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Townsend’s attached eddy hypothesis (AEH), one of the most elegant models in incom-
pressible wall turbulence, has been recently applied to compressible wall turbulence to
explain the numerical observations and predict the scaling laws. Before a more profound
extension can be established, a comprehensive investigation of the features of wall-attached
eddies for streamwise velocity and temperature fields in compressible wall-bounded tur-
bulence is required. In this work the AEH and the inner-outer interaction model [Marusic
et al., Science 329, 193 (2010)] are combined to isolate the signature of attached eddies
at a targeted length scale and then assess their inclination angles statistically based on
the direct numerical simulation database. The inclination angle obtained in the streamwise
velocity fluctuating fields, which approaches 45◦ as the Reynolds number increases, shows
a minor Mach-number influence within the Mach-number range included in this work. As
for those in temperature fluctuations, a high statistical similarity can be seen to streamwise
velocity fluctuations. This slight Mach-number effect indicates that a uniform model can
be potentially developed for compressible wall-bounded turbulence with different Mach
numbers.

DOI: 10.1103/PhysRevFluids.9.034611

I. INTRODUCTION

As is well known, multiscale coherent motions, responsible for the production and dissipation
of turbulence, occupy the boundary layers of wall turbulence, especially at high Reynolds num-
bers. Extensive studies of these motions have been conducted, and several conceptual models are
developed to elucidate many prevailing features such as streaks and ejections in wall turbulence
[1–3], to predict the scaling of statistics, e.g., the logarithmic behavior of the variance of streamwise
velocity fluctuations [4–6] and their higher-order moments [7], and even to predict instantaneous
fields and provide second-order statistics quantitatively [8–10]. One of the most successful models
is the attached eddy hypothesis (AEH) [4,5] asserting that an assemble of geometrically self-similar
energy-containing eddies (or coherent motions) extended to the near-wall region reside in the
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inertial-dominated logarithmic region [11,12]. Throughout this paper, the words “motions,” “struc-
tures,” and “eddies” are equivalent, following the definition in Robinson [13]. From the perspective
of developing turbulence models, the population, distribution, strength (vorticity), scale of attached
eddies, etc., are crucial input parameters, and the streamwise inclination angle is also one of them.

The AEH empirically assumes that these motions incline downstream with an angle of approx-
imately 45◦ evaluated by structures from flow visualization and vortex identification techniques
[14,15]. A series of comparisons between experimental results and those of the AEH simulations
[8–10] show good consistency, which seems to validate this assumption. It is also supported by
theoretical estimation through the direction of the principal axis of the main strain tensor [16,17].
However, if one computes the inclination angle by means of cross-correlation of wall shear stress
fluctuations (τ ′

w) and streamwise velocity fluctuations (u′) in the logarithmic region [18], there is a
conspicuous discrepancy when compared to the assumption of AEH. The cross-correlation is given
by

Rτ ′
wu′ (�x) = 〈τ ′

w(x)u′(x + �x, yo)〉√〈τ ′2
w 〉

√
〈u′2〉

, (1)

where x denotes the streamwise direction, �x denotes the streamwise delay, yo is a location in
the logarithmic region, and angle brackets 〈〉 denote the ensemble time and spatial average. The
inclination angle is then estimated by

αm = arctan
yo

�xp
, (2)

where �xp is the streamwise delay corresponding to the peak of Rτ ′
wu′ . This method results in

an inclination angle around 12◦–15◦, which is obviously smaller than the expected 45◦ of the
assumption. Marusic [10] clarifies this difference by AEH simulations and predicts flow fields using
an array of spatially correlated attached eddies with different scales in a similar organization to
vortex packets, and all these eddies incline downstream at a constant 45◦. The resultant inclination
angle is similar to what is obtained in the experiment. If eddies of a specific length scale are used,
the corresponding inclination angle becomes close to 45◦. Therefore, the much smaller inclination
angle can be attributed to the multiple scales included in the calculation of cross-correlation Rτ ′

wu′ ,
which is a mean structure angle of different scales [10,19].

Very recently, Deshpande et al. [19] and Cheng et al. [20] proposed approaches to remove this
multiscale effect. Deshpande et al. [19] follow the work of Baidya et al. [21] isolating large-scale
attached structures by applying a spanwise offset between the measured field at the wall and that in
the logarithmic region. They notice an inclination angle around 45◦, which validates the assumption
concretely. Unfortunately, their method can isolate only large-scale eddies. Cheng et al. [20] later
develop another method based on the inner-outer interaction model (IOIM) [22] and the AEH to
isolate near-wall footprints and corresponding velocity fluctuations (in the logarithmic region) of
eddies at a targeted height. This approach is able to isolate eddies of a given height/scale in the
logarithmic region. They report a Reynolds-number dependence of the inclination angle, which
asymptotically reaches 45◦ as the Reynolds number increases. More details will be explained in
Sec. III. These two investigations address the long-standing question about the AEH model.

While the coherent structure has been widely explored and employed for prediction in in-
compressible wall turbulence, only a few existing studies reveal its performance in compressible
counterparts. Duan et al. [23] investigate the Mach-number effect by conducting direct numerical
simulations (DNSs) of turbulent boundary layers with free-stream Mach numbers (M∞) from 0.3 to
12. They report a weak compressibility influence on the streamwise extent of large-scale eddies
up to M∞ = 3 and a decreasing trend for higher M∞. The structure angle is estimated by the
two-dimensional contours of correlation maps given by

R(ρu)′(ρu)′ (�x, y; y) = 〈(ρu)′(x + �x, y)(ρu)′(x, y)〉√
〈(ρu)′2(x + �x, y)〉

√
〈(ρu)′2(x, y)〉 , (3)
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where ρ is density and y is a reference wall-normal location around which the correlation is
computed. For a specific y(y/δ = 0.2 in Duan et al. [23]), y varies to attain a two-dimensional
contour of the correlation map with �x for the abscissa and y for the ordinate. The angle of the
structure is observed to remain similar for M∞ < 3. Pirozzoli and Bernardini [24] carry out DNSs of
turbulent boundary layers at M∞ = 2. Similar to incompressible flows, the streamwise and spanwise
velocity variance shows a logarithmic decay, indicating an attached feature, while the wall-normal
velocity is detached. Pirozzoli and Bernardini [24] also conclude that thermal properties, such as
pressure, density, and temperature, are all attached variables. As observed by Duan et al. [23], the
length scales of eddies agree with the incompressible cases at a similar Reynolds number. Pirozzoli
and Bernardini [24] apply one extra step than Duan et al. [23], i.e., a linear least-square fit to the
correlation maps of u′ in order to quantify the structure angle (see Figs. 22 and 23 in Pirozzoli and
Bernardini [24]). In the outer region, they attain an angle close to the Reynolds-number-invariant
structure angle of large-scale attached eddies in incompressible regime (14◦) [18]. The angles of
ρ- and T -bearing eddies are examined as well. The ρ-bearing eddies have the steepest inclination
angle, and those of T -bearing eddies are double or triple those of u-bearing eddies. Overall, contrary
to some early experiments claiming an obvious distinction of structure scales between compressible
and incompressible flows [25–28], most scrutinies of DNSs support the conclusion that at moderate
Mach numbers, the structure similarity between compressible and incompressible flows can be
expected. The structures in velocity and temperature fields can also be estimated by linear models
(stochastically forced linearized equations) as claimed by Chen et al. [29]. Although these studies
mentioned above go beyond the explicit study of attached eddies, they could potentially be a
reference for this work as well.

