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Turbulent momentum and kinetic energy transfer of channel flow
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In this paper, we conduct a numerical investigation to analyze the turbulent flow charac-
teristics over three-dimensional wavy walls with varying amplitudes and wavelengths, with
a specific focus on the transfer of momentum and kinetic energy. Detailed three-directional
momentum statistics are presented to elucidate the influence of shape parameters on flow
behavior. The temporal-spatial averaging at relative height is employed to highlight the
impact of the wall on mean, time-averaged, and dispersive momentum flux as well as
kinetic energy production. Our findings indicate that the current wall amplifies the effects
of spanwise momentum flux, which is determined by the transverse flow around the
crest. The dispersive shear stress (DSS) demonstrates a notable correlation with vorticity
enhancement, while the near-wall vertical momentum flux is jointly governed by the
counteraction of Reynolds shear stress and DSS. Through an analysis of kinetic energy
conservation, we observe the transfer of kinetic energy among time-averaged, mean,
dispersive, and turbulent motions. Overall, kinetic energy is transferred from dispersion to
the mean flow and subsequently to turbulence downstream of the crest. On the windward
side, both turbulent and dispersive energy are injected into the mean flow, suggesting the
possible growth of internal boundary layer. Additionally, the exchange between dispersion
and turbulence significantly contributes to turbulent kinetic energy production, particularly
in cases with high amplitudes or spanwise wavelengths.
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I. INTRODUCTION

Wall boundaries of various shapes and scales, such as riverbeds in fluvial environments or dunes
in landforms, are common in natural settings. The turbulent flow over these three-dimensional (3D)
walls exhibits complex and diverse behavior. Understanding the momentum and energy transfer
in these complex wall turbulent boundary layers is crucial for comprehending flow patterns and
dynamics [1,2].

In fluvial environments, riverbeds display different forms, including ripples [3–6], sand waves, or
dunes [7–10], with variations in scale and deformation characteristics. Ripples represent small-scale
deformations that act as roughness elements, affecting turbulence close to the wall. On the other
hand, large-scale sand waves or dunes have a significant impact on turbulence within the flow
depth [11]. Ripples modify the upper turbulent flow by increasing wall resistance, resulting in a
downward shift of the velocity profile in the logarithmic region compared with a smooth wall
boundary layer. This offset is known as the roughness function [12]. Authors of previous studies
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have classified rough walls as transitionally rough or fully rough based on the dimensionless
effective roughness height [13]. Parameterization models of the roughness function have been
developed through experimental and numerical investigations, establishing relationships between
wall shapes, characteristic scales, and effective sand grain roughness height [13–18]. However, the
correlation between shape parameters and the roughness function for naturally occurring large-scale
sand waves remains a topic requiring further exploration.

Riverbeds can be categorized as two-dimensional (2D) [6,19–22] or 3D [23–28] sand waves
based on their morphology. The turbulence over a 2D sand wave is affected by the velocity inflection
point resulting from flow separation [29]. The shear layer reconstruction behind the crest exhibits
deceleration-acceleration zones, including the deceleration zone from the separation point to the
turbulence wake, the acceleration zone associated with the growth of the internal boundary layer,
and the outer overlying region far from the wall [30]. This pattern is generally observed in 2D
cases, regardless of sand wave morphology or Reynolds number [31]. However, 3D sand waves
introduce complexities to momentum transport. Authors of experimental studies have indicated that
a 3D riverbed generates higher friction but lower turbulence levels than a 2D case under similar flow
conditions [32,33]. Hamed et al. [34], through experiments, observed that spanwise heterogeneous
walls lead to a sharp reduction in average Reynolds stress due to secondary flows, causing separated
fluid to move upward and preventing readherence to the bed surface [11]. These studies have
highlighted the distinct impact of 3D walls on turbulence compared with the 2D case. Therefore,
understanding the statistical behavior of turbulence over 3D walls is crucial for comprehending the
modulation of momentum by these 3D boundaries.

To investigate the effect of wall boundaries on flow over complex terrains, macroscopic tur-
bulence provides insights through temporal-spatial averaging. Spatial averaging decomposes the
flow into form-induced quantities, also known as dispersive quantities, which can be used to
evaluate flow dispersion mechanisms over complex terrains. Authors of previous studies have
utilized the concept of time quadrants to investigate dispersed quadrant events induced by spatial
velocity disturbances above rough walls [35,36]. The dispersion mechanism over 2D sand waves
exhibits dispersive outward interaction events dominating flow dispersion above the crest, followed
by a transition to dispersive sweep events near the separation point. Additionally, dispersive
inward interaction and dispersive ejection events control the separation area and windward side,
respectively, exhibiting a clockwise transition within one periodic range [35,37,38]. In addition to
dispersive velocities, the decomposition separates time-averaged momentum flux or kinetic energy
into temporal-spatial averaged and dispersive components, allowing for quantitative estimation
through momentum and energy transfer analysis [39–44]. Yuan and Piomelli [43] discovered
that the spatial inhomogeneity of Reynolds stresses leads to additional turbulent kinetic energy
(TKE) production known as wake (or dispersive turbulent) production. Zampiron et al. [45]
investigated the partitioning of total kinetic energy through experiments, focusing on small-
scale or single-directional roughness such as streamwise ridges. However, further investigation
is required to understand flow dispersion and energy transfer mechanisms over 3D large-scale
boundaries.

It is worth noting that natural riverbeds can be approximated as 3D wavy walls to some degree,
as suggested by Zedler and Street [4] and based on Raudkivi’s [46] summary of fluvial channel ge-
ometry. This approximation involves introducing a sinusoidal variation along the spanwise direction
of the wavy wall, as shown in Fig. 1. Thus, in this paper, we simplify the riverbeds as large-scale
3D wavy walls with different shape parameters. Large-eddy simulations (LESs) are employed to
investigate the turbulence characteristics above these wall boundaries. The subsequent sections of
this paper are organized as follows. Section II describes the physical and numerical models. In
Secs. III and IV is shown the effect of the shape parameters of the wall on the turbulence field and
the macroscopic feature of turbulence through temporal-spatial averaging conduction. The main
conclusions are then summarized in Sec. V.
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FIG. 1. Elevation of the three-dimensional wavy wall.

II. PHYSICAL AND NUMERICAL MODELS

A. Physical model

The present 3D wavy wall is shown in Fig. 1. The elevation of the terrain expresses as

η = a sin

(
2πx

λx

)
cos

(
2πy

λy

)
, (1)

where a is amplitude, while λx and λy represent the streamwise and spanwise wavelengths, respec-
tively.

B. Numerical model

The LES is used to investigate the present problem. The filtered 3D incompressible Navier-Stokes
equations in Cartesian coordinates are

∂ui

∂xi
= 0, (2)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
− ∂τi j

∂x j
+ 	δ1i, (3)

where i, j = 1, 2, 3 and repeated indices are implicitly summed over. Here, (x1, x2, x3) = (x, y, z)
respectively denotes the streamwise, spanwise, and vertical coordinates, (u1, u2, u3) = (u, v,w)
denotes filtered velocity components, p is the filtered pressure, 	 is the external force driving
the flow, δi j is the Kronecker delta, ν is the kinematic viscosity, ρ is the density, and τi j is the
subgrid-scale stress tensor. In this paper, we use a dynamic one-equation to enclose τi j [47]. The
transport equation of subgrid-scale kinetic energy can be determined as

∂k

∂t
+ ui

∂k

∂xi
= −τi j

∂ui

∂x j
− Cε

k3/2

�
+ ∂

∂xi

(
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∂k
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)
, (4)

where the subgrid-scale eddy viscosity υs = Ckk1/2� is determined by the subgrid-scale kinetic
energy k, � = 3

√
�x�y�z is the filtered grid scale, the subgrid-scale stress is modeled as τi j =

2
3 kδi j − 2υsSi j , with Si j = 1

2 ( ∂ui
∂x j

+ ∂u j

∂xi
) being the resolved strain rate tensor, and Ck and Cε are

determined according to the dynamic process proposed by Kim and Menon [47], Ghosal et al.
[48], and Huang and Li [49]. Therefore, the test filter is used to resolve the kinetic energy, and the
similarity assumption is expanded to reduce the complexity of the dynamic process. In this paper,
we solve the governing equations in the Cartesian coordinate system. The convection term in the
momentum equation is discretized using the second-order upwind difference scheme of the velocity
gradient, and the time updating adopts the second-order backward implicit scheme. The PIMPLE
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TABLE I. Parameter settings.

