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The continuous time random walk (CTRW) approach has been widely applied to model
large-scale non-Fickian transport in the flow through disordered media. Often the under-
lying microscopic transport mechanisms and disorder characteristics are not known, and
their effect on large-scale solute dispersion is encoded by a heavy-tailed transition time
distribution. Here we study how the microscale physics manifests in the CTRW framework
and how it affects solute dispersion. To this end, we consider transport in disordered media
with random sorption and random flow properties. Both disorder mechanisms can give rise
to anomalous particle transport. We present the CTRW models corresponding to each of
these physical scenarios to discuss the different manifestations of microscale heterogeneity
on large-scale dispersion depending on the particle injection modes. The combined impact
of random sorption and advection is studied with a CTRW model that explicitly represents
both microscale disorder mechanisms. While random advection and sorption may show
similar large-scale transport behaviors, they can be clearly distinguished in their response
to uniform injection conditions and, in general, to initial particle distributions that are not
flux weighted. These findings highlight the importance of the microscale physics for the
interpretation and prediction of anomalous dispersion phenomena in disordered media.

DOI: 10.1103/PhysRevFluids.9.034502

I. INTRODUCTION

Solute transport in disordered media may be non-Fickian or anomalous. Anomalous dispersion
manifests in nonlinear growth of the spatial variance of the solute distribution in time, backward
and forward tails in spatial solute distributions, and early and late solute arrival times. This type of
behavior has been observed in experiments and detailed numerical simulations in porous media at
the pore [1–5] and continuum scales [6–11], at the fracture and fracture network scales [12–15].
They can be traced back to broad distributions of characteristic mass transfer times, which impart
a long memory and thus give rise to temporal nonlocality. This is because the concentration
distribution at a given time receives contributions of solute fluxes from a broad range of previous
times unlike Fickian or Markovian transport models, which depend on the system state at one
previous instant.

The mechanisms that can lead to nonlocal transport behaviors are, for example, sorption to
the solid matrix [16,17] and diffusion between regions of high flow velocity and stagnant re-
gions [18,19]. Non-Fickian behavior can also be induced by broad distributions of flow velocities.
Steady flow through heterogeneous porous media is organized on the spatial scales imprinted in
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the medium structure, that is, Eulerian and Lagrangian velocities vary on characteristic length
scales [20]. Thus, broad distributions of flow velocities induce broad distributions of advective
mass transfer times. Spatiotemporal nonlocality may be caused by preferential flow paths in
single fractures [21], strongly correlated hydraulic conductivity fields [22], and channeling flow
in unconfined alluvial aquifers [8].

As a result of the ubiquity of anomalous solute dispersion, non-Fickian transport models have
received growing attention in the last three decades. Several alternative approaches were proposed to
quantify non-Fickian flow and transport behaviors [23–26], such as fractional advection-dispersion
equations (FADE) [27–29], the multirate mass transfer (MRMT) approach [19], and continuous
time random walk (CTRW) [25] and time-domain random walk (TDRW) [30,31] approaches. A
review of random walk methods for modeling of transport in heterogeneous media can be found
in [23]. These modeling approaches are motivated by the phenomenologies for anomalous transport
discussed above and account for broad distributions of mass transfer times. Oftentimes, however,
the microscopic disorder or transport mechanisms are not known, or there may be a combination of
different mechanisms that lead to nonlocal behavior.

We address the questions of how microscale transport and disorder characteristics impact on
large-scale dispersion, and whether and under which conditions it is possible to distinguish between
different microscale transport mechanisms from large-scale observations. To this end, we use the
CTRW approach to quantify different microscale disorder mechanisms and analyze the resulting
large-scale transport behaviors. In general, the CTRW approach represents the impact the medium
heterogeneity and microscopic transport mechanisms in terms of a distribution of characteristic
mass transfer times, specifically the transition or waiting time distribution [25]. The latter have been
modeled based on power-law or truncated power-law distributions [25], which are flexible but often
lack a direct relation with the underlying heterogeneity. However, CTRW models have also been
used for the upscaling of dispersion in porous and fractured media in terms of medium geometry
and heterogeneity statistics [11,14,32,33]. We use the CTRW here in the latter sense as an upscaling
framework that allows us to explicitly represent microscale disorder and transport mechanisms.
Thus, we consider the CTRW models that describe transport under spatially random sorption
(RS) and random advection (RA) properties, and analyze their impact on the large-scale transport
signatures for different initial solute distributions. Based on this approach, we furthermore derive a
CTRW model that explicitly represents both disorder mechanisms and analyze the combined impact
of random sorption and advection (RSA) properties on large-scale dispersion. We find that transport
under random sorption and random advection may show similar large-scale dispersion behaviors,
but they can be clearly distinguished in terms of their response to different initial conditions.
These features persist and can be identified also under the combined effect of random sorption
and advection.

