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We develop a neural-network interpolation (NNI) to improve the prediction of preferen-
tial concentration in simulations of particle-laden turbulence. The NNI uses the particle
position and velocity on neighboring grid points to estimate the fluid velocity at the
particle position via fully connected neural networks. By avoiding the requirement for
superresolution of the entire field and additional interpolations, the NNI offers computa-
tional efficiency and simplifies implementation. To evaluate the effectiveness of NNI and
compare it with other interpolation methods, we conduct simulations on two-dimensional
homogeneous isotropic turbulence subjected to high-wave-number forcing. This specific
turbulent flow has a long inertial range and rich small-scale structures, posing a challenge
for velocity interpolations and subsequently accurate prediction of preferential concentra-
tion. We compare the results on flow fields, energy spectra, and preferential concentration
against the reference data obtained from direct numerical simulations at a range of the
Stokes number from 0.1 to 5.0. The comparison demonstrates that the NNI can recover the
effect of small-scale motion on particle distribution, so it improves the prediction accuracy
of the preferential concentration from a priori test results of the large-eddy simulation on
coarse grids.
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I. INTRODUCTION

Particle-laden turbulence is commonly observed in both natural phenomena and industrial pro-
cesses [1,2], with examples including cloud droplets, sandstorms, liquid fuel combustion, aerosols,
and fluidized beds. The preferential concentration of particles, i.e., particles accumulate in low-
vorticity regions due to their inertial bias [3–7], is a critical and characteristic feature of the
particle-laden turbulence.

Accurate simulations of the preferential concentration depend on the proper modeling of the
interactions between particles and the turbulent flow field. One essential modeling quantity is the
flow velocity u(xp) at the particle position xp. Since the velocity is solved on a computational grid,
an interpolation is necessary to obtain u(xp) because the particles are not always located at grid
points,
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The direct numerical simulation (DNS) that resolves all flow scales is a powerful tool to simulate
particle-laden turbulence. It has been extensively used to investigate the preferential concentra-
tion in two-dimensional (2D) [8–12] and three-dimensional (3D) [13–23] homogeneous isotropic
turbulence (HIT). The high-resolution (HR) velocity field in the DNS allows for the accurate
determination of u(xp). In the Eulerian-Lagrangian approach, classical interpolation methods based
on neighboring grid points of xp have been commonly used [8,10,23]. However, DNS suffers by its
demanding computational cost.

In recent decades, large-eddy simulation (LES) has been employed in the investigation of
particle-laden turbulence. In LES, the large-scale motions are solved directly on a low-resolution
(LR) grid, and the effect of small-scale or subgrid-scale (SGS) motions on large-scale ones are
modeled. The preferential concentration of particles is significantly influenced by SGS motions at
intermediate Stokes numbers, so it requires additional SGS modeling [24–31]. At the same time,
interpolation of u(xp) based on the LR fields imposes extra challenges.

Although the use of a LR grid significantly reduces the accuracy of the polynomial-based
interpolation on u(xp) [32,33], the advancement of machine learning (ML) [34] may facilitate
achieving accurate and efficient interpolation of u(xp). For example, superresolution (SR) generates
a HR field from a LR input, and then the classical interpolation is employed to obtain u(xp) based
on the reconstructed HR field. Since Fukami et al. [35] explored convolutional-neural-network
(CNN)-based models for SR in 2D decaying HIT, several investigations [36–39] have demonstrated
the applicability of SR to turbulence. The CNN models have also been employed in simulating
particle-laden turbulence. Shirzadi et al. [40] introduced a CNN model to generate the velocity
and pressure field around particles for Lagrangian simulation of particle motions, showing more
accurate solutions and lower computational cost than classical methods. However, the SR typically
operates and stores information at grid points for the entire flow field, while particles are usually not
at grid points. This inconsistency can hinder an efficient implementation of SR-based interpolation
for u(xp) in particle-laden turbulence.