Case L∗
x L∗

y L∗
z �x∗ �y∗ �z∗

wall a/λx a∗ λy/λx uτ×102 Reτ

G1-1 979 979 550 9.79 9.79 0.49 0.0375 18.36 1 0.5385 275
G1-2 1140 1140 641 11.4 11.4 0.57 0.05 28.57 1 0.6285 321
G1-3 1310 1310 736 13.1 13.1 0.65 0.0625 40.95 1 0.7208 369
G1-4 1500 1500 843 15 15 0.75 0.075 56.35 1 0.8264 423
G1-5 1640 1640 922 16.4 16.4 0.82 0.0875 71.59 1 0.9 460
G1-6 1710 1710 961 17.1 17.1 0.85 0.1 85.28 1 0.9381 480
G2-1 1160 1160 652 11.6 11.6 0.58 0.05 29.10 0.25 0.6403 327
G2-2 1050 1050 590 10.5 10.5 0.52 0.05 26.15 0.5 0.5753 294
G2-3 1140 1140 641 11.4 11.4 0.57 0.05 28.57 1 0.6285 321
G2-4 1060 795 596 10.6 10.6 0.53 0.05 26.50 1.5 0.5831 298
G2-5 1120 1120 630 11.2 11.2 0.56 0.05 28.02 2 0.6164 315
G2-6 1130 1412 635 11.3 11.3 0.56 0.05 28.13 2.5 0.6189 316

algorithm is used for solving the pressure-velocity coupling. It is noted that resolving the smallest
turbulent scales is required for direct numerical simulations (DNSs). However, here, we use LESs
with a subgrid-scale model to reduce the computation cost. Therefore, to verify the numerical model,
in our previous work, we had conducted a numerical simulation of turbulent flow over 2D and 3D
wavy walls [50,51]. Through the comparison of mean streamwise velocity and TKE at different
streamwise positions with the experimental results by Hamed et al. [34], we found the simulation
results agree with the experiment, so we believe the present numerical model is reliable.

C. Simulation configuration

Eleven cases were simulated and divided into two groups (1 and 2), to highlight the impact of wall
shape, including amplitude, streamwise wavelength, and spanwise wavelength. Table I provides an
overview of these cases. In group 1, denoted as G1-1–G1-6, the streamwise-to-spanwise wavelength
ratio was fixed while the amplitude was varied. Conversely, in group 2, referred to as G2-1–G2-6, the
ratio of amplitude to streamwise wavelength was fixed while the spanwise wavelength was varied.
The Reynolds number is Re = U0h/ν = 4000, where U0 is the bulk velocity and h is the half height
of the channel (noting that the height H = 1.125λx). The corresponding friction Reynolds number
Reτ = uτ h/ν is also shown in Table I, where uτ is the friction velocity determined through the
extrapolation of the mean Reynolds shear stress (RSS) from the outer layer. Hamed et al. [34]
conducted experiments to characterize the flow field at 15 streamwise wavelengths from the inlet,
referred to as developed flow conditions. Consequently, we simulated 15 flow periods (15λx/U0) to
develop the turbulence and performed statistical analysis over an additional 50 flow periods. The size
of the computational domain is shown in Table I, with Lx, Ly, Lz denoting the length in streamwise,
spanwise, and vertical directions. MacDonald et al. [52] investigated the minimal-span channel for
rough-wall turbulent flows, which restricted the spanwise channel width to be of the order of a few
hundred viscous units. However, in this paper, for group 1, the spanwise length equals ∼1000–1700
viscous units, as shown in Table I (* denotes the normalization by viscous unit). For group 2, case
G2-4 has ∼800 viscous units in the spanwise direction, while the rest of the cases have 1100–1400
viscous units in the spanwise direction. Specifically, in our previous work [50], we confirmed that
the domain size was sufficiently large to capture the primary flow structure, as demonstrated through
the evaluation of the two-point spatial correlation. Periodic boundary conditions were applied in
both the streamwise and spanwise directions, while the upper and bottom walls were treated as
no-slip boundaries (the upper boundary is a flat wall). In the context of real river flow over wavy
dunes, the upper boundary is typically free. Maass and Schumann [53] conducted DNSs of turbulent
flow over wavy walls and employed a no-slip wall boundary condition for both the upper and bottom
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FIG. 2. Comparison of (a) subgrid-scale kinetic energy and (b) resolved turbulent kinetic energy (TKE) of
turbulent flow over a three-dimensional wavy wall. The results are shown on the longitudinal section where
y/λy = 0. The subgrid-scale kinetic energy is approximately two orders of magnitude less than the resolved
TKE.

walls. Nakayama and Sakio [54] simulated a similar case but utilized a slip wall boundary condition
at the upper wall. Their findings aligned well with the results of Maass and Schumann [53] below
the half-height channel region, indicating that the influence of the upper wall on the near-wavy wall
region can be disregarded. In this paper, a body-fitted grid was employed, featuring even spacing in
the streamwise and spanwise directions while being clustered at the upper and bottom walls using an
exponential transformation technique to ensure adequate resolution of the boundary layer. The total
number of grid points for most cases is Nx×Ny×Nz = 101×101×181. However, for cases G2-4 and
G2-6 in group 2, the grid points are Nx×Ny×Nz = 101×76×181 and Nx×Ny×Nz = 101×126×181,
respectively. Table I presents the grid scale normalized by the viscous length, demonstrating that the
grid scale satisfies the requirements for quasi-DNS. In our previous study of turbulent flow over 2D
wavy walls [51], we determined that the subgrid-scale quantity could be neglected in comparison
with the resolved quantity. Here, we also show the comparison of these two, as shown in Fig. 2.
The subgrid-scale kinetic energy is approximately two orders of magnitude less than the resolved
TKE. Therefore, the subgrid-scale quantity can be ignored in this paper. This further validates the
appropriateness of the chosen grid scales in this paper.

III. SIMULATION RESULTS

In the subsequent results and discussions, the streamwise wavelength and bulk velocity are used
for normalization unless specified. Figures 3(a)–3(c) show the time-averaged velocity on the three-
directional sections for case G1-2. The flow behavior behind the crest, induced by the separating
flow, leads to a depletion of momentum and consequent alteration of the flow pathway. This modifi-
cation is observed in the vertical section presented in Fig. 3(a), where the downstream high-velocity
streaks exhibit a distinct curved pattern. These curved trajectories highlight the significant role of
transverse momentum flux, as evidenced in the transverse section shown in Fig. 3(b). The spanwise
velocity within the trough region exhibits a symmetrical structure, influenced by both sides of the
crest. This symmetrical flow pattern facilitates the transfer of flow from the spanwise sides of the
crest into the trough, thereby amplifying the transverse momentum transfer. Furthermore, Fig. 3(c)
illustrates the vertical velocity, clearly indicating the presence of separation and reattachment zones.
Specifically, the leeward side exhibits a downward velocity, while the windward side demonstrates
an upward velocity.
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FIG. 3. The turbulence statistics on three-directional sections for G1-2. (a)–(c) Time-averaged velocity,
(d)–(f) Reynolds normal stress (RNS), and (g)–(i) Reynolds shear stress (RSS) components.

