xi − x j )

r2
i j

− ẏi

πa2

⎡
⎢⎢⎢⎣
∑

j
i �= j

(
Ixi j − Iyi j

)− �i

⎤
⎥⎥⎥⎦, (36)

ÿi = − �i

2π2a2

∑
j

i �= j

� j
(yi − y j )

r2
i j

− ẋi

πa2

⎡
⎢⎢⎢⎣
∑

j
i �= j

(
Iyi j − Ixi j

)+ �i

⎤
⎥⎥⎥⎦. (37)

These equations represent the sought dynamical equations that describe the dynamics of free
massive vortices from first principles: the principle of least action. They are second order in nature
and capture inertial effects of the core. In particular, they allow enforcing an initial condition on
velocity, similar to any typical problem in dynamics. Moreover, the analysis allows for extension to
time-varying vortices where �̇ terms appear. Also, arbitrary conservative forces (e.g., gravitational,
electric) can be incorporated in this framework, in contrast to the standard analysis based on the
KR function. Interestingly, in the limit of a vanishing core size (a → 0), mi, Ixi j , and Iyi j go to
zero and the resulting dynamics (36) and (37) reduce to the first-order equations given by the KR
Hamiltonian. However, for finite-size cores, the new dynamics given by Eqs. (36) and (37) are richer
than the first-order equations of the KR Hamiltonian, which recover the Biot-Savart law. To show
the value of the proposed formulation, some case studies are presented below.

V. CASE STUDIES

Different case studies are presented to highlight the similarity and differences between the
motions resulting from the proposed model and the standard KR model (i.e., Biot-Savart law). As
pointed out above, the proposed variational dynamics result in the KR solution for small vortex
radii. One of the major differences between the two formulations is that the KR equations are
first order, allowing only initial conditions of vortex position to be assigned, whereas the proposed
equations are second order, admitting arbitrary initial velocities in addition. Therefore, the similarity
between the resulting two motions does not necessarily happen when the initial velocities do not
match the induced velocities by the Biot-Savart law.

A. Vortex pairs initialized with arbitrary velocities

Equal strength vortex pairs are considered in Fig. 2 with radius a = 1 and � = 10π . The
trajectories of the vortex pairs are presented in comparison to the KR motion. The trajectory of
a counter-rotating vortex pair is shown in Fig. 2(a), while Fig. 2(b) shows the trajectory of a
co-rotating pair. For this case of small vortex cores (in comparison to the relative distance), when
the model is initialized with the Biot-Savart induced velocity, almost-exact matching with the KR
motion (black trajectory in Fig. 2) is obtained. However, when the proposed model is initialized
with a different value in the same direction, the resulting dynamics (red and blue trajectories in
Fig. 2) are richer. The resulting motion is composed of fast and slow timescales. The slow dynamics
(average solution) possesses a similar behavior to the KR one (in many but not all cases, as shown
below); around this averaged response, there are oscillations in the fast timescale.
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(a) counter-rotating pair (b) co-rotating pair

FIG. 2. Simulation of proposed variational vortex dynamics model against the KR model for a pair of
vortices. The initial velocities are set to five multiples of the Biot-Savart induced velocity in the same direction.

The behavior of the slow dynamics is not always similar to that of the KR model. In Fig. 3, a pair
of counter-rotating vortices is simulated and the system is initialized with the Biot-Savart induced
velocity (i.e., down); however, the vortex on the right is given an additional initial velocity to the
right. These initial conditions resulted in quite different averaged behaviors of the two vortices, as
shown in Fig. 3. The effect of the initial velocity on the averaged motion of interacting vortices,
as demonstrated above, points to some interesting applications of vortex motion control. Imagine a
large vortex which we are interested in deviating its motion from an anticipated trajectory. One can
then pose the interesting question: Can we set a group of vortices in motion with specified initial
velocities in the neighborhood of the large vortex so that its net motion deviates from the anticipated

FIG. 3. Simulation of the variational vortex dynamics model presenting the deviation of a counter-
rotating vortex pair from the KR trajectory. Initial velocities for the vortices are u10 = (10i,−0.5 j) and
u20 = (0i, −0.5 j), respectively.
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FIG. 4. Sensitivity study for different a/b ratios. Trajectories for the right-hand side vortex are presented.
The scale is adjusted to emphasize the differences between each of the cases.

trajectory in the absence of these vortices? Using a similar approach to the one presented above, one
can answer such a question.