The paper is organized as follows. Section II presents three CTRW models that are derived
from different microscale transport mechanisms, namely, spatially random sorption, incompressible
spatial random flow, and the combination of both. For each model, both flux-weighted and uniform
injection modes are considered. The transport behaviors in these models are analyzed by numerical
random walk simulations and in terms of analytical expressions for the early- and long-time
asymptotics in Sec. III.

II. TRANSPORT MODELS

In this section we present the microscale models that describe transport under random sorption
and advection. We first formulate the CTRW models that represent each disorder mechanism
separately, namely, the random sorption (RS) and random advection (RA) models. We follow here
the approaches in Refs. [20,34]. Then we derive the CTRW model that explicitly represents the com-
bination of both disorder mechanisms (RSA). In all cases, we start from the respective microscale
transport descriptions. Afterward, we formulate the corresponding stochastic time-domain random
walk and continuous time random walk models.
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A. Random sorption (RS)

We consider advective transport under linear equilibrium sorption in constant flow. Mass conser-
vation for the total solute concentration c(x, t ) is described by [34]

∂c(x, t )

∂t
= −v0 · ∇cm(x, t ), (1)

where cm(x, t ) is the nonadsorbed, mobile concentration. We disregard here diffusion. The flow
velocity v0 represents constant flow, and, as a result, the transport in this model is not sensitive
to the way in which the solute is injected. This is discussed in more detail in Sec. II D. The total
concentration is given in terms of cm(x, t ) and the adsorbed, immobile concentration cim(x, t ) as

c(x, t ) = θcm(x, t ) + (1 − θ )cim(x, t ), (2)

where θ is the effective porosity. The immobile concentration is related to the mobile concentration
through the spatially varying distribution coefficient k(x) [35],

cim(x, t ) = k(x)cm(x, t ). (3)

Inserting Eqs. (2) and (3) into Eq. (1), one obtains the governing equation for the mobile concentra-
tion:

R(x)
∂cm(x, t )

∂t
= −v0 · ∇cm(x, t ), (4)

where we define the retardation factor R(x) = θ + (1 − θ )k(x). The total concentration c(x, t )
describes the equation

∂c(x, t )

∂t
= −v0 · ∇ c(x, t )

R(x)
. (5)

In the following, we assume that the constant flow velocity is aligned with the x direction of the
coordinate system such that v0 = v0ex, where ex is the unit vector in x- direction. Solute transport
can be described equivalently in terms of the following kinematic equation for the particle position
x(t ),

dx(t ) = v0dt

R[x(t )]
. (6)

1. Continuous time random walk model

In order to derive the equivalent continuous time random walk model, we define now dτ =
dt/R[x(t )] and write Eq. (6) as

dx(τ ) = v0dτ, dt = R(x)dτ (7)

We assume that the random retardation factor R(x) is piecewise constant over the distances ξ . The
distribution of ξ in the following is denoted by ρ(x). We employ here the exponential distribution

ρ(x) = �−1
c exp(−x/�c), (8)

with the characteristic length scale �c. The characteristic advection time is defined by τc = �c/v0.
The single-point distribution of R(x) is denoted by pR(r). The equation of motion (7) can then be
coarse-grained on the lengths ξ as [34]

xn+1 = xn + ξn, tn+1 = tn + τn, (9)

where the transition time is given by τn = ξnRn/v0.
The joint distribution of transition length and time is given by

ψ (x, t ) = ρ(x)
v0

x
pR(v0t/x). (10)
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The transition time distribution is given by

ψ (t ) =
∫ ∞

−∞
dxρ(x)

v0

x
pR(v0t/x). (11)

As ρ(x) is localized at around x = �c, we can approximate ψ (t ) as

ψ (t ) ≈ v0

�c
pR(v0t/�c). (12)

The stochastic Langevin model (9) is equivalent to the following generalized master equation for
the particle density p(x, t ) [25]:

∂ p(x, t )

∂t
=

∫
dx

∫ t

0
dt ′K(x − x′, t − t ′)[c(x′, t ′) − c(x, t ′)], (13)

where the memory kernel K(x, t ) is given in Laplace space by

K∗(x, λ) = λψ∗(x, λ)

1 − ψ∗(λ)
. (14)

B. Random advection (RA)

The random advection model describes advective transport in the incompressible flow through a
heterogeneous porous or fractured medium. The tracer concentration satisfies

∂c(x, t )

∂t
+ u(x) · ∇c(x, t ) = 0, (15)

where u(x) is a steady divergence-free random velocity field in a porous medium. Spatial fluctua-
tions can be due to variability in the geometry of the pore space for pore-scale flow and transport [5]
or spatially varying hydraulic conductivity on the continuum scale [11]. The Liouville equation (15)
is equivalent to the following kinematic equation for the position x(t ) of a tracer particle

dx(t ) = u[x(t )]dt . (16)

The travel distance s(t ) along a streamline is given by

ds(t ) = |u[x(t )]|dt . (17)

