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Unbounded two-dimensional wall turbulence induced by inverse cascade
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While seeking the ultimate statistical invariance of turbulence, classical boundary layer
theory is unable to distinguish between the averaged states of wall flows with two-
dimensional (2D) and three-dimensional (3D) fluctuations. Here we demonstrate glaring
differences between 2D and 3D channel flows and present theoretical explanations for the
differences in their Reynolds numbers’ (Reτ ) asymptotic behaviors. In particular, due to
the peculiar inverse cascade, large-scale wavy structures (LSWSs) are developed in 2D
flows, which inject a high-energy flux toward the wall and cause extreme wall dissipation.
The latter follows a distinct Re1/3

τ scaling within the range covered by our direct numerical
simulation (130 < Reτ < 8100). The same trend is also observed for the root mean square
of the pressure and velocity fluctuations (as well as for the bulk velocity). Rationale for
the scaling is further given through an LSWS-induced dissipative timescale (provided with
the 2D friction law), which is unlike the viscous timescale in 3D flows due to the absence
of LSWSs. As a counterpart to the classical boundary layer of bounded 3D fluctuations
[Chen and Sreenivasan, J. Fluid Mech. 908, R3 (2021); ibid. 933, A20 (2022)], the results
here reveal an unprecedented asymptotic state of wall flows in which the inverse cascade
induces unbounded 2D fluctuations.

DOI: 10.1103/PhysRevFluids.9.034609

I. INTRODUCTION

Turbulent flows past solid boundaries experience strong shear and dissipate more energy at the
wall than farther away [1]. Such flows are ubiquitous in nature and industrial applications, such
as atmospheric boundary layers, oil passing through pipelines, and flows passing airborne. As
they involve massive turbulence eddies transferring energy not only in spatial directions but also
across length scales, characterizing turbulent flows is rather challenging [2,3]. Over the past century,
seeking the statistical invariance of flows toward asymptotically high Reynolds numbers (Reτ ) has
been one of the major issues in turbulence research [4,5]. As a milestone, in 1904 Prandtl proposed
the boundary layer concept in which the viscous effect dominates the near-wall physics [4]. This
insight gave birth to the celebrated law of the wall yielding Reynolds-number-invariant mean ve-
locity profiles, based on which various turbulent models have been developed to predict turbulence
fluctuations [5,6]. However, with the better resolved data accumulated in the past decades, notable
Reτ dependence has been observed for a series of fluctuations, calling the law of the wall into
question [5–7]. On the other hand, as opposed to the well-known scenario of a forward cascade,
the inverse cascade was realized in the 1960s [8,9] for two-dimensional (2D) turbulence, in which
energy is transferred from small to large scales [10,11]. Later studies verified the inverse cascade in
both numerical [12–14] and experimental [15–17] tests, mainly focusing on isotropic homogeneous
turbulence and neglecting boundaries.
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As energy flux across scales has not generally been taken into account, the classical boundary
layer theory has been unable to distinguish between wall flows with 2D and three-dimensional (3D)
fluctuations. Pioneered by Kellay and Goldburg [18], gravity-driven soap-film experiments have
been designed to investigate boundary effects in quasi-2D flows [19]. Later works [20–22] have
revealed the missing link between energy flux and drag force, based on which a spectral theory has
been developed enabling separate predictions of friction drag in 2D and 3D wall flows. Moreover,
along with continuing interest in the mean velocity in 2D channels (2DCH) [23–25], there have been
acute examinations of vorticity profiles [26] for a physical explanation of 2D friction law (explained
in more detail later). However, little attention has been paid to fluctuations, which are the subject of
the current article.