Instead of using SR, we seek to directly interpolate u(xp) from the LR field with the aid of neural
networks (NNs). Raissi et al. [41] introduced the physics-informed NNs (PINNs) as an approach for
solving partial differential equations. PINNs take arbitrary spatiotemporal coordinates as inputs and
output the physical values. Bezgin et al. [42] combined the weighted essentially nonoscillatory
(WENO) scheme with a NN, proposing the WENO-NN. Both WENO-NN and WENO share
identical inputs and outputs. Validation in a one-dimensional shocktube simulation confirmed that
WENO-NN achieves higher accuracy than WENO. The PINNs and WENO-NN offer insights into
designing NNs that can generate output values at random input positions. This feature is particularly
suitable for the application of particle tracking, as it allows for the direct acquisition of u(xp) and
avoids additional interpolations.

We propose a NN interpolation (NNI) to combine the advantages of ML-assisted modeling and
SR, aiming to improve the prediction of preferential concentration in simulations of particle-laden
turbulence. The NNI uses the particle position and velocity on neighboring grids to calculate u(xp)
via fully connected NNs (FC-Nets). This approach avoids the need for SR of the entire field and
additional interpolations, reducing computational cost and simplifying implementation.

We evaluate NNI using a series of challenging cases of 2D particle-laden HIT. Although most
previous studies employed a decaying or low-wave-number forcing HIT for validation, we chose a
2D HIT with high-wave-number forcing [43]. This HIT contains rich small-scale structures within a
long inertial range. The LR field obtained by applying a cutoff filter in the inertial range retains little
small-scale motion from the HR field, so it is very challenging for velocity interpolations and ML
methods to reproduce u(xp) and consequently to predict the preferential concentration accurately.

The outline of this paper is as follows. Section II gives an overview of the simulation of 2D
HIT and particle motions. Section III describes the NNI. Section IV compares the results of dif-
ferent velocity interpolation methods on predicting the preferential concentration in particle-laden
turbulence. Conclusions are drawn in Sec. V.
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TABLE I. Parameters of the 2D HIT

Grid size N 1024
Time step �t 5 × 10−4

Forcing length scale k f 300
Forcing strength α 0.1
Hyperviscosity νu 7.5 × 10−40

Hyperviscosity power pu 8
Hypoviscosity νi 2.5
Hypoviscosity power pi 1

II. DATASETS

A. Flow field

We obtained datasets from the DNS of 2D particle-laden HIT with the hyperviscosity to train
ML-based methods and evaluate different velocity interpolations. For the flow field, the standard
pseudospectral method [43] was employed to solve the vorticity equation:

(∂t + νik
−2pi + νuk2pu )ω̂(k) + [(̂u · ∇ )ω](k) = f̂ (k), (1)

in the Fourier space, where u is the velocity, ω = ∇ × u is the vorticity, the hat (̂) denotes the
Fourier transform, k and k = |k| are the wave number vector and wave number, respectively, and
f̂ (k) is the external forcing term. The forcing is set as f̂ (k) = αG(k − k f ), where α is the forcing
strength, G(k − k f ) is the Gaussian smoothing function, and k f denotes the wave number where the
forcing is injected. The computational domain is a periodic box with the size of [0, 2π ]2, and it is
discretized on a uniform grid of N2. The phase-shift method [44] is applied to dealiase the solution.
The second-order Adam-Bashforth scheme is used to advance in time.

Table I summarizes the 2D HIT setup. The number of grid points is set to 10242. The forcing
wave number k f = 300 is the largest possible one while still being constrained by the 2

3 rule
in dealiasing and k f � N/3 [8]. The hyperviscosity and hypoviscosity terms dissipate energy at
small and large scales, respectively. These viscosity parameters are selected based on previous
studies [8,45]. As a result of the inverse cascade [46], the high-wave-number forcing produces a
turbulent flow with a long inertial range, which has been widely adopted in past 2D turbulence
simulations [45,47,48].

Important statistics in the DNS of 2D HIT are listed in Table II, including the total kinetic energy
Etot = ∫

E (k)dk, root-mean-square (rms) velocity fluctuation u′ = √
Etot [49], integral length scale

lT = 2π
∫

k−1E (k)dk/Etot, eddy turnover time τe = lt/u′, rms vorticity ω′ [10], Kolmogorov length
scale η = 2π/k f [8], and Kolmogorov time scale τη = 1/ω′ [10]. The current simulation with a
long inertial range and rich SGS motions poses significant challenges for the velocity interpolation
methods.