The variable change t → s in (16) gives for the streamwise particle position [11,20]

dx(s) = ds/χ, dt (s) = 1/v(s), (18)

where we defined v(s) = |u[x(s)]|, and approximated u1[x(s)]/v(s) = 1/χ with χ = v/u1 advec-
tive tortuosity. In the following we set χ = 1 for simplicity. The distribution pv (v) of flow speeds
v(s) along streamlines is related to the distribution pe(v) of Eulerian flow speeds by [20]

pv (v) = vpe(v)

〈ve〉 . (19)

1. Stochastic time-domain random walk model

Following [20], we employ a Bernoulli process for the evolution of particle speeds v(s) along
streamlines. That is, the series {v(s)} of particle speeds is generated by the following stochastic
relaxation process:

v(s + ds) = v(s)[1 − ξ (s)] + ξ (s)ν(s), (20)

where ν(s) is distributed according to pv (v), and ξ (s) is a Bernoulli variable which is equal to
one with probability exp(−ds/�c) and zero else. The probability for a transition from v(s′) = v′ to
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v(s) = v is then

pv (v, s − s′|v′) = exp[−(s − s′)/�c]δ(v − v′) + (1 − exp[−(s − s′)s/�c])pv (v), (21)

where �c denotes the variation scale of v(x). The distribution of initial particle velocities is denoted
by p0(v). The joint density p(x, v, t ) of particle position and speed is governed by the Boltzmann-
type equation [11,36]

∂ p(x, v, t )

∂t
+ v

∂ p(x, v, t )

∂x
= − v

�c
p(x, v, t ) + pv (v)

∫ ∞

0
dv′ v

′

�c
p(x, v′, t ). (22)

We consider the initial distribution p(x, v, t = 0) = δ(x)p0(v).

2. Continuous time random walk model

In order to see the correspondence between the RA and RS models, we determine the equivalent
CTRW model by coarse graining the equations of motion (18). To this end, we note that the
Bernoulli process given by Eq. (20) implies that the persistence lengths ξ of particle velocities
are exponentially distributed, that is, their distribution ρ(x) follows (8). This can be seen as follows.
The probability pn that the velocity does not change after n steps is

pn = exp(−nds/�c). (23)

The latter is equal to the probability that the velocity remains constant for a distance larger than
xn = nds. This means that

∞∑
j=n

dsρ(x j ) = exp(−xn/�c). (24)

In the continuum limit n → ∞ and ds → 0 such that xn → x, we see that ρ(x) is the exponential
distribution with characteristic scale �c. Thus, in analogy to Sec. II A, particle motion can be coarse-
grained as

xn+1 = xn + ξn, tn+1 = tn + τn, (25)

where the transition time is τn = ξn/vn. The joined distribution of transition lengths and time for
n > 0 then is given by

ψ (x, t ) = ρ(x)
x

t2
pv (x/t ), (26)

where ρ(x) is given by (8). The transition time distribution ψ0(x, t ) for the first CTRW step, that is,
n = 0, is given in terms of the initial speed distribution as

ψ0(x, t ) = ρ(x)
x

t2
p0(x/t ). (27)

For ψ0(x, t ) = ψ (x, t ), the governing equation for the particle density p(x, t ) in this picture is
identical to Eq. (13). Similar to Eq. (12), we can approximate the transition time distribution ψ (t )
as

ψ (t ) ≈ �c

t2
pv (�c/t ), (28)

and analogously for ψ0(t ). Aquino and Velásquez-Parra [37] studied the equivalence of the stochas-
tic TDRW model and its coarse-grained counterpart.

C. Random sorption and advection (RSA)

Anomalous dispersion may be driven by multiple factors. Here we combine the sorption and
velocity models into the random sorption and advection (RSA) model. The evolution of the total
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solute concentration c(x, t ) is governed by

∂c(x, t )

∂t
+ u(x) · ∇ c(x, t )

R(x)
= 0. (29)

The corresponding kinematic equation is

dx(t ) = −u[x(t )]dt

R[x(t )]
. (30)

As in the previous section, we consider the distance s(t ) traveled along a streamline,

ds(t ) = |u[x, t]| dt

R[x(t )]
. (31)

The variable change t → s gives now for the streamwise particle position the equation

dx(s) = χ−1ds, dt (s) = R(s)ds

v(s)
. (32)

As above, in the following we set χ = 1 for simplicity.

1. Stochastic time-domain random walk model

We assume that v(s) and R(s) vary on the same length scale �c, and represent the series
{v(s), R(s)} as a joint Bernoulli process, that is, both evolve simultaneously according to Eqs. (20)
and (21). The joint distribution of particle position, velocity and retardation coefficient p(x, v, r, t )
follows the Boltzmann-type equation

∂ p(x, v, r, t )

∂t
+ v

r

∂ p(x, v, r, t )

∂x
= − v

r�c
p(x, v, r, t )

+ pv (v)ψR(r)
∫ ∞

0
dv′

∫ ∞

0
dr′ v′

r′�c
p(x, v′, r′, t ); (33)

see Appendix A. We consider the initial conditions p(x, v, r, t = 0) = δ(x)p0(v)pR(r).