Recalling the Reτ dependence of fluctuations in a 3D channel (and for pipe and flat-plate
boundary layer flows), we have developed a defect law as [27,28]

�∞ − � = α�Re−1/4
τ . (1)

In Eq. (1), � represents wall-unit-scaled quantities including the wall values of dissipation rate,
diffusion, root mean square (RMS) of pressure, and variances of wall shear stress and wall vorticity,
etc. α� is the proportionality coefficient and Reτ = uτ δ/ν is the friction Reynolds number, defined
by the friction velocity uτ , the half-channel height δ, and the viscosity ν. According to Eq. (1), a
bounded state of near-wall turbulence is expected when Reτ → ∞, i.e., � ≈ �∞, and hence the
law of the wall is recovered [7].

Here we report that in 2DCH the fluctuations introduced above all follow a different power-law
scaling,

� = β�Re1/3
τ , (2)

where β� is the proportionality coefficient. In contrast to Eq. (1), an unbounded growth of � is
implied by Eq. (2) with increasing Reτ . Accordingly, the current article not only establishes scaling
laws for 2D fluctuations (hence prompting the verification in soap-film experiments), but also sheds
light on the debate between the defect law [27,28] and the logarithmic law [29–32] in 3D wall flows.

II. RESULTS AND ANALYSIS

Via direct numerical simulation (DNS) of the 2D Navier-Stokes equations using our own finite-
differential code [33], we present 16 cases of well-resolved 2DCH in the domain Lx×Ly = 8δ×2δ

for Reτ from 130 to 8100, and three long channel cases with Lx×Ly = 24δ×2δ for double confir-
mation of our findings. When converted to bulk Reynolds number Re = Ubδ/ν with Ub the bulk
velocity, our flows span almost three decades, 3×103 < Re < 106, with the highest Re about five
times larger than ever treated before [26] [Fig. 1(a)]. Experimental (EXP) data for quasi-2D soap
films [20,21] are included for comparison. Also, the current data sets provide a benchmark for the
comparison with 3D channels (3DCH) by Ref. [34] for Reτ from 180 to 5200.

The details of our DNS settings are described in Appendix A. Hereafter, we use the notation 〈·〉
to indicate the mean value of a quantity, for which time-streamwise and flip-over averaging with
respect to the centerline are performed (along with spanwise averaging for 3D flows). As such, the
moderate asymmetry near the centerline noted in Ref. [25] is ignored as we focus on the wall or
maximum values far from the center. Moreover, the streamwise (x) and wall-normal (y) fluctuation
velocities are represented as u and v, respectively, with U indicating the streamwise mean velocity.
The superscript “+” indicates normalization by viscous or wall units of uτ and �τ = ν/uτ , and the
superscript prime indicates the RMS.

As shown in Fig. 1(b), wall values of the turbulent dissipation rate ε+
w and the RMS of pressure

fluctuation p′+
w in 2DCH follow the same Re1/3

τ scaling as in Eq. (2). The displayed Reτ ranges from
about 102 to 104, covering both the stable-traveling-wave regime and the strongly fluctuating regime
as reported in Ref. [26]. The latter work demarcates the two regimes by a critical Reτ ≈ 530. This
transition is also discerned in our data of ε+

w through a modest hump at Reτ ≈ 600 [beyond which
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FIG. 1. (a) Reτ vs Re in 2DCH. The solid line represents Re3/4 resulting from the 2D friction law [20,26],
as explained in the text. Inset: The same plot for 3DCH, where the solid line indicates Re0.88 (see Ref. [3]).
(b) Reτ variations for ε+

w (squares) and p′+
w (circles), where the dashed lines represent Eq. (2). Inset: ε+

w (green)
and p′+

w (red) in 3DCH with the solid lines representing Eq. (1). In all the plots, crosses indicate quasi-2D
experiments [20,21], and the others are DNS. The 3DCH data are from Ref. [34], while our 2DCH data are
marked as solid symbols (for Lx = 8δ) and open symbols with bars (for Lx = 24δ).

ε+
w reverts to Eq. (2) again]. However, p′+

w is rather smooth and closely adheres to Eq. (2) for the
whole Reτ range. Note that due to the nonslip wall condition, εw ≡ 〈ν|∇u|2|〉|y=0 = 〈ν(∂yu)2〉|y=0,
and hence ε+

w = (τ ′+
w )2 = (�′+

w )2, where τ ′
w is the RMS of the wall shear stress and �′

w is the RMS
of the wall vorticity.