Figures 3(d)–3(f) show the component of dimensionless Reynolds normal stress (RNS). The
longitudinal section in Fig. 3(d) reveals a high streamwise RNS near the crest, which expands
downstream, indicating the formation of a turbulent shear layer. In contrast, Fig. 3(e) demonstrates
that the spanwise RNS is concentrated in a small region ahead of the crest, highlighting the influence
of the terrain on enhancing the spanwise momentum flux. Additionally, Fig. 3(f) suggests that the
shear effect plays a crucial role in enhancing the vertical RNS and is closely associated with flow
separation. The magnitude of RSS in Figs. 3(g)–3(i) is generally lower than that of the normal
stress components. However, certain components verify the significance of the spanwise momentum
flux, as illustrated in Figs. 3(g) and 3(h). Here, u′v′ and v′w′ are both alternated positive-negative
patterns, related to the transverse flow around the crest. Furthermore, u′w′ features contrarily with
streamwise RNS due to the vertical fluctuating velocity. Overall, these momentum statistics are
highly dependent on the wall topography, with the spanwise components being significant.

The amplitude parameter significantly influences the magnitude of momentum statistics while
leaving their spatial variation unchanged, as illustrated in Fig. 4 for case G1-6. When compared
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FIG. 4. The turbulence statistics on three-directional sections for G1-6. (a)–(c) Time-averaged velocity,
(d)–(f) Reynolds normal stress (RNS), and (g)–(i) Reynolds shear stress (RSS) components.

with case G1-2 in Fig. 3, both the streamwise and spanwise velocities near the wall experience
enhancements due to flow separation and transverse flow effects. This intensified flow separation
also increases the vertical velocity, as observed in Fig. 4(c). Additionally, the amplitude parameter
impacts the magnitude of turbulent stresses. The components of RNS above the trough in Figs. 4(d)–
4(f) exhibit a strengthened pattern, indicating that the enhanced turbulent shear layer is generated
more readily. In Figs. 4(g)–4(i), the amplitude parameter enhances the magnitude of RSS while
maintaining its spatial characteristics unchanged. Consequently, the increase in amplitude amplifies
all momentum statistics, attributable to the combined effect of the reinforced turbulent shear layer
and transverse momentum transfer.

Figure 5 provides insight into how a case with a high spanwise wavelength (G2-6) influ-
ences the turbulence fields. In comparison with case G1-2, the curved streaks observed in G2-6
are interrupted and exhibit a decrease in velocity. Moreover, the enhanced spanwise velocity is
predominantly observed on both sides of the crest. Consequently, the region behind the crest
shows limited transverse momentum transport. It is important to note that the concentrated area
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FIG. 5. The turbulence statistics on three-directional sections for G2-6. (a)–(c) Time-averaged velocity,
(d)–(f) Reynolds normal stress (RNS), and (g)–(i) Reynolds shear stress (RSS) components.

with a downward (upward) motion in Fig. 5(c) indicates clear flow separation (reattachment),
resembling a more 2D scenario. The components of RNS are also affected by this separation, with
an increase in streamwise and vertical RNS, while the spanwise RNS weakens. It is also found
that u′v′ and v′w′ distribute dispersedly, while u′w′ is significant, akin to a 2D case. Therefore,
increased spanwise wavelength limits the spanwise momentum transport and behaves like the 2D
situation.

IV. ANALYSIS AND DISCUSSION

In rough wall boundary layer flow, the temporal-spatial averaged quantity can better describe the
wall effect on the macroscopic turbulent statistics (also known as mean quantity). This approach
involves decomposing the instantaneous velocity into

u(x, y, z, t ) = ū(x, y, z) + u′(x, y, z, t ) = 〈ū(x, y, z)〉 + ũ(x, y, z) + u′(x, y, z, t ), (5)
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FIG. 6. The schematic of temporal and spatial averaging used in this paper on (a) longitudinal section with
y/λy = 0 and (b) cross-section with x/λx = 0.75. (a) The instantaneous streamwise velocity is decomposed
into time-averaged and turbulent fluctuating velocities; a spatial averaging along the streamwise direction
divides the time-averaged velocity into temporal-spatial averaged velocity and dispersive velocity in the
streamwise direction. (b) The decomposition along the spanwise direction. The subscript x or y means the
spatial averaging along the x or y direction.

where ū(x, y, z) = 1
T

∫
T u(x, y, z, t )dT is the time-averaged velocity, T is the total time for statistical

analysis, corresponding to 50 flow periods with ∼12 000 instantaneous snapshots, u′(x, y, z, t )
denotes the temporal fluctuations of velocity, and ū(x, y, z) can be further decomposed into
temporal-spatial averaged velocity 〈ū(x, y, z)〉 = 1

�i

∫
�i

ū(x, y, z)d�i, which is averaged at the rel-
ative height along the spatial domain in both streamwise and spanwise directions and the residual
velocity ũ(x, y, z) (or the dispersive velocity). Here, �i denotes the region of the vertical ith layer
grid along the wavy wall. Notably, the present averaging is conducted at relative height along the
streamwise and spanwise directions, which is different from that of Finnigan [55] and Nikora et al.
[56]. We caution that most previous investigators considered the small roughness and thus carried
out double averaging. However, in this paper, we focus on the large-scale topography. This kind of
wall boundary leads to typical flow separation, as shown in Fig. 6(a). The streamwise velocity at
the trough features a negative value. If we conducted spatial averaging at the absolute height, the
temporal and spatial averaging results in negative velocity at the trough while resulting in a positive
value at the crest. Therefore, the macrovelocity is difficult to determine. The chosen velocity at the
crest ignores the flow separation-induced negative velocity, and the chosen velocity at the trough
does not consider the acceleration at the crest. Therefore, we conducted spatial averaging at the
relative height to obtain the macrovelocity. This considers both the flow acceleration of the crest
and the flow separation of the trough. Figure 6 shows the schematic of temporal-spatial averaging
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FIG. 7. (a) The transformation from Cartesian to curvilinear coordinate. The time-averaged (b) and (d)
streamwise and (c) and (e) vertical velocities shown in (b) and (c) Cartesian and (d) and (e) curvilinear
coordinates for case G1-2.

used in this paper. The mean streamwise velocity keeps unvaried at the relative height. Therefore,
this quantity can be used to evaluate the macro effect of the wall boundaries.

The present spatial averaging can also be achieved under curvilinear coordinate frame. We further
emphasize the difference between these two frames on the longitudinal section (y/λy = 0). First,
(u,w) is defined in the Cartesian coordinates (x, z), corresponding to (uξ ,wζ ) in the curvilinear
coordinates (ξ, ζ ). Figure 7(a) shows the schematic diagram of the transformation from Cartesian
to curvilinear coordinate. The black box shows the spatial grid with four points named (x0, z0),
(x1, z1), (x2, z2), and (x3, z3). According to the field decomposition of velocity, there is (uξ ,wζ ) =
(u/cos θ,w−u tan θ ), where θ is the angle between horizontal line and the curvilinear coordinate
axis (ξ ). Figures 7(b)–7(e) show the time-averaged velocities in different frames for case G1-2. The
streamwise velocity is basically unvaried in different frames. However, the vertical velocity shows
apparent variation, amplified under a curvilinear coordinate frame.

