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We study the effect of confinement on the three-dimensional linear instability of fast-
rotating two-dimensional turbulent flows. Using large-scale friction to model the effect
of rigid boundaries at the top and bottom, we study the onset of three-dimensional
perturbations on a rapidly rotating flow. The friction term is taken to affect both the
evolution of the two-dimensional turbulent flow and the perturbations that evolve on top of
it. Using direct numerical simulations, the threshold for the onset of three-dimensional
perturbations is traced out as a function of the control parameters. As reported in the
earlier work of Seshasayanan et al. [J. Fluid Mech. 901, R5 (2020)], we find that the
two different mechanisms, namely the centrifugal and parametric-type instabilities, are
responsible for the destabilization across the wide range of parameters explored in this
study. In the turbulent regime, we find that the large-scale friction term does not affect the
threshold in the case of centrifugal instability, while in the case of parametric instability,
the large-scale friction makes the flow stable for a wider range of parameters. For the
parametric instability, the length scale of the unstable mode is found to scale as the inverse
square root of the rotation rate and the growth rate of the unstable mode is found to be
correlated with the minimum of the determinant of the strain rate tensor of the underlying
two-dimensional turbulent flow, showing resemblance with elliptical type instabilities.
Results from the turbulent flow are then compared with the oscillatory Kolmogorov flow,
which also undergoes parametric instability resulting into inertial waves. The dependence
of the threshold on the aspect ratio of the system is discussed for both the turbulent and the
oscillating Kolmogorov flows.

DOI: 10.1103/PhysRevFluids.9.034604

I. INTRODUCTION

Many naturally occurring geophysical and astrophysical flows are turbulent and are subject
to global rotation [1–3], with rotation leading to the formation of large-scale coherent motions.
Vertical confinement can also help in the formation of coherent structures with thin layer flows
becoming effectively two-dimensional, see Ref. [4] and references therein. In the presence of rapid
rotation and when the forcing is invariant along the axis of rotation, it is known that the flow
bidimensionalizes and the resulting flow is referred to as a geostrophic flow due to the dominant
balance between the pressure term and the Coriolis term [5–8]. While in the case of forcing which
is three-dimensional, the flow exhibits strong three-dimensional fluctuations along with columnar
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structures in the large rotation limit, see Refs. [9,10]. Thus, one finds that the forcing plays an
important role in determining the state of turbulent flow in the fast-rotation limit. Here the coupling
between the geostrophic flow and inertial waves becomes weaker as the rotation rate increases.

Under weak or no global rotation a three-dimensional turbulent flow cascades the injected energy
to smaller length scales leading to a forward energy cascade. As one increases the rotation rate with
Rossby numbers Ro � 1, some amount of the injected energy goes to large-scales in the form of an
inverse energy cascade, which leads to the formation of coherent structures. Using the root-mean-
square (r.m.s.) velocity U = 〈|u|2〉1/2, length scale L, the advective timescale L/U and the rotation
rate along z direction �, we can define the nondimensional parameter, the Rossby number (Ro) =
U/(2�L), where 〈·〉 denotes spatial and temporal averaging. From zero rotation as the rotation
rate increases we see the onset of two-dimensionalization from a three-dimensional turbulent flow,
which has been studied by Refs. [9,11,12]. In some studies [13,14], such a transition is found to
occur through a critical point in the Rossby number, beyond which a dual cascade of energy exists.
Such change in the direction of the cascade has been studied in various contexts, see Ref. [15], and
in certain situations displays phenomena similar to critical phase transitions, see Refs. [16,17].

As the rotation rate is increased further Ro � 1, it was shown in Ref. [18] that at long times the
flow reaches a state of two-dimensional turbulence, where three-dimensional fluctuations decay to
zero. This result was shown using the method of bounds which leads to an estimate for the threshold
Roc ∼ Re−6. Re = UL/ν is Reynolds number where ν is the kinematic viscosity of the fluid. Later,
this threshold problem was posed as a linear instability of rapidly rotating two-dimensional turbulent
flow in Ref. [19]. Using numerical simulations, it was found that the threshold scales as Roc ∼ Re−1

in the limit of very large Re, below this threshold, infinitesimal three-dimensional perturbations
decay to zero. The scaling Roc ∼ Re−1 results from a parametric instability of large-scale two-
dimensional vortices in the large Re limit. While for lower values of Re, the centrifugal instability
gave rise to a threshold Roc ∼ Re0. It remains to be seen whether the threshold Roc ∼ Re−1 holds
in the case of nonlinear stability of the rapidly rotating turbulent flow.

While the results of Ref. [19] hold for periodic or free-slip boundary conditions, the influence of
solid boundaries on the threshold is unknown, while in experiments and naturally occurring flows,
two-dimensionalization is observed in the interior far from the boundaries, see Refs. [6,20,21]. Near
the boundaries, Ekman layers develop where the balance between the viscous force and the Coriolis
force leads to the formation of a thin boundary layer having thickness O(