On the other hand [Fig. 1(b) inset], the streamwise dissipation ε+
w and pressure RMS p′+

w in
3DCH are about ten times smaller at a similar Reτ , and following Eq. (1), they saturate to bounded
values of ε+

w,∞ = 1/4 and p′+
w,∞ = 4.4, respectively. This is very surprising because it is harder to

generate steady turbulence in 2DCH, and hence less turbulence is expected, but the data show just
the opposite. Understanding what causes such a glaring difference between 2D and 3D flows may
substantially widen our fundamental perspective on wall turbulence.

In fact, prominent large-scale wavy structures (LSWSs) are developed occupying almost the
entire wall-normal region of the 2D channel [Fig. 2(a)], as was also observed in Ref. [26]. The
LSWSs, corresponding to the streamwise wavelength of about 4δ (or the wave number kxδ = π/2),
are further found to be generated by pairs of large-scale antiswirling vortices (the “engine” of the
LSWSs), sitting on the bottom and top walls [Fig. 2(b)], entraining high-momentum fluids from the
center and injecting them toward the wall. Under such empowered injections, extreme dissipation

034609-3



XI CHEN, PENG-YU DUAN, AND JIANCHAO HE

FIG. 2. Snapshots of (a) the streamwise velocity, (b) the voricity normalized by Ub and δ, and (c) the tur-
bulent dissipation rate normalized by viscous units. Abscissas indicate the streamwise flow domain; ordinates
left indicate the wall-normal ranges, and right are the color bars. Note that in (c), the left ordinate extends from
the bottom wall to the centerline via

√
y/δ for a clearer view near the wall. Data are taken from our DNS at

Reτ ≈ 2000.

occurs in the vicinity of the wall [Fig. 2(c)] due to the intensive strain rate. In contrast, due to
the absence of antivortex pairs, outer structures in 3DCH are not as energetic as the LSWSs in
penetrating the near-wall region (see Appendix D and the Supplemental Material for movies [35]),
though moderate modulations exist [36]. Therefore, the inner and outer flows have less interplay in
3DCH than in 2DCH, so viscous units are the exclusive metrics for near-wall physics under which
growing 3D fluctuations are asymptotically invariant as per Eq. (1).

Moreover, in 3DCH, there is a celebrated von Kármán log-law region where the viscous scale
separates from the outer flow scale [37]. However, due to the LSWSs, the inner and outer dynamics
are highly coupled in 2DCH, so there is no basis for scale separation. The latter analysis is entirely
consistent with Fig. 3(a) in that there is barely a log law in 2DCH. Even if a fit of U +(y+) is

FIG. 3. (a) Wall-normal dependence of the streamwise mean velocity normalized by viscous units. The
nominal logarithmic slope of κ = 0.22 is marked by a dashed line, but the intercept changes dramatically with
Reτ (see the inset for a zoomed-in view). Solid lines are our 2DCH DNS data for Reτ from 330 to 8100.
(b) Spectra of Euu varying with the wave number kx (normalized by the half-channel height δ) in 2DCH for
Reτ from 1720 to 8100. Dashed lines indicate k−5/3

x and k−5
x spectra, both of which were observed in quasi-2D

experiments in Ref. [17].
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FIG. 4. (a) Momentum budget of Eq. (3): solid lines for 3D and dashed lines for 2D channels. (b) Kinetic
energy budget of Eq. (4): left for 2D and right for 3D channels. Lines are DNS data at similar Reynolds numbers
Reτ ≈ 2000, with colors representing different terms marked in the legends.

performed by a logarithmic function with the seemingly like slope κ = 0.22, the intercept changes
dramatically with different Reτ values [Fig. 3(a) inset], hence breaking the log law. A further
comparison between our 2DCH and soap-film experiments [24] is given in Appendix F, where
the mean velocity data of the quasi-2D case lies between the 2D and 3D channels. This observation
marks a vital difference between 2DCH and 3DCH, a significant point that we will come back to
later.