A sensitivity study is carried out in an attempt to quantify the fast oscillation dynamics that
is superimposed over the regular KR solution. The amplitude and frequency of oscillation are
characterized against different a/b ratios. This study is performed on the example of a counter-
rotating pair initialized with the Biot-Savart induced velocity. The resulting trajectories of the
right-hand-side vortex, scaled with respect to the half-separating distance b, are shown in Fig. 4.
The plots demonstrate the oscillation dynamics for different values of a/b. It is evident that
the amplitude of oscillation is directly proportional to a/b; however, the oscillation frequency is
inversely proportional to this ratio. A qualitative description of the underlying phenomenon could
be deduced from the (introduced) acceleration terms, which account for inertial effects in the
equations of motion by considering the vortex mass. Hence, larger vortices tend to oscillate slower
with large amplitudes, and vice versa. It is not easy to quantify these effects analytically due to the
strong nonlinearities in the equations of motion. However, approximate analytical expressions could
be obtained using perturbation techniques (e.g., the method of multiple scales [70,71]).

B. Hydrodynamic and electrodynamic forces interaction

To further demonstrate the capability of the developed vortex model to capture dynamical
features that cannot be directly captured by the usual KR formulation, we consider a charged particle
inside the core of each vortex and that the motion takes place in the presence of a constant-strength
electric field. In this case, each vortex will experience a Lorentz force F = qE, where q is the
particle’s charge and E is the electric field vector. The effect of this electric field on the motion of
the vortex system cannot be directly obtained from the standard formulation using the KR function.
A true dynamical formulation is invoked instead. It is straightforward to account for this effect using
the developed dynamical formulation where forces can be considered. Simply, the right-hand sides
of Eqs. (36) and (37) will be modified by adding qiEx/mi and qiEy/mi, respectively, where Ex and
Ey are the components of the electric field in the x and y directions, respectively, and qi is the charge
of the ith vortex. Alternatively, one can add −∑i qi�(xi, yi ) to the Lagrangian function, where �

is the scalar electrostatic potential (E = −∇�). For simplicity, we considered a large electric field
and small charges so that the Coulomb force is negligible with respect to the Lorentz force. In the
following simulations, we considered |qE|/m = g, where g is the gravitational acceleration, and all
motions are initialized with the KR velocities.

Figure 5 shows a pair of counter-rotating vortices of the same strength and the same charge placed
in an electric field of constant strength. Figure 5(a) shows the resulting motion when the electric field
is pointing downward (negative y). This implies that the vortices will accelerate downward beyond
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(a) (b) (c)

FIG. 5. Different simulations for counter-rotating pair of vortices with same charge placed in a constant-
strength electric field. Simulations are initialized by the Biot-Savart induced velocity and electric field direction
for each case is listed as (a) E ↓, (b) E ↑, and (c) E →.

the KR value dictated by the Biot-Savart law, which will in turn cause an acceleration in the x
direction because of the term ẏi�i in Eq. (36). As a result, the two counter-rotating vortices attract
towards one other. Note that the simulation should not be deemed valid when the vortices get very
close to each other. On the other hand, reversing the direction of the electric field (i.e., opposite
to the KR velocity), the KR y motion is decelerated, leading the counter-rotating vortices to repel,
as shown in Fig. 5(b). Interestingly, applying an electric field in the horizontal direction (+x), we
obtain the response in Fig. 5(c), which is nonintuitive. Although the applied electric force is in the
x direction, the net effect is much more significant in the y direction. Moreover, even the effect in
the x motion is counterintuitive; both vortices drift in the negative x axis (opposite to the direction
of the applied electric force). At the beginning, there is an acceleration for both vortices in the x
direction. However, the slightest velocity in x activates the term −ẋi�i in the ÿi in Eq. (37), which
causes a downward acceleration for the right vortex and an upward acceleration for the left vortex
(of negative strength). These vertical accelerations, in turn, affect the x motion through the term ẏi�i

