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Turbulence model augmented physics-informed neural networks
for mean-flow reconstruction
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Experimental measurements and numerical simulations of turbulent flows are charac-
terized by a tradeoff between accuracy and resolution. In this study, we combine accurate
sparse pointwise mean velocity measurements with the Reynolds-averaged Navier-Stokes
(RANS) equations using data assimilation methods. Importantly, we bridge the gap
between data assimilation (DA) using physics-informed neural networks (PINNs) and
variational methods based on classical spatial discretization of the flow equations, by
comparing both approaches on the same turbulent flow case. First, by constraining the
PINN with sparse data and the underdetermined RANS equations without closure, we
show that the mean flow is reconstructed to a higher accuracy than a RANS solver using
the Spalart-Allmaras (SA) turbulence model. Second, we propose the SA turbulence model
augmented PINN (PINN-DA-SA), which outperforms the former approach by up to 73%
reduction in mean velocity reconstruction error with coarse measurements. The additional
SA physics constraints improve flow reconstructions in regions with high velocity and
pressure gradients and separation. Third, we compare the PINN-DA-SA approach to a
variational data assimilation using the same sparse velocity measurements and physics
constraints. The PINN-DA-SA achieves lower reconstruction error across a range of data
resolutions. This is attributed to discretization errors in the variational methodology that
are avoided by PINNs. We demonstrate the method using high-fidelity measurements from
direct numerical simulation of the turbulent periodic hill at Re = 5600.

DOI: 10.1103/PhysRevFluids.9.034605

*yusuf.patel15@imperial.ac.uk
†vincent.mons@onera.fr
‡olivier.marquet@onera.fr
§g.rigas@imperial.ac.uk

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0
International license. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

2469-990X/2024/9(3)/034605(31) 034605-1 Published by the American Physical Society

https://orcid.org/0000-0002-9702-4724
https://orcid.org/0000-0001-6692-6437
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.9.034605&domain=pdf&date_stamp=2024-03-11
https://doi.org/10.1103/PhysRevFluids.9.034605
https://creativecommons.org/licenses/by/4.0/


PATEL, MONS, MARQUET, AND RIGAS

I. INTRODUCTION

While the Navier-Stokes equations describe accurately the evolution of fluid flow in space and
time, their direct numerical simulation (DNS) is intractable in turbulent regimes. As a compromise,
industrial simulation is dominated by Reynolds-averaged Navier-Stokes simulations (RANS), which
govern the time-averaged flow quantities instead of unsteady time-varying values. However, the
RANS equations are not in closed form and solving for these first-order statistics (mean-flow
quantities) requires knowledge of the second-order velocity statistics, known as the Reynolds
stresses. This closure problem is tackled by use of turbulence models, most commonly Boussinesq
linear eddy viscosity models (LEVM), including the Spalart-Allmaras (SA) model [1], k − ω [2]
and k − ε [3] models. While solutions of the RANS equations are computationally tractable, they
are also less accurate than scale-resolving simulations. Although the turbulence models fully close
the system of equations for the mean-flow quantities, they typically rely on empirical estimates
and parameter tuning, lacking accuracy and generality, as quantified in a review by Xiao et al. [4].
However, experimental methods may provide valuable information about real-world flows, which
are nevertheless generally limited in terms of spatio-temporal resolution and do not give access to
a full flow description. Error from sources, such as imperfect test parts and sensor noise may also
impact measurement reliability. Particle Image Velocimetry (PIV) is often used to measure flow
velocity but its resolution may be hardware restricted and limited to specific planes of interest (2D
planes in a full 3D field), while pressure measurements are difficult to obtain in the bulk flow without
being intrusive.

In conjunction with the large growth in the use of data-based methodologies to tackle a wide
range of fluid mechanics problems [5,6], data assimilation methods have enabled the augmentation
of low-fidelity numerical simulations with experimental data, to reconstruct full and accurate
mean-flow descriptions from the latter that obey the RANS equations. Such methods thus allow,
among others, to extract information not present in the original dataset, interpolate missing data
by super-resolving the flow fields (such as coarse PIV fields), and infer missing fields (such as
pressure and Reynolds stresses). Different methods exist for tackling such a reconstruction problem:
variational methods [7,8], Bayesian inference [9,10], real-state observer [11,12], and among vari-
ous machine-learning-based approaches, physics-informed neural networks (PINNs), which have
recently been used in conjunction with RANS [13–16]. As further detailed in the following, both
variational approaches and PINNs formulate data assimilation as an inverse problem, and more
specifically as an optimization one, where one aims to minimize the discrepancies between data
and the reconstructed mean flow. However, variational approaches and PINNs vastly differ in the
solution method of such an optimization problem, such that one might expect significant differences
between their respective results.

As mentioned, the variational approach formulates data assimilation as an optimization problem,
where the discrepancies between the reconstructed flow and data are minimized. This minimization
is performed in conjunction with the strong imposition of the flow governing equations, here the
RANS equations, through the adjoint method. Both the RANS equations and their adjoint counter-
part are solved based on classical computational fluid dynamics (CFD) discretization methods, such
as the finite-element method that is employed here. Foures et al. [17] notably applied variational
data assimilation method to super-resolve the mean flow for a laminar 2D circular cylinder. By
providing sparse, synthetic experimental data (data that has been generated using high-fidelity
computational methods but treated as experimentally generated) on a rectangular grid, the mean flow
was successfully super-resolved. Notably, a Helmholtz decomposition is applied to the divergence
of the Reynolds stress tensor, separating it into a potential component and a divergence-free
component, the latter forming the control vector in the optimization procedure. This work was
expanded by Symon et al. [18] using the same variational data assimilation method but applied to
a turbulent mean flow around an aerofoil at Re = 13 500 using experimental two-component planar
PIV data. The work by Franceschini et al. [8] extends this work further. Instead of the Helmholtz
decomposition, the Reynolds stress is broken down into a eddy viscosity term and a non eddy
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viscosity forcing term. The eddy viscosity term is solved by including the SA model to the governing
equations, while the variational data assimilation is used to find the non eddy viscosity forcing and
also a corrective forcing within the SA equation itself. This is intended to reduce the corrections
required in regions where the LEVM is insufficient.

While the present study focuses on flow reconstruction, it may still be worth mentioning that
the above-mentioned corrections that are identified by variational data assimilation may then form
a dataset to build machine-learning-based turbulence models, as performed in the field-inversion
machine-learning approach [19–21].

As an alternative to variational data assimilation, we here also consider the PINN approach first
presented by Raissi et al. [22]. In conventional neural network approaches, models are optimized
by minimizing a cost function, which is purely driven by error to data. The PINN framework
enforces weakly the governing equations, by adding the residual PDE errors to the cost function.
This is similar to the aforementioned variational approaches, although PINNs only softly constrain
the governing equations. Constraining the optimization with fully or partially known governing
equations (i.e., Navier Stokes or RANS), in addition to measurement data, ensures that solutions are
physical, improving model performance, reduces the possible solution space during optimization
and the dependence on high volumes of data to train models. This approach has already shown
great promise across a range of inverse flow problems (water wave problem in Jagtap et al. [23] and
high speed and supersonic flows in Mao et al. [24] and Jagtap et al. [25]) and can even be extended
to convolutional neural networks, as demonstrated in Gao et al. [26] and Kelshaw et al. [27]. Eivazi
et al. [14] and Hasanuzzman et al. [28] used PINNs that are constrained by the RANS equations to
reconstruct the flow field within a subdomain, by providing data at the domain boundaries for all
flow fields (from experimental PIV data). Sliwinski and Rigas [29] approached the same problem as
Foures et al. [17], albeit using the PINN framework instead. First, the Helmholtz decomposition is
applied to the unknown divergence of the Reynolds stress tensor (forcing vector), as used in Foures
et al. [17], to reconstruct the flow from mean velocity data (first-order statistics) alone. Second,
by considering the full Reynolds stress tensor and providing both sparse first- and second-order
velocity statistical data, the pressure field was also successfully extracted. A similar approach was
taken by von Saldern et al. [15], using PINNs in combination with velocity data, to reconstruct the
mean flow of a swirling turbulent jet. Pioch et al. [16] also uses PINNs, constrained by the RANS
equations with the addition of turbulence models, to reconstruct the mean flow over a backward
facing step. Additional research by Molnar et al. [30] propose a new PINN-based process for
background-oriented Schlieren imaging (BOS), to reconstruct the density field reconstruction from
experimental data, with greater accuracy than traditional BOS image processing algorithms.

One avenue to increase the capability of PINNs is through the development of novel PINN
architectures. The PINN framework has been expanded with Conservative PINNs (Jagtap et al.
[31]) and Extended PINNs (Jagtap and Karniadakis [32]), with further development by Shukla
et al. [33]. These methods divide the domain into subdomains, each with its own PINN, increasing
the representative capacity of the framework, as discussed in Ref. [34]. Additionally, Mishra and
Molinaro [35] and De Rycket al. [36] complete error analysis on the use of (extended) PINNs.
Alternatively, one can apply advancements in other data-assimilation techniques to the existing
PINN framework, to improve on previous studies, as performed here. This study thus aims to
demonstrate that similar strategies as proposed in variational approaches may be developed in the
PINN framework, to achieve the reconstruction of turbulent mean flows from sparse mean-velocity
measurements, extending the laminar PINN framework of Sliwinski and Rigas [29].