Specifically for the AEH, Yu et al. [30] decompose the spectra into wall-attached (WA) and
wall-detached (WD) portions by the proper orthogonal decomposition to analyze the statistics of
velocity and temperature fields in compressible channel flows. They observe a high similarity of the
spectra and variances between temperature and velocity fluctuations. Cheng and Fu [31] confirm the
existence of wall-attached self-similar structures by the linear coherence spectrum in streamwise
velocity and temperature fluctuations of compressible channel flows. They both have a similar
streamwise/wall-normal aspect ratio of 15.5, consistent with the value 14 in incompressible flows
reported by Baars et al. [32]. One can see that the existence of attached eddies in compressible
flows has been preliminarily shown. Nevertheless, many features of attached eddies remain unclear,
e.g., their strength, population, and the inclination angle discussed above. This work is dedicated to
investigating the Mach-number effect on the streamwise inclination angle of wall-attached eddies in
compressible channel flows using the database from DNSs. The temperature fluctuation field is also
taken into account to characterize features of its WA portion. The studies of these characteristics
help to establish the foundation to extend the incompressible AEH to compressible flows such that
the AEH can be employed to predict the scaling of statistics and reconstruct instantaneous fields
for both the streamwise velocity and temperature of compressible flows. The analysis of turbulent
structures can also benefit the development of near-wall models [33,34].

This work is organized as follows. Section II summarizes briefly the DNS database for com-
pressible channel flows examined in this paper. The methodology to isolate eddies of a given scale
is illustrated in Sec. III. We present the main results and discussions in Sec. IV. Finally, Sec. V
provides the conclusion.

II. DNS DATABASES AND JARGON INTERPRETATIONS

Five compressible channel flow cases are considered in this work with some of their parameters
listed in Table I. The accuracy of the four DNS results with Mab � 1.5 has been validated in [31].
Appendix A shows the accuracy of the DNS at Mab = 3. It should be noted that this is the highest
Mach number we simulate within our capability. In the forthcoming discussion, the streamwise
direction is designated by the x coordinate, the wall-normal direction by the y coordinate, and the
spanwise direction by the z coordinate. h is half of the channel height. Variables are composited by
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TABLE I. Numerical parameters for DNSs of channel flows employed in this work. Reτ is the friction
Reynolds number; Re∗

τ the semilocal friction Reynolds number. These cases are named according to their bulk
Mach numbers (see more details in [31]). The last row shows colors and line styles used to distinguish them.

Case M08R8K M08R17K M15R9K M15R20K M30R15K
Reτ 443 893 598 1167 1243
Re∗

τ 381 778 393 770 396
Mab 0.8 0.8 1.5 1.5 3.0

Label − − − − − ......... − − − − − ......... − − − − −

either the Reynolds (φ = φ + φ′) or Favre (φ = φ̃ + φ′′) decomposition, where φ and φ̃ = ρφ/ρ

denote the averaged portion, and φ′ and φ′′ denote the fluctuating portion, respectively. Variables in
wall units are distinguished by the plus sign superscript, and those in semilocal units by the asterisk
superscript. The wall units comprise the friction velocity uτ = √

τw/ρw and the viscous length
scale δτ = μw/(uτ ρw ), where ρw is the density at the wall, μw is the viscosity at the wall, and τw =
μw(∂ ũ/∂y)|w is the wall shear stress. Here are examples of variables in wall units, ũ+ = ũ/uτ , y+ =
y/δv , μ+ = μ/μw, ρ+ = ρ/ρw. The characteristic Reynolds number for turbulent channel flows is
the friction Reynolds number defined as Reτ = ρwuτ h/μw. As for variables in semilocal units, the
velocity scale is u∗

τ = √
τw/ρ and the length scale is δ∗

τ = μ/(u∗
τ ρ ). Re∗

τ = ρc
√

τw/ρch/μc is the
semilocal counterpart of the friction Reynolds number, where ρc is the density and μc is the dynamic
viscosity at the center line of the channel. This work concentrates on the logarithmic region defined
as y∗ > 100 and y/h < 0.3, and y/h > 0.3 is designated as the outer region.

III. LINEAR SYSTEMS AND ISOLATION OF EDDIES

According to the AEH [4], the very-large-scale motions (VLSMs) centering in the logarithmic
and outer regions extend down to the wall, superimpose their signature, and modulate the small-
scale fluctuations in the near-wall region [22]. To extract the wall-coherent large-scale and very-
large-scale portion, the velocity and temperature fluctuations are analyzed and predicted via spectral
linear stochastic estimation (SLSE), a well-established method in the linear system theory [35]. A
brief introduction and explanation of the linear system theory and SLSE are provided in Sec. III A;
Sec. III B clarifies the methodology to isolate the signature of attached eddies of a selected scale,
and Sec. III C computes the corresponding streamwise inclination angle.

A. Linear systems and spectral linear stochastic estimation

A single-input/single-output constant-parameter linear system has an input x(t ), an output y(t ),
and a time-invariant dynamic characteristic described by the impulse response function h(τ ) [35].
h(τ ) is the system output responding to a unit impulse at a time τ before. The output y(t ) at any time
t is a linear sum of the entire history of the input x(t ) weighted by the impulse response function
h(τ ) given by the convolution integral

y(t ) =
∫ +∞

−∞
h(τ )x(t − τ ) dτ. (4)

By applying the Fourier transform to both sides of Eq. (4), one obtains its spectral features

Y ( f ) = H ( f )X ( f ), (5)

where Y ( f ), X ( f ), and H ( f ) are the Fourier transform of y(t ), x(t ), and h(t ), respectively.
Equation (5) is referred to as the spectral linear stochastic estimation if H ( f ) is a linear kernel.
Once the transfer kernel H ( f ) is solved, an estimation of the output y(t ) for a given input x(t ) can
be done.
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The transfer kernel, also named the frequency response function H ( f ), is estimated in the least
square sense. In short, the mean square of the error, i.e., the difference between the estimated output
ŷ(t ) and the measured one y(t ), is minimized over all H ( f ), and the first derivative of the mean
square error with respect to H ( f ) is zero. The rigorous derivation can be found in [35,36]. This
H ( f ) is shown to be

H ( f ) = 〈X ( f )Y ( f )〉
〈X ( f )X ( f )〉 , (6)

where X ( f ) is the complex conjugate of X ( f ). The transfer kernel H (λx ) is a function of frequency
or wavelength in our application only. It indicates that there is no frequency (wavelength) translation
in this linear system, and a much simpler interpretation can be found in the Fourier space than in
the physical domain. The transfer kernel H ( f ) can be divided into two parts, namely,

H ( f ) = |H ( f )|eiφ( f ), (7)

where the modulus |H ( f )| is the gain factor, || is the modulus of complex numbers, φ( f ) is the
phase factor, and i2 = −1.

The applicability of SLSE is examined by the linear coherence function (LCF) γ 2( f ) defined as

γ 2( f ) = |〈X ( f )Y ( f )〉|2
〈|X ( f )|2〉〈|Y ( f )|2〉 . (8)

In Eq. (8) the numerator is the squared cross-spectral density function and the denominator is the
product of autospectral density functions of the input x and the output y. γ 2( f ) is analogous to the
square cross-correlation coefficient function Rτ ′

wu′ (�x) in Eq. (1) replacing the streamwise distance
with wavelength as the independent variable, which implies the linear coherence between the input
and output at a specific wavelength λx.