√
ν/�). To study the

problem numerically at large Reynolds number Re and low Rossby number Ro, one has to perform
large-scale simulations that resolve the boundary layers and also capture the temporal evolution
of the fast inertial waves. An alternate approach is to model the rigid boundaries as an additional
friction term, such an approach has been used in many different contexts from modeling laboratory
flows to geophysical flows. Large-scale friction has also been used widely in quasi-two-dimensional
flows where the friction parameter arises from the confinement effects. In geophysical flows, Ekman
layers are widely observed at both free surface and rigid bottom boundaries leading to a dissipative
effect on the large-scale flows. While linear friction is found to work well when the boundary layers
are laminar, quadratic friction is used to model the turbulent boundary layers [22]. In rotating flows,
Ekman friction in the form of a linear drag has been used in both numerical simulations [23] and
experiments [24] to model the flow between boundaries. In this work, we consider the case of linear
friction as a model to capture the effects of solid boundaries. We aim to understand the effect of
large-scale friction on the instability threshold and explore further the mechanisms of the instability
of rapidly rotating two-dimensional turbulent flows. The coefficient of friction in the Ekman friction
term is found in many situations using decay experiments [22,25,26] and in general, it can depend
on the Reynolds number, the roughness of the boundaries, aspect ratio, etc., and an expression for
the large-scale friction coefficient in terms of these parameters is not known. To avoid modeling the
exact form of the large-scale friction term in terms of the other parameters of the system, we study
the threshold problem for a wide range of large-scale friction parameters.

The question of two-dimensionalization is also posed in the limit of elongated boxes since the
timescales of inertial waves can become comparable to the turnover timescale. In such systems,
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the flow can go to quasi-two-dimensional turbulent flows or possibly lead to the disintegration of
large-scale vortices into inertial waves. Recent works [14,27] have explored this limit to understand
the formation or disintegration of two-dimensional vortices in elongated domains. The frequency
of the slowest inertial waves is given by ω f = 2�L/H where H is the height of the domain
parallel to the rotation axis, and L is the typical size of the domain in the plane perpendicular to
the rotation axis. An estimate for the threshold for the cross-over from coherent vortical structures
to inertial waves is given by balancing the two timescales leading to Ro × (H/L) ∼ O(1). The
work by Ref. [14] showed that such a scaling could predict when a three-dimensional turbulent
flow begins to cascade energy to large scales as the rotation rate increases from zero. While
the work by Ref. [27] looked into the stability of a pair of elongated vortices, [28] used the
point vortex model of localised 3D perturbations on top of quasi-two-dimensional turbulence to
understand three-dimensional instabilities. This study examines the scaling associated with the onset
of three-dimensional perturbations on top of rapidly rotating two-dimensional turbulence in the large
Reynolds limit.

The present work looks into the effect of large-scale friction on the threshold of three-
dimensional instability and the underlying instability mechanisms for different domain sizes using
Direct Numerical Simulations (DNS). Section II explains the mathematical setup for the system
considered and the numerical method used to solve the system of equations. Section III describes the
dependence of the critical Rossby number threshold on the large-scale dissipation rate for different
values of the Reynolds number and aspect ratio. This section also elaborates further on the instability
length scales for the parametric instability and the correlation between the rate of strain tensor of the
two-dimensional turbulent flow and the growth of the three-dimensional perturbations. Section IV
describes the threshold using the oscillating Kolmogorov as a model for the turbulent flow. The
differences between the oscillating Kolmogorov flow and the turbulent flow are discussed. In the
end, Sec. V summarizes the results and limitations of the work.

II. MATHEMATICAL FORMULATION

We consider an incompressible fluid in a domain of dimensions [0, L] × [0, L] × [0, H] with the
system subject to a global rotation rate � along the vertical direction ez (Fig. 10). The Navier Stokes
equation in the rotating frame can be written as

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u + 2�u × ez + f, (1)

∇ · u = 0, (2)

where u(x, t ) = u ex + v ey + wez is the velocity field and p(x, t ) is the pressure. The forcing f
is taken to be the Kolmogorov forcing along the x direction, f = f0 cos(8πy/L)ex where f0 is the
amplitude of the forcing. It is noted that the forcing considered here is invariant along the axis of
rotation which is the z direction.

In the limit of a very large rotation rate, the velocity field becomes invariant along the ver-
tical direction effectively becoming a two-dimensional flow. We are interested in finding the
linear threshold where three-dimensional perturbations grow exponentially on top of the turbulent
two-dimensional flow. In the low Ro limit, we write the total velocity field u and the pressure
field p as

u(x, t ) = u2D(x, t) + Ro u3D(x, t) + O(Ro2), (3)

p(x, t ) = Ro−1 pG(x, t ) + p2D(x, t ) + Ro p3D(x, t ) + O(Ro2). (4)

Here u2D denotes the dominant component of the velocity field which is two-dimensional in the
interior of the fluid, except near the boundaries where the flow depends on the z direction. In what
follows, we model the effect of boundary layers as an effective linear dissipation term, the details
of the approximations taken in the derivation of such a linear friction coefficient are given in the
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Appendix. Thus, we only concentrate on the quantities in the expansion given in Eqs. (3) and (4), as
they denote the velocity and pressure components in the interior of the fluid far from the boundary
layers.

Substituting the above equation into Eqs. (1) and (2), we get the balance between pressure term
∇pG and the Coriolis force u2D × ez at order O(Ro−1). At the next order in Ro0, we get the evolution
equation for the large-scale two-dimensional velocity field, denoting the dominant component of
the velocity field. The resulting equation with the addition of the frictional term reads as (see the
Appendix),

∂u2D

∂t
+ (u2D.∇)u2D = − 1

ρ
∇p2D + ν∇2u2D − μ u2D + f, (5)

where μ denotes the large-scale friction which models the dissipation effect of the top and
bottom boundary layers [4,29,30]. We denote Rh as the large-scale Reynolds number defined as
Rh = U/(μL).