We here introduce a turbulence model-augmented PINN (RANS with SA) following an approach
that is inspired by the above-mentioned variational data assimilation study by Franceschini et al.
[8]: the Reynolds-stress term in the RANS equations is separated into a modeled component and
a corrective one. The modeled component involves an eddy viscosity that is assumed to verify the
SA equation, while the corrective component forms one of the PINN’s output, along with the mean
velocity, pressure and eddy viscosity fields. Compared to previous studies investigating PINNs in
the context of RANS [13–16], the present approach exploits traditional turbulence modeling, adding
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physical constraints on the reconstructed mean flow and facilitating the handling of sparse data as
demonstrated in the following, while at the same time not being restricted by modeling deficiencies
(e.g., noncompliance to the Boussinesq hypothesis) through the introduction of the correction term
in the RANS equations. Moreover, the similarities between the present PINN-based methodology
and the variational framework of Franceschini et al. [8] allow to perform here detailed compar-
isons between PINN-based and variational data assimilation, which, to the extent of the authors’
knowledge, has never yet been performed in the context of RANS and mean-flow reconstruction,
while only very few such comparisons for unsteady flow reconstruction may be found in the
literature [37].

The following sections will be set out as follows. Section II will begin with presentation of the
mean-flow RANS equations and detail the use of the SA turbulence model, which will be used in this
work. This is followed by a description of the data assimilation procedure and its implementation
using PINNs or a variational approach. Section III introduces the test case and its numerical setup: a
turbulent periodic hill at Re = 5600. This is followed by a description of the PINN architecture
and training procedure in addition to the numerical setup for the variational data assimilation.
Section IV will present the data assimilation results of two parts. The first segment presents results
of the PINN mean-flow reconstruction, without use of a turbulence model. This will demonstrate
the basic PINN’s capabilities and its limitations. The second part will present results, showing the
use of turbulence model augmentation (SA) with PINNs. These results will be compared first to
the baseline PINN (without turbulence model) and then compared with results from the equivalent
variational-based method. Section V contains concluding remarks.

II. FLOW EQUATIONS AND DATA ASSIMILATION METHODOLOGY

In this article, the inverse problem is solved, where a mean (time-averaged) flow field is
reconstructed from a set of partial observations. The observations are Nm sparse high-fidelity mean
velocity measurements at points xm = (xm, ym, zm), i.e., Um,i, where Ui is the ith component of the
mean velocity and the subscript m denotes the mth sparse measurement. The reconstructed flow
field is sought by solving the constrained optimization problem, such that error to measurements, J ,
is minimized, where

J =
Nm∑

m=1

3∑
i=1

[
Um,i − Ûi(xm)

]2
, (1)

while simultaneously the reconstructed field satisfies the underdetermined mean-flow governing
equations. Here, Ûi(xm) is the reconstructed mean velocity at xm. While the equations in this
section are presented for general flows, the results demonstrate use for a two dimensional flow.

First, the governing mean-flow equations without (baseline) and with (SA) turbulence model are
presented in Sec. II A. Second, in Sec. II B, the details of two data assimilation approaches used to
solve the optimization are described—an adjoint-based variational approach and a PINN approach.

A. Formulation of the Reynolds stress closure

By applying the Reynolds decomposition, an unsteady flow field can be separated into a mean and
fluctuating component. Through time-averaging of the Navier-Stokes equations, one can obtain the
steady RANS equations. The data-driven techniques used in this study will be applied to mean-flow
data, which satisfy the following RANS equations:

∂Ui

∂xi
= 0, (2a)

Uj
∂Ui

∂x j
+ 1

ρ

∂P

∂xi
− ∂ (2νSi j )

∂x j
+ ∂u′

iu
′
j

∂x j
= 0, (2b)
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where P is the mean pressure field and ui
′u j

′ are the Reynolds stress tensor terms. Si j is the mean
strain rate tensor equivalent to 1

2 ( ∂Ui
∂x j

+ ∂Uj

∂xi
). For a three-dimensional flow (3D), this results in a

system of four equations with 10 unknowns (assuming no spanwise mean flow, this can be reduced
down to three equations and 6 unknowns). Given the dependence of the mean-flow solution, (Ui, P),
on the terms of the unknown Reynolds stress tensor, u′

iu
′
j , determination of these terms is critical to

the performance and capability of data-assimilation methods for reconstructing the mean-flow field.
The remainder of Sec. II A will present formulations of the mean-flow equations, such that data can
be used to infer the Reynolds stress (closure) terms.

1. Baseline formulation of mean-flow equations

To solve the inverse problem, an additional constraint is placed on the closure term to improve
its inference. First, the divergence of the Reynolds stress tensor [as it appears in the RANS Eq. (2b)]
is considered as a forcing vector (Reynolds forcing vector). This reduces the closure term from
six individual Reynolds stresses to three individual forcing terms (or two forcing terms from three
stresses with no spanwise mean flow). Subsequently, a Helmholtz decomposition is applied, as in
Foures et al. [17] and Sliwinski and Rigas [29],

fi ≡ −∂ui
′u j

′

∂x j
= 1

ρ

∂φ

∂xi
+ fs,i, (3)

decomposing the forcing into a scalar, potential part (φ) and a divergence-free, solenoidal, vectorial
component ( fs,i). This latter condition (divergence-free) provides an additional equation. Introduc-
ing decomposition (3) into the RANS equations (2), gives

∂Ui

∂xi
= 0, (4a)

Uj
∂Ui

∂x j
+ 1

ρ

∂ (P − φ)

∂xi
− ∂ (2νSi j )

∂x j
− fs,i = 0, (4b)

∂ fs,i

∂xi
= 0. (4c)

In addition to the new equation, the Reynolds forcing vector now consists of four terms (three
in two dimensions), in the form of a solenoidal forcing vector and a scalar potential field. In this
system, there are now five equations and eight unknowns (four equations and six unknowns in
2D). By combining the pressure and potential terms into a single scalar field (P − φ), another
unknown can be removed. The resultant flow field, (Ui, P − φ, fs,i ) is composed of the mean
velocity components, combined pressure and potential forcing term and the solenoidal forcing
components. Providing mean velocity data alone, at discrete locations, is sufficient to close the
system at those points. However, the P − φ term can not be separated into its constituent parts and
the pressure field cannot be determined.

2. Turbulence-model augmentation of mean-flow equations

While the above approach combines data with a formulation of the governing equations to
infer the unclosed divergence of the Reynolds stress tensor, the closure problem still poses a
challenge away from data points, since an infinite number of potentially physically unrealizable
solutions satisfy the underdetermined governing equations. The following methodology is proposed
to augment the aforementioned approach, by adding additional physical constraints.

When performing numerical simulations of the RANS equations, turbulence modeling is utilized
to approximate the Reynolds stresses and close the equations. Typically, the Boussinesq approxi-
mation is used, where the Reynolds stresses are assumed to be isotropic and depend on the eddy
viscosity νt . However, neglecting the anisotropic component, as well as other modeling assumptions
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made in the calculation of νt , introduce errors which propagate to the mean-flow solution. Instead, as
applied in Franceschini et al. [8], one can decompose the Reynolds forcing into a modeled, isotropic
part and a corrective component which can include the anisotropic part, in addition to any isotropic
component not captured by the modeled part, such that

fi = ∂ (2νt Si j )

∂x j
+ fc,i = ∂ (2νt Si j )

∂x j
+ 1

ρ

∂φ

∂xi
+ fs,i︸ ︷︷ ︸

fc,i

. (5)

The first term represents the modeled forcing component and the second term the corrective forcing
component, such that the mean-flow solution matches the data (high-fidelity measurements). In
this work, the Helmholtz decomposition is also applied to fc,i. By augmenting the system with
a turbulence model, one can solve for νt . This work will use the one-equation Spalart-Allmaras
turbulence model, which provides a governing equation for a pseudo eddy-viscosity variable ν̃. The
actual eddy viscosity νt may then be obtained from ν̃ through an algebraic expression. The SA
equations are given in Appendix A 1. The decomposition (5) has a closed (modeled) part, νt , and
unclosed (corrective) part, fc,i. Equation (5) can then be substituted into Eq. (2b) to derive the final
SA augmented RANS equations,

∂Ui

∂xi
= 0, (6a)

Uj
∂Ui

∂x j
+ 1

ρ

∂ (P − φ)

∂xi
− ∂

[
2(ν + νt )Si j

]
∂x j

− fs,i = 0, (6b)

∂ fs,i

∂xi
= 0, (6c)

Uj
∂ν̃

∂x j
− Sp − Sdiff − Sc − Sd = 0. (6d)

Applying the turbulence model allows an isotropic component of Reynolds stresses to be ap-
proximated using the SA equation, leaving the anisotropic (and potentially an isotropic) component
underdetermined. As a large portion of the Reynolds forcing is now modeled, data-assimilation
techniques only need to apply smaller corrections, compared with Eq. (4), to close the solution.

B. Data assimilation techniques

Using data assimilation techniques, to solve the constrained optimization, a solution
Ûi(x), P̂(x) − φ̂(x), f̂s,i(x), ˆ̃ν(x) to the mean-flow equations (4) or (6) is sought, such that J , the
measurement error (1), is minimized. In the specific case where turbulence model augmentation
is not applied, as in Eq. (4), the eddy viscosity field ν̃(x) = 0. Two techniques are implemented
to solve the constrained optimization problem: a neural network approach, specifically the PINN
approach from Sliwinski and Rigas [29] and an adjoint-based variational approach, used by Foures
et al. [17] and Franceschini et al. [8].