Although the input and output examples in the above illustration are defined as functions of time,
other parameters, such as streamwise distance (x), can supplant time as the independent variable.
In the forthcoming discussion, we replace t with x. Subsequently, in the Fourier space, frequency
f is replaced by wave number ω or wavelength λx. According to the IOIM [22], Baars et al. [37]
estimate the near-wall footprint of VLSM based on the linear system theory using the transfer kernel
in Eq. (6), which provides a promising result. Later Cheng and Fu [38], following the IOIM [22],
adopt this kernel to predict the streamwise wall-shear stress fluctuations by the signal of streamwise
velocity fluctuation in the logarithmic region. They subtract two predictions from two neighboring
wall-normal positions to isolate the contribution from attached eddies whose heights reside within
these two neighbors and assert that the superposition effects from attached eddies follow a strict
additive process. Besides the prediction of the inner region from the outer region, it can also be used
to estimate streamwise velocity fluctuations in the logarithmic region by their near-wall counterparts
[20] and inspect the multiphysics couplings in compressible flows [39]. Thus, the reliability of this
method has been widely verified.

B. Isolation of attached eddies

As discussed in the preceding section, SLSE could offer a reliable prediction of velocity fields in
the near-wall region and the logarithmic region to identify the signature of attached eddies. In short,
if we simplify IOIM [22] by ignoring the modulation process, the near-wall signal can be expressed
by u′′

i = u′′
i, f p + u′′

i,un, where u′′
i, f p and u′′

i,un are the footprints of large-scale attached eddies and
the universal component, respectively. u′′

i,un is assumed to be uncorrelated with u′′
i, f p and u′′

o . The
imposed large-scale influence (u′′

i, f p), can be estimated by streamwise velocity fluctuations in the
logarithmic region u′′

o (yo) using SLSE, i.e., u′′
i,L given by Eq. (9), where the subscript i indicates

that it is in the inner layer yi and L means the contribution from large-scale motions [22,37]. This
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FIG. 1. Schematic diagram of a hierarchy of self-similar attached eddies in the x-y plane. Four hierarchy
levels are included and represented by trapezoids with different colors: the smallest eddies are in blue, and the
highest ones are in purple. y∗

i is the wall-normal distance of the grids adjacent to the wall. y∗
o represents the

wall-normal distance in the logarithmic region, and y∗
o + �y∗ is the neighbor location of y∗

o with a distance
�y∗, which is also in the logarithmic region.

section emphasizes the methodology to isolate the signature of attached eddies with a given scale
[20,40].

Figure 1 shows a sketch considering the volume of influence for a hierarchy of self-similar
attached eddies. Four hierarchy levels are characterized by trapezoids with different colors. From
the smallest attached eddies in blue, their higher consecutive hierarchy has a doubled eddy size and
a halved number density as indicated in Fig. 1. The AEH assumes no interaction between attached
eddies at different length scales, and the contribution from all attached eddies follows a simple
linear superposition. One can, consequently, deduce that the streamwise velocity fluctuation at y∗

o
(the subscript o designates the quantity in the logarithmic region) includes the signatures of attached
eddies higher than y∗

o . Equipped with SLSE and the AEH, we are ready to isolate the signature of
attached eddies at a given height or scale.

For compressible flows, the density-weighted velocity fluctuation
√

ρu′′ instead of u′′ is supposed
to be employed to account for the density variation [39] according to Morkovin’s hypothesis [41]. In
this work, we designate the density-weighted velocity fluctuation,

√
ρu′′, as u′′′, and u′′′+ = √

ρu′′/
(uτ

√
ρw ). It is worthwhile to note that the authors do not notice a significant difference in the incli-

nation angle using velocity fluctuations with and without the weight by density. The corresponding
equation is given by

u′′′
i,L(x, y∗

o ) = F−1
x {HL(λx, y∗

o )Uo(λx, y∗
o )}, (9)

where F−1
x is the inverse Fourier transform operator in the streamwise direction, Uo(λx, y∗

o ) =
Fx{u′′′

o (x, y∗
o )}, Fx is the Fourier transform operator in the streamwise direction, and λx is the

streamwise wavelength. When conducting such estimation, the transfer kernel is set to be zero for
λ+

x < 700 to further eliminate the small-scale influence. The transfer kernel HL(λx, y∗
o ) is equivalent

to the one defined in Eq. (6), namely, defined as

HL(λx, y∗
o ) = 〈Uo(λx, y∗

o )Ui(λx, y∗
i )〉

〈Uo(λx, y∗
o )Uo(λx, y∗

o )〉 , (10)

where Ui(λx, y∗
i ) = Fx{u′′′

i (x, y∗
i )} is the Fourier transform of the streamwise velocity fluctuation

u′′′
i (x, y∗

i ) at y∗
i . u′′′

i,L (x, y∗
o ) obtained by Eq. (9) records the signature of attached eddies higher than y∗

o ,
since the transfer kernel HL(λx, y∗

o ) characterizes coherent features between the near-wall position
y∗

i and y∗
o in the logarithmic region. Similarly, we can replace y∗

o in Eq. (9) by y∗
o + �y∗ to compute
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FIG. 2. Distance �y∗ between two neighbor grids y∗
o and y∗

o + �y∗ in the wall-normal direction as a
function of estimated eddy height y∗

m = (y∗
o + y∗

o + �y∗)/2.

the signature u′′′
i,L (x, y∗

o + �y∗) of attached eddies higher than y∗
o + �y∗ at y∗

i . Then a subtraction,

�u′′′
i,L(x, y∗

o ) = u′′′
i,L(x, y∗

o ) − u′′′
i,L(x, y∗

o + �y∗), (11)

is needed to identify the signature induced by attached eddies whose heights lie between y∗
o and

y∗
o + �y∗, due to the linear superposition assumption of the AEH [4]. Figure 1 demonstrates this

point clearly. If we apply this methodology to the hierarchy of attached eddies shown in Fig. 1,
u′′′

i,L(x, y∗
o ) contains signatures of the third (green) and fourth (purple) hierarchy levels, and only the

fourth level contributes to u′′′
i,L (x, y∗

o + �y∗). It is obvious that �u′′′
i,L(x, y∗

o ) records merely the third
level. Even though Fig. 1 uses eddies of discrete scales, it can be representative of the continuous
scale of the attached eddies in the real turbulent field to a large extent. This step also requires
�y∗ 
 y∗

o such that attached eddies residing between y∗
o and y∗

o + �y∗ are considered to be of the
same scale approximately y∗

m = (y∗
o + y∗

o + �y∗)/2. It is verified in Fig. 2 that all the cases have a
maximum �y∗ < 4.5.

Equivalently, velocity fluctuations at y∗
o can also be estimated by those at y∗

i . Commuting
u′′′

i (x, y∗
i ) and u′′′

o (x, y∗
o ), Eq. (9) now becomes

u′′′
o,W (x, y∗

o ) = F−1
x {HW (λx, y∗

o )Ui(λx, y∗
i )}, (12)

and the corresponding HW (λx, y∗
o ) is

HW (λx, y∗
o ) = 〈Ui(λx, y∗

i )Uo(λx, y∗
o )〉

〈Ui(λx, y∗
i )Ui(λx, y∗

i )〉 . (13)

u′′′
o,W (x, y∗

o ) is wall-coherent signatures from eddies higher than y∗
o at y∗

o (the signatures of eddies
in the third and fourth hierarchy levels in Fig. 1 at y∗

o). Replacing y∗
o by y∗

o + �y∗, the obtained
u′′′

o,W (x, y∗
o + �y∗) represents signatures from eddies higher than y∗

o + �y∗ at y∗
o + �y∗ (the signa-

tures of eddies in the fourth hierarchy level only in Fig. 1 at y∗
o + �y∗). The subtraction,

�u′′′
o,W (x, y∗

m) = u′′′
o,W (x, y∗

o ) − u′′′
o,W (x, y∗

o + �y∗), (14)

helps identify the contribution by attached eddies locating between y∗
o and y∗

o + �y∗ (eddies in the
third hierarchy levels in Fig. 1). The signal �u′′′

o,W (x, y∗
m) itself is in the logarithmic region, and the

height (scale) of attached eddies contributing to it is estimated by y∗
m = [y∗

o + (y∗
o + �y∗)]/2.