In the subsequent discussion, the vertical momentum flux is emphasized. Therefore, we compare
the RSS and dispersive shear stress (DSS) under different frames. According to the relation of
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FIG. 8. (a) and (b) Reynolds shear stress and (c) and (d) dispersive shear stress under (a) and (c) Cartesian
and (b) and (d) curvilinear coordinates for case G1-2.

(uξ ,wζ ) = (u/cos θ,w−u tan θ ), the RSS can be transformed into the following formula:

u′w′ = uw − ūw̄ = uξ cos θ (wζ + u tan θ ) − ūξ cos θ (w̄ζ + ū tan θ )

= uξwζ cos θ + uξ u cos θ tan θ − ūξ w̄ζ cos θ − ūξ ū cos θ tan θ

= (uξwζ − ūξ w̄ζ ) cos θ + (uξ u − ūξ ū) cos θ tan θ

= (uξwζ − ūξ w̄ζ ) cos θ + (uu − ūū) tan θ

= u′
ξw

′
ζ cos θ + u′u′ tan θ. (6)

Therefore, there is u′
ξw

′
ζ = u′w′

cos θ
− u′u′ tan θ

cos θ
. Similarly, the DSS in different frames is ũξ w̃ζ =

ũw̃
cos θ

− ũũ tan θ
cos θ

. Figures 8(a) and 8(b) show the comparison of RSS under different coordinate frames.
The RSS under the Cartesian coordinate is more apparent, with enhancement above the trough due
to the strong shear layer. Under curvilinear coordinates, however, RSS highly varies, with enhanced
positive value on the windward side.

Figures 8(c) and 8(d) show the DSS in different frames. The pattern of DSS along the wall
is basically insensitive to the frames. However, there is a minor difference behind the crest. The
slightly positive DSS under the Cartesian coordinate changes into a negative value in a curvilinear
frame. This arises due to the variation of dispersive vertical velocity (not shown here). According to
the results in Figs. 8(c) and 8(d), we infer that the curvilinear coordinate might change the variation
of high-order statistics. In fact, authors of previous studies have widely found that it is common
that the RSS has a negative value on the windward side for 2D wavy wall turbulence. Hudson et al.
[57] and Cherukat et al. [58] pointed out that the negative value of RSS is an artifact of using the
Cartesian coordinate system and would be positive under a curvilinear coordinate system. However,
Yang and Shen [59] attributed the negative value to vertically bent quasistreamwise vortices on the
windward side. In our previous work, we also verified the quasistreamwise vortex pair shown in the
Cartesian coordinate frame contributes to the negative RSS on the windward side [51]. Therefore,
the Cartesian coordinate shows the results more intuitively. The subsequent results and discussions
are based on this frame.
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FIG. 9. The profiles of mean streamwise velocity at the (a) and (c) logarithmic and (b) and (d) semiloga-
rithmic plots. (a) and (b) Group 1; (c) and (d) group 2.

A. Profiles of the mean streamwise velocity

Figure 9 shows the mean streamwise velocity profiles; the asterisk denotes the normalization by
friction velocity, where 〈ū〉∗ = 〈ū〉/uτ and 〈z〉∗ = 〈z〉uτ /ν. Figures 9(a) and 9(c) demonstrate that
the velocity profiles conform to a linear law within the viscous sublayer 〈z〉∗ < 5. However, these
profiles exhibit lower values than a flat-wall boundary layer (indicated by the gray dashed line).
Increasing the amplitude of the wall shape leads to a downward shift in the velocity profile. On
the other hand, raising the spanwise wavelength initially results in an upward shift of the profile,
followed by a subsequent downward shift.

In the region 〈z〉∗ > 50, as shown in Figs. 9(b) and 9(d), a typically logarithmic law can be
observed. The logarithmic law of the mean velocity with the distance from the wall is expressed as

〈ū〉∗ = 1

κ
ln (〈z〉∗) + A, (7)

where A is a parameter that depends on the roughness of the surface, with A = 5.1 chosen for a
flat-wall boundary layer flow, and κ ≈ 0.4 is the von Karman constant. The increase in amplitude
shifts the profile downward, while the increase in spanwise wavelength for current cases shifts the
profile upward and then downward.
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FIG. 10. Roughness function.

We construct the relation between the wall shape and roughness to emphasize the wall effect on
macroscopic flow. For turbulent flow over a rough wall, the logarithmic law is written as

〈ū〉∗ = 1

κ
ln (〈z〉∗) + A − �u∗. (8)

For a fully rough regime, Eq. (8) should meet the requirement [60]:

A − �u∗ + 1

κ
ln (a∗) = B, (9)

where B is the intercept constant determined by the specific roughness form and �u∗ is the
roughness function. For this paper, a∗ is the dimensionless amplitude.

Figure 10 shows the roughness function varied with dimensionless amplitude. The effective sand
grain height k∗

s is also shown. The intercept constant B = 8.5 was determined by Flack and Schultz
[61], also known as the Nikuradse constant [62]. For a fully rough regime, the roughness function
is

�u∗ = 1

κ
ln (k∗

s ) − 3.4. (10)

A red dashed line at �u∗ = 9 marks the approximate start of the fully rough regime [12].
It is seen that cases G1-5 and G1-6 belong to the fully rough regime, while cases G1-1–G1-4
belong to the transitionally rough regime. The relations between the effective sand grain height
and amplitude for G1-5 and G1-6 are k∗

s = 2.16a∗ and 2.7a∗. However, it should be noted that all
cases in group 2 fall within the transitional rough regime. Additionally, we include a plot of the
limiting spanwise-wavelength case (or the 2D wavy wall case) using data from our previous work
[38]. Our analysis reveals that the current roughness function does not exceed that of the 2D wavy
wall case. Furthermore, the roughness function aligns well with the universal logarithmic law.

B. The vertical momentum flux (shear stress)

The shear stress can also be divided into Reynolds and dispersive stresses via temporal-spatial
averaging. Here, we consider the streamwise momentum conservation equation in 2D:

∂〈ū〉
∂t

+ ∂

∂x

(
〈ū〉〈ū〉 + 〈u′u′〉 + 〈ũũ〉 − ν

∂〈ū〉
∂x

)

+ ∂

∂z

(
〈ū〉〈w̄〉 + 〈u′w′〉 + 〈ũw̃〉 − ν

∂〈ū〉
∂z

)
= − 1

ρ

∂〈p̄〉
∂x

. (11)
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The first term on the left side of Eq. (11) can be ignored due to the statistically steady flow.
Equation (11) can be rewritten as

∂

∂x

(
−〈ū〉〈ū〉 − 〈u′u′〉 − 〈ũũ〉 + ν

∂〈ū〉
∂x

)

+ ∂

∂z

(
−〈ū〉〈w̄〉 − 〈u′w′〉 − 〈ũw̃〉 + ν

∂〈ū〉
∂z

)
= 1

ρ

∂〈p̄〉
∂x

. (12)

Equation (12) suggests that the vertical momentum flux is balanced not only by its components
including spatial-averaged RSS, DSS, and viscous shear stress (VSS), but streamwise momentum
flux also contributes to the momentum conservation. This arises due to the present method of
temporal and spatial averaging. The present averaging can also be achieved in the curvilinear
coordinate, and thus, we can ignore the first term of Eq. (12). However, this leads to additional
terms. Since the Cartesian coordinate shows the results more directly, we utilize this framework
to emphasize the momentum transfers. Here, the vertical momentum flux is highlighted, the total
vertical momentum flux (or stress) consists of spatial-averaged RSS, DSS, and VSS:

〈τ̄t 〉 = −〈u′w′〉 − 〈ũw̃〉 + ν
∂〈ū〉
∂z

, (13)

where 〈τ̄t 〉 is the total shear stress (TSS).
Figure 11 shows the dimensionless RSS −u′w′, DSS −ũw̃, VSS τ̄ν = ν∂ ū/∂z, and TSS τ̄t

on characterized cross-section. For cases with higher amplitudes, −u′w′ exhibits an increase in
magnitude and extent within the trough region, as depicted in Figs. 11(a1) and 11(b1). A slight
negative −u′w′ near the crest in Fig. 11(b1) can be attributed to the presence of a counterrotating
vortex pair, as discussed by Zhang et al. [38]. The reduction in turbulence intensity is responsible
for the acceleration of the flow along the curved streaks, as observed in Fig. 3, leading to weakened
−u′w′ in areas where the boundary exhibits zero-streamwise curvature. Figures 11(a1) and 11(c1)
indicate that an increased spanwise wavelength enhances the magnitude of −u′w′ due to the
presence of pronounced separated shear.