1. Physics-informed neural network

For a PINN, the solution (Ûi, P̂ − φ̂, f̂s,i, ˆ̃ν)(x; θ ) is defined by weights and biases, θ , which
define a neural network. Figure 1 shows this PINN schematic. For any neural network, the optimal
set of weights and biases, θ̂ , is sought by minimizing some loss function C,

θ̂ = arg min
θ

C(Ui, P − φ, fs,i, ν̃ )(x; θ ). (7)

In the case of PINNs, the loss function, C, is used to enforce the governing equations and the
boundary conditions. While these two terms are sufficient to define an optimization for the forward
problem, when using data assimilation (the inverse problem) the cost function must also include
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FIG. 1. Structure of the physics-informed neural network. A continuous mapping between spatial co-
ordinates and flow variables is approximated by a deep neural network, denoted by N , defined by a set
of weights and biases, θ . High-fidelity coarse data measurements and the (turbulence model augmented)
RANS equations constrain the training of the network. k, m subscript the physics and data loss, respectively. i
represents the ith component of a vector.

the measurement error term, J . To distinguish the use of PINNs for the inverse problem (as in this
paper) compared to the forward problem, it will be referred to as PINN-DA hereon-in to emphasise
the use of data. For the mean-flow problem described in Sec. II A, the loss function can be defined
as

C = λD

Nm
J + λP

Nc

Nc∑
k=1

RANS[(Ui, P − φ, fs,i, ν̃)(xk; θ )]2 + λP

Nc

Nc∑
k=1

(
Uj

∂ν̃

∂x j
− Sp − Sdiff − Sc − Sd

)

× (xk; θ )2 + λB

Nb

Nb∑
b=1

BC[(Ui, P − φ, fs,i, ν̃ )(xb; θ )]2 + λR

2

1

Nc

Nc∑
k=1

3∑
i=1

fs,i(xk; θ )2, (8)

where the governing laws are evaluated at Nc collocation points (subscripted by k), and boundary
conditions are imposed at Nb points along the boundary (subscripted by b). The data loss is
subscripted by m. RANS is the residual of the mean-flow equations [(4) or (6)], and BC is the error
to the imposed boundary conditions. To evaluate the governing laws, the gradients in the RANS
equations are calculated accurately to machine-precision using automatic differentiation [leveraging
the chain rule to trace the derivatives of all the constituent operations in the mapping N (x, θ ) from
Fig. 1]. The data term, physics term, and boundary condition terms are weighted by factors λD, λP,
and λB, respectively. Selection of these weights is discussed in Sec. IV A.

The decomposition of the forcing into a modeled and corrective component (5) is not unique, as
discussed in Foures et al. [17]. As a result, additional regularization is applied to ensure uniqueness
of the distribution between modeled and corrective forcing during optimization. For the PINN-DA,
an L2 regularization is used for its effectiveness and ease of implementation. This regularization
term (also evaluated at collocation points), weighted by λR, controls the magnitude of the corrective
forcing field and subsequently the decomposition between modeled and corrective forcing. By
increasing the penalization of forcing magnitude, the importance of the modeled forcing component
will grow and the governing equations will tend towards the RANS-SA equations (no corrective
forcing). The effect of regularization and importance of λR is demonstrated in Appendix B 1.
In the case without turbulence-model augmentation [effectively ν̃(x) = 0], λR = 0 and the SA
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equation can be removed from the loss function. The total loss C function (7) is minimized using
backpropagation by iteratively adjusting the weights and biases based on the gradient of loss with
respect to the network parameters, ∂C/∂θ .

2. Variational assimilation

In the variational approach, the corrective forcing fs,i is adjusted such that the measurement error,
J , is minimized, constrained by the RANS equations (6). The solution to this minimization problem
is given by the stationary points of the Lagrangian

L([Ui, P − φ, ν̃, fs,i], [U ∗
i , P∗, ν̃∗])

= J −
〈
P∗,

∂Ui

∂xi

〉
−

〈
U ∗

i ,Uj
∂Ui

∂x j
+ 1

ρ

∂ (P − φ)

∂xi
− ∂

[
2(ν + νt )Si j

]
∂x j

− fs,i

〉

−
〈
ν̃∗,Uj

∂ν̃

∂x j
− Sp − Sdiff − Sc − Sd

〉
. (9)

The inner product is defined as

〈a, b〉 =
∫




a · bd
, (10)

where a, b are two spatial fields and 
 is the volume over which the field is defined. U ∗
i , P∗, ν̃∗

are the Lagrange multipliers (or adjoint variables) enforcing the constraints. By setting the variation
of the Lagrangian with respect to the direct flow variables Ui, P − φ, ν̃, one can derive the adjoint
equations

∂U ∗
i

∂xi
= 0, (11a)

U ∗
j

∂Uj

∂xi
− Uj

∂U ∗
i

∂x j
− ∂P∗

∂xi
− ∂

[
2(ν + νt )S∗

i j

]
∂x j

+ ν̃∗ ∂ν̃

∂xi
+ ∂

∂x j

[
ν̃∗∂∇Ui

(
Sp + Sd

)] = ∂J

∂Ui
, (11b)

−Uj
∂ν̃∗

∂x j
+ 2

∂νt

∂ν̃

∂U ∗
i

∂x j
Si j − ν̃∗ ∂ (Sp + Sd )

∂ν̃
+ ∂

∂x j

[
ν̃∗∂∇ν̃

(
Sc + Sdi f f

)] = 0. (11c)

Furthermore, by calculating the gradient of Lagrangian, L, with respect to changes in forcing,
∂L
∂ fs,i

, one finds ∂L
∂ fs,i

= dJ
dfs,i

= U ∗
i . Specifically, this means the gradient dJ

dfs,i
used to set the minimiza-

tion direction for optimization is the solution to the adjoint equations (11).
As with the PINN-DA-SA, regularization is required to ensure uniqueness of the corrective

forcing. Furthermore, the measurements are sparse, inducing a pointwise forcing of the adjoint
momentum equations (11b) according to ∂J

∂Ui
= 2

∑Nm
m=1 δ(x − xm)[Ui(xm) − Um,i], which may lead

to discontinues in the adjoint field and in the gradient dJ
dfs,i

, and thus ultimately in the reconstructed
forcing and corresponding mean-flow solution. This can be circumvented through H1-like regular-
ization of the gradient, which consists in getting a smoothed gradient dJR

dfs
from the original gradient

dJ
dfs

through the inversion of the following system:

( 1
1+β

(I − β)◦ ∇◦
−∇ · ◦ 0

)(
dJR

dfs

π

)
=

(
dJ
dfs

0

)
, (12)

where β = l2
r and lr may be interpreted as a filter length. In the following, lr is chosen as the spacing

between measurement locations. Equation (12) also involves a pseudopressure field π which is
introduced to preserve the divergence-free character of the gradient through the regularization proce-
dure. A complete derivation and details of the variational approach can be found in Refs. [8,17,38].
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FIG. 2. High-fidelity (DNS) solution of the flow over a periodic hill compared with the RANS solution
using an SA model. The dividing streamline between the recirculation region and rest of the flow is shown.
(a) Streamwise mean velocity—DNS; (b) streamwise mean velocity—RANS; (c) absolute error of streamwise
velocity relative to DNS solution (Uerr = UDNS − URANS). For comparison, the DNS dividing streamline is
shown in gray.

It has to be noted that for high Reynolds numbers turbulent cases, the variational-based data
assimilation requires the use of the SA turbulence model augmentation to numerically solve the dis-
cretized equations, unlike the PINNs which work (albeit with different accuracy) with and without
the SA model. Previously, the laminar studies in Ref. [17] have not required this augmentation. To
distinguish this approach it shall be referred to as variational-DA-SA.

3. Comparison: PINNs versus variational assimilation

Equations (8) and (9) highlight the similarities as well as key differences between the variational-
DA-SA and PINN-DA approaches. First, while the variational-DA-SA directly adjusts the corrective
forcing, through the gradient dJ/dfs,i, the PINN-DA indirectly adjusts this forcing through adjust-
ment of the network parameters, θ . Second, by the nature of PINNs, a continuous mapping of the
flow solution is obtained, which can be queried at any spatial location. Additionally, the governing
equations are evaluated and enforced at discrete locations within the domain (collocation points) and
the spatial gradients in this mesh-free approach are determined through automatic differentiation. In
the variational-DA-SA approach, solution of the direct and adjoint equations introduces mesh de-
pendency, where the conservation laws are enforced across the entire domain, while spatial gradients
are calculated through discretization (here finite element method). As a result, discretization errors
are introduced, which are not present in PINNs. PINNs softly constrain the conservation laws in their
continuous form while these are hard constraints in their discrete form for the variational-DA-SA.
Last, the forcing regularization method applied to the two approaches are different. The PINN-DA
uses an L2-based regularization which was found to be sufficient to produce a smooth forcing
solution. However, for the variational-DA-SA, an L2 approach with pointwise data enforcement
leads to unsmooth, pointwise forcing, thus the use of a H1-based method, as discussed in Sec. II B 2.
Appendix B contains a detailed breakdown on the effect of regularization on PINNs and the effect
of different regularisers for the variational-DA-SA approach.

III. NUMERICAL SIMULATIONS AND MODEL SETUP

The PINN and variational approaches described above are applied to a canonical turbulent test
case, the flow over a periodic hill. This section will describe the details of the flow case and the
numerical setup of the two methods employed.

A. Periodic hill setup

The high-fidelity data for the periodic hill is obtained from the DNS database found in Ref. [39]
using the Incompact3D solver [40] and the simulation setup is detailed in Xiao et al. [41]. The
DNS mean-flow (time-averaged) solution, for streamwise velocity U is shown in Fig. 2(a). The
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FIG. 3. Turbulent periodic hill domain used for data assimilation, with L = 0.5 data resolution (green
crosses) used to compare the variational and PINN approaches. The collocation points, where the PINN
evaluates residual error, are in red and were sampled across the domain using a Hammersley distribution.

streamline (solution to the streamfunction) dividing the recirculation region from the rest of the flow
is also shown. The periodic hill is simulated at Re = UbH/ν = 5600, where H is the hill height,
Ub is the bulk velocity over the hill apex and ν the kinematic viscosity. Of the several geometric
configurations in the database, this work uses the canonical configuration with the domain length
given by Lx/H = 3.858α + 5.142 for which the hill stretch factor is α = 1.0. At this Reynolds
number, separation, recirculation and reattachment are present. The no-slip condition is enforced
along the upper and lower walls, while periodicity is enforced in the streamwise direction. To
maintain the required massflow and thus Reynolds number, body forcing is applied in the periodic
streamwise direction. This is determined at each iteration, such that the Reynolds number matches
the preset Reynolds number.