in Eq. (36), causing both vortices to drift to the left (opposite to the applied force). This interesting
interaction between the motion induced by the electric force and the motion induced by the vortex
force (ẏi�i,-ẋi�i) is naturally captured in the developed dynamic model. Although the KR motion is
not really relevant here, it is presented for comparison in Figs. 5 and 6.

Figure 6 shows the motion of a pair of counter-rotating vortices of equal strength, but of equal
and opposite charges placed in a constant-strength electric field. Figure 6(a) shows the response

(a) (b) (c)

FIG. 6. Different simulations for counter-rotating pair of vortices with opposite charge placed in a constant-
strength electric field. Simulations are initialized by the Biot-Savart induced velocity; electric field direction
and charge sign for each case are listed as (a) E ↑, +q1, and −q2, (b) E →, +q1, and −q2, and (c) E →, −q1,
and +q2.
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to an upward electric field causing an upward force on the right vortex (with positive charge) and
a downward force on the left vortex (with negative charge). Yet, both vortices move downward
and the significant effect is a drift in the x direction due to the interaction mentioned above: the
downward acceleration of the left vortex causes an acceleration in the x direction through the term
ẏi�i in Eq. (36), which in turn causes an upward acceleration through the term −ẋi�i in Eq. (37).
Similar behavior occurs with the right vortex; initially, it experiences an upward acceleration from
the electric force, which causes an x acceleration through the term ẏi�i in Eq. (36). This x motion, in
turn, causes a negative y acceleration through the term −ẋi�i in Eq. (37). As a result, the right vortex,
though forced by an upward force, moves to the right and downward, which is a quite nonintuitive
behavior.

Figure 6(b) shows the response to an electric field in the x direction, causing a right force on the
right vortex and a left force on the left vortex (with the opposite charge); i.e., pulling the vortices
away from each other. However, no considerable net effect is observed in contrast to the other
scenarios. The initial right motion of the right vortex due to the electric force causes a downward
acceleration, which in turn causes a negative x acceleration that opposes the electrodynamic
acceleration. The situation leads to an equilibrium with a periodic solution close to the KR motion.
The behavior in Fig. 6(c) is quite interesting, which presents the motion due to an electric field
to the left, causing a left force on the right vortex and a right force on the left vortex; i.e., pushing
the vortices towards one another. However, the response is counterintuitive as usual due to the
interesting interaction between the electrodynamic force and the hydrodynamic vortex force. Instead
of getting closer to each other (to comply with the applied force), the two vortices move upward
opposite to their initial KR velocity. As usual, the vortices initially follow the applied electric force
(i.e., get closer to one another). This x motion causes an upward acceleration to both vortices, which
causes an x acceleration opposite to the electrodynamic one for both vortices.

The interaction between the electrodynamic force and the vortex force (ẏi�i in the x direction and
−ẋi�i in the y direction) leads to very interesting behaviors: when pulling vortices downward (i.e.,
in the same direction as their KR initial velocity), they attract [Fig. 5(a)]; when pulling them upward
(i.e., opposite to their KR initial velocity), they repel [Fig. 5(b)]; when they are pushed together to
the right, they both end up moving to the left with one upward and one downward [Fig. 5(c)]; when
pulling them away from each other, they almost did not respond [Fig. 6(b)]; and when pushing them
towards one another, they move upward [Fig. 6(c)]. It is quite nonintuitive, yet explainable from the
physics of the dynamic model in Eqs. (36) and (37). This nonlinear behavior presents the dynamic
model [Eqs. (36) and (37)] as a rich mechanical system for geometric mechanics and control analysis
using Lie brackets [72–74] where the concepts of anholonomy [75], geometric phases [76,77], and
nonlinear controllability [78,79] can be demonstrated.