The magnitude of −ũw̃ is comparable with that of −u′w′. Notably, there is a conspicuous
increase in negative −ũw̃ magnitude within the trough region as the amplitude increases, as depicted
in Figs. 11(a2) and 11(b2). This region corresponds to areas where the flow exhibits higher vertical
velocity and lower spanwise velocity, as observed in Fig. 3. Conversely, positive −ũw̃ is present
in regions where the flow displays higher spanwise velocity and lower vertical velocity in Fig. 3.
These observations suggest a correlation between −ũw̃ and spanwise/vertical motions. The τ̄ν in
Figs. 11(a3)–11(c3) demonstrates its predominant contribution within the near-wall region. The
τ̄t in Figs. 11(a4)–11(c4), encompassing −u′w′, −ũw̃, and τ̄ν , is primarily generated through the
interaction between −u′w′ and −ũw̃.

Figure 12 presents the vertical profiles of the shear stress components, which are dimensionless
by the friction velocity. The interplay between −〈u′w′〉∗ and −〈ũw̃〉∗ aligns with the observations
by Zampiron et al. [45]. The increase in −〈u′w′〉∗ is counterbalanced by a decrease in −〈ũw̃〉∗, as
depicted in Figs. 12(a), 12(b), 12(d), and 12(e). Furthermore, the current bulk Reynolds number
dominates the viscosity near the wall, thereby influencing the impact of the 〈τ̄ν〉∗ within the
sublayer. In Fig. 12(a), the increase in amplitude raises the peak position of −〈u′w′〉∗ while
maintaining its magnitude. Conversely, the increase in spanwise wavelength in Figs. 12(d) and
12(e) amplifies the peak value of −〈u′w′〉∗ without affecting its peak position, indicating the
strengthening of the shear layer in a 2D scenario (where a larger spanwise wavelength indicates the
wall being closer to a 2D state). Likewise, a similar trend can be observed for −〈ũw̃〉∗ in Figs. 12(d)
and 12(e). The presence of the wall boundary generally affects the macroscopic vertical momentum
flux through the induced turbulent shear layer. The higher RSS (DSS) is primarily attributed to the
occurrence of shear in this context.
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FIG. 11. The Reynolds shear stress (RSS), dispersive shear stress (DSS), viscous shear stress (VSS), and
total shear stress (TSS) on the cross-section for cases (a) G1-2, (b) G1-6, and (c) G2-6.

C. Spatial quadrant of DSS and its activation mechanism

We next emphasize the DSS composition based on the quadrant distribution. The DSS can be
divided into Qd1(ũ > 0, w̃ > 0), Qd2(ũ < 0, w̃ > 0), Qd3(ũ < 0, w̃ < 0), and Qd4(ũ > 0, w̃ < 0),
corresponding to dispersive outward interaction, ejection, inward interaction, and sweep events,
respectively.

Figure 13 shows the DSS on three-directional sections (XS1, YS1, and ZS1 denote the section
at x/λx = 0.75, y/λy = 0, and z/a = 0.5) for G1-3, and the dispersive velocity is identified by
the isolines to show the spatial quadrant. On the YS1 section, as shown in Fig. 13(a), the DSS
exhibits alternating positive and negative values along the streamwise direction. In the R1 region,
the DSS is predominantly influenced by Qd3. This characteristic continues downstream into the R3
region. On the other hand, in the R2 and R4 regions, Qd2 governs the behavior of the DSS, which
could be attributed to the formation of vortices. Furthermore, the presence of R5, characterized
by Qd1, aligns with the findings of Dey et al. [37]. Along the spanwise direction, the alternation
of positive and negative DSS can also be observed, as shown in Fig. 13(c). In R3, Qd3 occupies
a significant portion of the trough region, forming a closed annular area around R2. Additionally,
Qd1 in R5 expands transversely. These characteristics are consistently observed across variations in
amplitude.

Figure 14 shows the DSS for G2-6. Like Fig. 13, the spatial pattern of DSS remains unchanged. A
higher spanwise wavelength leads to a weakening and narrowing of the dispersive ejection in R2 and
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FIG. 12. The dimensionless spatial-averaged Reynolds shear stress (RSS), dispersive shear stress (DSS),
and viscous shear stress (VSS) profiles.

R4. However, in R3, the dispersive inward interaction intensifies due to apparent flow separation.
(It is important to note that the parameters for G1-3 and G2-6 differ in both amplitude and spanwise
wavelength, so a strict comparison is not established. We also obtained results for G1-2, which
are qualitatively like those of G1-3.) The enhanced dispersive inward interaction is evident in the
cross-section depicted in Fig. 14(b). In curved streaks characterized by high streamwise velocity,
such as R6, the DSS is relatively weak due to the limitations imposed by the transverse flow around
the crest.

The significance of the DSS contribution in the near-wall region is notable. As one moves
vertically away from the wall, the phase modulation between streamwise and vertical velocities
leads to a weaker DSS until its effect diminishes completely. In Fig. 13(a), on the windward side,
the phase difference between streamwise and vertical velocities is ∼ 0.25λx. This phase difference
along the spanwise direction is also evident, as shown in the cross-section. Conversely, for G2-6
in Fig. 14, there is no apparent phase difference, resulting in a weaker DSS in R6. Consequently,
the presence of the wall in this paper influences the dispersion of flow by modulating the phase
difference between streamwise and vertical dispersive velocities, thereby activating the region
associated with DSS.

In the case of a limiting spanwise wavelength or a 2D wavy wall scenario, the DSS exhibits
a quadrant conversion of Qd4 − Qd3 − Qd2 − Qd1 along one wavelength, as reported by Zhang
et al. [38]. Figure 15 provides a comparison of the DSS between the current case, G1-2, and a 2D
wavy wall scenario under the same amplitude conditions. The results for the 2D wavy wall case are
derived from our previous work [38]. The spanwise heterogeneity weakens the occurrences of Qd3

and Qd1 events in R3 and R5. In R1, the presence of a 2D wavy wall induces Qd4, contrasting with
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FIG. 13. The contours of dispersive shear stress (DSS) and isolines of dispersive velocity components for
G1-3 on (a) YS1, (b) XS1, and (c) ZS1 sections. The solid and dashed lines are the dispersive streamwise and
vertical velocities, with blue (red) denoting less (larger) than zero.

Qd3 observed in 3D wavy wall turbulence. This suggests that the spanwise heterogeneity fails to
trigger strong sweep events near the crest due to the competition between transverse-around flow
and streamwise momentum transport. On the windward side in R5, the effect of transverse-around
flow remains significant. Although the flow climbing over the crest decreases significantly, there is
an overall increase in total streamwise momentum as the streamwise velocity rises. Consequently,
the dispersive streamwise velocity weakens, as depicted in Fig. 15(a). This results in a narrower
active DSS on the windward side, while its strength remains unaffected. Additionally, as shown
in Fig. 15(b), the time-averaged vertical velocity decreases while the dispersive vertical velocity
increases due to limitations on the flow path caused by climbing over the crest. With the interaction
between the enhanced dispersive vertical and streamwise velocities, a dispersive ejection event
emerges in R4.