To analyze the effect of data resolution on mean-flow reconstruction accuracy, the high-fidelity
DNS data is spatially sampled on a square grid at nine data resolutions—0.05 � L � 1.0, where
L = x/H = y/H . All results and figures from here on will be compared to the results from
the L = 0.5 resolution, unless otherwise stated. The measurement locations are shown in Fig. 3.
The choice of a sparse square sampling grid represents a velocity field as measured using methods
such as laser Doppler velocimetry or PIV.

The low-fidelity RANS solution with the SA turbulence model is shown in Fig. 2(b). While
the DNS reattachment occurs at x/H = 0, the RANS solver massively overpredicts the size of the
recirculation region, as shown. The error field likewise, in Fig. 2(c), shows high error across the
entire domain.

B. PINN setup

The PINNs are implemented using the DeepXDE Python library by Lu et al. [42], as in Ref. [29].
This toolbox simplifies the process of building PINNs (with the Raissi et al. [22] paradigm). The
code and data to run the PINN cases from this paper are available at Ref. [43]. All PINNs use the
same architecture. The neural network was constructed as a multilayer perceptron with seven fully
connected hidden layers, each with 50 nodes. The input layer consists of two nodes, representing
spatial coordinates, x/H and y/H . The output layer consists of varying number of nodes depending
on the test case. The PINN initially contains five output nodes with two mean velocity components,
the combined mean pressure and potential forcing field, P − φ, and two solenoidal forcing nodes.
When the SA turbulence model augmentation was used, an additional output node is required for ν̃.
Each node used a tanh activation function for its smoothness and its second-order differentiability.
This architecture was deemed to perform well across a range of data resolutions. A grid search
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method was employed to find optimal hyperparameters (number of nodes and layers, activation
function and learning rate). The effect of hyperparameters on reconstruction accuracy are included
in Appendix C. For PINNs, the weights and biases defining the network are randomly initialized
using the Glorot uniform algorithm. This contrasts the variational-DA-SA approach, in which an
“initial guess” (the RANS-SA solution) was used, around which the system is initially linearized.

For PINN optimization, collocation points must be specified, to define where the governing laws
are evaluated. In this work, the PINNs use 10 000 collocations points which are distributed using
a Hammersely distribution, such that there are sufficient points across all regions of the domain.
This number of collocation points for the PINNs was selected after the reconstruction performance
showed little sensitivity to further increases of the number of points. An additional 1000 points were
distributed to the walls and periodic boundaries to enforce the boundary conditions. The collocation
points (and domain) are shown in Fig. 3. As in Ref. [29], a two-step optimization was used for
the PINNs. Initially an ADAM optimization is applied, followed by an L-BFGS-B phase. L-BFGS-
B is a quasi-Newton method and thus its convergence depends on the initial guess. By using an
ADAM optimiser first, one can reach an acceptable loss level to provide a good initial guess for the
L-BFGS-B optimiser. Details on PINN convergence are discussed further in Sec. IV A. The PINNs
were trained on one NVIDIA RTX 6000 GPU.

C. Modification to PINNs for Spalart-Allmaras augmentation

Using PINNs in combination with the SA turbulence model introduces additional complexity,
which require modifications to the neural network architecture and the problem formulation to
achieve convergence.

First, the SA transport equation contains 1
d2 terms in the production and destruction terms, where

d is the true wall distance, resulting in singularities at the wall, where d = 0. This is not a problem
for the finite element method (RANS and variational) where the residual is evaluated at a cell
center, which is not on the wall. For the PINN paradigm used, however, the governing equations are
evaluated exactly at the wall boundaries and so this leads to singularities and subsequently failure to
convergence. Consequently, the equation was reformulated by multiplying the SA equation with d2

to eliminate the singularity. This new formulation can be found in Appendix A 2. Problems arising
from singularities when used with PINNs have also been mentioned in Ref. [30].

The second change is to eliminate the effect of clipping negative values of ν̃. The negative SA
equation formulation used in the variational approach has distinct equations for positive and negative
ν̃ (detailed in Appendix A 1) to ensure the transport equation is continuous across both positive and
negative ν̃. The final eddy viscosity, νt , is then clipped at negative values of ν̃ and set to zero,
resulting in only positive values of νt . Convergence of the PINNs is improved when the complexity
caused by the discontinuity from clipping νt is removed. Thus, to enforce positive ν̃, the output of
the neural network is defined as

√
ν̃. A transformation is then applied to the output, squaring the

value, to produce a positive ν̃. This is shown in Fig. 1.

D. Variational assimilation setup

The solutions of the RANS-SA system (6) and its adjoint (11) are obtained through a finite-
element method (FEM) spatial discretization implemented in FreeFEM++ [44]. Contrary to the
presentation in Sec. II B 2, the adjoint model is obtained following a discrete adjoint approach,
where the Jacobian matrix that is associated to the RANS-SA equations is transposed. This
Jacobian matrix is also used to invert the nonlinear RANS-SA equations based on a Newton
method. Piecewise-linear functions that are enriched by bubble functions are used for velocity and
pseudoturbulent viscosity variables, while piecewise-linear functions are used for pressure. The
FEM is known to be unstable at high Reynolds numbers. Accordingly, both streamline-upwind
Petrov-Galerkin (SUPG) [8,45] and grad-div [46] formulations are here employed to stabilise the
method. A low-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [47] algorithm is used
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FIG. 4. Residual loss during optimization for (a) PINN-DA-Baseline, (b) PINN-DA-SA, and
(c) Variational-DA-SA. For PINN optimization (training), there are two distinct phases: the ADAM (stochastic
gradient descent based) optimization for 150 000 iterations followed by the L-BFGS-B phase.

to exploit the gradient dJR

dfs
from Eq. (12) to perform the minimization of the cost function J in

Eq. (1). As mentioned above, the first-guess for the optimization procedure is fs = 0, i.e., the
baseline solution of the RANS-SA equations. The full optimization procedure was carried out on
28 cores Intel Xeon Broadwell E5-2680v4, 2.4 GHz. The total number of degrees of freedom in
the RANS and adjoint simulations is around 2 × 105. Further details on the implementation of the
variational-DA-SA can be found in Refs. [8,38].

IV. RESULTS

We compare the mean-flow reconstruction from sparse mean velocity measurements for the
turbulent periodic hill case using three approaches: PINN-DA-Baseline (without turbulence model),
PINN-DA-SA (with SA), and variational-DA-SA (with SA). First, an evaluation of the PINN-DA-
Baseline approach is presented. Second, we will show that significant reduction in reconstruction
error is achieved by augmenting the PINN-DA-Baseline approach with the SA turbulence model
(PINN-DA-SA). Third, we compare it directly to the variational-DA-SA showing the increased
accuracy of the PINN-DA-SA relative to the variational-DA-SA.

To evaluate the mean-flow reconstruction accuracy, a volume weighted L2 error will be used and
is calculated as

ε2 =
√√√√ 1




N∑
n=1

δ
n

2∑
i=1

[
Un,i − Ûi(xn)

]2
, (13)

where 
 is the volume of the domain, δ
n is the cell volume of each point used to determine
the error (as defined by the DNS grid) and N is the number of points across the domain. Un,i is
the high-fidelity, DNS mean velocity at xn and Ûi(xn) is the corresponding reconstructed mean
velocity. The variational solution is interpolated onto the DNS grid using a linear interpolation
method. Additionally, the employed finite-element mesh corresponds to typical mesh sizes that are
close to those in DNS.

A. Optimization

Figure 4 shows the optimization convergence of the PINN-DAs (a,b) and the variational-DA-SA
approach (c). The PINN-DA loss convergence curve is decomposed into three loss components—
PDE residual, data error and boundary condition error. For PINN-DA-SA the additional loss
from the SA transport equation contributes also to the PDE loss. Each individual loss component
appearing in Eq. (8) was given initial weight values λ based on the relative magnitudes of the
flow variables. Thereafter, the weights were manually adjusted to find the combination with the
lowest loss, as compiled in Table I. The weight sensitivities are presented in Appendix C. During
the first phase of the training, ADAM optimization is performed for 150 000 iterations. The second
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TABLE I. Loss function weights used in PINN optimization. For PINN-DA-Baseline, the ν̃ and λR weights
can be ignored. Additionally, this regularization weight is only valid for the L = 0.5 data resolution. For other
resolutions, see Fig. 13.

Weight λP λD λB(Ui )-Wall λB(ν̃, fs,i )-Wall λB-Periodic λR

Value 1 10 2.5 10 1 0.01

phase applies L-BFGS-B optimization for 300 000 iterations or until the model has sufficiently
converged to the floating point tolerance. Figures 4(a) and 4(b) shows that during optimization (for
both PINN-DA methodologies), the ADAM phase reduces loss from the high value caused by the
initial randomized state to approximately 10−3. During the ADAM optimization phase, one can
observe frequent jumps in the loss. This is an effect of the adaptive step size used in ADAM. The
step size is inversely proportional to the exponential average of squared (loss) gradient (as described
in Ref. [48]). As the loss flattens out, the adaptive step size becomes very large, causing the model to
“jump” too far to a higher loss level. The L-BFGS-B phase is then used to fine tune the optimization,
reducing total loss to below 10−5.