VI. VALIDATION

In this section, the resulting dynamics from the proposed variational formulation is validated
against the available data from the literature, particularly the results of Ragazzo et al. [33] and
Richaud et al. [36,37]. The current validation is established on the fact that the results of Richaud
et al. [36,37] using the Hamiltonian proposed by Ragazzo et al. [33] were validated against direct
numerical simulation of the GP equation for a superfluid (i.e., an inviscid fluid). Hence, the results
of Ragazzo et al. [33] are deemed credible according to the validation against direct numerical
simulations of GP. Nevertheless, the Hamiltonian adopted by Ragazzo et al. [33] and Richaud
et al. [36,37] was devised based on analogy with electrodynamics and was not formally derived from
variational principles of classical fluid mechanics, in contrast to the current effort. As mentioned
before, the proposed variational model recovers the KR dynamics for coreless and massless vortices
when the vortices are initialized with the Biot-Savart induced velocity. However, as shown in Sec. V,
the proposed model introduces intriguing dynamics when initialized with various velocities, and
when body forces are included. For instance, if coreless, but massive point vortices are considered
(in this case, the integrals Ixi j , Iyi j vanish, but the core mass mi is retained), then the resulting
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(a) (b)

FIG. 7. Comparison between the proposed variational vortex dynamics model and the model of Ragazzo
et al. [33] when vortices are initialized with a velocity different from the Biot-Savart induced velocity.
(a) Simulation of a counter-rotating pair initialized with five multiples of the Biot-Savart induced velocity,
showing only one vortex. (b) Counter-rotating pair simulated as a single vortex in the half plane [33].

dynamics could be compared against Ragazzo et al. [33]. Interestingly, the resulting equations of
motion along with the Hamiltonian (see Appendix C) from the proposed variational model reduce
to those deduced by Ragazzo et al. [33]. The similarity between the equations of motion and the
Hamiltonian between the two approaches is reinforced by the matched trajectories, as shown in
Fig. 7. Moreover, the resulting dynamics are compared against Richaud et al. [36] in Figs. 8 and 9,
highlighting almost exact matching. The recovery of the proposed formulation to the special cases
of the KR formulation, Ragazzo’s and Richaud’s formulation provides credibility to the presented
approach.

(a)

(b)

FIG. 8. Comparison between the proposed variational vortex dynamics model and Richaud et al. [36]
model. Vortices are initialized with a velocity different from the Biot-Savart induced velocity. (a) Simulation
of co-rotating pair initialized with u10 = (0i, 5.83 j) and u20 = (0i, 4.16 j), showing only the first vortex on the
right-hand side. (b) Single vortex simulated in a confined circular domain [36].
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(a) (b)

FIG. 9. Comparison between the proposed variational vortex dynamics model and Richaud et al. [36]
model when vortices are initialized with a velocity different from the Biot-Savart induced velocity. (a) Simula-
tion of co-rotating pair initialized with u10 = (−0.5i, 0.83 j) and u20 = (0.5i, −0.83 j). (b) Co-rotating vortices
initially perturbed with a radial velocity in the inward direction [36].

VII. CONCLUSION

We introduced the use of Hamilton’s principle of least action to develop a variational formulation
for vortex dynamics. The developed model is fundamentally different from previous models in
the literature, which are typically devised to recover a preknown set of ODEs that are first order
in position. In fact, they provide a Hamiltonian formulation of the vortex motion induced by the
Biot-Savart law. In contrast, the model presented here is based on formal variational principles for
a continuum of inviscid fluid. As such, the model is dynamic in nature, constituted of second-order
ODEs in position, which allows arbitrary initial velocities and external forces (e.g., electromag-
netic). The model provided rich and intriguing dynamics for counter and co-rotating vortex pairs.
In the limit to a vanishing core size, the Biot-Savart behavior is recovered. For a finite core size,
there is a multi-timescale behavior: a slow dynamics that resembles the Biot-Savart motion and a
fast dynamics that results in rapid oscillations around the Biot-Savart motion. However, for some
given initial conditions, the averaged motion is considerably different from the Biot-Savart motion.
The situation becomes interesting when an electric field is applied to a charged particle inside the
vortex core. In this case, the interaction between the electrodynamic force and the hydrodynamic
vortex force leads to nonintuitive behavior. For example, when a pair of counter-rotating vortices
was pulled away from each other by the electric force, they moved normal to this force and opposite
to their initial Biot-Savart motion; and when they were pulled in the same direction of their initial
velocity, they attracted to one another (normal to the applied force). This interesting nonlinear
dynamics presents the developed dynamical model as a rich example in geometric mechanics and
control where concepts of anholonomy, geometric phases, and nonlinear controllability can be
demonstrated. The dynamical model is also applicable to three-dimensional flows as long as the
flow can be reconstructed from a few set of variables (e.g., location and strength of vortex filaments
and rings), which will be tackled in future exploitation of the current variational model.
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APPENDIX A: FLOW KE INTEGRALS