034611-7



TIANYI BAI, CHENG CHENG, AND LIN FU

C. Streamwise inclination angle of eddies of a given scale

Noting that the signature of eddies at a given scale is isolated, one can then determine the
corresponding streamwise inclination angle through the cross-correlation following the traditional
way,

R�τ ′′′
w,L�u′′′

o,W
(�x∗) = �τ ′′′

w,L(x∗)�u′′′
o,W (x∗ + �x∗, y∗

m)〉√
〈�τ ′′′

w,L
2〉

√
〈�u′′′

o,W
2〉

(15)

and

αs(y
∗
m) = arctan

y∗
m

�x∗
p

, (16)

where the wall-shear stress is evaluated by �τ ′′′
w,L(x∗) = ∂�u′′′

i,L(x∗, y∗
o )/∂y∗, and �x∗

p is the stream-
wise delay corresponding to the peak of R�τ ′′′

w,L�u′′′
o,W

(�x∗). αs(y∗
m) is the streamwise inclination angle

of eddies with the height y∗
m, which is different from the traditional one αm in Eq. (2). αs is supposed

to be 45◦ for high-Reynolds-number wall turbulence based on the AEH [4]. As for temperature
fluctuations, the same procedure as streamwise velocity fluctuations can be conducted with the wall
shear stress τ ′′′

w replaced by the wall heat flux qw and u′′′ replaced by T ′.

IV. RESULTS AND DISCUSSIONS

This section validates the methodology in Sec. III based on the compressible DNS data.
Section IV A shows the applicability of SLSE through LCF defined in Eq. (8) indicating the
correlation degree of the input and output. The spectrum properties of transfer kernel and the
isolated signatures of attached eddies of height approximately y∗

m will be discussed in Sec. IV B, and
conditional statistics of extracted attached eddy signatures, such as scale and intensity, are examined
in Sec. IV C, which verifies the methodology and the related assumptions in Sec. III. Section IV D
analyzes the Mach-number impact on the streamwise inclination angle αs for attached eddies at a
given height or scale, and shows its comparison with the traditional one αm (in the mean sense).

A. Linear coherence function

The applicability of SLSE is examined by LCF, γ 2(λ+
x ) defined in Eq. (8), the numerator is the

squared cross-spectral density function, and the denominator is the product of autospectral density
functions of u′′′

o and u′′′
i . γ 2(λ+

x ) is analogous to the square cross-correlation coefficient function
Rτ ′

wu′ (�x) in Eq. (1) replacing the streamwise distance with wavelength as the independent variable,
which implies the linear coherence between the input and output at a specific wavelength λ+

x .
Figures 3 and 4 present contours of the LCF, γ 2(λ+

x ) of streamwise velocity u′′′ and temperature
T ′ fields, respectively. The γ 2(λ+

x ) contours of the temperature share an identical feature with
that of streamwise velocity. It is unsurprising that the strong Reynolds analogy (SRA) has been
established in compressible wall-bounded turbulent flows [24,42,43], indicating that the temperature
field performs more like a passive scalar transported by the velocity fields. This observation of
similar LCF contours provides further evidence for the strong analogy between temperature and
velocity fields. The LCF is determined by the ratio between the wall-coherent portion and the
residual of the output and input. Thus, this similarity of LCF implies that the temperature and
streamwise velocity fluctuations share a similar percentage of energy contributed by wall-attached
eddies. The hierarchical self-similarity of attached eddies leads to the triangle region with sides in
black dotted lines [32], and the contour is supposed to align with the hypotenuse within this region.
The hypotenuse is λx/y = 14, where 14 is the streamwise/wall-normal aspect ratio determined from
incompressible flows [32]. The lower side is y∗ = 100, indicating the beginning of the logarithmic
region. The right side λx/h = 10 is the outer scaling limit of the self-similar structures, after which
the scale-independence trend of γ 2 should appear. The scaling independence of γ 2 is not observed in
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FIG. 3. Contours of LCF, γ 2(λ+
x ) as a function of the wall-normal distance y∗ and wavelength λ+

x computed
from the streamwise velocity fluctuating u′′′ field in Table I. γ 2(λ+

x ) represents the coherent degree of
streamwise velocity fluctuations near the wall and at y∗ (the y coordinate in the figure) in the logarithmic region.
Black dotted lines indicate the region bounded by y∗ > 100, λx/h = 10, and λx/y = 14, which is supposed to
show the self-similar property of attached eddies [32].

this work due to the confined size of computation domains, and the right side is not plotted for cases
M15R20K and M30R15K for the same reason. In Figs. 3 and 4, the contours of γ 2 are not exactly
parallel to the hypotenuse. This tendency appears in both the streamwise velocity and temperature
fields, and high-Mach-number cases may have a more obvious deviation. Results from higher Mach
numbers are required to further verify it. Nevertheless, the LCF of compressible flows is roughly
consistent with incompressible wall turbulence for the considered DNS data.
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FIG. 4. Contours of LCF, γ 2(λ+
x ) as a function of the wall-normal distance y∗ and wavelength λ+

x computed
from the temperature fluctuating T ′ field in Table I. γ 2(λ+

x ) represents the coherent degree of streamwise
velocity fluctuations near the wall and at y∗ (the y coordinate in the figure) in the logarithmic region. Black
dotted lines indicate the region bounded by y∗ = 100, λx/h = 10, and λx/y = 14, which is supposed to show
the self-similar property of attached eddies [32].

The existence of the self-similar wall-attached structure in both the streamwise velocity and
temperature fields has been confirmed in Figs. 3 and 4. This conclusion allows us to extend the
AEH [4] of incompressible flows to compressible wall-bounded flows. Hence, the methodology
developed for incompressible flows in Sec. III is applicable to this study on compressible flows, and
the investigation of the structure inclination angle is meaningful as an essential parameter for the
AEH [4].
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(a) (b)

(c) (d)

FIG. 5. Gain factor with respect to the wavelength λ+
x and the corresponding impulse response function

h(�x∗) = F−1
x (H (λ+

x )) normalized by its maximum h(�x∗)/h(�x∗)max at three selected wall-normal positions
y∗ ≈ 100, 150, and 200 computed from the streamwise velocity fluctuating u′′′ field for the two highest
Reynolds-number cases in Table I. (a) |HL (λ+

x )| and (c) the normalized hL (�x∗), which are imposed on velocity
fluctuations in the logarithmic region to estimate the near-wall footprint; (b) |HW (λ+

x )| and (d) the normalized
hW (�x∗), which are imposed on near-wall velocity fluctuations to predict those in the logarithmic region.

B. Spectrum features related to attached eddies

Now that we have shown that SLSE is applicable, it is time to examine its properties in the
Fourier space before the estimation. We will see how the estimation is done in both the Fourier and
physical domains and the energy spectra before and after applying the scale-separation technique to
inspect its effectiveness.