The convergence of the variational-DA-SA, seen in Fig. 4(c) shows the data loss, corresponding
to J/Nm, where J is defined in Eq. (1). This data loss is equivalent to the corresponding curves
in Figs. 4(a) and 4(b). While convergent, the data loss is an order of magnitude higher for the
variational-DA-SA compared with the PINN-DAs. While there is a vast difference in number of
iterations between the PINN and variational approaches, an iteration is not equivalent across both
methods. For PINNs, a single iteration involves evaluating the PINN at all collocation and data
points, calculating the cost function and back-propagating the loss to update the model weights (and
thus indirectly the flow solution). For the variational approach, in each iteration the direct and adjoint
equations are solved after which the forcing solution is directly updated. An average PINN iteration
takes approximately 0.84 s/iteration, while for the variational approach this is approximately
55 s/iteration. This difference in computational cost can be attributed to computational complexity,
more mesh points in the variational method (than PINN collocation points), reduced number of
degrees of freedom in the neural network (updating only weights and biases instead of the actual
solution across the domain) and hardware.

B. PINN-DA-Baseline

Here, the PINN-DA-Baseline approach is applied to reconstruct the mean-flow velocity field
when coarse mean-flow velocity data is available with spacing L = 0.5. This is compared against
the DNS and RANS-SA velocity profiles in Fig. 5. The data assimilation of the high-fidelity
measurements has improved the prediction of the velocity field compared to RANS-SA. The total

FIG. 5. Streamwise velocity profiles for DNS, RANS-SA and PINN-DA-Baseline.
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FIG. 6. Reconstructed U velocity component for the PINN-DA-Baseline (left), PINN-DA-SA (middle),
variational-DA-SA (right) approaches. (a)–(c) U reconstruction. (d)–(f) Absolute U error. PINN-DA-SA
performs best, significantly reducing the separation error seen in other approaches, while also reducing the near
wall error seen in PINN-DA-Baseline. The dividing streamline (separating the recirculation region) is shown in
panels (a)–(c) and compared with the DNS equivalent (in gray). While the PINN-DA-SA recirculation region is
indistinguishable, there is a small but noticeable difference for the PINN-DA-Baseline and variational-DA-SA
solutions.

mean velocity L2 error is 3.60 × 10−2 instead of the 8.99 × 10−2 error from RANS-SA. High
accuracy of reconstruction is observed in the bulk flow domain. However, high mean velocity
reconstruction error is observed in areas with high velocity gradients, such as near the walls and
at separation. This is most apparent at the upper wall boundary layer. This near wall error accounts
for over 40% of the total L2 error as the PINN-DA-Baseline fails to accurately capture high-gradient
flow features. These trends are highlighted in the streamwise velocity contours in Figs. 6(a)
and 6(d). At data points, the PINN-DA-Baseline reproduces the measurements accurately. Further-
more, in spite of the higher near-wall reconstruction errors, Fig. 6(a) shows improved reconstruction
of the recirculation bubble, even with limited data in this area. This is most noticeable when
comparing the PINN-DA-Baseline bubble from Fig. 6(a) with the RANS bubble in Fig. 2(b). The
provision of sparse high-fidelity datapoints in the PINN-DA-Baseline approach has enabled better
prediction of the shape of the recirculation region. However, the error field makes the limitation of
the PINN-DA-Baseline approach more apparent, with the near wall errors particularly noticeable.

The results of PINN-DA-Baseline show that the methodology used in Ref. [29] for laminar flow
can also be used for turbulent flows. In Ref. [29], the base formulation of the RANS equations [as
in Eq. (2)] was also tested. It was shown that by providing data for both first-order (mean velocity)
and second-order (Reynolds stresses) statistics, the PINN-DA-Baseline was able to reconstruct the
pressure field for the laminar case. This approach has been demonstrated in Appendix D. With
similar mean velocity reconstruction accuracy, this second approach was also able to infer the
pressure field for this turbulent case.

C. PINN-DA-SA

This section contains results from the augmentation of the SA model to PINNs. First, a com-
parison between the PINN-DA-Baseline and PINN-DA-SA results will be presented, followed by
a discussion on the improved reconstruction when the SA model is used. Finally, the results of
the variational data assimilation using SA (variational-DA-SA) are also presented, followed by a
parametric analysis of the data resolution.
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1. PINN-DA-SA versus PINN-DA-Baseline

Figures 6(a) and 6(d) show the PINN-DA-Baseline and Figs. 6(b) and 6(e) the PINN-DA-SA
reconstruction results. Streamwise velocity and error contours relative to the DNS solution are
shown, with similar trends holding for the vertical velocity component (not shown here). While
the error field topologies are qualitatively similar, the magnitude error is significantly reduced.
For PINN-DA-SA, the recirculation bubble is almost indistinguishable from the DNS one. As a
consequence of introducing the Spalart-Allmaras model, reconstruction error has reduced by 63%
(ε2 = 1.35 × 10−2). For the bulk flow region above the hills and away from the walls (between
y/H = 1.5 and y/H = 2.5) and at datapoints, the PINN-DA-SA and PINN-DA-Baseline show
similarly low reconstruction errors. This is expected in this region given the lack of mean shear
and production of turbulent kinetic energy.

Comparing the PINN-DA-Baseline error against the PINN-DA-SA highlights the effect of
augmenting the PINN with the SA turbulence model. The high mean-flow error along the upper
wall has largely reduced indicating that use of the SA model has enabled a better reconstruction
of the near-wall region. There are also similarly significant improvements along the lower wall
both at separation but also after reattachment. The improvements of PINN-DA-SA compared to
PINN-DA-Baseline corroborate well with the original design purpose and performance of the SA
turbulence model, which shows improved performance for turbulent boundary layers in adverse
pressure gradients.

2. Why PINN-DA-SA?

To understand the difference in performance between PINN-DA-Baseline and PINN-DA-SA,
we examine the individual terms of the cost function, C, for each approach. This consists of the
measurement error term (data loss) and the enforcement of the governing equations (PDE loss).

First, we examine the data loss component. Inspection of Fig. 6(d) reveals that the PINN-
DA-Baseline reconstructs the mean velocity measurements accurately. This is comparable to the
performance of the PINN-DA-SA, with the convergence plots in Figs. 4(a) and 4(b) showing
similar converged data loss values. Away from the data points, the reconstruction error increases
substantially for the PINN-DA-Baseline. This is most apparent along the upper wall where a high
error region exists above the data at y/H = 2.5. Given that the reconstruction error is low at the data
points for PINN-DA-Baseline (and also similar to PINN-DA-SA), further decrease of the error to
measurements, J , does not reduce the mean velocity error away from datapoints, where most of the
reconstruction error lies.

Second, one can consider the other component of the cost function, the residual PDE error.
Figure 7(a) shows the PINN-DA-Baseline momentum residual error (for x- and y-momentum
equations). The PDE residual error contour shows that there is a limited correlation between
mean velocity reconstruction error and residual error from the conservation laws—most apparent
along the upper and lower walls. A similar analysis for the PINN-DA-SA corroborates this trend
[Fig. 7(b)]. The total residual PDE loss from both PINN-DA-Baseline and PINN-DA-SA (seen in
Fig. 4) are of similar magnitudes (approx. 10−5) and the residual PDE fields are comparable, despite
the significant differences in reconstruction accuracy between the two PINN-DA approaches. This
indicates that further reduction in the residual PDE error does not lead to increase in reduction in
reconstruction error and thus cannot be attributed as the cause of the difference between PINN-DA-
Baseline and PINN-DA-SA.

The difference between PINN-DA-Baseline and PINN-DA-SA can be consequently attributed to
the effect of the turbulence model augmentation. Due to the unclosed (underdetermined) nature of
the RANS equations, there are infinite solutions to the forcing (divergence of Reynolds stress tensor)
in the mean-flow equations. Providing high-fidelity data measurements “anchors” the PINN-DA
solution at these discrete data points. However, away from them, there are still many candidate
solutions to the mean flow, as the governing equations are still underdetermined. These solutions all
satisfy the governing equations and thus all have low residual PDE error. There are consequently
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FIG. 7. PDE residual error (x-momentum and y-momentum). (a) PINN-DA-Baseline and (b) PINN-DA-
SA. The residual error between approaches are comparable despite the considerable improvements in mean
velocity reconstruction error demonstrated by the PINN-DA-SA.

no terms within the optimized cost function [Eq. (8)] that can be minimized further, to reduce
the mean velocity reconstruction error across the domain for PINN-DA-Baseline. The current
optimization for PINN-DA-Baseline is converged towards a solution that obeys the underdetermined
RANS equations. This is also briefly mentioned in Foures et al. [17]. The SA model adds physics
constraints that limit further the infinite number of admissible solutions far from the measurement
points and as a direct consequence lead to improved reconstruction.

3. Variational-DA-SA results and comparison with PINNs

The PINN-DA-SA can be directly compared to the variational-DA-SA, which also uses SA
augmentation, since both methods use the same data and physics constraints. Figures 6(c)
and 6(f) show the reconstructed mean streamwise velocity and the respective absolute error for
the variational-DA-SA. As with all the data assimilation results presented, the key flow features
(separation, recirculation bubble and reattachment) are well reconstructed. As with both PINN-DA
methodologies, the variational-DA-SA reconstructs the shape of the recirculation bubble more
accurately than the RANS-SA, despite the limited measurements in this region. The reconstruction
error matches the features seen in the PINN-DA results as well as in Ref. [17], with high error
between data points, near walls, and at the initial separation.