Moreover, Figs. 15(b) and 15(d) demonstrate that the 3D wavy wall induces the occurrence of
the Qd2 event in R2. In a 2D case, the flow separation is lifted on the leeward side, resulting in
a positive value for the time-averaged vertical velocity. However, in the case of a 3D wavy wall,

034602-17



ENWEI ZHANG, ZHAN WANG, AND QINGQUAN LIU

(a) (b)

(c)

x
x

y
y

z H (a)

(b)

(c)

R1
R2 R3

R4 R5

R2 R3 R4 R5

R3

R6

R6

FIG. 14. The contours of dispersive shear stress (DSS) and isolines of dispersive velocity components for
G2-6 on (a) YS1, (b) XS1, and (c) ZS1 sections. The solid and dashed lines are the dispersive streamwise and
vertical velocities, with blue (red) denoting less (larger) than zero.

despite the weakened flow separation that would typically reduce the time-averaged vertical velocity
of the reversed flow, the enhanced dispersive vertical velocity in R2 provides an alternative means of
controlling the time-averaged vertical velocity. Omidyeganeh and Piomelli [11] noted the presence
of secondary flows, or streamwise vortices, in turbulence over 3D dunes. In this context, we propose
that the momentum transport induced by these secondary flows is responsible for activating flow
dispersion in R2.

As mentioned in the previous section, the regions where the DSS is activated coincide with
areas where velocity components exhibit notable characteristics. Medjnoun et al. [63] conducted
experiments and discovered that DSS contributions are amplified by large-scale secondary flows,
specifically streamwise vorticity, which are more pronounced near the core of these secondary flows.
Chan et al. [64] also found that the secondary flow leads to a significant increase in dispersive
stresses. This highlights the connection between local-averaged DSS and vorticity. In this paper,
we have integrated the vorticity within the designated volume, resulting in the expression of
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FIG. 15. Comparison of the dispersive shear stress (DSS) for (a) and (b) case G1-2 and (c) and (d) two-
dimensional wavy wall case from our previous work [38]. The blue solid lines denote ũ < 0 or w̃ < 0, whereas
the red solid lines represent ũ > 0 or w̃ > 0.

local-averaged streamwise, spanwise, and vertical vorticity as follows:

�lax = 1

V

∫ λx

0

∫ 0.5λy

−0.5λy

∫ 0.3H

η

|ω̄x| dxdydz

�lay = 1

V

∫ λx

0

∫ 0.5λy

−0.5λy

∫ 0.3H

η

∣∣ω̄y

∣∣ dxdydz

�laz = 1

V

∫ λx

0

∫ 0.5λy

−0.5λy

∫ 0.3H

η

|ω̄z| dxdydz, (14)

where V is the integral volume. Similarly, the local-averaged DSS is calculated by integrat-
ing the double-averaged DSS profiles, which can be determined by τlad = 1

0.3H

∫ 0.3H
0 〈τ̄d〉d〈z〉.

Figure 16 illustrates the variation of local-averaged DSS as a function of the local-averaged vorticity
components. Increasing the amplitude amplifies the streamwise and vertical vorticity, as depicted
in Figs. 16(a) and 16(c). This amplification also leads to the growth of the DSS, indicating that the
local-averaged DSS increases linearly with the enhancement of streamwise and vertical vorticity.
This finding aligns with the observations of Medjnoun et al. [63], who reported a nearly linear
relationship between DSS and circulation (defined as the integration of streamwise vorticity in their
study). Notably, Fig. 16(b) shows that the spanwise vorticity decreases as the DSS increases, indi-
cating that higher amplitudes limit the development of spanwise vorticity. This highlights the limited
contribution of spanwise vorticity variation to the overall variation of DSS. However, for group 2 in
Figs. 16(d)–16(f), a reversed trend emerges. Increasing the spanwise wavelength reduces both the
local-averaged streamwise and vertical vorticity, yet the DSS is approximately strengthened. This
suggests that the mechanism of streamwise-vortices-dominated DSS is no longer valid in this case.
Figure 16(e) further demonstrates that the DSS increases linearly with the local-averaged spanwise
vorticity, indicating the dominance of spanwise vortices in the variation of DSS. Therefore, the
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FIG. 16. Local-averaged dispersive shear stress (DSS) as a function of the local-averaged (a) and (d)
streamwise, (b) and (e) spanwise, and (c) and (f) vertical vorticity for (a)–(c) group 1 and (d)–(f) group 2.

activation of DSS is closely related to vorticity variation. The amplitude variation primarily controls
the DSS induced by streamwise vortices, while an increased spanwise wavelength affects DSS by
adjusting the strength of spanwise vorticity.

D. Partition of the kinetic energy production

This section underlines the partition of kinetic energy production. According to the present
temporal-spatial averaging decomposition, the conservation equation of the time-averaged kinetic
energy can be deduced by multiplying the velocity components into the corresponding momentum
equation. First, the time-averaged momentum conservation equation is

∂ ūi

∂t
+ ∂

∂x j
(ūiū j + u′

iu
′
j ) = − 1

ρ

∂ p̄

∂xi
+ ν

∂2ūi

∂x j∂x j
. (15)

Multiplying the time-averaged velocity gives

ūi
∂ ūi

∂t
+ ūi

∂

∂x j
(ūiū j + u′

iu
′
j ) = − 1

ρ

∂ p̄

∂xi
ūi + ν

∂2ūi

∂x j∂x j
ūi. (16)

Equation (16) can be rewritten as

DĒ

Dt
= ∂

∂x j

(
− p̄ū j

ρ
− Ē ū j − ūiu′

iu
′
j + 2νūiS̄i j

)
+ ūiū j

∂ ūi

∂x j
+u′

iu
′
j

∂ ūi

∂x j︸ ︷︷ ︸
−Pt

−2νS̄i j S̄i j, (17)

where Ē = 1
2 ūiūi is the time-averaged kinetic energy, and D

Dt = ∂
∂t + (ū · ∇ ) is the material deriva-

tive, Si j is the strain rate tensor, the term Pt = −u′
iu

′
j
∂ ūi
∂x j

denotes the TKE production, and ūiū j
∂ ūi
∂x j

includes a term related to the dispersive kinetic energy (DKE) production, namely, Pd = −ũiũ j
∂ ūi
∂x j

.
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The TKE production represents the energy injection from the time-averaged flow into the turbulent
motion, while the DKE production signifies the energy transfer from the time-averaged flow to
flow dispersion. Equation (17) indicates that both turbulent and dispersive stresses contribute to the
time-averaged kinetic energy production, implying that both the turbulent and dispersive stresses
perform work on the time-averaged strain rate. The spatial averaging of Eq. (17) gives

D〈Ē〉
Dt

= ∂

∂x j

(
−〈p̄ū j〉

ρ
− 〈Ē ū j〉 − 〈ūiu′

iu
′
j〉 + 2ν〈ūiS̄i j〉

)

+
〈
ūiū j

∂ ūi

∂x j

〉
+

〈
u′

iu
′
j

∂ ūi

∂x j

〉
︸ ︷︷ ︸

−〈Pt 〉

−2ν〈S̄i j S̄i j〉. (18)

Then we conducted spatial averaging of Eq. (15) to obtain the mean momentum conservation
equation:

∂〈ūi〉
∂t

+ ∂

∂x j
(〈ūi〉〈ū j〉 + 〈ũiũ j〉 + 〈u′

iu
′
j〉) = − 1

ρ

∂〈p̄〉
∂xi

+ ν
∂2〈ūi〉
∂x j∂x j

. (19)