In the next order, we get the evolution equation for the 3D perturbations that evolve on the 2D
turbulent base flow. The equation for 3D perturbation takes the form (see the Appendix):

∂u3D

∂t
+ (u2D · ∇)u3D + (u3D · ∇)u2D = − 1

ρ
∇p3D + ν∇2u3D + 2�(u3D × ez ) − μu3D. (6)

Since u2D is independent of vertical coordinates in the interior of the flow, the three-dimensional
perturbations can be decomposed into vertical Fourier modes with each mode (q) evolving indepen-
dently in the linear stability problem. The perturbation form can be written as

u3D(x, y, z, t ) = û3D(x, y, t )eiqz + û∗
3D(x, y, t )e−iqz. (7)

Similarly, we can write pressure as

p3D(x, y, z, t ) = p̂3D(x, y, t )eiqz + p̂∗
3D(x, y, t )e−iqz. (8)

For the perturbations fields û3D(x, y, t ), we assume that away from the boundary layers the fields
obey stress-free boundary conditions, thus the vertical wave number q is related to the height H by
the relation q = π/H . We take periodic boundary conditions along the lateral directions x, y for all
quantities. Substituting the above expression for the unstable mode into the governing equation (6),
we end up with the following:

∂û3D

∂t
+ (u2D · ∇⊥ )̂u3D + (̂u3D · ∇⊥)u2D

= − 1

ρ
(∇⊥ + iqez ) p̂3D + ν(∇2

⊥ − q2 )̂u3D + 2�(̂u3D × ez ) − μû3D, (9)

where ∇⊥ ≡ ∂
∂x ex + ∂

∂y ey. To determine the threshold of the instability, we perform linear stability
analysis over the fully turbulent 2D base state. The base turbulent flow is first integrated over a few
viscous timescales to reach a statistically steady state. We compute the nondimensional parameters
Re, Rh, and Ro from the r.m.s. velocity (u2D) obtained from the statistically steady 2D base flow.
Then the equations of perturbations (9) are solved along with the time-varying two-dimensional
base flow [Eq. (5)]; these equations are also integrated up to a few viscous timescales to study the
stability properties. The exponential growth or decay of the perturbations determines the threshold
of the instability. Numerical integration is carried out using pseudospectral methods on a periodic
domain in two dimensions. The field variables are decomposed in Fourier basis and discretized on
(N, N) grid points along the x and y directions. Time marching is done using the ARS443 scheme,
a four-step third-order Runge-Kutta scheme.
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FIG. 1. Panel (a) shows a representation of the instability threshold Roc as a function of both Rh and
Re. Above this curve the two-dimensional flow is unstable to infinitesimal 3D perturbations, while below
this curve it is stable. Panel (b) shows the time series of the perturbation energy in a log-linear scale for
different parameters: the red and magenta curves correspond to Rh = 105, Ro = 2.1 × 10−4 and Rh = 1, Ro =
2.9 × 10−3, respectively, showing the growth of perturbation while the blue and black curve corresponds to
Rh = 1, Ro = 1.6 × 10−3 and Rh = 10, Ro = 1.3 × 10−3, respectively, showing decay of perturbations. The
Reynolds number is fixed at Re = 105 and domain size at q L = 2π/10 for all the curves.

III. RESULTS

A. Dependence on Re and Rh

We study the domains of stability in terms of the Rossby numbers Ro as a function of the
parameters Re, Rh for a given aspect ratio q L, illustrated in Fig. 1(a). Figure 1(b) shows the time
series of the perturbation energy in a log-linear scale for different values of Rh, Ro. As can be seen
from the figure, the growth is intermittent, and the flow is considered unstable if the perturbation
energy grows over the domain of integration, while it is considered stable if the perturbations decay
over the entire integration time. The simulations are run up to viscous timescales to account for the
evolution over very long timescales.

Figure 2(a) shows the onset as a function of Re and domain size q L at constant Rh. Due
to the intermittent nature of the growth of the perturbations, the exact threshold is difficult to
quantify. Therefore, we find the stable and unstable Ro values away from the threshold, the
two points being the end points of the horizontal lines shown in the figure and for visualization
purpose, we denote the threshold by a marker at their average. Those points marked by filled
symbols correspond to the instability driven by the centrifugal instability while nonfilled symbols
correspond to the parametric instability. We study the threshold Roc for five different aspect ratios,
q L = 2πL/H = 2π/10, 6π/10, 2π, 6π, 20π with the aspect ratio of q L = 2π corresponds to a
box of equal height and length, q L = 2π/10, 6π/10 correspond to vertically elongated boxes with
a larger height than length while q L = 6π, 20π correspond to thin layers with smaller height than
length. As observed in Ref. [19], we find the centrifugal instability at low Re and large Ro, while
for large Re and low Ro we find the parametric instability. The different scaling of the threshold
distinguishes the two instabilities and whether they are seen only on the contrarotating vortex
(centrifugal) or on top of both corotating and contrarotating vortices (parametric). For elongated
boxes q L = 2π/10, the parametric instability is observed from lower Re numbers. At the lowest
values of Re, the thresholds are governed by the centrifugal instability, further reduction in Re we
find that the two-dimensional laminar flow is stable for any rotation rate shown in the figure as
dashed lines. A dashed line indicating a scaling of Ro−1 is shown for comparison in the Fig. 2(a),
the parametric instability threshold seems to follow such a scaling at large Re, simulations at even
larger Re will be able to determine the validity of the scalings.
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FIG. 2. Panel (a) shows the instability threshold Roc in the Re-Ro plane for different aspect ratios qL. The
large-scale Reynolds number is fixed at Rh = 9.4 × 104 for all the curves. (b) shows the instability threshold
Roc in the Rh-Ro plane for different aspect ratios qL. Here the Reynolds number is fixed at Re = 1.0 × 105 for
all the curves. The inset in panel (b) shows the threshold with a rescaled x axis given by (q L)−1Ro. The dashed
lines in panel (a) corresponds to the scaling law Roc ∼ Re−1 shown for comparison.