The gain factors at three specific wall-normal distances (y∗ ≈ 100, 150, and 200) are plotted
versus λ+

x for the streamwise velocity u′′′ and temperature fluctuation T ′ in Figs. 5 and 6(a),
respectively. The gain factor |HL(λ+

x )| is exerted on the fluctuating fields in the logarithmic region
to predict its near-wall influence. Although |HL(λ+

x )| increases as the wavelength grows, i.e., more
energy of large-scale eddies is retained, it is, overall, much smaller than unity as shown in Figs. 5
and 6(a), especially for the velocity fluctuation. This observation can be mainly attributed to
the relatively lower Reynolds number where attached eddies are less populated, since for high
Reynolds-number scenarios, |HL(λ+

x )| reaches a plateau at around 0.6 in incompressible wall
turbulence [37]. During the estimation, a significant shrink of energy contained in each Fourier mode
is required. Also worth mentioning is that unlike the similarity between velocity and temperature
fluctuations noticed in LCF, |HL(λ+

x )| for T ′+ is nearly four times larger than that of u′′′.
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FIG. 6. Gain factor with respect to the wavelength λ+
x and the corresponding impulse response function

h(�x∗) = F−1
x (H (λ+

x )) normalized by its maximum h(�x∗)/h(�x∗)max at three selected wall-normal positions
y∗ ≈ 100, 150, and 200 computed from the temperature fluctuating T ′ field for the two highest Reynolds-
number cases in Table I. (a) |HL (λ+

x )| and (c) the normalized hL (�x∗), which is imposed on velocity fluctuations
in the logarithmic region to estimate the near-wall footprint; (b) |HW (λ+

x )| and (d) the normalized hW (�x∗),
which are imposed on near-wall velocity fluctuations to predict those in the logarithmic region.

|HW (λ+
x )|, imposed on the near-wall fluctuations, is supposed to be larger than unity as a

reciprocal of |HL(λ+
x )| for ideal linear systems. However, |HW (λ+

x )| < 1 exists for a shorter wave-
length, especially in temperature fields as demonstrated in Figs. 5 and 6(b). This is due to the
universal signal of the near-wall region and the wall-detached portion in the logarithmic region.
The transfer kernels utilized in this work are merely an optimum approximation of the exact ones.
The decomposition of the signal into wall-coherent portions and the universal/wall-detached parties
is always helpful. As obtained in Appendix B, Eq. (B1) manifests that the gain factor of the
practical transfer kernel is smaller than that of the exact one. Again, the inconsistency between
velocity and temperature fluctuations appears, i.e., |HW (λ+

x )| for T ′ becomes less than that of u′′′.
A much larger energy discrepancy of each Fourier mode also shows for streamwise fluctuating
velocity compared with the temperature fluctuations. This difference seems to challenge the SRA
since distinguishing transfer kernels, which characterize the interaction between the inner and outer
regions, are inspected for the temperature and velocity field, and this requires further investigation.

The normalized impulse response function hL(�x∗)/hL(�x∗)max and hW (�x∗)/hW (�x∗)max

[Figs. 5 and 6(c) and 6(d)], defined as the inverse Fourier transform of HL(λ+
x ) and HW (λ+

x ), re-
spectively, illustrates the dependence of output signals on its upstream and downstream information
in physical domain. Since panels (c) and (d) carry similar information, hereafter, the discussion
concentrates on hL, i.e., panel (c). Recalling Eq. (4), hL(�x∗) and hW (�x∗) are weighting factors
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(a) (b)

FIG. 7. Streamwise inclination angles αhL defined by Eq. (17) computed based on the peak of the impulse
response function hL at three selected wall-normal positions y∗ ≈ 100, 150, and 200 using the two highest
Reynolds-number cases in Table I. (a) αhL in streamwise velocity fluctuations u′′′; (b) the same in temperature
fluctuations T ′.

imposed on the input signal u′′′ at a specific location x∗
output − �x∗, where the x∗

output is the location of
the estimated output. The product hL(�x∗)u(x∗

output − �x∗) evaluated the contribution of the input
u′′′(x∗

output − �x∗) to the predicted output, and the integration in Eq. (4) represents a summation
of contributions from the overall input (input signal at all available locations). Therefore, the
scenario �x∗ < 0 implies the weighting function of its downstream information, and �x∗ > 0 is for
upstream information. In Fig. 5(c), hL(�x∗)/hL(�x∗)max �= 0 falls primarily into the region �x < 0.
It indicated that the estimated near-wall u′′′

i depends mainly on the downstream portion of the input
u′′′

o in the logarithmic region, which is consistent with AEH as attached eddies are supposed to
lean downstream. To further quantify its downstream dependence, we define another streamwise
inclination angle αhL , namely,

αhL = arctan
y∗

o

�x∗
p,h

, (17)

where �x∗
p,h is the streamwise location corresponding to the peak value of hL(�x∗)max. αhL of the

velocity fluctuating field is plotted in Fig. 7(a), which is 13◦−17◦. This newly defined inclination
angle agrees with that in earlier studies [18], i.e., the mean structure inclination angle of multiple
scales, for the reason that αhL is affected by all attached eddies higher than the wall-normal distance
of the input position. It is now reasonable to conclude that hL(�x∗/hL(�x∗)max �= 0 in �x∗ < 0 is
a typical feature of the AEH [4]. This symbolic feature is also noticed in temperature fluctuating
fields in Fig. 7(b). αhL of temperature fluctuations is 14◦−20◦. The slightly higher inclination angle
of temperature fluctuations might be attributed to its more passive dynamics, which is also detected
by Pirozzoli and Bernardini [24]. In short, both the wall coherent portions of the streamwise velocity
and temperature fluctuations are dominated by attached eddies inclining downstream (the AEH [4])
as indicated by αhL in Fig. 7, supporting the SRA in compressible wall-bounded turbulence.

A close examination of the spectral property is required to further validate the methodology in
Sec. III B. Figure 8 exhibits premultiplied spectra of streamwise velocity and temperature fluctua-
tions before and after implementing the scale-separation methodology of attached eddies. The lines
in red are the original premultiplied spectra, while those in black are from eddies of a given scale.
Figures 8(a) and 8(b) plots the premultiplied spectra, and those with small magnitudes are amplified
by a factor clarified in the legend. It is evident that the spectra become much smaller than the
original one after conducting the scale separation step as the scale separation methodology extracts
a subset of the original one contributed from the attached eddies. In order to examine the relative
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(a) (b)

(c) (d)

FIG. 8. Comparison of premultiplied energy spectra of the original field and the attached eddies at a
given scale in both the streamwise velocity u′′′ and temperature T ′ fluctuations of case M15R20K in the
near-wall region and logarithmic region (y∗ = 200), where τ ′′′

w and q′
w are the wall shear stress and wall heat

flux, respectively. (a) Spectra from the streamwise velocity fluctuation and (b) results from the temperature
fluctuations. Note that some energy spectra in (a) and (b) are amplified by a factor given in the legend since
they are too small to present. To have a closer look at the relative energy distribution, the energy spectra
are normalized by their maximum: (c) those from the streamwise velocity fluctuation; (d) those from the
temperature fluctuations.

energy distribution, the normalized spectra by their maximum are also displayed in Figs. 8(c) and
8(d). The original ones in the near-wall and logarithmic regions have an apparently distinct energy
distribution. As for those of a given scale, they share a similar energy distribution. It is worth
mentioning that the contribution of VLSMs is not fully eliminated in the present scale-separation
procedure, mainly due to the low Reynolds-number effects and limited computational domain of
the available DNS data set. Nevertheless, one can conclude that the signature of attached eddies at
a given scale has been well identified and isolated.