2. Continuous time random walk model

As in the previous section, we derive now the equivalent CTRW model by coarse graining the
kinematic equations (32) on the correlation scale �c of R(s) and v(s). Thus, we obtain

xn+1 = xn + ξn, tn+1 = tn + τn, (34)

where the transition time is now given by τn = Rnξn/vn. The joint distribution ψ (x, t ) of transition
length and time for n > 0 can be written as

ψ (x, t ) = ρ(x)
∫ ∞

0
dv

v

x
pv (v)pR(vt/x). (35)

For the first step, that is, n = 0, the distribution ψ0(x, t ) is analogous to Eq. (35) with pv (v) →
p0(v). Similar to Eqs. (12) and (28), we can approximate

ψ (t ) ≈
∫ ∞

0
dv

v

�c
pv (v)pR(vt/�c) (36)

and analogously for ψ0(t ).
For ψ0(x, t ) = ψ (x, t ), the governing equation for the particle distribution p(x, t ) is given by

Eq. (13). Under this condition, the RS, RA, and RSA models have the same governing equations.
The microscale heterogeneity and transport model determines the transition time distribution and,
as we will see in the following, the initial condition of the respective stochastic TDRW and CTRW
models.
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D. Initial conditions

The models discussed in the previous sections describe advective particle motion in heteroge-
neous media characterized by chemical and physical medium heterogeneities. These heterogeneities
are represented by the spatially varying retardation coefficient R(x) and flow speed v(x). The initial
conditions of the respective stochastic TDRW and CTRW models depend on the microscale physics
and are determined by the way particles are released in the medium. To illustrated this, we consider
two particle injection scenarios, uniform and flux-weighted, which have been studied for solute
transport in heterogeneous porous and fractured media [38–40]. In the first scenario, particles
are released uniformly in space over a medium cross section. In the second scenario, particles
are injected across a medium cross section proportional to the local flow speed. While the three
CTRW models under consideration have similar or identical governing equations for certain initial
conditions, the model behaviors are in general different.

For the RS model, there is no difference between the uniform and flux-weighted initial conditions
because the flow velocity v0 is constant. The CTRW model represents the stochastic dynamics of
transport due to spatial variability in the retardation coefficient R(x). For the RA and RSA models,
the injection conditions are reflected in the distribution p0(v) of initial particle speeds. For the
uniform injection condition, it is

p0(v) = pe(v). (37)

For the flux-weighted injection condition, the initial speed distribution is

p0(v) = vpe(v)

〈ve〉 = pv (v). (38)

In the following, we will analyze the transport behaviors in the different disorder models, and the
impact of the underlying microscale physics.

III. TRANSPORT BEHAVIORS

In this section we investigate the transport behaviors in the three stochastic models presented
in the previous section, which account for transport under random sorption (RS), under random
advection (RA), and under the impact of random sorption and advection (RSA). The transport
behaviors are analyzed in terms of the displacement mean and variance, which are defined as

m(t ) = 〈x(t )〉, κ (t ) = 〈x(t )2〉 − 〈x(t )〉2, (39)

where the angular brackets denote the average over all particles. These quantities measure the time
evolution of the center of mass of a particle plume and its spatial extension. In order to characterize
the spatial distribution, we consider snapshots of the particle density, which is defined by

p(x, t ) = 〈δ[x − x(t )]〉. (40)

Another quantity of interest in the distribution of arrival times at a control location, the particle
breakthrough curve. The breakthrough time at a location x is defined by

t (x) = min[t |x(t ) � x]. (41)

The arrival time distribution is defined by

f (t, x) = 〈δ[t − t (x)]〉. (42)

In the following, we first highlight the impact of microscale physical heterogeneity by comparison
of the RA and RS models. Then we analyze the combined impact of the two microscale disorder
mechanisms in the novel RSA model. The model behaviors are obtained from the numerical solution
of the CTRW model of Sec. II A 1 for the RS model, and the stochastic time-domain random walk
models of Secs. II B 1 and II C 1.
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A. Transport in the RA and RS models

In order to highlight the impact of the microscale physics on the expected transport behaviors
in the RA and RS models, we consider disorder distributions that give rise to identical transition
time distributions ψ (t ) in the two models. Specifically, in the RA model, we employ a Gamma
distribution for the Eulerian flow speeds [20],

pe(v) =
(

v

v0

)α−1 exp(−v/v0)

v0�(α)
, (43)

where 0 < α < 1. For the distribution of retardation coefficients in the RS model, we employ the
inverse Gamma distribution

pR(r) =
(

r

r0

)−1−γ exp(−r0/r)

r0�(γ )
, (44)

where 0 < γ < 2. These distributions give rise to the following transition time distribution in both
the RA and RS models:

ψ (t ) =
(

t

τ0

)−1−β exp(−τ0/t )

τ0�(β )
, (45)

where τ0 = �cr0/v0 in the RS model, and τ0 = �c/v0 in the RA model. Furthermore, the exponent
β corresponds to β = γ in the RS and β = α + 1 in the RA model. Note that we use here the
approximate expressions (12) and (28) for ψ (t ).