The two-dimensional KE is given as

T = ρ

2

∫
A

(∇φ)2 dA, (A1)

substituting the following relations:

u = ∂ψ

∂y
, v = −∂ψ

∂x
, ωz = ∂v

∂x
− ∂u

∂y
= 0, (A2)

and the integral reads as

T = ρ

2

∫
A

(
u
∂ψ

∂y
− v

∂ψ

∂x
− ψωz

)
dA = ρ

2

∫
A

(
∂ (uψ )

∂y
− ∂ (vψ )

∂x

)
dA = ρ

2

∫
A
ψωz dA. (A3)

Equation (A3) applies for irrotational and rotational flows; however, we restrict the current analysis
for irrotational flows only. The KE integral is computed over a multiply connected domain and, to
transform the area integral to a line, one using Stokes’ theorem; the domain must be transformed to
a simply connected domain by the creation of fictitious barriers, as shown in Fig. 1. Then, the KE
integral reads as

T = −ρ

2

∮
R+σi+ci

ψu · dl = −ρ

2

∫
R+σi+ci

ψdφ. (A4)

The above expression is evaluated over the domain boundaries while taking into consideration
the cyclic behavior of the multivalued function φ, and assuming ri j � a. The result is represented
as

T = −ρ

2

[∫
ci

ψdφ +
∫

R
ψdφ +

∫
σi

ψdφ

]

= −ρ

2

⎡
⎣∑∑

i �= j

�iψ j |i +
∑

�iψi|ci + �|R�R +
∑

�i�|R
⎤
⎦. (A5)

Equation (A5) concludes the KE computation and further analysis along with more simplifications
are discussed in Sec. IV A 1.

APPENDIX B: ∂tφ LAGRANGIAN CALCULATION

Equation (29) is decomposed into two separate integrals, Iy and Ix,

d

dt

(
∂Lφt

∂ ẋi

)
− ∂Lφt

∂xi
= ρẏi

⎡
⎢⎢⎢⎣∂yi

∫
∂xiφi dA︸ ︷︷ ︸
Iy

− ∂xi

∫
∂yiφi dA︸ ︷︷ ︸
Ix

⎤
⎥⎥⎥⎦. (B1)

Relying on the reciprocal property of the potential function φ between the parametrization (x, y)
co-ordinates and generalized one (xi, yi ),

∂yiφi = −∂yφi, ∂xiφi = −∂xφi, (B2)

the Iy integral can be simplified and transformed to a boundary one as

Iy = ∂yi

∫
∂xiφi dA = −∂yi

∫
∂xφi dxdy = −∂yi

∫
∂

φi dy. (B3)
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The integral is evaluated for each boundary in Fig. 1. Without loss of generality, if the barriers are
taken parallel to the x axis, then Iy will be

Iy = −∂yi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

j
i �= j

∫
c j

φi dy +
∫

R
φi dy +

∫
σ+

i

φi dy +
∫

σ−
i

φi dy +
∫

ci

φi dy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (B4)