Multiplying the mean velocity gives

〈ūi〉∂〈ūi〉
∂t

+ 〈ūi〉 ∂

∂x j
(〈ūi〉〈ū j〉 + 〈ũiũ j〉 + 〈u′

iu
′
j〉) = − 1

ρ

∂〈p̄〉
∂xi

〈ūi〉 + ν
∂2〈ūi〉
∂x j∂x j

〈ūi〉. (20)

Equation (20) can be rewritten as

DK

Dt
= ∂

∂x j

(
−〈p̄〉〈ū j〉

ρ
− K〈ū j〉 − 〈ūi〉〈ũiũ j〉 − 〈ūi〉〈u′

iu
′
j〉 + 2ν〈ūi〉〈S̄i j〉

)

+ 〈ūi〉〈ū j〉∂〈ūi〉
∂x j

+
〈
ũiũ j

∂〈ūi〉
∂x j

〉
︸ ︷︷ ︸

−〈Pmd 〉

+
〈
u′

iu
′
j

∂〈ūi〉
∂x j

〉
︸ ︷︷ ︸

−〈Pmt 〉

−2ν〈S̄i j〉〈S̄i j〉, (21)

where K = 1
2 〈ūi〉〈ūi〉 is the mean kinetic energy (MKE), the term 〈Pmt 〉 = 〈−u′

iu
′
j
∂〈ūi〉
∂x j

〉 (〈Pmd〉 =
〈−ũiũ j

∂〈ūi〉
∂x j

〉) represents the energy transfer between mean motion and turbulence (dispersion). Next,
the dispersive momentum conservation equation can be derived through the difference between
Eqs. (15) and (19), expressed as

∂ ũi

∂t
+ ∂

∂x j
(ūiū j + u′

iu
′
j − 〈ūi〉〈ū j〉 − 〈ũiũ j〉 − 〈u′

iu
′
j〉) = − 1

ρ

∂ p̃

∂xi
+ ν

∂2ũi

∂x j∂x j
. (22)

Multiplying the dispersive velocity gives

ũi
∂ ũi

∂t
+ ũi

∂

∂x j
(ūiū j + u′

iu
′
j − 〈ūi〉〈ū j〉 − 〈ũiũ j〉 − 〈u′

iu
′
j〉) = − 1

ρ

∂ p̃

∂xi
ũi + ν

∂2ũi

∂x j∂x j
ũi. (23)

The fluctuating momentum conservation equation is then considered:

∂u′
i

∂t
+ ∂

∂x j
(u′

i〈ū j〉 + u′
iũ j + 〈ūi〉u′

j + ũiu
′
j + u′

iu
′
j − u′

iu
′
j ) = − 1

ρ

∂ p′

∂xi
+ ν

∂2u′
i

∂x j∂x j
. (24)

Multiplying the fluctuating velocity gives

u′
i

∂u′
i

∂t
+ u′

i

∂

∂x j
(u′

i〈ū j〉 + u′
iũ j + 〈ūi〉u′

j + ũiu
′
j + u′

iu
′
j − u′

iu
′
j ) = − 1

ρ

∂ p′

∂xi
u′

i + ν
∂2u′

i

∂x j∂x j
u′

i. (25)

034602-21



ENWEI ZHANG, ZHAN WANG, AND QINGQUAN LIU

The spatial averaging of Eq. (23) and the time and spatial averaging of Eq. (25) yield the
following energy conservation equations:

D〈Ẽ〉
Dt

= ∂

∂x j

(
−〈p̃ũ j〉

ρ
− 〈ũiũiũ j〉 − 〈ũiu′

iu
′
j〉 + 2ν〈ũiS̃i j〉

)

+
〈
ũiũ j

∂ ũi

∂x j

〉
︸ ︷︷ ︸

−〈Pdd 〉

+
〈
u′

iu
′
j

∂ ũi

∂x j

〉
︸ ︷︷ ︸

−〈Pdt 〉

−
〈
ũiũ j

∂〈ūi〉
∂x j

〉
︸ ︷︷ ︸

〈Pmd 〉

−2ν〈S̃i j S̃i j〉, (26)

D〈Ē ′〉
Dt

= ∂

∂x j

(
−〈p′u′

j〉
ρ

− 〈u′
iu

′
iu

′
j〉 − 〈Ē ′ũ j〉 + 2ν〈u′

iS
′
i j〉

)

+
〈

u′
iu

′
j

∂u′
i

∂x j

〉
−

〈
u′

iu
′
j

∂〈ūi〉
∂x j

〉
︸ ︷︷ ︸

〈Pmt 〉

−
〈
u′

iu
′
j

∂ ũi

∂x j

〉
︸ ︷︷ ︸

〈Pdt 〉

−2ν〈S′
i jS

′
i j〉, (27)

where Ẽ = 1
2 ũiũi is the DKE, and E ′ = 1

2 u′
iu

′
i is the instantaneous TKE. Based on Eqs. (18), (21),

(26), and (27), the terms associated with the TKE production (Pmt ) exhibit opposite signs in the
conservation equations of MKE and TKE. This indicates the energy transfer occurring between
the mean motion and turbulent motion. Similarly, the terms related to the DKE production (Pmd )
also display opposite signs in the conservation equations of MKE and DKE, indicating the energy
transfer between mean motion and flow dispersion. Notably, the term denoted as Pdt represents
the work done by turbulent stresses on the dispersive velocity gradient, signifying the energy
transfer between flow dispersion and the turbulent motion. The production terms are systematically
distributed among the terms in the conservation equations of mean and dispersive kinetic energies.
In other words, the TKE and DKE productions can be divided into

Pt = −u′
iu

′
j

∂ ūi

∂x j
= Pmt + Pdt = −u′

iu
′
j

∂〈ūi〉
∂x j

− u′
iu

′
j

∂ ũi

∂x j

Pd = −ũiũ j
∂ ūi

∂x j
= Pmd + Pdd = −ũiũ j

∂〈ūi〉
∂x j

− ũiũ j
∂ ũi

∂x j
. (28)

Here, Pt denotes the TKE production. The further spatial decomposition results in the mean TKE
production Pmt and TKE-DKE exchange term Pdt , while Pd denotes the DKE production, and the
further decomposition leads to the mean DKE production Pmd and a term Pdd that is akin to energy
transportation.

Figure 17 shows the production of TKE Pt , mean TKE Pmt , and TKE-DKE exchange Pdt

on characteristic longitudinal and vertical sections (y/λy = 0, z/a = 0.5) for cases G1-2, G1-6,
and G2-6. Here, the complete strain rate tensor is considered. The positive (negative) production
terms indicate that the time-averaged flow is responsible for generating (suppressing) turbulence.
From an energy transfer perspective, positive production terms signify that the time-averaged flow
transfers energy into turbulence, while negative values indicate the other way around. Observing
Figs. 17(a)–17(c) on the longitudinal sections, the TKE production becomes stronger with increas-
ing amplitude and spanwise wavelength. Furthermore, Figs. 17(a)–17(c) illustrate that the TKE
production is symmetrically distributed on the vertical sections, primarily generating turbulence
behind the crest. Conversely, a negative TKE production is observed ahead of the crest, indicating
the suppression of turbulence due to the growth of the internal boundary layer.