The key feature seen in the comparison between variational-DA-SA and PINN-DA-SA is that the
latter has demonstrably lower error across all regions of flow. The highest reduction in error in the
PINN-DA-SA is observed in the region between hills (y/H � 1.0), specifically the recirculation
and separation. While all approaches have topologically similar error fields (such as the initial
separation), the PINN-DA-SA demonstrates a vastly reduced error. At data points, the reconstruction
error is much lower for PINN-DA approaches than the variational-DA-SA. Figure 4 shows that the
PINN-DA’s have measurement error of the order of 10−7 while the variational-DA-SA is 10−5. The
relative performance of the variational-DA-SA and PINN-DA-SA compared with both RANS-SA
and the DNS flow can be summarized in the velocity profiles in Fig. 8. While both data assimilation
methods represent a significant improvement over a RANS-SA simulation, the PINN-DA-SA is
almost identical to the DNS results, while small discrepancies are still more apparent for the
variational-DA-SA.

Comparing both PINN-DA-SA and variational-DA-SA to PINN-DA-Baseline show that appli-
cation of SA has been successfully used to reduce error for near-wall gradients, as a result of the
additional physical description provided by the turbulence model. The specific choice of turbulence
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FIG. 8. Mean-flow reconstruction of streamwise velocity profiles for DNS, RANS-SA, PINN-DA-SA, and
variational-DA-SA.

model (SA) is also a contributing factor, given the aforementioned good performance in boundary
layers with adverse pressure gradients.

The lower reconstruction error of the PINN-DA-SA approach compared to the variational-DA-
SA approach has been confirmed also for the laminar case, in the absence of the SA model. The test
case for this was the unsteady cylinder flow at low Reynolds numbers. Appendix E includes details
on the laminar flow case, followed by a comparison of results.

4. Forcing fields

The inferred forcing given by Eq. (5) consists of solenoidal and modeled eddy viscosity (SA
contribution) components. For PINN-DA-Baseline, the modeled eddy viscosity component is zero.
A further analysis of the forcing terms allows isolation of the effect of SA in the accurate recon-
struction of the mean-flow field.

The PINN-DA-Baseline and PINN-DA-SA forcing fields shown in Fig. 9 are qualitatively similar
in the uniform flow region between y/H = 1.5 and y/H = 2.5, where turbulent production is low.
However, the regions of the flow where PINN-DA-Baseline shows high levels of error [as seen in
Fig. 6(d)] result in larger forcing changes in the PINN-DA-SA solution. Introduction of a modeled
component (via SA) has led to significant changes in the corrective forcing, most notably at the
separation but also near the walls. These changes underpin the differences in reconstruction error
between PINN-DA-Baseline and PINN-DA-SA. Constraining the solution with additional physical
definition (via SA) has provided additional modeled forcing in regions where data-assimilation
methods with the underdetermined RANS had the highest errors. While the PINN-DA-Baseline
had converged to a poor solution, the PINN-DA-SA has reduced the “amount” of underdetermined
forcing resulting in lower reconstruction errors. However, the addition of the corrective term, which
is still unclosed, has allowed the data-assimilation approach to correct the SA model.

The PINN-DA-SA forcing is different to the variational-DA-SA forcing, in accordance with
the differences in mean-flow reconstruction. In general, the PINN-DA-SA forcing is closer to
the variational-DA-SA forcing than the PINN-DA-Baseline forcing. However, there are several
differences in forcing, appearing in regions with the largest differences in reconstruction. This is
most apparent in the significantly less smooth forcing around the separation in the variational-
DA-SA forcing compared to PINN-DA-SA. The variational-DA-SA also exhibits a high forcing
concentration in f2 forcing along the rear hill, centered around a datapoint. This datapoint (in the
L = 0.5 case) has shown to be particularly sensitive. While the gradient regularization procedure
employed in the variational approach ensures that each update of forcing is smooth, it does not
guarantee that the accumulation of updates and thus the final forcing will also be smooth. While
other regularization strategies were investigated (see Appendix B 2), they led to poorer reconstructed
mean velocity fields.
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FIG. 9. A breakdown of the Reynolds forcing (excluding the potential field) f1 (left) and f2 (right) from
the different methodologies: fi = ∂ (2νt Si j )

∂x j
+ fs,i. For PINN-DA-Baseline, νt = 0. These are (a), (b) PINN-DA-

Baseline, (c), (d) PINN-DA-SA, (e), (f) Variational-DA-SA.

To evaluate the accuracy of the data assimilation methods, the forcing is also compared with
the true DNS forcing. As the potential forcing field is absorbed into the pressure term and thus
is inseparable, we instead compare the curl of forcing, to remove the contribution of the potential
forcing (since ∇ × ∇φ) = 0),

(∇ × f )3 = ∂ fs,2

∂x
− ∂ fs,1

∂y
+

(
∂2

∂x2
− ∂2

∂y2

)
2νt S12 + ∂2

∂x∂y
[2νt (S22 − S11)]. (14)

A direct comparison can be performed then against the curl of the DNS forcing,

(∇ × f )3 = ∂ f2

∂x
− ∂ f1

∂y
=

(
∂2

∂x2
− ∂2

∂y2

)
u′v′ + ∂2

∂x∂y
(v′v′ − u′u′). (15)
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FIG. 10. ∇ × f . Comparison of curl (f) between the ground truth (DNS) and the different data assimilation
techniques presented in this paper. (a) DNS, (b) PINN-DA-Baseline, (c) PINN-DA-SA, (d) Variational-DA-SA.

The curl of the inferred forcing for all three reconstruction methods employed here is shown in
Fig. 10. Best agreement with the DNS is achieved for PINN-DA-SA, which aligns with the most ac-
curate mean-flow reconstruction. The PINN-DA-Baseline differs from DNS in several key regions -
the initial separation, the recirculation, the rearward hill apex and along the walls.

Differences between the variational-DA-SA and PINN-DA-SA forcing (and curl) correlate with
differences in the error fields. These are most apparent at the separation region and along the upper
and lower walls.

5. Data assimilation with varying data resolution

Here, we evaluate the dependence of the reconstruction error on the data resolution of the avail-
able high-fidelity measurements. In Fig. 11, we compare variational-DA-SA, PINN-DA-Baseline
and PINN-DA-SA approaches, for a range of data-resolutions, ranging from L = 0.05 to L =
1.0. The reconstruction error increases monotonically as the (equidistant/square) spacing between
data points increases. All data assimilation methods improve the RANS-SA solution, irrespective
of resolution. For data spacing L < 1, the turbulence model augmented PINN-DA-SA method
achieves the lowest reconstruction error against all the other methods. Additionally, while the
L = 0.8 has not converged as well for the variational-DA-SA approach, the reconstruction error
remains close to the neighboring points.
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FIG. 11. Volume-weighted L2 mean velocity reconstruction error [as defined in Eq. (13)] versus data
resolution for the three reconstruction methodologies (solid lines with symbols). All three approaches improve
the RANS-SA predictions (dashed line).

Comparing the PINN-DA-Baseline to the PINN-DA-SA results shows the significant improve-
ment achieved through the turbulence model augmentation. The gap between the two can mostly be
attributed to the error near the walls and in the separation. Additionally, the rate of error increase
with respect to data resolution is steeper for PINN-DA-Baseline. This suggests adding a modeled
(closed) forcing component (i.e., PINN-DA-SA) reduces the effect coarsening data resolution has
on reconstruction accuracy compared to PINN-DA-Baseline. As data resolution becomes finer, the
two PINN-DA approaches converge. This is expected—as more data is provided, there are more
points at which the PINN-DA-Baseline can close the solution and thus the advantage the turbulence
model augmentation provides is diminished.

Comparing the PINN-DA-SA versus the variational-DA-SA solution shows that, for most of
the resolution range, the PINN-DA-SA also demonstrates consistently lower error at equivalent
resolutions. In fact, the PINN-DA-SA at L = 0.8 matches the reconstruction accuracy of the
variational-DA-SA at L = 0.3. However, at the extreme end of coarse data (L = 1.0), while the
PINN-DA-SA is still a significant improvement over the PINN-DA-Baseline (and also RANS-SA),
the variational-DA-SA approach has a lower reconstruction error. This suggests that the PINNs
have a greater dependence on data for good performance. As data resolution reduces (spacing
increases), the optimization problem converges to solving the direct RANS-SA problem, for which
the numerical framework within the variational-DA-SA method is more robust, i.e., PINNs are
less effective forward solvers. Algorithmic improvements for PINNs, including adaptive weighting
algorithms, can potentially provide further improvements of the PINN approach (as demonstrated
by Ref. [49]), which is currently under investigation. On the opposite end, for fine data resolutions,
the variational-DA-SA is less accurate than the PINN-DA-Baseline.

One may attribute the difference between the reconstruction accuracy of the PINN-DA-SA and
variational-DA-SA to the differences in the way the RANS equations are enforced in the data
assimilation procedure. Concerning the variational-DA-SA approach, it may be first noticed that
the latter solves for only the weak form of the RANS equations, following the finite-element
approach. In addition, as mentioned in Sec. III D, stabilization terms are added in the governing
equations. Then there is the process of spatial discretization through, among others, the choice of
shape functions, which will determine the order of spatial accuracy. In contrast, PINNs enforce
the RANS equations in their original, strong formulation, and in a continuous way. Moreover, the
effect of applying discrete pointwise forcing at measurement locations poses a greater challenge
for the variational approach than PINNs and thus the method of regularization has a greater
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impact on reconstruction performance. Appendix B 2 contains analysis of regularization choice. By
avoiding both these sources of error, PINN-DA-SA achieves a lower reconstruction error than the
variational-DA-SA. This is evidenced by the reconstruction error for finer data resolutions. Even
as data resolution increases, the aforementioned discretization error remains. Consequently, the
reconstruction error of the variational-DA-SA reduces at a much slower rate than both PINN-DAs.