As a first difference between the RS and RA models, we note that the exponent β in ψ (t ) for the
RS model is bound between zero and two, 0 < β < 2, while for the RA model it is between one and
two, 1 < β < 2. The latter is due to the relation (19) between the Eulerian and Lagrangian speed
distributions, which is a result of the solenoidal character of the underlying flow field [20]. The
distribution ψ0(t ) of the first transition time τ0 in the RS model is equal to ψ (t ) for both injection
conditions because it depends only on the distribution pR(r) of the retardation factor; see (11). For
the RA model, ψ0(t ) = ψ (t ) for the flux-weighted injection. For the uniform injection, it is given
by Eq. (27) in terms of the initial speed distribution p0(v). Thus, the transition time distribution for
the first CTRW step is given by

ψ0(t ) =
(

t

τ0

)−1−β0 exp(−τ0/t )

τ0�(β0)
, (46)

where β0 = γ and β0 = α + 1 for the flux-weighted injection in the RS and RA models, and β0 = β

and β0 = α for the uniform injection.
We consider in the following two scenarios. The first scenario (S1) sets γ = α + 1, specifically,

we use α = 1/4. Thus, scenario S1 is characterized by the same ψ (t ) for both models, but different
ψ0(t ) under uniform injection. Scenario S2 sets γ = α, specifically, we use α = 3/4. This scenario
is characterized by the same ψ0(t ) for both models under uniform injection, but different ψ (t ).
In the following, we consider scenario S1 for flux-weighted and scenario S2 for uniform injection
conditions.

1. Spatial profiles

Figure 1 shows spatial profiles p(x, t ) at times t = τ0, 10τ0 and 100τ0 for the RS and RA
models for scenario S1 under flux-weighted and scenario S2 under uniform injection conditions.
The profiles for the RS and RA models are indistinguishable in scenario S1. In fact, the two models
are identical as shown in Sec. II B. The profiles are characterized by a backward tail and a leading
edge. For scenario S2, the RS and RA profiles align at short times because the transition time
distributions corresponding to the first CTRW step are the same. With increasing time, the peak at
the origin erodes in both RS and RA and the behavior close to the origin remain similar. However,
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FIG. 1. Spatial particle profiles at time (black) t = τ0, (red) t = 10τ0, and (blue) t = 100τ0 for (top row)
scenario S1 (γ = 1.25 and α = 0.25) under flux-weighted injection, and (bottom row) scenario S2 (γ = 0.75
and α = 0.75) under uniform injection. The crosses denote the RS model, the squares the RA model.

the spatial profiles in the RA model develop a second peak at the leading edge that advances much
faster than in the RS model. This behavior is due to the fact that once particles leave the source
zone, they are propagated at higher average velocity in the RA than in the RS model.

2. Displacement mean and variance

We now focus on the temporal evolutions of the displacement mean and variance for RS and RA
in the two scenarios S1 and S2. From CTRW theory [25], we expect for the RS model the long-time
scalings m(t ) ∝ tγ and κ (t ) ∝ t2γ for 0 < γ < 1 and m(t ) ∝ t and κ (t ) ∝ t3−γ for 1 < γ < 2. For
the RA model, we expect m(t ) ∝ t and κ (t ) ∝ t2−α for 0 < α < 1. These asymptotic behaviors are
reflected in the data for the RS and RA models displayed in Fig. 2.

As shown in the top row of Fig. 2, the displacement mean evolves for scenarios initially linearly
with time, which reflects the correlation of particle velocities on the scale �c. The displacement
means for the RS and RA models are identical for flux-weighted injection in S1. The mean
displacement evolves linearly in time with two different slopes at early and late times, which is
a manifestation of aging, that is, the mean velocity evolves in time [41], albeit towards a stationary
limit, which is given by the mean flow velocity in the RA model. We call this behavior weak aging
because an asymptotic constant velocity exists. The initial velocity is higher than the asymptotic
mean due to the flux weighting in the RA model, while the asymptotic velocity is equal to the mean
Eulerian flow velocity. In scenario S2, the mean displacements in the RA and RS models behave
in the same way at early times. Here the RA model does not display aging. Its mean displacement
increases linearly with time according to the average flow velocity. The RS model on the other hand,
displays aging. Its mean displacement behaves sublinearly as m(t ) ∝ t3/4 due to strong particle
retention. We term this behavior here strong aging because there is no asymptotic particle velocity.

As shown in the bottom row of Fig. 2, the displacement variances evolve ballistically at early
times, that is, according to κ (t ) ∝ t2 for the two scenarios. For S1, the behaviors of RS and RA are
identical for flux-weighted injection. At large times, κ (t ) in both models scale as t1.75. For scenario
S2 the situation is different. While the displacement variances κ (t ) behave identically for the RS and
RA models at short times, at large times, κ (t ) ∝ t3/2 for RS and ∝ t5/4 for RA. The displacement
mean and variance in general behave differently in the RA and RS models depending on the initial
conditions even though the early- or late-time scalings may be similar.
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FIG. 2. Displacement (top row) mean and (bottom row) variance for (left) scenario S1 (γ = 1.25 and α =
0.25) under flux-weighted injection, and (right) scenario S2 (γ = 0.75 and α = 0.75) under uniform injection.
The squares denote the RS, the circles the RA model.