In a way reminiscent of 2D homogeneous isotropic turbulence, as there is no vortex stretching,
energy can be transferred from small to large scales and leads to energy condensation consisting
of large-scale vortex pairs [16,38–40]. Such an inverse cascade is indicated by the k−5/3

x velocity
spectrum [41], which is indeed observed from our centerline velocity shown in Fig. 3(b). Therefore,
the data suggest the 2D scenario that an inverse cascade [Fig. 3(b)] induces antivortex pairs
[Fig. 2(b)], which further lead to LSWSs [Fig. 2(a)] that completely alter the classical boundary
layer.

We also note the forward enstrophy cascade [25,42,43] developed in 2DCH, as shown by
the k−5

x spectrum at smaller scales for kxδ > 102 in Fig. 3(b). Such a two-power-law spectrum
has been identified in many previous works, e.g., in quasi-2D experiments of thin fluid layers
driven by an electromagnetic force [16,17,39]. Moreover, the steeper slope of the −5 spectrum
compared with the derived −3 spectrum [41] might be due to the presence of viscous dissipation
and large-scale long-lived vortices, as was also speculated in Ref. [17]. In fact, whether there
appears a single cascade or the coexistence of two cascades is determined by many factors including
how the turbulence is triggered and sustained, as discussed in previous experiments [21,24,40,43]
and simulations [13,14,22]. Here, for channel flows, the pressure gradient injects energy while
dissipation damps out energy by most at walls. Competition between the two might cause the
coexistence of two cascades. Even so, we stress the effect of the inverse energy cascade, as both the
antivortex pairs and LSWSs focused on here are at large scales, far from the small-scale enstrophy
cascade regime in Fig. 3(b).

The energy transfer in the wall-normal direction is now further examined. At first, the mean
momentum balance in 2DCH [23] is the same as in 3DCH [Fig. 4(a)],

S+ + W + = 1 − y+/Reτ , (3)

where S+ = ∂U +/∂y+ is the mean shear and W + = −〈uv〉+ is the Reynolds stress. Since
S++W + ≈ 1 near the wall, crossing S+ = W + (Fig. 4(a)) yields the maximum production P+

∞ =
1/4, which is valid for both 2D and 3D channels. However, vital differences are observed for 〈uu〉
budget (Fig. 4(b)),

P+ + D+ + N+ = ε+, (4)
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where in addition to P+ and ε+, D+ is diffusion and N+ is the nonlinear effect of pressure strain
and turbulent convection, for which explicit expressions are given in Appendix B.

Specifically, while there is a common balance between dissipation and diffusion toward the wall,
their magnitudes are much larger in 2DCH than in 3DCH. As shown on the right-hand side of
Fig. 4(b), there is a slight imbalance between the wall dissipation and maximum production in
3DCH, and with increasing Reτ , their tendency to eventually balance each other inspired us to
postulate Eq. (1) [27,28]. In contrast, the left-hand side of Fig. 4(b) shows that in 2DCH, production
is no longer the dominant energy supplier, as N+ overtakes it by transferring a huge amount of
energy toward the wall that is eventually damped out by dissipation. This is entirely in line with the
large-scale vortex pairs in Fig. 2(b), where swirls and entrainments can induce dramatic pressure
strain and turbulent convection, both of which contribute to N+ substantially. Note that the lack
of vortex pairs in 3DCH (see Supplemental Material, Movie (b) [35]) also explains the relatively
mild variation of N+ on the right-hand side of Fig. 4(b), because of the gentle pressure strain and
convection.