Figure 2(b) shows the threshold Roc as a function of the large-scale Reynolds number Rh
for different aspect ratios q L at Re = 1.0 × 105, where the filled and nonfilled symbols denote
centrifugal and parametric type instabilities. Re is kept constant by varying the forcing as the
large-scale dissipation affects the energy content in the two-dimensional turbulent flow. For the
centrifugal instability points, the threshold Roc remains almost constant for a wide range of Rh
explored in this study while for the parametric type instability, there is a dependence on Rh. In the
large Re regime, we find that for large values of Rh, above Rh � 102, there is no effect of large-scale
dissipation on the threshold, while for smaller values of Rh � 102 the threshold Roc increases
with increasing dissipation rate. Keeping the dissipation effects only in the three-dimensional
perturbations and assuming an amplification rate ∼U/L for a given Re, one would get a critical
Rhc independent of Ro, which is not observed. It is known that the large-scale friction breaks down
large vortices into smaller ones as one reduces Rh, which could modify the stability properties of
the underlying turbulent flow, leading to the observed dependency of Roc versus Rh. The inset of
Fig. 2(b) shows the threshold with the rescaled Rossby number given by (q L)−1Ro for a given Re.
It is to be noted that the rescaling collapses the curves for the parametric instability points, while for
the centrifugal instability points the threshold is independent of the nondimensional vertical wave
number q L. Figure 3 shows the influence of Re on the threshold curves obtained in the Ro-Rh plane
with Fig. 3(a) corresponding to the case of q L = 2π and Fig. 3(b) to the case of q L = 2π/10. With
increasing Re, we see the curves shifting to smaller Ro, and the threshold becomes independent of
Rh for Rh � 102. For a given aspect ratio qL, the predominant instability mechanism at large Re, Rh
is the parametric instability, increasing either the large-scale friction or the viscosity results in the
centrifugal instability being the dominant mechanism. For very elongated boxes, qL � 1, we find
that the parametric instability as the destabilization mechanism for the two-dimensional turbulent
flow across a wide range of Re-Rh.

B. Instability length scales

We aim to further our understanding of the threshold by quantifying the length scales of
the unstable mode. Centrifugal instability has a threshold given by a critical Ro that is almost
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FIG. 3. The figures show the dependence of the threshold Roc curves as a function of the large-scale friction
Rh with panel (a) corresponding to an aspect ratio q L = 2π and panel (b) to an aspect ratio q L = 2π/10. The
different curves correspond to different Re. Filled symbols correspond to centrifugal instability mechanism,
while nonfilled symbols denote the parametric instability points.

independent of the Re and Rh. While the parametric instability has a threshold Roc that depends
on both Re and Rh. Figures 4(a) and 4(b) show the real part of the x component of the vorticity
field of the perturbation ω̂r

x centered at (0.5,0.5) at an instant in time when the perturbations are
exponentially growing, thus denoting the unstable mode. Figure 4(a) corresponds to the parametric
instability while Fig. 4(b) corresponds to the centrifugal instability. The parameters for the simula-
tion shown in Fig. 4(a) are qL = 2π, Re = 1.1 × 105, Rh = 1.2 × 105 and those for Fig. 4(b) are
qL = 20π, Re = 1.0 × 105, Rh = 1.1 × 105. The parametric instability shows a layered structure
of alternating signs of three-dimensional vorticity as one goes radially away from the center of
the underlying vortex, whereas the centrifugal instability shows fewer variations and is seen to be
concentrated away from the center of the underlying two-dimensional contrarotating vortex. The
azimuthal variation for the centrifugal instability resembles the m = 1 mode, while the parametric
instability has a m = 2 mode structure. Figure 4(c) shows the real part of vorticity field ω̂r

x profile

FIG. 4. The real part of x component of 3D-perturbation vorticity field is shown in panel (a) for moderate
domain (q L = 2π ) corresponding to Re = 1.1 × 105, Rh = 1.2 × 105, in panel (b) for thinner domain (q L =
20π ) corresponding to Re = 1.0 × 105, Rh = 1.1 × 105. Panel (c) shows the variation of the real part of the x
component of the vorticity at the mid-x plane (x/L = 0.5) as a function of y. The blue curve shows the profile
corresponding to the parametric instability and the red curve shows the profile for the centrifugal instability.
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FIG. 5. Shows the variation of the length scale of the unstable mode �m as a function of the critical Rossby
number Roc for the points associated with parametric instability. The data is obtained for the parameters
corresponding to q L = 2π/10, Rh = 9.4 × 104, and varying Re. The dashed line with a scaling Ro1 is shown
for comparison.

along the midplane x = 0 for both the snapshots in Figs. 4(a) and 4(b). We find that the unstable
mode for the centrifugal instability is antisymmetric about the y midplane, while the parametric
instability shows symmetric distribution about the y midplane close to the center of the vortex,
having the symmetries of the m = 1 and m = 2 mode structure respectively. Given the structure of
the unstable mode, we analyze the length scales at which the instabilities in the turbulent flow are
triggered. We define a length scale �m of the three-dimensional perturbation velocity fields as