TABLE II. Statistics of the 2D HIT with hyperviscosity.

Total kinetic energy Etot = ∫
E (k)dk 0.280

rms velocity fluctuation u′ = √
Etot 0.529

Integral length scale lt = 2π
∫

k−1E (k)dk/Etot 0.626
Eddy turnover time τe = lt/u′ 1.18
rms vorticity ω′ 38.2
Kolmogorov length scale η = 2π/k f 0.0209
Kolmogorov time scale τη = 1/ω′ 0.0262
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We have also tested on a 2D particle-laden HIT with normal viscosity and low-wave-number
forcing. When the cutoff wave number is close to the dissipation range, the moderate- and small-
scale eddies remain unfiltered, so that such a case only has marginal room for improving the
interpolation methods [28,50].

In the 2D HIT simulations, a total of 3 × 104 time steps were saved after the flow field reached the
statistically stationary state. The saved data covers a period of t = 15, ∼12.7 eddy turnover times.
The initial 2

3 and the final 1
3 of the time steps were used for training and validating the ML-based

methods, respectively. To obtain the LR flow field, we downsampled the HR field from DNS using
an average pool. The average pool downsamples from the HR field with a size of (HDNS,WDNS) to
(HDNS/M,WDNS/M ) LR field as uLR

i, j = 1
M2

∑M
p=1

∑M
q=1 uDNS

i×M+p, j×M+q, where the pooling factor M
is set to powers of two.

B. Particle motion

We consider the motion of small spherical particles described by the simplified Basset-
Boussinesq-Oseen (BBO) equation [4,51]:

dxp

dt
= up,

dup

dt
= u(xp) − up

τp
, (2)

where up denotes the particle velocity, and τp the particle response time scale. The fourth-order
Lagrangian interpolation (LGI) was used to interpolate u(xp) from the HR flow field in DNS.
Equation (2) is advanced using the second-order Runge-Kutta scheme.

We conducted an extensive investigation with a range of the Stokes number St = τp/τη from 0.1
to 5.0. In each case, we tracked 105 particles that are initially distributed uniformly in the flow. The
particles were initialized at t = 0 and were then tracked over a time period of t = 15. The particle
motion calculated using LGI based on the HR DNS is considered as the ground truth.

III. NNI

We propose a NNI to obtain u(xp) from the LR flow fields. The NNI has the same input and
output as the LGI. As illustrated in Fig. 1(a), the input into the NNI consists of the particle position
and the velocities at the surrounding 4 × 4 grid points in the LR field. To ensure generality, the
particle position xp = (xp, yp) is normalized as (ξ, ζ ) = [(xp − x1)/h, (yp − y1)/h] with the grid
spacing h = 2π/N . The NNI outputs a flow velocity component u(xp) or v(xp) at the particle
position.

As sketched in Fig. 1(b), the NNI architecture consists of three FC-Nets to estimate u(xp) from
the input. FC-Net 1 and FC-Net 2 take the velocities and particle positions as inputs, respectively.
The outputs of FC-Net 1 and FC-Net 2 are two n-dimensional vectors a and b, respectively, with
n = 10. The intermediate array (a1b1, a2b2, · · · , anbn)ᵀ is then fed into FC-Net 3 to yield u(xp).
Unlike the SR methods used in turbulence simulation, the NNI does not read the entire LR flow
field to reconstruct the entire HR field. Instead, its input is the particle location, and its output is the
flow velocity at the particle position. This can greatly reduce the computational cost for the SR of
the LR field and additional Lagrangian interpolations in tracking particles.