III. THEORY FOR THE SCALING

The rationale behind the observed Re1/3
τ scaling in 2DCH has now been developed. Starting with

the wall dissipation εw, it basically corresponds to the energy scaled by u2
τ being dissipated over

a certain timescale tw (to be determined). If in viscous units, tw ∼ �τ /uτ , then εw ∼ u4
τ /ν, which

means the bounded ε+
w ∼ O(1), as indicated by Eq. (1) for 3DCH. However, in 2DCH, as the high

momentum of the LSWS penetrates toward the wall, the true dissipative time should be smaller than
the viscous time �τ /uτ . We thus estimate tw ∼ �τ /Ub [44], which gives rise to εw ∼ u2

τ /(�τ /Ub), and
hence

ε+
w ∼ Ub/uτ . (5)

As this stage, recall the 2D friction law f ≡ u2
τ /U 2

b ∼ Re−1/2 (see, e.g., Ref. [20]), which,
according to the definitions Reτ = uτ δ/ν and Re = Ubδ/ν, is equivalent to

Reτ ∼ Re3/4, (6)

Ub/uτ ∼ Re1/3
τ . (7)

Combining Eq. (5) and Eq. (7), we obtain Eq. (2) for ε+
w , and hence the wall diffusion D+

w (= ε+
w )

and pressure p′+
w .

Note that the above 2D friction law was first obtained from spectrum consideration [13,20,21],
and later derived again by estimating the mean pressure gradient via νeUb/δ

2, where νe ∼ √
νUbδ is

the effective eddy viscosity [26]. In Fig. 1(a) Eq. (6) is well justified by our data. Also, the agreement
between the data of Ref. [26] and ours validates the accuracy of our simulation. In Fig. 5 we verify
that Eq. (7) once again shows good agreement.

As a comment, when invoking the log law Ub/uτ ∝ ln Reτ instead of Eq. (7), from Eq. (5) one
obtains

� = A� ln Reτ + B�, (8)

where � indicates ε+
w (and other aforementioned quantities) with A� and B� coefficients. However,

as shown and explained in Fig. 3(a), the log law is nullified by LSWS, resulting in the failure
of Eq. (8) in 2DCH. It is worth noting that in the context of the competition between Eq. (1)
and Eq. (8) for 3D wall flows [29–32], the newly obtained Eq. (2) is indeed valuable. The latter
equation implies that the unbounded growth of fluctuations in 3DCH is unlikely due to the absence
of vortex condensation.

Finally, we draw attention to the RMS peak of the streamwise velocity, i.e., u′+
p . Unlike that

located near the wall in 3DCH, the peak in 2DCH is at about y/δ ≈ 0.25 (Appendix C). This
indicates that the peak is essentially an outer flow quantity, and u′+

p should scale as U +
b and follow
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FIG. 5. Bulk velocity U +
b and peak of the streamwise velocity fluctuation u′+

p follow the same Re1/3
τ scaling

(dashed lines) in 2DCH. Inset: u′+
p in 3DCH with the solid line resulting from Eq. (1). Data origins are the same

as in Fig. 1. Note the arrow in the figure and the shaded region in the inset, both of which mark data deviation
for Reτ � 300.

the same Re1/3
τ scaling in Eq. (7), as is indeed verified by Fig. 5. In contrast, the inset shows u′+

p in
3DCH, a bending trend following (the square root of) Eq. (1) suggesting a saturated u′+

p ≈ 3.4 as
Reτ → ∞ [27]. Hence, different asymptotic states can be drawn for u′+

p as well. Incidentally, we
note the data deviation of u′+

p for Reτ � 300, which might be due to the transition history, e.g., the
stable traveling wave effect in 2DCH. Moreover, for quasi-2D soap-film experiments, whether u′

p
scales as Ub needs future verification when data become available.