V. CONCLUSION

Three approaches to turbulent mean-flow reconstruction from sparse data measurements have
been presented and compared. First, it was shown that for all methods, inferring the closure of
the underdetermined RANS equations or the corrective closure of the RANS-SA equations by
assimilating high-fidelity sparse data improved the mean-flow reconstruction compared to RANS-
SA predictions.

Second, the use of Spalart-Allmaras turbulence model, as used in Ref. [8] (in the variational-DA-
SA approach) was proposed for use in PINNs, particularly in the context of turbulent flows. The SA
turbulence model augmented PINN (PINN-DA-SA) proved to be the most accurate flow reconstruc-
tion method followed by the equivalent approach albeit with a variational formulation. Comparing
the PINN-DA-Baseline (PINN without turbulence SA model) with PINN-DA-SA showed the
isolated effect of turbulence model augmentation. The PINN-DA-SA performs significantly better
in regions with complex flow features, such as near walls and at separation. Injection of additional
physical constraints in the form of a turbulence model provides an additional modeled component to
the underdetermined Reynolds forcing, reducing the complexity of the optimization and narrowing
the solution space for the optimization. A corrective forcing term is then tuned to correct the rest of
the closure.

Third, the variational-DA-SA approach, while an improvement over the PINN-DA-Baseline, has
higher errors compared to the PINN-DA-SA, most notably off the separation. These observations
for mean-flow reconstruction accuracy are also associated with equivalent error in Reynolds forcing.
The difference in variational-DA-SA and PINN-DA-SA can be attributed to the effect of discretiza-
tion, which is avoided by PINNs. These observations are consistent across different data resolutions.

Given that PINNs is a growing field of research, there are potentially many avenues to improve
the reconstruction capability further. The most apparent example is hyperparameter tuning, such
as loss weighting. In this study, a static weighting method was used with manual iterations to
tune them. This is a laborious exercise, particularly as systems become more complex with more
boundary conditions and less uniform topologies. Adaptive weighting algorithms [49–51] or novel
architectures, such as Competitive PINNs [52], would both simplify this problem and also generalize
the process to selecting weights. This has been demonstrated in Appendix C.

The code and data to run the PINN cases presented here are available at Ref. [43].

APPENDIX A: SPALART-ALLMARAS EQUATIONS

The full definition of the SA transport equations, as mentioned in Eq. (6), is described here.

1. Formulation of Spalart-Allmaras equations

The Spalart-Allmaras equations are solved for ν̃. Then, the eddy viscosity, νt , is obtained as

νt =
{

0 if ν̃ < 0,

fv1ν̃ if ν̃ � 0,
(A1)
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where

fv1 = χ3

χ3 + c3
v1

, χ = ν̃

ν
. (A2)

The SA transport equation takes the form

Uj
∂ν̃

∂x j
− Sp − Sdiff − Sc − Sd = 0, (A3)

where Sp, Sdiff, Sc, Sd are production, diffusion, cross-diffusion, and destruction terms, respectively.
These are defined as

Sp =
{

cb1Sν̃gn if ν̃ < 0,

cb1S̃ν̃ if ν̃ � 0,
Sd =

{
cw1

ν̃2

d2 if ν̃ < 0,

−cw1 fw
ν̃2

d2 if ν̃ � 0,

Sdiff = 1

σ
∇ · (η∇ν̃) = 1

σ

(
η
∂2ν̃

∂x2
j

+ ∂η

∂x j

∂ν̃

∂x j

)
, Sc = cb2

σ
‖∇ν̃‖2 = cb2

σ

(
∂ν̃

∂x j

)2

, (A4)

where the auxiliary functions and constants are defined as

η =
{
ν
(
1 + χ + 1

2χ2
)

if ν̃ < 0,

ν(1 + χ ) if ν̃ � 0,
S′ = ‖∇ × U‖, S =

√
S′2 + M2 − M,

S = ν̃ fv2

κ2d2
, fv2 = 1 − χ

1 + χ fv1
, S̃ = max(10−10, S + S),

r′ = ν̃

S̃κ2d2
, r =

{
r′ if 0 � r′ � 10,

0 otherwise, g = r + cw2(r6 − r),

fw = g

(
1 + c6

w3

g6 + c6
w3

) 1
6

, gn = 1 − 1000χ2

1 + χ2
. (A5)

The constants in the SA transport equations are cv1 = 7.1, cv2 = 0.7, cv1 = 0.9, κ = 0.41, σ = 2
3 ,

cb1 = 0.1355, cb2 = 0.622, cw1 = cb1
κ2 + 1+cb2

σ
, cw2 = 0.3, cw3 = 2, M = 10−5.

2. Wall-distance multiplied Spalart-Allmaras equations

To remove singularities, which cause problems for the PINN-DA-SA formulation at points
evaluated at (or near) the wall (as discussed in Sec. III C), the modified SA equations take the
form

d2

(
Uj

∂ν̃

∂x j
− Sdiff − Sc

)
− SN

p − SN
d = 0, (A6)

where SN
p , SN

d are new modified production and destruction terms, respectively. These are defined as

SN
p = d2Sp =

{
cb1SN ν̃gn if ν̃ < 0,

cb1S̃N ν̃ if ν̃ � 0,
SN

d = d2Sd =
{

cw1ν̃
2 if ν̃ < 0,

−cw1 fw ν̃2 if ν̃ � 0.
(A7)

The modified auxiliary functions are thus

SN = d2S = d2(
√

S′2 + M2 − M ), S
N = d2S = ν̃ fv2

κ2
,

S̃N = d2S̃ = max(10−10, d2(S + S)) = max(10−10, SN + S
N

), r′ = ν̃

S̃Nκ2
. (A8)
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FIG. 12. Effect of regularization parameter (solenoidal forcing magnitude penalization), λR on PINN-SA
solution for ν̃. ν̃ for increasing λR compared with the RANS-SA ν̃ shows that increasing regularization causes
eddy viscosity to converge towards the RANS solution. The presented values of λR are 10−8, 10−4, 100 left to
right.

APPENDIX B: EFFECT OF REGULARIZATION ON DATA ASSIMILATION TECHNIQUES

As mentioned in Sec. II B, the forcing decomposition between modeled and corrective parts is
not unique and thus the regularization of corrective forcing is critical. This section will show the
effect of regularization for both PINN-DA and variational approaches and highlight its importance.

1. Effect of solenoidal forcing regularization on PINNs

For PINN-DA-SA, an L2 penalization of the solenoidal forcing magnitude was applied. During
PINN-DA-SA hyperparameter tuning, it was found that the final solution was strongly influenced by
the regularization of solenoidal forcing. Clearly as regularization weight, λR, increases, the magni-
tude of solenoidal forcing is penalized more and thus there is a greater dependence on the modeled
eddy viscosity forcing component. In effect, the greater the value of λ, the closer the governing
equations tend towards a pure RANS-SA problem. However, for the PINN-DA, enforcement of
data loss at measurement points results in differences. This is demonstrated in Fig. 12. As solenoidal
forcing magnitude is penalized more and more, the solution tends towards RANS-SA. However, this
is an imperfect solution as the PINN-DA-SA is attempting to fit high-fidelity (mean) DNS data to
the RANS-SA equations. This is most notable at the point around the rear hill apex. As a result, the
residual PDE loss begins to increase at very high λR. However, without penalization (λR = 0), the
PINN-DA-SA solution tends towards the PINN-DA-Baseline solution with a negligible contribution
from the eddy viscosity component (ν̃ ≈ 0).

As the data coarsens, and thus the dependence on data reduces, the requirement for a modeled
component becomes more important, as the corrective Reynolds forcing can be closed at fewer
points using data. Less data means the solution will move closer to a RANS-SA solution. As a result,
the coarser the data, the greater the value for the optimal λ∗, as the modeled forcing component
becomes a greater component of the forcing. This is seen in Fig. 13.

2. Importance of regularization for variational DA

For the variational DA, the choice of regularization (of solenoidal forcing fs,i) was more
important. Three approaches were trialed: no regularization; L2 regularization; H1 regularization.

First, without regularization, while data is well enforced [as seen in Fig. 14(a)] even compared
with the final H1 based approach, it results in a nonphysical solenoidal forcing that appears strongly
pointwise, clearly seen in Fig. 14(d), as large corrections are applied at the data locations. The final
reconstruction is thus less physical. Additionally, regularization is needed to enforce convergence
to a unique decomposition.

For the L2 regularization approach, error is higher than either H1 or no regularization methods.
This is due to the inefficiency of the approach in the variational framework. To achieve sufficient
smoothing of the solution, avoiding the problems of the none regularized approach, very large
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FIG. 13. The optimized regularization parameter, λR,∗, with respect to data resolution.

penalization weighting is needing. However, this comes at the cost of poor data enforcement, as
seen in Fig. 14(b).

For the variational-DA-SA, H1 regularization was selected to smooth out the solution. As
demonstrated, for the variational approach, H1 regularization is a much more suitable approach.
It allows much better matching of the data (as compared with L2 regularization), while also giving
a more physical solution. As a result this was selected as the final regularization method.

For PINN-DA-SA, good data enforcement and a smooth nonpointwise solenoidal forcing was
always ensured. Regularization is exclusively used to control the distribution between modeled and
corrective forcing. Given its computational simplicity, L2 was selected for PINN-DA-SA. This was
not the case for variational-DA-SA and regularization was needed to smooth the solution in addition
to the distribution of modeled and corrective forcing.

FIG. 14. Absolute U error (a)–(c) and corrective solenoidal forcing, ‖ fs,i‖, (d)–(f) for variational-DA-SA
method using different regularization approaches: No regularization (left), L2 regularization (middle) and H1

regularization (right).
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TABLE II. Sensitivity of final model loss function, C, to activation functions and learning rate on a model
with seven layers and 50 nodes/layer relative to final choice (tanh and 5 × 10−4 learning rate).