�2
m

L2
= 1

L2

〈|v̂|2〉
〈|∇v̂|2〉 . (10)

Figure 5 shows the nondimensional square of the length scale, �2
m/L2 as a function of the Ro number

for the parameters q L = 2π/10, Rh = 9.4 × 104 for varying Re, all the points correspond to the
parametric instability. As seen from the figure we find that the typical length scale of the unstable
mode �2

m to scale like Ro for almost two decades of variation in Ro. Thus, as the Ro goes to zero, the
length scale for the perturbation due to the parametric instability also goes to zero. Taking the typical
growth rates to scale as the turnover rate U/L and the dissipation rate to scale as ν�−2

m , balancing the
two gives the observed scaling Roc ∼ Re−1. For the centrifugal instability, we find that the length
scale of the unstable mode is almost constant for varying Re. Thus, the length scale of the unstable
mode controls the threshold Roc dependence on Re.

C. Correlation with strain rate tensor

While the length scales help us to understand the scaling relation Roc ∼ Re−1, the exact onset of
the parametric instability is not known. In the case of centrifugal instability, the minimum vorticity
is found to be correlated with the growth rates, with the threshold given by the Rayleigh criterion
[19]. For the parametric instability, no such criterion is known, as the growth rate is not directly
correlated with fluctuations of the underlying vorticity field. We find that the parametric instability
occurs on both the corotating and contrarotating vortices similar to elliptical type instability, which
occurs on sheared vortices [31,32]. To explore this further, we aim to quantify the correlation
between the growth rate and the underlying strain field of the two-dimensional turbulent flow.
The strain rate tensor is defined as Si j = (∂iu j + ∂ jui )/2, and the quantities which are invariant
under rotations of the coordinates are the trace and the determinant of the tensor. The trace of
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FIG. 6. Panel (a) shows the time series of the logarithm of the perturbation energy for the parameters
Re = 1.1 × 105, Rh = 1.2 × 105, Ro = 1.6 × 10−3, and q L = 2π . The cross symbol on the figure denotes the
time instant at which panels (b) and (c) are taken, panel (b) shows the real part of the x component of vorticity
ω̂r

x of 3D perturbations and panel (c) shows the determinant of the strain rate tensor field for the underlying
two-dimensional turbulent flow Sdet. The black marker in panel (c) denotes the position of the minimum of the
determinant of the strain rate tensor.

the strain rate tensor is given by the incompressibility condition, thus it is always zero, while the
determinant of the strain rate tensor is given by Sdet = −((∂xu)2 + (∂yu + ∂xv)2/4) and is a negative
definite quantity. First, we look for spatial correlation between the minimum of the strain rate tensor
and the three-dimensional perturbations. Figure 6(a) shows the time series of the logarithm of the
three-dimensional perturbation energy for the parameters Re = 1.1 × 105, Ro = 1.6 × 10−3, Rh =
1.2 × 105, q L = 2π , a cross marker is also shown on the time series which denotes the time instant
at which quantities shown in Figs. 6(b) and 6(c) are computed. Figure 6(b) shows the snapshots
of the real part of the x component of the 3D vorticity perturbation ω̂r

x, while Fig. 6(c) shows
the determinant of the strain rate tensor field of the underlying two-dimensional turbulent flow.
We see that in the time instant at which the perturbations are growing, the unstable mode is
concentrated near the region of large magnitude of strain rate. The large negative strain region shown
in Fig. 6(c) corresponds to the corotating vortex region centered around (x, y) ∼ (0.70, 0.62) while
the contrarotating vortex is centered around (x, y) ∼ (0.20, 0.17) has a relatively smaller strain rate.
As the 2D-turbulent flow evolves we find that the region of strong strain rate oscillates between the
corotating and contrarotating vortex. The decay of the perturbations seen in Fig. 6(a) results from
the spatial decorrelation between the three-dimensional perturbations and the region of strong shear.
This occurs when the strain rate on the corotating vortex reduces and the region of large strain rate
is found to occur on the contrarotating vortex. The instability grows either on the corotating or on
the contrarotating vortex depending on whether the local rate of strain is large. A similar correlation
is also seen for the other data points where the parametric excitation mechanism is present on top
of large vortices, with the growth phase of the instability is seen when the localised rate of strain is
large, along with a spatial correlation between the unstable mode and the region of the strong strain
rate.

To determine the temporal correlation between the rate of strain tensor and the growth rate of
perturbations, we find the minimum of the determinant of the strain rate tensor defined as

Smin
det (t ) = min

x,y
Sdet(x, y, t ). (11)

In the growth phase, the instability is found in the region of strong strain rate where the minima of
the determinant of the rate of strain is also located. This is seen in Fig. 6(c), where the cross symbol
denotes the location of the minima of Sdet. Figure 7 shows the correlation of the growth rate of the
unstable mode with the minimum of the determinant of the rate of strain tensor normalized with
the square of the turnover time Smin

det L2/U 2 for different values of Ro number at Re = 1.1 × 105,
Rh = 1.2 × 105. The curves with circle symbols correspond to higher Ro leading to an instability,
while those with square symbols correspond to lower Ro leading to a stable flow. As one increases
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FIG. 7. Shows the scatter plot of the minimum of the determinant of the strain rate tensor [Smin
det (x, y)]

plotted against the growth rate of 3D perturbation for Re = 1.1 × 105, Rh = 1.2 × 105 and q L = 2π . Inset
shows the same plot with a rescaled strain rate given by Smin

det (x, y) × [L/(U�)].