3. Breakthrough curves

In this section, we consider particle breakthrough curves in scenarios S1 and S2 for the RS
and RA models at three different controls planes at distances �c, 10�c, and 102�c from the inlet;
see Fig. 3. For S1 (γ = α + 1), the breakthrough curves in the RA and RS models are identical
as expected. CTRW theory predicts the late-time scalings f (t, x) ∝ t−1−γ for the RS model, and
f (t, x) ∝ t−2−α for the RA model. For S2 (γ = α), the breakthrough curves in the RS and RA
models have the same late-time scalings because the transition time distribution ψ0(t ) ∝ t−1−α at
the inlet scales in the same way as the transition time distribution ψ (t ) ∝ t−1−γ in the RS model.
Close to the inlet the breakthrough curves are almost indistinguishable. With increasing distance,
however, the peak arrival in the RA model occurs much earlier than in the RS model due to the
fast propagation of the bulk of the particle distribution after the initial step. The long-time scaling
in the RA model is fully determined by the transition time distribution ψ0(t ) for the first CTRW
step, while the bulk behavior is determined by ψ (t ). This is in contrast to the RS model, for which
particle retention is much stronger as expressed in the transition time distribution ψ (t ) ∝ t−1−γ . In
fact, the generalized central limit theorem implies that the breakthrough curves for the RS model
converge towards a one-sided stable law; see also Appendix C. Thus, breakthrough curves in the RS
and RA models may show similar late-time scalings, but the general behaviors are quite different
and depend on the injection conditions.
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FIG. 3. Breakthrough curves for (left) scenario S1 (γ = 1.25 and α = 0.25) under flux-weighted injection
and (right) scenario S2 (γ = 0.75 and α = 0.75) under uniform injection. The squares denote the RS, the
circles the RA model.

B. Transport in the RSA model

We now consider solute transport under the combined impact of heterogeneous sorption and flow
velocity. We consider the scenarios S1 and S2 for the distributions of the retardation factor and flow
speed defined in Sec. III A. That is, we use the Gamma distribution (43) for pe(v) and the inverse
Gamma distribution (44) for pR(r). In order to estimate the asymptotic behaviors of the RSA model,
we consider the approximation (36) for ψ (t ). We find that

ψ (t ) ∝ t−1−β, (47)

where β = γ if γ � α + 1 and β = α + 1 if α � γ − 1; see Appendix B. Furthermore, Appendix B
shows that for uniform injection

ψ0(t ) ∝ t−1−β0 , (48)

where β0 = γ for γ � α and β0 = α for α � γ . Under flux-weighted injection, β0 = β. We
consider in the following scenario S1 under uniform injection and scenario S2 under flux-weighted
injection. Recall that for S1, γ = α + 1 and therefore β = γ = α + 1 and β0 = α. For S2, γ = α,
which implies that β = γ < α + 1 and β0 = γ = α.

1. Spatial profiles

The spatial concentration profiles for the RSA and the corresponding profiles for the RA model
are shown in Fig. 4. For S1, we observe a strong localization of the peak at the origin due to
low velocities in the injection region. The peak erodes and a second peak at the leading edge
develops. The profiles behave similarly as in the corresponding RA scenario. The concentration
profiles for the RSA model here are dominated by velocity heterogeneity. Variability in the sorption
properties manifests in a retardation of the leading edge. Also for S2, we observe peak localization
a the origin and the development of a steep leading edge. This behavior, however, is dominated
by microscale heterogeneity in the sorption properties. The spatial profiles for the RA scenario
behave very differently and are characterized by a tailing tail and a peak at the leading edge. While
both random sorption and random advection may cause strong retention at the origin, they manifest
differently in the behavior of the leading edge.
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FIG. 4. Spatial particle profiles at time (black) t = τ0, (red) t = 10τ0 and (blue) t = 100τ0 for (left)
scenario S1 (γ = 1.25 and α = 0.25) under uniform injection and (right) scenario S2 (γ = 0.75 and α = 0.75)
under flux-weighted injection.

2. Displacement mean and variance

Figure 5 shows the displacement mean and variance for S1 under uniform and S2 under flux-
weighted injection. For both scenarios, the mean displacement at short times is given by

m(t ) = 〈v0〉t
RH

, (49)

where 〈v0〉 is the mean initial velocity, and RH the harmonic mean retardation coefficient.
For scenario S1, 〈v0〉 = 〈ve〉, which implies that the ratio of the slopes at early and late times

gives the ratio of the arithmetic and harmonic mean retardation coefficients. Transport is retarded
compared to the corresponding RA model. The long-time behavior of m(t ) in scenario S1 is given
by

m(t ) = 〈ve〉
RA

t, (50)

where RA is the arithmetic mean retardation coefficient. The RSA model displays weak aging, while
the mean displacement in the RA model evolves according to the constant mean flow velocity. For
scenario S2, the long-time behavior of m(t ) scales sublinearly with time according to

m(t ) ∝ tγ . (51)

The RSA model is dominated by random sorption and displays strong aging, in contrast to the
corresponding RA model.