IV. SUMMARY

In this work we have demonstrated glaring differences between 2D and 3D channel flows and
explained their different asymptotic behaviors. These results provide a counterpart for the classical
boundary layer perspective, that is, unbounded turbulent fluctuations in 2D wall flows induced by
inverse cascade.
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APPENDIX A: NUMERICAL SETUP

We solve the incompressible 2D Navier–Stokes equations (with the density ρ absorbed into the
pressure p),

∂tui + ∂ juiu j = −∂ip + ν∂ j∂ jui, (A1)

∂iui = 0, (A2)

using our own finite difference code which has been well validated for 3D channel (3DCH)
flows [33]. Here xi with indices i = 1, 2 represents the streamwise x and wall-normal y direc-
tions, respectively, and u, v denote the instantaneous velocities in the respective directions (with
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TABLE I. Parameters of the simulations. Nx is the number of grid cells in the streamwise direction and
Ny is that in the wall-normal direction. �x+ and �y+ represent the grid spacings normalized by viscous units.
T is the time interval for averaging, and Ub is the mean velocity. The first 16 cases correspond to the regular
channel domain with Lx = 8δ, and the last three cases correspond to the long channel domain with Lx = 24δ.
For all cases, Ly = 2δ.

Reτ Nx×Ny �x+ �y+
min − �y+

max TUb/δ

3000 127 1024×320 0.99 0.05–1.58 10 000
4000 157 1024×320 1.23 0.07–1.95 10 000
5000 187 1024×320 1.46 0.08–2.32 10 000
7000 248 2048×512 0.97 0.05–2.03 10 000

10 000 331 2048×512 1.29 0.07–2.70 10 000
15 000 419 2048×640 1.64 0.06–2.76 10 000
20 000 543 2048×640 2.12 0.08–3.58 10 000
30 000 662 2048×1024 2.59 0.06–2.70 15 000
50 000 952 2048×1024 3.72 0.09–3.88 15 000
70 000 1266 4096×2048 2.47 0.08–2.46 4000

100 000 1723 4096×2048 3.37 0.11–3.35 4000
150 000 2269 4096×2048 4.43 0.14–4.41 4000
200 000 2841 4096×2048 5.55 0.18–5.52 4000
300 000 3654 4096×2560 7.14 0.14–6.03 4000
500 000 5004 6144×3072 6.52 0.21–6.48 4000

1 000 000 8062 6144×3072 10.50 0.34–10.44 4000
3000 121 3072×320 0.95 0.05–1.51 5000

10 000 328 4096×512 1.92 0.07–2.67 5000
50 000 963 4096×1024 5.64 0.09–3.93 5000

a double index indicating summation). The simulation is in the domain 0 < y < Ly = 2δ and
0 < x < Lx = 8δ for regular cases and 0 < x < Lx = 24δ for long cases, with periodic boundary
conditions in the x direction and no-slip boundary conditions at both the top and bottom walls,
where δ is the half-channel height. A second-order centered finite difference method with staggered
grids is used for spatial discretization, and the second-order Runge-Kutta scheme is employed for
time advancement. Fast Fourier transforms are employed to solve the pressure Poisson equation.
The method used to sustain turbulence is based on a constant flow rate, while details on the
parallelization and discretization are given in Ref. [33].

A summary of the simulations is shown in Table I. We performed 16 regular cases and three
long cases with bulk Reynolds numbers (Re) ranging from 3×103 to 106, with the maximum Re
being nearly five times larger than that reported in Ref. [26]. The corresponding friction Reynolds
numbers (Reτ ) are from about 130 to 8100. Note that to align with 3D wall turbulence, we adopt
the definitions of Re = Ubδ/ν and Reτ = uτ δ/ν. These could be analytically converted into ReR =
3Re/2 and ReA,R = 2

√
2Reτ , where ReR and ReA,R are the bulk and friction Reynolds numbers

defined in Ref. [26], respectively.
The streamwise direction is discretized using a uniform grid, while the wall-normal direction

employs a stretched grid for higher grid resolution near the walls. The grid spacing is shown in
Table I. Due to the dimensionality reduction, simulations of 2D channels (2DCH) require a longer
averaging time to obtain reliable data, as was also discussed in Refs. [25,26]. Our averaging time
reaches 4000δ/Ub for all cases, which is sufficiently long for data convergence. For the initial
velocity fields, laminar Poiseuille solutions U0(y) = 6Ub(Ly − y)y/L2

y with random perturbations
are used for Reτ � 543, while for higher Reτ , velocity fields at the closest lower Reynolds number
are used to reduce simulation costs.
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APPENDIX B: MOMENTUM BALANCE AND BUDGET EQUATION