Ro, we see that the correlation curves shift upwards, making the flow unstable to 3D perturbation
for a larger range of Smin

det (x, y). The inset shows the growth rate values at different values of the
minimum determinant of the rate of strain normalized with L/(U�). This normalization factor is
chosen since it scales the minimum of the rate of strain tensor with the rotation rate and the turnover
timescale, as one would expect from the threshold scaling Re × Ro ∼ const. While this leads to a
criterion of Smin

det L/(U�) = α � O(1) below which the system is unstable, the normalization does
not rescale all the curves on top of each other. The exact value of α will depend on other parameters
such as qL, Re, local vorticity and rate of strain. In the case of elliptical instabilities, where weakly
strained vortices are destabilized [31–33], it is found that the growth rate is proportional to the strain
rate imposed on these vortices with the linearity being valid when the rate of strain is small compared
to the vorticity. For strongly strained vortices, an analytical relation between the growth rate of
perturbations and the rate of strain is unknown. While studies on elliptical instabilities consider a
stationary strained vortex, here the presence of fluctuations is important in triggering the parametric
instability. Elliptical instabilities of a vortex subjected to an external strain, with time dependency
imposed on either the vortex or the strain have also been studied [34–36], though an analytical
criterion for the threshold remained unknown.

IV. OSCILLATORY KOLMOGOROV FLOW

The previous sections have helped us understand the nature of the parametric instability seen on
top of rapidly rotating two-dimensional flows. Given the difficulty in understanding the instability
process on the turbulent background and the absence of an exact threshold, we look to a simpler
model to study the parametric instability. The destabilization of an oscillating flow was proposed as
a model in Ref. [19], which took into account the time dependence and reproduced the Reynolds
number dependence of the threshold Roc. Here, we look at the destabilization of the oscillating
Kolmogorov flow to understand the influence of large-scale friction, aspect ratio and the oscillation
frequency on the threshold of the instability. The oscillatory Kolmogorov flow used in this study
is given by u = 2U cos(4πy/L) cos(4πχt U/L)ex where χ is a nondimensional parameter that
indicates the strength of the oscillation frequency in units of the inverse turnover timescale U/L. The
stability of the oscillatory Kolmogorov flow subject to global rotation is studied using a numerical
code based on Floquet theory. We look at the instability threshold in the presence of a large-scale
friction term and we take the underlying flow amplitude to be fixed, thus the friction only affects the
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FIG. 8. Figures show the threshold Roc as a function of the Reynolds numbers Re, Rh, for the oscillatory
Kolmogorov flow for different aspect ratios qL. Parameter corresponding to panel (a) Re vs Ro is Rh = 1.0 ×
105 and panel (b) Rh vs Ro is Re = 1.0 × 105.

evolution of the perturbations. Initially, we fix χ = 1 and show in Fig. 8(a) the instability threshold
in the Re-Ro plane for different aspect ratios that we considered in the problem. For these points, the
large-scale friction is kept very small Rh ∼ 105. We see that for q L = 2π , the threshold is given by
Roc ∼ Re−1 at large values of Re. For thinner domains (larger q L = 20π ) the threshold for small
Re is almost independent of the Re, while for larger Re the threshold scales as Roc ∼ Re−1. At very
large values of Re, all the curves for different q L asymptote to a threshold which scales with the
Reynolds number as Roc ∼ Re−1. Comparing with the turbulent 2D flows, we also find a change
in the scaling behavior as one increases Re see Fig. 2(a), but this occurs due to a change in the
dominant instability mechanism from the centrifugal instability to the parametric instability as one
changes Re. A difference is also observed in the dependence of the threshold on q L, wherein the
turbulent case we have a rescaling going as Roc ∼ (q L), which is not observed for the oscillating
Kolmogorov flows.

Figure 8(b) shows the dependence of the threshold on the large-scale friction threshold Roc

in the Rh-Ro plane for the case Re = 1.0 × 105. For large Rh, the threshold asymptotes to the
friction-independent value agreeing with the values from Fig. 8(a), while for small Rh we see that
the threshold increases as Rh decreases due to stronger dissipation. Since the friction is present only
in the perturbation equation, we find that the threshold follows the scaling of Roc ∼ Rh−1 when the
large-scale dissipation is strong, this scaling is obtained by balancing the growth rate (U/L) Ro with
the dissipation rate μ. It is to be noted that the growth rate in the case of the oscillating Kolmogorov
flow is proportional to the Rossby number as the formation of the three-dimensional mode is through
quartic interactions [24] or quasi-resonances [37]. Similar to Fig. 8(a), we find that the dependence
on q L differs from the turbulent case. To understand the relation between the threshold and the
aspect ratio, we show in Fig. 9(a) the threshold Roc as a function of q L for three different values
of Re, Rh. While the case of smaller Rh, Re show a scaling for the threshold Roc ∼ q L, the larger
values show deviation from this scaling. The deviation from the scaling is seen due to the occurrence
of a large-scale unstable mode, which is the dominant mode when the large-scale friction is small.