The mean-square-error loss function L = 1
m

∑m
i=1[uNNI(xs

i ) − uDNS(xs
i )]2 + λ‖w‖2

2 is adopted to
optimize the NNI, where (xs

1, xs
2, · · · , xs

m) are m points on the DNS grid, superscripts NNI and
DNS denote NNI and DNS results, respectively, and w = (w1,w2, · · · ,wNw

) are the Nw weights in
NNs. The L2 regularization λ‖w‖2

2 = ∑Nw

i=1 w2
i avoids overfitting, where λ serves as a regularization

parameter [52].
Each learning batch contains m = 1000 points (xs

1, xs
2, · · · , xs

m), together with the ground truth
uDNS(xs

i ), where xs
i is the particle position. The m points are randomly selected from the 10242 HR

field over the 2 × 104 time steps. Then the velocities on the adjacent 4 × 4 LR grid points and the
normalized particle position (ξ, ζ ) were used to generate uNNI at each selected point. The Kaiming
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(a) (b)

FIG. 1. (a) Schematic of the input and output of neural-network interpolation (NNI) and Lagrangian
interpolation (LGI). (b) Flowchart of NNI.

method [53] initializes all the NNI parameters, and the parameters are updated using the Adam
optimizer [54]. The initial learning rate is 0.01, which is subsequently reduced to 1

5 of its preceding
value after every 2000 epochs.

IV. RESULTS

To assess the performance of NNI, we compare the results from four methods (see Fig. 2), DNS
with LGI, the LR field with LGI, the LR field with CNN SR and LGI, and the LR field with NNI.
Here, the DNS results with u(xp) interpolated from HR fields using the LGI serve as the ground
truth. The LR field with regular LGI serves as an a priori test for the LES. The CNN-assisted LGI
interpolates u(xp) from the SR field generated from the LR field. We employed a CNN architecture

FIG. 2. Summary of different approaches of tracking particles.
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FIG. 3. Instantaneous velocity contours of the (a) high-resolution (HR) field with resolution 10242 by
direct numerical simulation (DNS), (b) low-resolution (LR) field with resolution 1282, and reconstructed fields
with resolution 10242 by (c) Lagrangian interpolation (LGI), (d) convolutional neural network (CNN), and (e)
neural-network interpolation (NNI).

validated for SR of HIT [39], consisting of eight residual blocks and three upscale modules with a
kernel size of 3 × 3, and the CNN-based SR was trained using the same datasets and tools as for the
NNI. The NNI directly interpolates u(xp) from the LR field without the additional SR for the HR
field.

For convenience, we refer to the direct application of LGI on LR fields as LGI and the
CNN-assisted LGI as CNN below. If not specified, NNI, CNN, and LGI are used for the particle
computation in a 128 × 128 LR flow field. The LR flow field is obtained by an 8 × 8 averaging
pooling of the 1024 × 1024 HR flow field in DNS. Moreover, an a posteriori test based on the LES
of 2D HIT is provided in Appendix.

A. Flow field

We first compare the accuracy of reconstructing the HR velocity field using different interpolation
methods from the LR field. Figure 3 plots snapshots of the contour of u obtained from the 10242

HR field by DNS, 1282 LR field, and 10242 reconstructed fields by the LGI, CNN, and NNI at
t = 15, along with closed-up views to show details of the resolved flow structures. The LR field
in Fig. 3(b) only retains blurred large-scale structures. Although the LGI increases the spatial
resolution, it smooths out small-scale structures. This limitation arises from the incapability of low-
order polynomial functions for capturing complex flow features. Furthermore, simply increasing the
interpolation order can lead to the Runge phenomenon.

Remarkably, both NNI and CNN reconstruct finer flow structures than those from the LGI. We
observe that the flow field reconstructed by NNI shows weak discontinuities at the LR grid boundary.
This is because the interpolation parameters of NNI are obtained by optimization of the global flow
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FIG. 4. L1 error of the velocity field in Lagrangian interpolation (LGI), convolutional neural network
(CNN), and neural-network interpolation (NNI) cases, with resolutions 1282, 642, and 322 of the low-resolution
(LR) field.

field and do not guarantee the zeroth-order continuity through polynomial functions as in the case of
LGI. Meanwhile, the NNI used only 42 neighboring points for local interpolations compared with
CNN. Such discontinuities were also observed in early CNN SR work [35] when the convolution
layers are shallow.