On the longitudinal section, the TKE components exhibit distinct behavior, as depicted in
Figs. 17(d)–17(i). The leeward side is primarily governed by the negative (positive) production
of mean TKE, whereas the windward side is dominated by the positive (negative) exchange
between TKE and DKE. Notably, the TKE follows a similar pattern as the TKE-DKE exchange,
indicating the significant role of wall heterogeneity in adjusting turbulence production. Moving to
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FIG. 17. (a)–(c) Turbulent kinetic energy (TKE) production, (d)–(f) mean TKE production, and (g)–(i)
TKE-dispersive kinetic energy (DKE) exchange on longitudinal and vertical sections for cases (a), (d), and (g)
G1-2, (b), (e), and (h) G1-6, and (c), (f), and (i) G2-6.

the vertical section, the mean TKE production is negative (positive) behind (ahead of) the crest,
while the TKE-DKE exchange is positive (negative) in the same regions. Furthermore, the mean
TKE makes a considerable contribution to TKE production in cases with small amplitudes, as
seen in Figs. 17(a) and 17(d). However, for cases with high amplitudes or spanwise wavelengths,
illustrated in Figs. 17(b), 17(c), 17(h), and 17(i), the TKE-DKE exchange predominantly controls
TKE production. Overall, the mean TKE has a negative influence on TKE in most regions, while
the TKE-DKE exchange positively governs TKE and plays a crucial role in enhancing TKE.

Figure 18 shows the production of DKE Pd , mean DKE Pmd , and DKE transportation Pdd on
characteristic longitudinal and vertical sections (y/λy = 0, z/a = 0.5) for cases G1-2, G1-6, and
G2-6. The positive production terms indicate the transfer of energy from the time-averaged flow to
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FIG. 18. (a)–(c) Dispersive kinetic energy (DKE) production, (d)–(f) mean DKE production, and (g)–(i)
DKE transportation on longitudinal and vertical sections for cases (a), (d), and (g) G1-2, (b), (e), and (h) G1-6,
and (c), (f), and (i) G2-6.

flow dispersion, while negative values represent the other way around. Examining the longitudinal
section, as depicted in Figs. 18(a)–18(c), negative (positive) production terms are observed on the
leeward (windward) side, indicating the generation (or suppression) of DKE by the time-averaged
flow. The topography influences the DKE production, resulting in a complex pattern on the char-
acteristic vertical section, as shown in Figs. 18(a)–18(c). In the case of G1-2 [Fig. 18(a)], positive
DKE production is observed on both sides of the walls, extending downstream. This signifies the
dispersion effect of the topographic protrusion on the time-averaged flow. However, behind the crest,
a strong negative production term represents the convergence of dispersed flow into the averaged
flow with the consumption of DKE energy. These characteristics are minimally affected by the shape
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parameters considered, as demonstrated in the sections shown in Figs. 18(b) and 18(c). In cases
with large amplitudes, such as case G1-6, a region very close to the crest exhibits positive DKE
production, associated with enhanced streamwise flow separation. The reversed flow attached to the
wall may disperse in the spanwise direction, thereby confirming the likely formation of streamwise
vortices mentioned in Sec. IV C.

Figures 18(d)–18(i) show the mean DKE production and DKE transportation. The mean DKE
production exhibits similar patterns to the DKE production in most regions. However, differences
are observed in the small region behind the crest and ahead of the downstream crest (or the windward
side). Notably, there is no positive mean DKE production behind the crest, in contrast with the
positive DKE production shown in Figs. 18(a)–18(c). On the windward side, there is a noticeable
enhancement in positive mean DKE production compared with weak positive DKE production. This
indicates the presence of spatially heterogeneous velocity gradients. The distinction between mean
DKE and DKE productions is balanced by the transportation of DKE. Figures 18(g)–18(i) suggest
that flow dispersion amplifies the transportation of DKE. According to Eqs. (18) and (26), positive
DKE transportation signifies the energy transfer from the time-averaged flow through dispersive
motion into the mean flow, which is evident on the leeward side. Conversely, reversed transportation
occurs on the windward side near the trough.

V. CONCLUDING REMARKS

This paper contributes to the understanding of the impact of wall shape on turbulent statistics,
specifically focusing on 3D wavy walls and their effects on momentum and kinetic energy transfer.
Through extensive LESs, we have analyzed the influence of wall characteristics, such as amplitude
and wavelength, on various turbulent parameters. The temporal-spatial averaging at relative height
has been employed to unravel the macroscopic implications of the wall boundary on turbulent
features, including velocity and vertical momentum flux profiles. Moreover, by deducing the
kinetic energy balance equation, we have elucidated the underlying mechanisms of time-averaged,
turbulent, and DKE productions.

The findings of this paper demonstrate that 3D wavy walls alter the transverse-around flow,
leading to amplified effects on spanwise momentum flux and distinct patterns of spanwise mo-
mentum statistics. The presence of curved high-velocity streaks behind each crest supports these
effects. Furthermore, the influence of wall shape parameters on momentum statistics components
varies, with higher amplitudes enhancing all components, while increasing spanwise wavelengths
weakens the spanwise momentum flux but strengthens the streamwise momentum flux, attributed
to the reduction of transverse-around flow. The evaluation of the roughness function indicates
that the cases with the highest amplitudes approximate the impact of full roughness on velocity
profiles, while most cases fall within the transitionally rough regime. Additionally, the roughness
function exhibits an increasing trend with rising amplitudes, while spanwise wavelength variations
do not determine it. Notably, the roughness function adheres to the universal logarithmic law when
evaluating the limiting spanwise-wavelength case (or the 2D wavy wall case with an equivalent
amplitude).

The interplay between RSS and DSS plays a crucial role in determining the TSS (vertical mo-
mentum flux) in the near-wall region, highlighting the significance of DSS in controlling momentum
transfer near the wall. The peak values of DSS profiles are dependent on the shape parameters, with
increased amplitudes and spanwise wavelengths resulting in heightened DSS peaks. Moreover, the
activation of DSS is superficially linked to the phase modulation between streamwise and vertical
velocities, as evidenced by spatial quadrant analysis. However, the quadrant analysis reveals that
a strong dispersive ejection behind the crest primarily originates from the probable generation of
streamwise vortices. Building upon these findings, a correlation between locally averaged DSS and
vorticity elucidates a more specific mechanism for activating DSS strength. The results indicate that
increased amplitudes activate DSS through the enhancement of streamwise and vertical vorticity,
while varying spanwise wavelengths influence DSS by adjusting the strength of spanwise vorticity.
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The conservation equation of time-averaged kinetic energy reveals two distinct contributions to
kinetic energy production: TKE and DKE production. The analysis shows that TKE production
involves the transfer of energy from the time-averaged flow into turbulence, primarily influenced
by the dispersive shear effect (or the TKE-DKE exchange), especially for high amplitude and
spanwise-wavelength cases, thereby promoting spatially heterogeneous turbulence. In contrast,
DKE production, resulting from the combined impact of temporal-spatial averaging and dispersive
shear, diverges from TKE production. Most regions behind the crest facilitate the transfer of energy
from flow dispersion into the time-averaged flow, indicative of flow convergence. Notably, the
energy transferred from turbulence and dispersion into the mean flow on the windward side denotes
the growth of the internal boundary layer. Additionally, positive DKE production in a narrow region
near the crest can be attributed to flow reversal caused by separation, leading to dispersed vertical
and spanwise flow due to the generation of streamwise vortices, as verified by quadrant analysis.

While in this paper we provide valuable insights into the influence of wall shape on turbulent
statistics, there are still unanswered questions. The strong correlation between DSS and vorticity
emphasizes the significant impact of vortex formation and interaction on momentum flux. Therefore,
further exploration and in-depth discussions are warranted to elucidate how 3D wavy walls gener-
ate vortex structures and further affect the momentum transport. Additionally, future researchers
should delve into the interaction between turbulent flow and sediment or particles, as it plays a
crucial role in understanding river dynamics and the evolution of geomorphology in natural fluvial
environments.
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