Next we look at the influence of the nondimensional oscillation frequency χ on the onset of
the instability. Figure 9(b) shows the instability threshold for three different values of χ for qL =
2π/10, Rh = 1.0 × 105. As the frequency is increased, we see that the threshold shifts to smaller
values of Ro, this occurs since the available range of inertial waves that can be excited increases
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FIG. 9. Figures show the dependence of the threshold Roc on the aspect ratio qL in panel (a) and the
oscillation frequency χ in panel (b) for the oscillatory Kolmogorov flow. The dashed lines indicate a scaling
Ro1 in panel (a) and Ro−1 in panel (b), are shown for comparison. In panel (b) the threshold Roc is obtained
for the parameters q L = 2π/10 and Rh = 1.0 × 105.

with increasing frequency of oscillation. At large Re the threshold asymptotes to the Re−1 behavior
for all the frequencies shown. When the oscillation frequency is minimal compared to the turnover
frequency χ � 1, the instability threshold is independent of Re for intermediate values of Re while
for large values of Re the threshold asymptotes to a Roc ∼ Re−1 scaling. The limiting case of χ = 0
leads to the stationary Kolmogorov flow which has a threshold of Roc ≈ 0.056. We find that the
oscillation frequency of the underlying flow strongly affects the threshold Roc of the instability.

We find that the destabilization of the rapidly rotating oscillatory Kolmogorov flow predicts the
scaling of Roc ∼ Rh−1 when the large-scale friction effect is strong, and the scaling Roc ∼ Re−1 at
large Re. While the dependency on the dissipation coefficients can be understood by balancing the
growth rate with the dissipation rates, the dependence on the aspect ratio and oscillation frequency
is less understood.

V. CONCLUSIONS

Modeling the effect of confinement as a large-scale friction term we have studied the linear
instability threshold of three-dimensional perturbations on a rapidly rotating two-dimensional tur-
bulent flow. The large-scale drag term shifts the threshold to larger values of the Ro number, when
the instability mechanism is parametric. While for the centrifugal type instability found at lower
Re, the friction term for the parameter range explored in this study does not affect the threshold.
For the oscillating Kolmogorov flow destabilization by the parametric instability, the large-scale
friction affected only the perturbation equations leading to a scaling of Roc ∼ Rh−1. While in
the turbulent flow, there is a deviation from this scaling as the friction breaks down large-scale
vortices into smaller ones, affecting their stability properties. This study used the linear friction
to model the dissipation effects from the Ekman layers (see the Appendix). Future studies can
incorporate the effect of a quadratic drag term which is applicable when the Ekman boundary
layer becomes turbulent. The presence of side walls is also not considered in this study, they can
induce Ekman pumping [1,38] from which a vertical component of the velocity field is induced.
The modification from the Ekman pumping is expected to be smaller in magnitude as compared
to the two-dimensional velocity field components which are directly forced. Nevertheless, a study
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on the effect of both vertical and horizontal boundaries in the limit of very low Rossby numbers
can shed light upon the onset of three-dimensional perturbations that destablize the columnar
vortices.

We have seen two different instability mechanisms: centrifugal and parametric type instabilities
and have observed several ways of distinguishing between the two. Based on the spatial correlation,
the unstable mode originates only inside contrarotating vortices for the case of centrifugal instability
while points corresponding to parametric type instability, an unstable mode can develop inside either
of the vortices [19]. In the case of parametric type instability, the unstable mode is centered around
the minimum of the determinant of the strain rate tensor (see Fig. 6). In contrast, the unstable mode
for the centrifugal instability is localised around the contrarotating vortex. Based on the temporal
correlation, it is found that whenever the Rayleigh parameter ([minxω2D + 2�]/2� becomes less
than zero, instantaneous perturbation energy grows in the case of centrifugal instability. In the case
of parametric type instability, the growth rate is correlated with a minimum of the determinant of
strain rate tensor; see Fig. 7. We have checked for various data points and observed that in the
case of steady flow (when the 2D base flow is frozen), instability grows for the centrifugal case
but ceases to grow for parametric type instability, which shows the time-dependent nature of the
latter.

In the parametric type instability, the threshold is controlled by the length scale of the unstable
mode, which is found to depend on the Rossby number as Ro1/2, taking the growth rate to be the
turnover timescale leads to the scaling Re × Ro ∼ O(1). As the more strained vortex being prone to
parametric-type instability, it shows similarities between the parametric instability found here and
the elliptical instability found on strained vortices. In the turbulent regime for both the instability
mechanisms: centrifugal and parametric instability, the destabilization of a rapidly rotating turbulent
flow is governed by large fluctuations of the vorticity or the rate of strain tensor. Understanding
the distribution of these large fluctuations [39] can help us understand the intermittency observed
in the growth of the instability. Recent works have also focused upon the nature of the growth
of perturbations in such systems where strong fluctuations in the underlying turbulent flow create
intermittent events of growth and decay [40].

The current study has focused only on the linear threshold of the instability, and to check the
validity of this one has to do three-dimensional simulations in the nonlinear regime. A recent work
[41] has shown the existence of anomalous exponents in the saturation of instabilities on a turbulent
background, extending the linear problem studied here into the nonlinear regime could explore
whether such a phenomena is also seen in the case of rotating flows. While numerical simulations
of fully three-dimensional turbulent flow at very low Ro and large Re is difficult, weakly nonlinear
extensions as done elsewhere, see Ref. [17], can also be studied in future to determine the validity of
the linear study. Beyond the study of rotating flows, turbulence in thin layers, in flows with a strong
magnetic field and rotating-stratified flows also display the formation of large-scale condensates and
one could look to understand when and how such structures are destabilized.
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APPENDIX: MODELING THE EFFECT OF EKMAN LAYERS AND CONFINEMENT

Large scale friction is used to model the effect of rigid walls at z = 0, H . The friction coefficient
μ can be estimated in terms of the parameters ν, � and the height H for laminar boundary layers
as μ ∼ ν/δ2. Here δ ∼ √