Activation functions Learning rate (with tanh activation)

tanh ReLU sin ELU L-LAAF tanh 1 × 10−3 5 × 10−4 1 × 10−4

– +55.4% +9.1% +69.3% +5.1% −1.3% – +3.6%

APPENDIX C: HYPERPARAMETER AND LOSS WEIGHT SELECTION

1. Tuning the model with a grid search approach

To select hyperparameters (model architecture, activation function and learning rate) and loss
weighting, a grid search method was used. Tables II and III, show the sensitivity of final model loss
to hyperparameters. From these results, the architecture, as discussed in Sec. III B, was selected. A
similar analysis was completed for the loss weighting. A summary of the key results are shown in
Table IV. Repeats of the final model were found to converge within 3.0% of the loss presented in
Sec. IV A (after three repetitions).

A tanh activation was selected due to the lowest value of cost function. While an initial learning
rate of 1 × 10−3 demonstrated a slightly lower final loss value, this model was less repeatable
than the chosen learning rate (5 × 10−4). Similarly, the model architecture (nodes and layers) was
selected for demonstrating the lowest final loss value. While adding more layers and nodes performs
similarly, the additional model complexity increases computational cost.

2. Alternative tuning methodologies

While a grid search approach was used to tune hyperparameters in this work, there have been
many papers investigating the use of more robust methods. In this section, two approaches are
investigated: adaptive activation functions and adaptive weights.

Adaptive activation functions, such as the layerwise locally adaptive activation function
(L-LAAF) proposed in Ref. [53], have shown promise at both accelerating convergence of PINNs,
as well as improving model accuracy. For every layer, L-LAAF introduces a learnable tuning
parameter, a into the activation function to scale its gradient:

σ ∗(x) = σ (ax), (C1)

where σ ∗, σ are the adaptive and base activation functions, respectively, and x is some input into
the activation function. The effect of applying L-LAAF (with tanh) to the periodic hill problem
is presented in Table II and Fig. 15(a). For this problem, there was a minimal effect on the
converged loss value. There does appear to be some improvement in the ‘spikiness’ seen in the
initial ADAM phase. However, during the second, long L-BFGS-B phase, this is no longer seen and
the convergence speed is almost identical.

TABLE III. Sensitivity on final model loss function, C, to architecture parameters (number of layers and
nodes) relative to final architecture (7 layers, 50 nodes).

Number of layers

5 6 7 8 9

25 +19.7% +15.6% +9.9% +7.5% +5.2%
Number of nodes/layer 50 +7.4% +5.7% – +2.8% +2.6%

75 +6.3% +5.5% +2.8% +4.7% +6.3%
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TABLE IV. Sensitivity on final model loss function, C, to perturbations on weights from Table I.

λP λD λB

×10 ×0.1 ×10 ×0.1 ×10 ×0.1

+4.7% +8.6% +3.8% +9.3% +1.6% +7.2%

Adaptive weighting algorithms have been an increasingly promising area of research to make
robust and reduce the difficulty of model weight tuning process. This is a particular challenge for
PINNs, where there are often many loss terms in the equations. Figure 15(b) demonstrates the
advantage of using the adaptive loss weighting algorithm, as implemented in Ref. [29]. While the
difference in the final loss between the model with optimized weights (from Table I) and the model
with adaptive weighting is minimal, the latter of these avoids all the intermediate grid-search steps
used to find and select the optimal weights. This massively reduces the computational cost of finding
the correct weighting and is thus the recommended approach moving forward.

APPENDIX D: RECONSTRUCTING PRESSURE WITH PINN-DA-BASELINE

Instead of applying the Helmholtz decomposition (4) with the PINN-DA-Baseline, as in
Sec. IV B, one can alternatively enforce the base RANS equations as presented in Eq. (2), using both
high-fidelity first-order statistics (mean-flow) and second-order statistics (Reynolds stress) (Ui, u′

iu
′
j)

at discrete locations to reconstruct the flow field. This approach enables reconstruction of both mean
velocity and Reynolds stresses fields but also allows the inference of the pressure field. The weights
used to train this model are compiled in Table V.

Using the data spacing L = 0.5, shows that this alternate PINN-Baseline approach produces
comparable mean velocity reconstruction as the PINN-DA-Baseline, as seen in Fig. 16(a). The L2

error is 3.37 × 10−2 for this second approach compared with 3.60 × 10−2 for the former approach.
Likewise the key trends discussed in Sec. IV B all still hold. However, this alternate formulation has
more output variables and fewer equations when compared to the approach used in the main paper.

Although both approaches achieve similar reconstruction error, this second approach requires
second-order statistics (Reynolds stress measurements) along with first-order ones (mean-flow
field). However, this formulation can be used to reconstruct the pressure field, as shown before
for laminar cases [29]. This is demonstrated in the turbulent case, as seen in Figs. 16(b) and 16(c).
This has a high potential for practical applications to obtain the pressure field without performing
intrusive measurements. Examination of the RANS equations (2) shows how provision of mean

FIG. 15. Comparing the effect of convergence for PINN-DA-SA by applying (a) layerwise locally adaptive
activation functions (L-LAAF) (b) an adaptive loss weighting algorithm.
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TABLE V. Weights used in PINN optimization when both mean velocity and Reynolds stress data are
provided.

Weight λP λD(Ui ) λD(u′
iu

′
j ) λB(Ui )-Wall λB(u′

iu
′
j )-Wall λB-Periodic

Value 1 10 100 2.5 10 1

velocity and Reynolds stress data at discrete points defines all terms in the equations except for
the pressure term. At these measurement locations, the equations are closed and the resultant neural
network can infer a pressure field, both at data points but also away from them as well. This resultant
pressure field has highest reconstruction error in the regions with highest pressure gradients in
the flow, matching the trend seen with mean velocity error. The pressure reconstruction error is
less correlated with the location of data points, than the mean velocity. It should be highlighted
that the neural network pressure output must also include an integration constant (as the RANS
equations only contain derivatives of pressure). To determine this constant and recover the actual,
unshifted pressure field, one needs to fix the pressure at one point. This can be done during training
(by providing pressure data at a single point) or as in this case, the pressure field is shifted in post
processing. Taking the pressure data at a singular point, one can find a constant, such that by adding
it to the model pressure at that point, the predicted pressure exactly matches the measurement. This
constant can then be applied to the full solution.

APPENDIX E: LAMINAR CYLINDER FLOW

Both the variational-DA [17] and PINN-DA-Baseline [29] techniques (without the use of tur-
bulence model augmentation) have already been successfully demonstrated on a laminar circular

FIG. 16. PINN-DA-Baseline mean-flow reconstruction. (a) Comparison between the DNS, PINN-DA-
Baseline and PINN-DA-Baseline (with Reynolds stress data) velocity profiles for the U component.
(b) Pressure field inferred from the PINN-DA-Baseline approach from sparse mean velocity and Reynolds
stress data. (c) Absolute mean pressure error from PINN-DA-Baseline pressure reconstruction.
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FIG. 17. Comparison of the U (x-component) mean velocity component reconstructions for d = 0.5 data
resolution with DNS (top). The variational-DA approach (left) and the PINN-DA-Baseline (right) figures are
taken from [17,29], respectively. (a) U truth. (b), (c) U prediction. (d), (e) Absolute U error.

cylinder case. However, a quantitative comparison has not been completed, which is presented in
this section.

A direct numerical simulation of a 2D circular cylinder flow at Re = 150 is performed to generate
the high-fidelity database, which is used to extract sparse mean velocity measurements for use in the
above data-driven techniques. The details of the simulation setup and methodologies can be found in
Refs. [17,29] for the variational and PINN case, respectively. Figure 17(a) shows the time-averaged
mean U field for the circular cylinder. For this work, the data spacing, d = 0.5, on a rectangular
grid is used to compare approaches as a comparison case. The aforementioned papers also contain
results of differing data resolutions.

This direct comparison of both variational-DA and PINN-DA approaches was used as a bench-
mark for what the turbulent applications can achieve (as shown in the main paper). These results
will demonstrate that for laminar flow, the PINN-DA approach flow reconstruction can match and
improve the variational-DA reconstructions.
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Figure 17 shows the reconstructed U field (b, c) and the prediction error (d, e). This highlights
several trends, which are consistent across all velocity components and were also seen in the
turbulent cases. First, the reconstructed mean velocity fields are very similar to the true fields and
accurately capture the expected physical features, such as the symmetrical wake and the stagnation
at the front of the cylinder. Additionally, a key pattern emerged from this result that was consistent
across both the laminar and turbulent cases. Both the variational-DA and PINN-DA approaches
have almost identical reconstruction error fields. These occur between datapoints, in the wake and
recirculation regions and near the wall. Finally, as one moves away from the cylinder (in y), the
error reduces as the flow becomes more uniform.

Whilse the reconstruction error fields are comparable, it is clear that the absolute error for
the PINN-DA-Baseline is much smaller in magnitude. The variational-DA has a maximum error
magnitude of 0.3 (for absolute U error), whereas for PINN-DA it is around a third of this at 0.11.
This comparison is important as it suggests, all else equal for a laminar cylinder flow, the PINN-DA
produces better results. This is most apparent when comparing the length of the wake. While the
variational approach predicts the wake recirculation region closes at x = 1.85, the PINN approach
closes at x = 1.55 (compared with x = 1.55 for the DNS flow field). Furthermore, the decay in
error, observed as one moves away from the body, is much more apparent in the PINN-DA results.
This may indicate the fundamental nature of PINNs and their construction, allows them to better
generalize these simple uniform regions.
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