C. Conditional statistics of attached eddies

Apart from the spectrum features, this section gives more statistics of the attached eddy signature
extracted by SLSE, including the logarithmic decay property of the variance of the streamwise

velocity u′′′
o,W

2
+

and the root-mean square (rms) of temperature fluctuations T ′
o,W,rms

+, and the
autocorrelation function of attached eddy signatures from a certain scale in both the u′′′ and T ′ fields,
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(a) (b)

FIG. 9. (a) Normal Reynolds stress ũ′′2∗
and u′′′

o,W
2
+

vs yo/h; (b) indicator � defined in Eq. (19) evaluating

the logarithmic dependence of ũ′′2∗
and u′′′

o,W
2
+

on yo/h. The green dotted lines present a linear fit of u′′′
o,W

2
+

vs
yo/h as a function of yo/h, which has a slope of approximately 0.34. The red scatters present the results of case
M08R17K, and the blue ones present those of case M15R20K.

i.e., R�u′′′
o,W �u′′′

o,W
and R�T ′

o,W �T ′
o,W

, and the characteristic scale of attached eddy determined through the
autocorrelation function.

One generally interesting characteristic of attached eddies is the logarithmic decay of the normal
Reynolds stress ũ′′2∗

on yo/h [4], namely,

ũ′′2∗ = C2 − C1 ln(yo/h), (18)

which can be characterized by an indicator � defined by

� = y(∂ ũ′′2∗
/∂y), (19)

where C1 and C2 are constants, and C1 is dubbed the Townsend-Perry constant. It is obvious
that the indicator � = −C1 if the logarithmic behavior of ũ′′2∗

exists. The logarithmic behavior

is also expected for the estimated wall-coherent portion of normal Reynolds stress u′′′
o,W

2
+

, since
this portion is contributed by attached eddies [20,44]. This work scrutinizes the variation of both

the original normal Reynolds stress ũ′′2∗
and the estimated wall-coherent portion u′′′

o,W
2
+

with
respect to yo/h as displayed in Fig. 9(a), and Fig. 9(b) shows their corresponding indicators versus
yo/h for cases M08R17K and M15R20K. A more clear logarithmic dependence can be seen as
highlighted by green dashed lines and implied by the plateau in Figs. 9(a) and 9(b), respectively.

Regarding u′′′
o,W

2
+

, these two cases share a common slope C1 about 0.34, which is smaller than
the Townsend-Perry constant 1.26 and 0.98 reported by Baars and Marusic [44]. On the contrary,
the original normal Reynolds stress ũ′′2∗

has a C1 of approximately 1, which is closer to the
Townsend-Perry constant [44]. Cheng et al. [20] attribute this difference mainly to the effects of
VLSMs. Here we provide another explanation and ascribe these gentle slopes mainly to the more
predominant role of the near-wall universal signal for low-Reynolds-number cases while applying
SLSE. As discussed in Appendix B, the practically estimated Uo,W (λx ) has an energy density
|Uo,W (λx )|2 = |U ′

o,W (λx )|2/[1 + c(λx )] given by Eq. (B4). This relation shows that the practically
estimated energy density is smaller than the ideal one, and the difference between the practical
and ideal one relies on the energy ratio c(λx ) = |Ui,un(λx )|2/|Ui, f p(λx )|2. With the increase of the
Reynolds number, more attached eddies appear in the logarithmic region, leading to a smaller c(λx ).
Consequently, higher Reynolds-number cases are supposed to have a decay rate representative of
the real one. In this work, c(λx ) could be 2–3 as the highest LCF between the inner and outer region

034611-15



TIANYI BAI, CHENG CHENG, AND LIN FU

(a) (b)

FIG. 10. (a) RMS of temperature fluctuations T ′+
rms and T ′

o,W,rms
+ vs yo/h; (b) the indicator �T following

Eq. (19) with ũ′′2∗
replaced by T ′+

rms or T ′
o,W,rms

+ evaluating their logarithmic dependence on yo/h. The red
scatters present the results of case M08R17K, and the blue ones present those of case M15R20K.

is around 0.3. Note that the gentler decay rate is a combined effect of all the wavelengths, but
the discussion here mainly focusing on a specific wavelength is capable of providing an intuitive
explanation. This explanation also clarifies the reason why a significant discrepancy of C1 is noticed
for cases with different Reynolds numbers [20,44] even though a similar method is applied to extract
the contribution from attached eddies. It merits noting that both the two factors proposed by Cheng
et al. [20], and this work could work together to result in different decay rates.

Similarly to the streamwise velocity, temperature, which tends to exhibit a logarithmic decay
with increasing Reynolds numbers, is also an attached variable [24]. Figure 10(a) presents the rms
of original temperature fluctuations T ′+

rms and its wall-attached portion T ′
o,W,rms

+ with respect to
the outer-scaled wall-normal distance yo/h, and Fig. 10(b) provides the corresponding indicator
function �T that shares a similar definition given by Eq. (19) with ũ′′2∗

replaced by T ′+
rms or

T ′
o,W,rms

+. However, it is difficult to distinguish a logarithmic distribution from both the temperature
fluctuation itself and its wall-attached portion. No plateau appears in Fig. 10(b) though T ′

o,W,rms
+ has

a flatter indicator function, which further evidences this observation. The relatively lower Reynolds
number of the current database could be blamed for the unsatisfactory performance of the original
temperature fluctuation. The wall-attached portion T ′

o,W,rms
+ is more characterized by the AEH [4]

compared with the original T ′+
rms because of its less sharp �T . Unfortunately, due to limitations

of the current framework discussed in Appendix B, the “noise” in the near-wall region can not be
eliminated and results in the blurred logarithmic distribution.

The autocorrelation functions of R�u′′′
o,W �u′′′

o,W
and R�T ′

o,W �T ′
o,W

are displayed in Figs. 11 and 12(a)
separately to demonstrate the scale of structures. As the current isolation methodology recognizes
�u′′′

o,W (�T ′
o,W ) as signatures of attached eddies of a uniform size, the autocorrelation function

R�u′′′
o,W �u′′′

o,W
(R�T ′

o,W �T ′
o,W

) is supposed to represent the features of uniformly sized eddies. The cur-
vature of the correlation functions in Figs. 11 and 12(a) is nowhere large compared with the
common high curvature of Ru′′′u′′′ (not shown) near �x = 0, which indicates the signature from
eddies of a similar size [4]. To quantify the size growth of eddies, we characterize the eddy size
by �x∗

0.05 the streamwise shift corresponding to R�u′′′
o,W �u′′′

o,W (R�T ′
o,W �T ′

o,W
) = 0.05 as shown in Figs. 11

and 12(b). The AEH [4] claims that the attached eddy scale is linearly proportional to its height,
i.e., the wall-normal distance. Therefore, a linear fit is applied to �x∗

0.05 obtained in u′′′ and T ′
fields, and the result is superposed onto Figs. 11 and 12(b) by the black dashed and dotted lines.
In Fig. 11(b), �x∗

0.05 from case M08R17K coincides well with �x∗
0.05 = 7.8 · y∗

m, and so does case
M15R20K for y/h < 0.2. The slope 7.8 is consistent with the streamwise/wall-normal aspect ratio
14 in incompressible flows [32] and the slightly higher value around 15 computed through LCF
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(a) (b)

FIG. 11. (a) Autocorrelation coefficient R�u′′′
o,W �u′′′

o,W
(�x∗) as a function of �x∗ at three selected wall-normal

positions y∗
m ≈ 100, 150, and 200 from cases M08R17K and M15R20K, which evaluates the scale of signatures

in the logarithmic region induced by attached eddies of a given scale; the black dashed line in (a) denotes
R�u′′′

o,W �u′′′
o,W

= 0.05. (b) �x∗
0.05 where R�u′′′

o,W �u′′′
o,W

(�x∗
0.05) ≈ 0.05 with respect to y∗

m. The black dashed line in
(b) is �x∗

0.05 = 7.8 · y∗
m.

in Sec. IV A, because the axisymmetric property of the autocorrelation function leads to the actual
size of eddies to be around 2�x∗

0.05. On the contrary, �x∗
0.05 of T ′ fields shows less agreement than

that of u′′′ fields. Figure 12(b) indicates that the scale of eddies in T ′ is generally larger due to the
influence of VLSMs and fluctuates more. They can roughly be characterized by lines with slopes of
3.9 and 5.6 for cases M08R17K and M15R20K and nonzero intersection with y∗

m = 0, respectively.
Although their increasing rate is slower than the expected value of around 7, it is acceptable to
present the linear increase of the characteristic scale. In a word, the examination of the attached
eddy scale versus the wall-normal distance demonstrates the capability of the present technique to
isolate signatures from attached eddies of a certain scale in both the velocity and temperature fields.