The L1 error L1 = ∑N
i=1

∑N
j=1 |φR

i j − φDNS
i j | is used to measure the discrepancy between the

reconstructed field and the ground truth at each time step, where φR
i j denotes a reconstructed quantity

and φDNS
i j the DNS ground truth. Figure 4 compares the time-averaged L1 error of the velocity from

t = 10 to 15 from LGI, CNN, and NNI. The error bars representing the range of L1 during t = 10–15
indicate a small fluctuation of L1 for different time steps. The results are based on LR fields with
three different grid resolutions 1282, 642, and 322. The LR field with a higher resolution or smaller
h preserves more details from the HR fields, leading to better performance for all interpolation
methods. The NNI and CNN outperform the LGI, and the CNN, which reads in the entire LR field
for SR, exhibits the highest accuracy in reconstructing the entire flow field.

Figure 5 plots the energy spectra of the HR field by DNS, the LR field by the average pool,
and the reconstructed fields by the LGI, CNN, and NNI. The CNN and NNI outperform the LGI in
recovering high-frequency data. However, the ML-based methods fail to recover the full small-scale
DNS field at very high wave numbers because the small-scale turbulence is highly nonlinear, and
most ML-based methods suffer [55,56]. The present 2D HIT has a long inertial range, and the cutoff
at kc removes a wide range of small-scale structures, which poses a more significant challenge in
reconstructing SGS motion than those reported in 3D turbulence [28,50]. Additionally, both CNN
and NNI do not adequately capture the rapid decay of the spectrum at k > k f . Thus, both CNN and
NNI only partially recover the SGS motion when the LR field is significantly underresolved.

Table III presents the turbulence statistics of the LR field and the reconstructed fields by LGI,
CNN, and NNI, compared with the DNS results. The 1282 LR field contains 78.2% of the total
energy in the HR field. While LGI recovers total energy slightly closer to DNS, CNN and NNI
exhibit clear improvements in these statistics. Due to the SR of the entire field, CNN outperforms
all methods in most large-scale statistics. Note that NNI performs best in recovering small-scale
motions, as indicated by the Kolmogorov time scale. Figure 6 compares the vorticity distribution
from various methods. Consistent with the spectra, the CNN and NNI partially reconstruct small-
scale vortical structures from the large-scale LR field.
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FIG. 5. Energy spectra of the high-resolution (HR) field by direct numerical simulation (DNS), the
low-resolution (LR) field by average pool, and the reconstructed fields by Lagrangian interpolation (LGI),
convolutional neural network (CNN), and neural-network interpolation (NNI). The purple dotted line marks
the cutoff wave number, and the black dotted line marks the wave number where the forcing is injected.

B. Particle distribution

Next, we examine the effect of different interpolation methods in predicting particle distributions
in turbulence. Figure 6 plots the particle distributions obtained using different methods in the left
domain at t = 15. The particles are concentrated in regions of low vorticity, which is referred to
as the preferential concentration [2–5]. Moreover, the particle distributions in the CNN and NNI
simulations are more dispersed than the LGI results, as the ML-based methods preserve more small-
scale motions.

The preferential concentration of particles is sensitive to the small-scale motion [5]. Figure 7
compares the particle distributions obtained via DNS and simulations based on the LR field with
LGI, CNN, and NNI at t = 15 for the case with St = 1.0. The particles are color-coded by |ω|.
It confirms that particles tend to accumulate at low-vorticity regions at the statistically stationary
state. In particle simulations, u(xp) is interpolated at the particle position, illustrated in the zoom-in
subplots with arrows. The DNS results show the velocity vectors circling along two major vortices.
However, these vectors do not strictly adhere to the swirling direction of the large vortex due to
small-scale motions. In the LR field with LGI, the small-scale motions are filtered. Consequently,
the velocities tend to align with the direction of large-scale motions, resulting in a higher preferential
concentration. Both CNN and NNI recover small-scale motions in the turbulence fields, which

TABLE III. Turbulence statistics of the HR field by DNS, LR field by average pool, and reconstructed
fields by LGI, CNN, and NNI.