The displacement variances show at short time the characteristic ballistic behavior, which is given
by

σ 2(t ) = [
σ 2

v0

〈
μ2〉 + 〈v0〉2σ 2

μ

]
t2, (52)

where we defined μ = 1/R, and σ 2
μ is the variance of μ. The long-time scalings are super-linear for

both scenarios. Nevertheless, for S1, the long-time behavior is dominated by microscale advection
and the scaling is σ 2(t ) ∝ t2−α . The evolution is delayed due to the presence of random sorption
compared to the corresponding RA model. For scenario S2 the behavior is dominated by microscale
retardation and the variance scales as σ 2(t ) ∝ t2γ .
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FIG. 5. Mean displacements and displacement variance for (left column) scenario S1 (γ = 1.25 and α =
0.25) under uniform injection and (right column) scenario S2 (γ = 0.75 and α = 0.75) under flux-weighted
injection.

3. Breakthrough curves

Figure 6 shows the breakthrough curves for S1 under uniform and S2 and flux-weighted injection.
The microscale disorder gives rise to strong tailing in both scenarios. In S1, the tailing is dominated

FIG. 6. Breakthrough curves for (left) scenario S1 (γ = 1.25 and α = 0.25) under uniform injection and
(right) scenario S2 (γ = 0.75 and α = 0.75) under flux-weighted injection.
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by low flow velocities at the injection point, and thus, the long-time scaling is given by f (t, x) ∝
t−1−α . The breakthrough curves are similar to the ones for the corresponding RA model, but show
a delay in the peak arrival caused by random sorption. For S2, the breakthrough curve is dominated
by random sorption. The long-time scaling is f (t, x) ∝ t−1−γ and very different from the behavior
of the corresponding RA model. Nevertheless, from the asymptotic scaling alone it is not possible
to distinguish the dominant microscale disorder mechanism.

IV. CONCLUSION

We explore the impact of random sorption, and random advection on large-scale non-Fickian
transport using two CTRW models, the RS and RA models, respectively, which explicitly represent
these disorder mechanisms. The RS model accounts for instantaneous mobile-immobile mass
exchange, which is characterized by a spatially variable retardation coefficient. The RA model
quantifies particle transport in media characterized by spatially variable steady flow. Furthermore,
we derive the RSA model that quantifies the combined effect of the two microscale disorder
models and represents transport in a heterogeneous flow field under instantaneous heterogeneous
sorption-desorption. We analyze and compare the transport behaviors in the three models for
uniform and flux-weighted initial conditions in terms of spatial profiles of the particle density,
the displacement mean and variance, and particle breakthrough curves. In order to probe the
impact of the microscale physics on large-scale dispersion, we consider disorder distributions that
give the same power-law transition time distributions in the corresponding CTRW models. Under
these conditions, the different microscopic disorder models lead to similar large-scale dispersion
behaviors. The RA and RS models differ in their responses to initial particle distributions that are
not flux-weighted. While the RS model displays always aging for exponents 0 < γ < 1, [41], that
is, the particle velocity is a nonstationary stochastic process, the RA model is stationary for uniform
injection conditions, and evolves toward a stationary limit for arbitrary initial particle distributions.

The large-scale dispersion signatures in the three disorder models are similar in that they can
lead to forward and backward tails in the spatial particle profiles, superdiffusive growth of the
displacement variance, and power-law tails in the particle breakthrough curves. However, while
the RA model leads always to superdiffusive behavior, the RS model displays subdiffusive behavior
for exponents 0 < γ < 1/2 together with a sublinear scaling of the mean displacement. The spatial
profiles can develop double peak behaviors in all models, depending on the microscale disorder
distribution for the RS model, and on the injection condition for the RA model. These behaviors
are characterized by a localized peak at the origin that erodes with time and a peak at the leading
front. The RA model does not display double peak behavior for flux-weighted injection, but gives
a trailing tail and well-defined peak at the front, similar to the RS model for 1 < γ < 2. Under
uniform injection, the RA model develops two clearly separated peaks and a fast moving leading
edge. The breakthrough curves display power-law scaling ∝ t−1−β with 0 < β < 2 for all disorder
models. The power-law range 0 < β < 1 corresponds in the RS model to the exponents 0 < γ < 1.
In this case, the breakthrough curve converges toward a one-sided stable distribution. In the RA
model, in contrast, this behavior can only be observed for uniform injection, and the breakthrough
curve does not converge to a stable distribution. In this case, the tail behavior is fully determined by
the transition time distribution for the first CTRW step, and the peak arrival is much earlier than in
the RS model with the same tailing behavior.