We now present the derivation of the mean momentum balance equation in 2D pressure-driven
channels. Averaging the streamwise momentum equation [i = 1 for Eq. (A1)] over time and
streamwise ensembles, with an additional flip-over average with respect to the centerline,

〈φ〉(y) = 1

T Lx

∫ T

0

∫ Lx

0

φ(y) + φ(Ly − y)

2
dt dx, (B1)

yields

0 = ν
∂2U

∂y2
−

〈
∂p

∂x

〉
− ∂〈uv〉

∂y
. (B2)

Here U is the mean streamwise velocity, and u, v is the fluctuating velocity (hereafter, lowercase
letters represent fluctuations, capital letters represent average quantities, and the superscript prime
indicates the RMS, consistent with the main text). Integrating Eq. (B2) for y from 0 to δ, we obtain
the balance of the mean pressure gradient and wall shear stress,

−
〈
∂p

∂x

〉
= u2

τ

δ
, (B3)

where uτ = √
τw/ρ is the friction velocity and τw = μ∂U/∂y|y=0 is the mean wall shear stress.

Integrating Eq. (B2) again from 0 to y yields the momentum balance equation [23],

ν
∂U

∂y
− 〈uv〉 = u2

τ

(
1 − y

δ

)
, (B4)

where Eq. (B3) is substituted in. Normalizing the above equation using uτ and ν/uτ , we obtain
Eq. (3), where S+ = ∂U +/∂y+ is the mean shear and W + = −〈uv〉+ is the Reynolds shear stress.

The budget equation of 〈uu〉 in a steady 2D channel is presented here following Ref. [3]:

−〈uv〉∂U

∂y︸ ︷︷ ︸
P

+ν

2

∂2〈uu〉
∂y2︸ ︷︷ ︸

D

−1

2

∂〈uuv〉
∂y

+
〈

p
∂u

∂x

〉
︸ ︷︷ ︸

N

= ν

〈
∂u

∂xk

∂u

∂xk

〉
︸ ︷︷ ︸

ε

. (B5)

FIG. 6. Streamwise velocity fluctuations in a 2D channel varying with (a) y+ and (b) y/δ for Reτ increasing
from 130 to 8000 (from bottom to top). The dashed line in (b) represents y/δ = 0.25. (c) Streamwise velocity
fluctuations varying with y+ in the 3D channels at Reτ = 550, 1000, 2000, and 5200 (from bottom to top), with
the dashed line representing y+ = 15. The 3D channel data are from Ref. [34].
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FIG. 7. Snapshots at the middle span (z = Lz/2) of 3DCH at Reτ = 2000: (a) streamwise velocity; (b) vor-
ticity; (c) turbulent dissipation rate. Abscissas are the same as in Fig. 2. Data are from our DNS of 3DCH [33].

Here P represents production, D the viscous diffusion, ε the dissipation, and N the nonlinear effect
containing the pressure strain and turbulent transport. Normalizing the above equation by wall units
yields Eq. (4).

Note that to compare with 3D channel data at a similar Reτ ≈ 2000, the case of the 2D channel
in Fig. 4 actually corresponds to the case of Reτ = 1723 in Table 1. The two Reτ differ by about
10%, not affecting the conclusion drawn from the budget analysis.

APPENDIX C: STREAMWISE VELOCITY FLUCTUATIONS

As shown in Fig. 6, the wall-normal variations of the streamwise velocity fluctuations in the 2D
and 3D channels are significantly different. For the 2D channel, the peak location varies according
to y+ ≈ 0.25Reτ [Fig. 6(a)], which corresponds to y/δ ≈ 0.25 [the dashed line in Fig. 6(b)]. In
contrast, the peak location in the 3D cases is fixed at about y+ = 15 [the dashed line in Fig. 6(c)].
Therefore, the peak is an outer flow quantity in the 2D channel, as opposed to a near-wall quantity
in the 3D channel [27,28].