Statistics DNS LR LGI CNN NNI

Total kinetic energy Etot 0.280 0.219 0.222 0.252 0.246
rms velocity fluctuation u′ 0.529 0.468 0.471 0.502 0.496
Integral length scale lt 0.626 0.768 0.758 0.682 0.711
Eddy turnover time τe 1.18 1.64 1.61 1.36 1.43
rms vorticity ω′ 38.2 8.579 11.0 18.3 19.8
Kolmogorov time scale τη 0.0262 0.117 0.0905 0.0547 0.0504
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FIG. 6. Instantaneous vorticity contours and particle distributions (marked in the left half domain using
yellow dots) obtained from the (a) high-resolution (HR) field (10242) by direct numerical simulation (DNS),
(b) low-resolution (LR) field (1282), and reconstructed fields (10242) by (c) Lagrangian interpolation (LGI),
(d) convolutional neural network (CNN), and (e) neural-network interpolation (NNI).

perturb the velocity and add high-wave-number energy to the turbulence field. Therefore, the
velocity directions become more stochastic, and the particles are more scattered than in the LGI
case.

We apply the D method [57] to quantify the preferential concentration of particles. As illustrated
in Fig. 8(a), this method measures the L2 distance DC between the probability density function
(PDF) of the particle number Nc in each cell and the Poisson distribution. The uniform distribution
of particles at t = 0 corresponds to the Poisson distribution of Nc and DC = 0. The preferential
particle concentration causes the growth of DC . The evolution of DC in DNS with St = 0.3, 1.0, and
4.0 in Fig. 8(b) shows that the particle distribution reaches the statistically stationary state around
t/τe = 5.

In Fig. 9, 〈DC〉, the time-averaged DC over t = 10–15, obtained via LGI, CNN, and NNI based
on the 1282 LR fields are compared with the DNS results for different values of St . The error bars
denote the range of DC . Consistent with the former results [4,23,25,57,58], 〈DC〉 peaks around St ≈
1, indicating the strongest preferential concentration. As St approaches zero, the particles behave
as passive tracers, resulting in a uniform distribution with DC ≈ 0. With increasing St , the particles
become less responsive to the fluid motion, and the distribution begins to deviate from uniform
with growing 〈DC〉. At very large St , the particles are less affected by the fluid motion, and the
preferential concentration is reduced with moderate 〈DC〉.

The LR field, as an a priori test of LES, only preserves the large-scale eddies. The absence
of SGS motion mitigates the particle dispersion. In Fig. 7, particles tend to be more concentrated
at the edges of large eddies than that in DNS. As a result, the profile of 〈DC〉 against St by LGI
is significantly overpredicted. Additionally, the LR field increases the effective Kolmogorov time
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FIG. 7. Particle distributions obtained via (a) direct numerical simulation (DNS) and simulations based on
the low-resolution (LR) field with (b) Lagrangian interpolation (LGI), (c) convolutional neural network (CNN),
and (d) neural-network interpolation (NNI) at t = 15 for the case with St = 1. The particle is color-coded by
|ω|. The arrows in zoom-in subplots denote u(xp) for each particle.

(a) (b)

FIG. 8. Direct numerical simulation (DNS) results on (a) the probability density function (PDF) of the
particle number in each cell at t = 0 and the average over t = 10–15, when the particle distribution reaches
a stationary state, along with the Poisson distribution. The gray zone denotes the variance of the PDF at t =
10–15. (b) Evolution of DC in DNS cases with St = 0.3, 1.0, and 4.0.
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FIG. 9. Comparison of 〈DC〉 in direct numerical simulation (DNS), Lagrangian interpolation (LGI), convo-
lutional neural network (CNN), and neural-network interpolation (NNI) based on the low-resolution (LR) field
(1282) for different St . The error bars denote the range of DC .

scale and then decreases the effective Stokes number [25], shifting the predicted peak of DC toward
larger St values.

As shown in the energy spectrum in Figs. 5 and 6, both CNN and NNI can partially recover
small-scale eddies in the inertial range, outperforming LGI. This enables the CNN method to predict
the profile of 〈DC〉 for the preferential concentration more accurately.