The last and second integrals will vanish when φi is treated as a single-valued function after
constructing the barriers. Moreover, the third and fourth integrals will vanish, the former because of
the barrier location and the latter due to selecting φ−

i = 0; hence, we are left with the first integral.
The differentiation can act over the first integrand because the integral boundary c j is independent
of yi (i.e., no need for the Leibniz rule). The final form of the Iy integral is

Iy = −
∑

j
i �= j

∫
c j

∂yiφi dy, (B5)

where it is evaluated numerically over the jth vortex boundary.
The Ix integral is computed following the same analysis, and it can be written as

Ix = −∂xi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

j
i �= j

∫
c j

φi dx +
∫

R
φi dx +

∫
σ+

i

φi dx +
∫

σ−
i

φi dx +
∫

ci

φi dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (B6)

Again, as before, the second, fourth, and last terms vanish with the same analogy. However, the third
term will not vanish as φ+

i = 2π , resulting in

Ix = −∂xi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

j
i �= j

∫
c j

φi dx + �i(r∞ − xi − a)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = −

∑
j

i �= j

∫
c j

∂xiφi dx + �i. (B7)

The end result can be substituted back in Eq. (29) to get Eq. (30).

1. Numerical Integration

The numerical evaluation of the terms Ixi j , Iyi j is given as

Ixi j = �i

2π

[∫ x j−a

x j+a

−[y j −√a2 − (x − x j )2 − yi]

(x − xi )2 + [y j −√a2 − (x − x j )2 − yi]2
dx

+
∫ x j+a

x j−a

−[y j +√a2 − (x − x j )2 − yi]

(x − xi )2 + [y j +√a2 − (x − x j )2 − yi]2
dx

]
, (B8)

Iyi j = �i

2π

[∫ y j−a

y j+a

x j +√a2 − (y − y j )2 − xi

(y − yi )2 + [x j +√a2 − (y − y j )2 − xi]2
dx

+
∫ y j+a

y j−a

x j −√a2 − (y − y j )2 − xi

(y − yi )2 + [x j −√a2 − (y − y j )2 − xi]2
dx

]
. (B9)
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APPENDIX C: COMPARISON WITH RAGAZZO’S HAMILTONIAN

A Hamiltonian formulation for the derived Lagrangian in Sec. IV is computed relying on the
Legendre transformation [8]. The transformation is

H (q, p, t ) =
∑

i

q̇i pi − L(q, q̇, t ), (C1)

where pi’s are the generalized momenta given by

pi = ∂L(q, q̇, t )

∂ q̇i
. (C2)

Recall the derived Lagrangian in Eq. (16) and substitute it into Eq. (C2); then the generalized
momenta is

pi = ∂Lφt

∂ q̇i
+
∑

miq̇i, (C3)

where the first term is determined from Eq. (26) (whose detailed computation is given in Ap-
pendix B). The final form for the first term in Eq. (C3) includes a numerical integration over the
cores circumferences, as shown in Eq. (B7). To simplify the Legendre transformation analysis and
to allow for comparison with the Ragazzo et al. [33] Hamiltonian, massive point vortices without
cores are considered instead of vortex patches. As a result, the integrals Ixi j , Iyi j defined in (31)
vanish. By this, and relying on Eq. (B7), Eq. (C3) yields

pi =
∑

miq̇i − �iρ(qi × e3), (C4)

and the Hamiltonian takes the form

H =
∑ 1

2mi
‖pi + �iρ(qi × e3)‖2 − T . (C5)

Interestingly, the previous results are in agreement with the Hamiltonian and generalized momenta
of Ragazzo et al. [33] (there is a sign difference because of the arbitrary sign definition for the
stream function) as presented below,

p j =
∑

mj q̇ j + � jρ

2
(q j × e3), (C6)

H =
∑ 1

2mj

∥∥∥∥p j − � jρ

2
(q j × e3)

∥∥∥∥2

+ (−ρW ). (C7)

Also, setting the core size to zero in our formulation (so the integrals Ixi j , Iyi j vanish) while
considering nonzero core mass (i.e., considering massive point vortices), the resulting equations of
motion are exactly the same as those by Ragazzo et al. [33].
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