In conclusion, while the large-scale signatures of dispersion in the disorder models under
consideration are similar, their responses to initial particle distributions that are not flux-weighted
can be very different. Thus, under certain conditions, it is possible to infer the microscale physics
from the observation of the dispersion behavior. A CTRW model with power-law transition time
distribution in general allows one to reproduce anomalous dispersion as manifest in nonlinear
scalings of displacement mean and variance, and power-law tails in a particle breakthrough curve.
However, it is important to identify and characterize the microscale physics and disorder properties
to be able to predict the large-scale system behaviors.
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APPENDIX A: BOLTZMANN EQUATION FOR THE RSA MODEL

The joint distribution p(x, v, r, t ) of particle position, velocity, and retardation coefficient can be
written as

p(x, v, r, t ) = r

v

∫ ∞

0
ds〈δ[x − x(s)]δ[v − v(s)]δ[r − R(s)]δ[t − t (s)]〉 (A1)

= r

v

∫ ∞

0
ds�(x, v, r, t, s). (A2)

The derivative of �(x, v, r, t, s) along s is given by particle conservation as

∂�(x, v, r, t, s)

∂s
= −∂�(x, v, r, t, s)

∂x
+ D

v

∂2�(x, v, r, t, s)

∂x2
− r

v

∂�(x, v, r, t, s)

∂t

+ 1

�c

∫ ∞

0
dv′

∫ ∞

0
dr′ pv (v)ψR(r)�(x, v′, r′, t, s) − 1

�c
�(x, v, r, t, s). (A3)

Integration of the latter over s according to Eq. (A2) gives Eq. (33).

APPENDIX B: SCALING OF TRANSITION TIME DISTRIBUTION FOR THE RSA MODEL

The transition time distribution of the RSA model can be written as

ψ (t ) =
∫ ∞

0
dr

∫ ∞

0
dvδ

(
t − �cr

v

)
pR(r)pv (v), (B1)

where δ(x) denotes the Dirac delta. Using that δ(ax) = 1
|a|δ(x), we obtain Eq. (36). We use

expression (44) for pR(r) and for pv (v), and we use expression (43) for pe(v) in definition (19)
for pv (v) to obtain

pv (v) =
(

v

v0

)α exp(−v/v0)

v0�(α + 1)
. (B2)

Using these expressions in Eq. (36) we obtain

ψ (t ) =
∫ ∞

0
dv

v

�c

(
vt

�cr0

)−γ−1 e− �cr0
vt

r0�(γ )

(
v

v0

)α e− v
v0

v0�(α + 1)
. (B3)

For γ < α + 1 and t 
 �cr0/v0, Eq. (B3) can be approximated as

ψ (t ) =
(

v0t

�cr0

)−1−γ
v0

�cr0

∫ ∞

0
dv

(
v

v0

)α−γ e− v
v0

�(γ )�(α + 1)v0
, (B4)

where we used that e− �cr0
vt → 1 for t 
 �cr0/v0. Evaluating the integral on the right side, we obtain

ψ (t ) =
(

v0t

�cr0

)−1−γ
v0

�cr0

�(α − γ + 1)

�(γ )�(α + 1)
. (B5)
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For α < γ − 1, we perform the variable transform v → � = vt/r0 in (B3), which gives

ψ (t ) =
(

v0t

�cr0

)−α−2
v0

�cr0

∫ ∞

0
d�

(
�

�c

)−(γ−α−1)−1 e− �c
�

�(γ )

e− �r0
v0t

�(α + 1)
. (B6)

In the limit t 
 �cr0/v0, the integral on the right side can be evaluated explicitly, which gives

ψ (t ) =
(

v0t

�cr0

)−α−2
v0

�cr0

�(γ − α − 1)

�(γ )�(α + 1)
. (B7)

For ψ0(t ) in the case of uniform injection, the derivations are analogous. For γ < α, we obtain

ψ0(t ) =
(

v0t

�cr0

)−1−γ
v0

�cr0

�(α − γ )

�(γ )�(α)
. (B8)

For α < γ , we obtain

ψ0(t ) =
(

v0t

�cr0

)−α−1
v0

�cr0

�(γ − α)

�(γ )�(α)
. (B9)

APPENDIX C: ONE-SIDED STABLE DISTRIBUTION IN THE RS MODEL

We discuss the convergence of the particle breakthrough curves toward a one-sided stable law
with distance of the control plane in the RS model. To this end, we consider the particle arrival time
in the corresponding CTRW model (9) for the constant transition length ξ = �c. Thus, the arrival tn
at a control plane at distance xn = n�c from the inlet is

tn =
n∑

n=1

τn, (C1)

where the transition times τn are distributed according to the heavy-tailed ψ (t ) ∝ t−1−γ for 0 <

γ < 1. According to the generalized central limit theory, the distribution of tn converges toward a
one-sided stable distribution [42].
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