The NNI method, on the other hand, recovers more high-wave-number information than the other
methods in Fig. 5, allowing it to capture the small-scale motions in the turbulence field. Although
NNI has the same input and output as LGI, the FC-Nets in NNI have a more sophisticated expression
than the polynomial basis function in LGI, enhancing the fitting capability of the NNI. Compared
with CNN, NNI focuses on reconstructing near the local region of a LR grid cell, in which the NNI
predicts the velocity over the space continuously, while CNN only gives values at discretized points.
As a result, the preferential concentration in the NNI case is most consistent with the DNS result.

We also compare the results of different interpolation methods for three LR fields with 1282, 642,
and 322 grid points in Fig. 10(a). In general, 〈DC〉 decreases with increasing grid resolution because
the higher-resolution fields preserve more small-scale turbulence and lead to a more dispersed
particle distribution. The NNI generally has the smallest L1 error for all three LR grids, indicating
its best performance in predicting the preferential concentration.

Furthermore, Fig. 10(b) shows the sum of the DC deviations
∑

St |〈DC〉�St − 〈DC〉DNS
St | over the 18

Stokes numbers of the LGI, CNN, and NNI results from the DNS results for different resolutions.
The results confirm that the NNI is the most accurate among the three interpolation methods,
showing the first-order accuracy with the resolution of the flow field.

C. Computational cost

We evaluate the computational cost of different methods by separately considering two main
parts: fluid flow evolution and particle tracking. According to Fig. 2, we divide the computational
cost of each method into

T DNS = T DNS
f + T LGI

p , T LGI = T LR
f + T LGI

p ,

T CNN = T LR
f + T SR

f + T LGI
p , T NNI = T LR

f + T NNI
p , (3)
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(a) (b)

FIG. 10. (a) Comparison of 〈DC〉 in direct numerical simulation (DNS), Lagrangian interpolation (LGI),
convolutional neural network (CNN), and neural-network interpolation (NNI) based on low-resolution (LR)
fields with different grid resolutions 1282 (solid lines), 642 (dashed lines), and 322 (dash-dotted lines) for
different St . (b) L1 error of 〈DC〉 of the LGI, CNN, and NNI results with different grid resolutions.

where T DNS
f and T LR

f denote the costs of flow simulations on HR and LR grids, respectively, T SR
f

is the cost for performing SR, T LGI
p and T NNI

p correspond to the cost of particle tracking using
the LGI and NNI, respectively. Here, T DNS

f and T LR
f depend on the number of grid points, with

T LR
f /T DNS

f ≈ 0 for the present cases, and T LGI
p and T NNI

p depend on the number Np of particles.
Our DNS was performed on the Tianhe-2 at the National Super Computer Center in Guangzhou,

China (NSCC-GZ), with the Intel Xeon Gold 6150 processor. We ran 3 × 104 steps on 10242 grid
points. The CNN SR was conducted on a NVIDIA Tesla V100 SXM2 GPU at NSCC-GZ. All
computational costs are normalized by the running time of DNS T DNS

f = 703 s for the flow field.
Figure 11 plots the time costs of different methods for simulations of 2D particle-laden turbu-

lence, where Np varies from 1 × 104 to 5 × 105. The computational costs of both NNI and LGI
scale linearly with Np, and the cost of LGI is only slightly lower than the cost of NNI. For DNS and

FIG. 11. Computational costs of different methods for simulating particle-laden two-dimensional (2D)
homogeneous isotropic turbulence (HIT).
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CNN, T DNS
f and T SR

f took a large part of the cost when Np was not very large, e.g., Np = 104. For
both accuracy and efficiency, the NNI performs well in particle tracking in LR simulations.

V. CONCLUSIONS

We developed the NNI to improve the prediction of preferential concentration in the simulation
of particle-laden turbulence. The NNI utilizes the particle position and velocity on neighboring grid
points to calculate u(xp) via three FC-Nets. It avoids the SR of the entire flow field and additional
interpolations, reducing the computational cost and simplifying the numerical implementation.