(a) (b)

FIG. 12. (a) Autocorrelation coefficient R�T ′
o,W �T ′

o,W
(�x∗) as a function of �x∗ at three selected wall-normal

positions y∗
m ≈ 100, 150, and 200 from cases M08R17K and M15R20K, which evaluates the scale of signatures

in the logarithmic region induced by attached eddies of a given scale; the black dashed line in (a) denotes
R�T ′

o,W �T ′
o,W

= 0.05. (b) �x∗
0.05 where R�T ′

o,W �T ′
o,W

(�x∗
0.05) ≈ 0.05 with respect to y∗

m. The black dashed line in
(b) has a slope of 3.9, and the black dotted line has a slope of 5.6.
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(a) (b)

FIG. 13. (a) Cross-correlation coefficient R�τ ′′′
w,L�u′′′

o,W
as a function of �x/h at three selected wall-normal

positions y∗
m ≈ 100, 150, and ym/h = 0.3 from case M15R20K, which evaluates the correlation between wall

shear stress and signatures in the logarithmic region induced by attached eddies of a given scale. (b) Normalized
R�τ ′′′

w,L�u′′′
o,W

by its maximum Rmax = max(R�τ ′′′
w,L�u′′′

o,W
) and wall-normal distance ym at the same positions from

the same case.

D. The Mach-number effect on the streamwise inclination angle

This section shows the Mach-number influence for both the mean inclination angle αm and that of
attached eddies at a given height αs using compressible turbulent channel flows up to Mab = 3, the
highest Mab we can achieve currently because of the unaffordable cost for higher Mach numbers.
The mean streamwise inclination angle αm for u′′′ and T ′ as a function of the wall-normal distance
y∗ is plotted, and αs for u′′′ and T ′ versus their height y∗

m is plotted as well. A comparison between
them is conducted to demonstrate the ensemble influence of multiscale attached eddies. To better
demonstrate the Mach-number effect, we present the average value of αs over the logarithmic region,
and a comparison is conducted with the incompressible flows [20], indicative of the Reynolds-
number effect.

The cross-correlations between the wall shear stress/heat flux fluctuation and signatures in the
logarithmic region induced by attached eddies of a given scale in both the streamwise velocity
and temperature fluctuations are shown in Figs. 13 and 14, respectively. These correlations are

(a) (b)

FIG. 14. (a) Cross-correlation coefficient R�q′
w,L�T ′

o,W
as a function of �x/h at three selected wall-normal

positions y∗
m ≈ 100, 150, and ym/h = 0.3 from case M15R20K. (b) Normalized R�q′

w,L�T ′
o,W

by its maximum
Rmax = max(R�q′

w,L�T ′
o,W

) and wall-normal distance ym at the same positions from the same case.
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(a) (b)

FIG. 15. Streamwise inclination angle αm of wall-attached eddies under the assemble effect of multiscale
eddies versus the wall-normal location y∗ where the inclination angle is evaluated in both the streamwise
velocity u′′′ and temperature T ′ using the DNS database in Table I. (a) Results from the streamwise velocity
fluctuation; (b) those from the temperature fluctuations.

computed from case M15R20K and employed to determine the streamwise inclination angle
through the streamwise offset corresponding to the peak correlation. A better collapse of normalized
cross-correlation coefficients is noticed in Figs. 13(b) and 14(b), especially for streamwise velocity
fluctuations. However, it disappears if one uses the traditional cross-correlation Rτ ′

wu′ , which is
not shown here for brevity. This observation indicates that the self-similar characteristics of the
energy-containing motions in the logarithmic region are captured by the current scale-separation
method.

In Fig. 15, αm is 10◦–15◦ for velocity fluctuations and 12◦–17◦ for temperature fluctuations in
all the four cases. The average inclination angle αm, which has been shown to be Reynolds-number
invariant [18], remains approximately comparable for different Mach numbers in this work. The
mean inclination angle of u′′′ we obtained here is close to the u-bearing structure angle in Pirozzoli
and Bernardini [24] in the outer layer, although the structure angle defined in [24] is not necessarily
the inclination angle of attached eddies. Instead, it can be considered as a characteristic angle
of u-bearing eddies centered at the reference wall distance y. However, the αm of T ′ is much
smaller than that in Pirozzoli and Bernardini [24] since the αm of T ′ is comparable to that of u′′′.
Pirozzoli and Bernardini [24] ascribe this difference to the more passive dynamics of the temperature
field than the velocity field. If one considers the consistent inclination angle of the velocity field
from two different methods, the more passive role of temperature is very likely to be one crucial
contributor to the discrepancy between the current one and that in the previous work [24]. It is
worth mentioning that the structure angle in Pirozzoli and Bernardini [24] shares the same ensemble
feature from multiscale eddies as αm. Obviously, it is too complicated to provide an explanation for
the comparison with αs explicitly due to the influence of multiple factors. We retain its comparison
with αm only.

In Fig. 16 the inclination angle of streamwise velocity u′′′ varies slightly over the logarithmic
region, while that of temperature T ′ fluctuates more near the outer edge of the logarithmic region.
The average value of αs may represent its features as shown in Fig. 17, where four extra results [20]
from incompressible channel flows with Reτ ranging from 550 to 4000 are superposed for reference.
The average values αs,m in u′′′ fields displayed in Fig. 17 are 24◦, 30◦, 23◦, 32◦, and 24◦ for M08R8K,
M08R17K, M15R9K, M15R20K, and M30R15K correspondingly for four cases. For compressible
wall-bounded turbulence, we follow Morkovin’s hypothesis [41] and use the semilocal friction
Reynolds number Re∗

τ to characterize the channel flows instead of Reτ adopted in the incompressible
regime. It is noticed that cases M08R8K, M15R9K, and M30R15K share a comparable Re∗

τ , and
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(a) (b)

FIG. 16. Streamwise inclination angle αs of wall-attached eddies at a given height vs their height y∗
m in

both the streamwise velocity u′′′ and temperature T ′ using the DNS database in Table I. (a) Results from the
streamwise velocity fluctuation; (b) those from the temperature fluctuations. The black dashed lines indicate
the average value of each case in the logarithmic region.

their average αs is close to each other as well. Similarly, the analogy between cases M08R17K
and M15R20K also exists. More importantly, these five αs,m obtained in compressible channel
flows are consistent with the asymptotic curve (the black dashed line in Fig. 17) predicted by αs,m

from incompressible channel flows [20] if one considers their semilocal friction Reynolds number

FIG. 17. Variation of average values αs,m of the streamwise inclination angle of wall-attached eddies at a
given scale with Reynolds numbers Re∗