ν/� is given by the width of the Ekman boundary layer [1,22,42]. We
consider the Navier Stokes equations in the rotating frame and decompose the flow fields in terms of
the boundary contribution and interior contribution. The velocity field is then written as u = ui + ub

as a combination of the solution from the interior denoted by ui and the solution near the boundaries
ub. The top and bottom rigid boundaries at z = 0, H give rise to the condition of no-slip velocity
fields u = 0, leading to the boundary layers where the velocity field ub is nonzero. We make the
following assumptions, (1) that the boundary layers remain laminar, (2) we take the velocity field
induced by the boundary ub to go to zero outside the boundary layer, and (3) we assume that the
velocity field in the interior obeys stress-free boundary conditions at the edge of the boundary layers,
beyond a distance c

√
ν/�. Here c is a constant denoting the typical width of the boundary layer

in units of
√

ν/�. Under these assumptions, we derive the governing equations for the interior
velocity field. A schematic of the domain is shown in Fig. 10, where the boundaries of the domain
are periodic along x and y directions.

1. Two-dimensional velocity field

We rescale the governing equations, Eqs. (1) and (2), near the top and bottom boundaries as, x̃ =
x/L, ỹ = y/L, z̃ = z/δ, ũ = u/U, t̃ = t2� and p̃ = p/(ρU 2), here δ = √

ν/�. For small viscosity
and large rotation rates, the dominant terms of the equation are given by

∂t̃ ũ = −∇ p̃ + ∂2
z̃ ũ + ũ × ez̃. (A1)

We decompose the fields into the boundary contribution (superscript b) and interior contribu-
tion (superscript i). We impose the boundary conditions: ũ = ũi + ũb = 0 at z̃ = 0, H/δ with the
boundary contribution decaying to zero as we move away from the walls. The stationary solutions
of Eq. (A1) are given by the Ekman spirals, whose solutions are given by

ũ = ũi + ez̃−H/δF(x̃, ỹ, z̃, t ) + e−z̃G(x̃, ỹ, z̃, t ). (A2)
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Here F and G contain the oscillatory variation along ez̃ denoting the Ekman spiral and they are set
by the boundary conditions at z = 0, H/δ.

Away from the boundaries, nondimensionalization along ez̃ can be done by L in place of δ, and
t̃ = (U/L)t ; the resulting equation after substituting the expression of ũ, we get

∂ũi

∂ t̃
+ (ũi · ∇)ũi = −∇p + 1

Re
∇2ũi + 1

Ro
(ũi × ez̃ ) + f2D + 1

Re

∂2ũb

∂ z̃2

+ 1

Ro
(ũb × ez̃ ) − (ũi · ∇)ũb − (ũb · ∇)ũi − (ũb · ∇)ũb. (A3)

We can expand ũi, ũb, and p as follows:

ũi(x̃, t̃ ) = ũi
2D(x̃, t̃ ) + Ro ũi

3D(x̃, t̃ ) + O(Ro2), (A4)

ũb(x̃, t̃ ) = ũb
2D(x̃, t̃ ) + Ro ũb

3D(x̃, t̃ ) + O(Ro2), (A5)

p(x̃, t̃ ) = Ro−1 p̃G(x̃, t̃ ) + p̃2D(x̃, t̃ ) + Ro p̃3D(x̃, t̃ ) + O(Ro2). (A6)

Using Eqs. (A4), (A5), and (A6) in Eq. (A3) and then taking average along ez̃, at order Ro0:

∂ũi
2D

∂ t̃
+ (ũi

2D.∇)ũi
2D = −∇ p̃2D + 1

Re
∇2ũi

2D + f2D + 1

Re

∂ũb
2D

∂ z̃

∣∣∣∣∣
z̃=H/L

z̃=0

. (A7)

We have neglected all other terms as they are proportional to the width of the boundary layer and
are negligible. Leading contributions coming from the boundaries can be written in a single term
1/Rhũi

2D where 1/Rh is the nondimensional Reynolds number constructed from the large scale
friction μ. By writing the above equation in dimensional form and dropping the superscript, we get
Eq. (5).

2. Three-dimensional velocity field

The three-dimensional perturbations ũi
3D(x̃, t̃ ) can be decomposed into vertical Fourier modes.

The perturbation form can be written as

ũi
3D(x, t ) = ûi

3D(x, y, t )eiqz̃ + ûi∗
3D(x, y, t )e−iqz̃. (A8)

For the perturbations induced in the interior, there is a velocity field induced in the boundary layer
which is given by ũb

3D(x̃, t̃ ). Using Eqs. (A4), (A5), (A6), and (A8) in Eq. (A3) and then comparing
terms of the order Ro1, we get the evolution equations of perturbations. Upon averaging the resultant
equations along ez̃ and neglecting the subdominant terms having magnitude of the order of δ, we
get Eq. (A9):

∂ûi
3D

∂ t̃
+ (

ũi
2D · ∇⊥

)̂
ui

3D + (̂
ui

3D · ∇⊥
)
ũi

2D

= −(∇⊥ + iqez̃ ) p̂3D + 1

Re
(∇2

⊥ − q2 )̂ui
3D + 1

Ro

(̂
ui

3D × ez̃
) + 1

Re

∂ũb
3D

∂ z̃

∣∣∣∣∣
z̃=H/L

z̃=0

. (A9)

The last term can be approximated by a friction term that acts on the perturbation fields. In the
dimensional form, above equation (without superscript) gives Eq. (9).
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