The NNI was trained and validated based on the DNS of particle-laden 2D HIT, and it was
compared with the fourth-order Lagrangian interpolation and the LGI assisted with the CNN SR.
The LR fields downsampled from the HR DNS fields are taken as the input flow field for the
cases of LGI, CNN, and NNI. The present 2D turbulence exhibits a long inertial range, as the
LR field filters a significant portion of small-scale motion at high wave numbers. It is challenging
for the velocity interpolation and SR to accurately reproduce u(xp) and consequently predict the
preferential concentration accurately.

Both CNN and NNI demonstrate good performance in the SR of flow field, recovering the
majority of small-scale motions lost in the LR field. On the particle tracking, the NNI has proven to
be effective in improving the prediction of preferential concentration. Despite the challenging case
without most high-wave-number information in the LR fields, the NNI leverages the capabilities
of NNs to estimate u(xp) with recovering SGS motions. This is critical to achieve an accurate
prediction of the preferential concentration in particle-laden turbulent flows. The results confirm
that the NNI results quantitatively reproduce particle distributions closer to the DNS results than the
CNN results over a range of St from 0.1 to 5.0.

One of the key advantages of NNI over CNN is its flexibility. The NNI only requires the
particle position and adjacent data to calculate the velocity at the particle position. This not only
reduces the computational resources but also simplifies the implementation. The straightforward
implementation of NNI using FC-Nets, which rely on matrix multiplication, further enhances its
versatility and integration into regular simulation codes.

The NNI can be further improved in future work. The functional form in NNI does not ensure
continuity between LR cells, which may result in discontinuities on the edges of a LR cell. This
is also related to the limited number of 4 × 4 points to interpolate in NNI. The development of
CNN SR indicates that expanding the interpolation range or integrating a convolutional network can
mitigate this issue. Moreover, additional constraints can be applied to ensure that the NNI outcomes
are more physical.
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APPENDIX: A POSTERIORI TEST

We validate the interpolation methods a posteriori. The LES of the 2D HIT is performed using
the pseudospectral method [43] on a computational domain of [0, 2π ]2, with 1282 grid points. In
the LES, the spectral eddy hyperviscosity:

νT = 1.5 × 10−25

[
0.267 + 9.21 exp

(
−40.03kLES

f

k

)]√√√√ E
(
kLES

f

)(
kLES

f

)4pu−3 , (A1)
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(a) (b)

FIG. 12. (a) Energy spectra of the high-resolution (HR) field in direct numerical simulation (DNS),
low-resolution (LR) field in large-eddy simulation (LES), and reconstructed LES fields with Lagrangian
interpolation (LGI), convolutional neural network (CNN), and neural-network interpolation (NNI). The purple
dotted line marks the cutoff wave number kc. (b) Comparison of 〈DC〉 obtained via LGI, CNN, and NNI based
on the LR fields by the average pool (solid lines) in the a priori test and LES (dashed lines) in the a posteriori
test for different St , along with the DNS results (black solid line).

is tuned based on the Chollet-Lesieur model [59]. A linear mapping kLES
f /NLES = kDNS

f /NDNS

determines the forcing wave number in the LES, where the superscripts denote the LES or DNS
quantities. We apply the LGI, CNN, and NNI to the LES field for SR and particle simulations. The
NNI and CNN are trained using the DNS data in Sec. II.

Reconstructing unresolved turbulence based on LES of 2D HIT poses a significant challenge [8].
Figure 12(a) plots the energy spectra of the HR field by DNS, the LR field by LES, and reconstructed
fields by LGI, CNN, and NNI. Both CNN and NNI partially recover the SGS motion at k > kc. On
the other hand, the LES spectrum shows a steep decay near the cutoff wave number kc, distinct from
the LR field obtained by the average pool. Consequently, all three methods underestimate the energy
spectrum at high wave numbers.

We assess the performance of different methods in predicting particle distributions. The 〈DC〉
values obtained from LES with LGI, CNN, and NNI are compared with the DNS results for different
St in Fig. 12(b). The NNI consistently outperforms the LGI and CNN in predicting the preferential
concentration in the LES of particle-laden turbulence. In addition, all three a posteriori results have
larger discrepancies from the DNS than the a priori results (see Fig. 9) due to the underestimated
energy spectra at high wave numbers in the reconstructed LES fields [see Fig. 12(a)].
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