FIG. 8. The same plots as in Fig. 7 after spanwise averaging of the 3DCH at Reτ = 2000.
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FIG. 9. Comparison of the streamwise mean velocity profiles between regular channels (lines) and long
channels (circles) at the three Re values listed in Table 1.

APPENDIX D: DESCRIPTION OF MOVIES

Three movies labeled (a), (b), and (c) are included in the Supplemental Material [35]. In each
movie, the three quantities displayed from top to bottom are the streamwise velocity, spanwise
vorticity, and turbulent dissipation rate, respectively. Movie (a) shows the instantaneous fields of
the 2DCH at Reτ = 1723, while Movie (b) shows the cross-sectional (x − y) slice of the fields in
the 3DCH at Reτ = 2000. Movie (c) shows the 3DCH result again after the spanwise averaging of
Movie (b). Note that to generate 3DCH movies, we carried out another round of DNS at Reτ = 2000
using our own code, which was verified through comparison with the results of Ref. [34] in Ref. [33].

As explained in the main text, prominent large-scale wavy structures (LSWSs) are developed in
the 2DCH, which are induced by antivortex pairs with extreme dissipation rates at the walls [see
Movie (a) for a dynamic perspective]. As a comparison, Movie (b) and Fig. 7 show no such large-
scale velocity or vortical structures dominating the 3DCH flow. Instead, small-scale structures are
more developed and widely spread in 3DCH, which is unsurprising because of the vortex stretching
and tilting effects. Moreover, Movie (c) and Fig. 8 show that after spanwise averaging, all three
quantities in the 3DCH are layer-like distributed, in sharp contrast to the strong mixing seen for
the 2DCH. This comparison clearly demonstrates that the inner-outer interactions are much less
intensive in 3DCH than in 2DCH.

APPENDIX E: FLOWS IN LONG CHANNELS

In the main text, Fig. 1 and Fig. 5 show that the mean friction, the wall values of turbulent
dissipation rate and pressure RMS, the bulk velocity, and the peak values of the streamwise velocity
fluctuations are almost identical in regular and long channels. Here Fig. 9 further shows that the

FIG. 10. The same plots as in Fig. 7 but for long 2DCH at Reτ = 963.
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FIG. 11. Mean velocity profiles in 3D (solid line), quasi-2D (circle), and 2D (dash-dotted line) channels.
The data origins are marked in the legend. In particular, the mean velocity data of the quasi-2D soap-film
experiments are from Fig. 2 of Ref. [24] at Re = 24 500 (the inverse energy cascade case).

mean velocity profiles are also identical between regular and long channels. Figure 10 also shows
snapshots of the velocity, vorticity, and dissipation rate of the long channel at Reτ = 963. Again, the
large-scale wavy structures are observed with wavelengths around 4.8δ, similar to what we found
in Fig. 2.

APPENDIX F: COMPARISON WITH SOAP-FILM EXPERIMENTS

While both 2DCH and quasi-2D channels exhibit the 2D friction law, their mean velocity profiles
are rather different. Figure 11 shows the mean velocity profiles in 3DCH, quasi-2D channel, and
2DCH. Profiles are displayed in outer units (i.e., U/Uc vs y/δ where Uc is the centerline velocity)
so that the uncertainty of uτ measurement is not an issue here. It is remarkable that in the bulk
region (y/δ > 0.25), the data of quasi-2D closely follow the trend of 3DCH, while near the wall,
the quasi-2D result drops more slowly than the 3DCH result, with a trend more akin to the 2DCH
case. It would be interesting to check whether the quasi-2D data are closer to the 2DCH case when
the soap-film thickness is reduced. If so, the differences between 2DCH and soap-film experiments
would be due to finite flow thickness in the latter case (although still a few microns as reported
in [19]). Note that other issues, such as air drag and streamwise inhomogeneity, could also cause
the differences between quasi-2D and 2D flows.
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