τ (Reτ ) in both the streamwise velocity u′′′ and temperature T ′ using the
DNS database in Table I. The corresponding results from incompressible flows computed in Cheng et al. [20]
are also included for reference, which are denoted by black circles. From lower to higher average inclination
angles, these four black circles are from incompressible channel flows at Reτ ≈ 547 [46], 934 [47], 2003 [48],
and 4179 [49]. The black solid line is the theoretical prediction angle 45◦, and the black dashed line denotes
the asymptotic performance of αs,m computed from incompressible flows.
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Re∗
τ . This inspection further gauges the validity of Morkovin’s hypothesis [41]. Cheng et al. [20]

notice that αs of an incompressible channel flow at Reτ = 550 is around 27◦ and 31◦ for a case at
Reτ = 950. These two cases in Cheng et al. [20] are analogous to cases used in this work, and
the agreement between the incompressible and compressible cases at similar semilocal friction
Reynolds numbers can be clearly confirmed. Therefore, an increasing trend of αs with Reynolds
numbers as indicated by the black dashed line [20] is much more distinct than that of Mach numbers,
and αs can be considered a Mach-number independent parameter for the present considered DNS
database. This negligible Mach-number impact on αs plays an important role in the AEH [4], which
allows us to extend it to compressible flows directly once we obtain its semilocal friction Reynolds
number, and build a uniform model for cases with different Mach numbers. Figure 17 also plots αs,m

in temperature fluctuations T ′. The αs,m are 22◦, 27◦, 20◦, 31◦, and 22◦ for M08R8K, M08R17K,
M15R9K, M15R20K, and M30R15K correspondingly, which are comparable to those obtained in
u′′′ fields of both compressible and incompressible flows. Unsurprisingly, an analogous αs between
streamwise velocity and temperature fluctuations appears due to the validity of SRA [24,43,45].
Again, αs of temperature fluctuations T ′ depends less on the Mach number for the present DNS
database.

In summary, both αs and αm show independence on the Mach number for the five cases checked
in the current work. While αm is also Reynolds number invariant, αs approaches 45◦ as the Reynolds
number increases.

V. CONCLUDING REMARKS

This work uses DNS results of compressible channel flows over a broad range of Reynolds
and Mach numbers to investigate the streamwise inclination angle of wall-attached eddies of a
given scale. The SLSE is adopted to extract the signature of attached eddies in the near-wall
and logarithmic regions. Another streamwise angle αhl (13◦–20◦ following the feature of attached
eddies) defined based on the maximum weighting in the impulse response function shows in the
physical space that coherent structures extracted by SLSE are typically attached eddies. Then it
is followed by a subtraction between two adjacent wall-normal locations to isolate the signature
contributed by eddies of a given scale. Through computing the cross-correlation of signatures in the
near-wall and logarithmic regions, the streamwise inclination angle for attached eddies of a given
height is obtained. This streamwise inclination angle approaches 45◦ asymptotically as the Reynolds
number increases, while the Mach number has a minor influence on it, based on the available DNS
data. For those results in temperature-fluctuating fields, high statistical similarity to the streamwise
velocity fluctuations is observed, and the corresponding streamwise inclination angle also depends
more on the Reynolds numbers. This conclusion allows a uniform model to be applied to cases with
different Mach numbers and comparable Reynolds numbers.

The data that support the findings of this study are available on request from the corresponding
author.
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FIG. 18. Mean streamwise velocity profiles transformed by the Trettel-Larsson transformation [50] and
the total-stress-based transformation [51]. The black solid line denotes the reference, which is taken from the
incompressible channel flow with Reτ ≈ 5200 by [52].

APPENDIX A: VALIDATION OF THE DNS AT Mab = 3

The accuracy of the DNS case at Mab = 3 is validated through the mean streamwise velocity
profile. A velocity transformation is required to account for the compressibility effect to recover the
incompressible law of the wall. This work utilizes the Trettel-Larsson [50] and total-stress-based
[51] transformations which perform well in compressible channel flows. The transformed velocity
profiles shown in Fig. 18 both have a satisfactory collapse to the well-known law of the wall.

APPENDIX B: SLSE WITH UNCORRELATED INPUT NOISES

This work uses fluctuation fields as the input signal of SLSE. However, these inputs all have
contributions not from attached eddies, which are recognized as noises in this work [35]. The
near-wall signals consist of both the footprint and universe signals, and the outer-region signals
contain the attached and detached portions. In this Appendix we discuss the influence of these
uncorrelated noises on SLSE using an example the near-wall velocity signal as the input. Neglecting
the modulation process of IOIM [22], the near-wall signal can be expressed by u′′′

i = u′′′
i, f p + u′′′

i,un,
where u′′′

i, f p is the footprint of attached eddies, u′′′
i,un is the universal signal, and u′′′

i,un is assumed to be
uncorrelated with u′′′

i, f p and u′′′
o .

In the ideal situation, the estimated outer signal U ′
o,W (λx ) is given by H ′

W (λx )Ui, f p(λx ), where
H ′

W (λx ) = 〈Ui, f p(λx )Uo(λx )〉/〈|Ui, f p(λx )|2〉 is the exact transfer kernel for the interaction process
between the inner and outer region. However, the practical SLSE process conducts it by Uo,W (λx ) =
HW (λx )[Ui, f p(λx ) + Ui,un(λx )], where Ui, f p(λx ) = F (u′′′

i, f p(x)) and Ui,un(λx ) = F (u′′′
i,un(x)). One can

immediately derive the relation between the exact transfer kernel H ′
W (λx ) and the practical transfer

kernel HW (λx ):

HW (λx ) = 〈Ui(λx )Uo(λx )〉
|Ui(λx )|2 = 〈Ui, f p(λx )Uo(λx )〉

|Ui, f p(λx )|2 + |Ui,un(λx )|2 = H ′
W (λx )

1 + c(λx )
, (B1)
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where c(λx ) = |Ui,un(λx )|2/|Ui, f p(λx )|2 is the energy ratio between the universal signal and the
footprint at each wavelength. Thus, the practical kernel is an optimum approximation of the exact
one.

With the relation between H ′
W (λx ) and HW (λx ), Uo,W (λx ) can be expressed by

Uo,W (λx ) = H ′
W (λx )

1 + c(λx )
[Ui, f p(λx ) + Ui,un(λx )]. (B2)

The energy contained in each wavelength is also of interest. As for the ideal case, it is easy to obtain

|U ′
o,W (λx )|2 = |H ′

W (λx )|2|Ui, f p(λx )|2. (B3)

Those of Uo,W (λx ) can be manipulated into a function of |U ′
o,W (λx )|2. The derivation goes as follows:

|Uo,W (λx )|2 = |HW (λx )|2|Ui, f p(λx ) + Ui,un(λx )|2

= |H ′
W (λx )|2

[1 + c(λx )]2
[|Ui, f p(λx )|2 + |Ui,un(λx )|2]

= |H ′
W (λx )|2

[1 + c(λx )]2
[1 + c(λx )]|Ui, f p(λx )|2

= |H ′
W (λx )|2

1 + c(λx )
|Ui, f p(λx )|2

= |U ′
o,W (λx )|2

1 + c(λx )
. (B4)

These relations between H ′
W (λx ) and HW (λx ) and between |Uo,W (λx )|2 and |U ′

o,W (λx )|2 are powerful
tools to explain observations in this paper, which will be frequently accessed by the main text. The
authors also prefer to point out that the current framework is not able to exactly identify c(λx ) and
give accurate predictions.
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