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Compressible turbulent mixing evolving from Richtmyer-Meshkov and Rayleigh-Taylor
instabilities and Bell-Plesset effects has been investigated using high-resolution implicit
large eddy simulations of fundamental spherical implosion problems. Broadband (BB)
and narrowband (NB) initial perturbations consisting of multimode cosine perturbations
are considered at a high Atwood number (At = 0.9) corresponding to a density ratio
of 20. This research examines the turbulent transport and budgets of turbulent kinetic
energy, turbulent mass flux, and density self-correlation, and the balance of the terms
in the transport equations is used to approximate the numerical discretization effect on
the derived equations. Strong non-Boussinesq effects and asymmetries were observed
in the distribution of the anisotropy terms and budgets within the mixing layer. The
production and destruction terms dominate the late stages of the mixing process in all
the equations compared to the other transport terms. The BB layer showed higher levels of
density self-correlation compared to the NB case, which showed larger destruction levels
relative to the state of the layer. Higher levels of turbulent mass flux and turbulent kinetic
energy (e.g., larger potential to kinetic energy conversion rates) were observed in the BB
case due to the longer-wavelength perturbations in the BB layer that dominate the growth
at late times. The numerical discretization terms implicitly modeling the effect of the
unresolved scales contribute to both diffusion and dissipation and the current study shows
that their effect may be both examined indirectly through residuals and quantified directly
through observed destruction.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) [1,2] occurs at the perturbed interface between a light
fluid and heavy fluid, where the light fluid is accelerated into a heavy fluid [3]. The acceleration
of the fluids into one another at the perturbed interface and the mismatch in density and pressure
gradients cause the generation of baroclinic vorticity that starts the mechanism of Rayleigh-Taylor
(RT) growth. One of the main applications where RTI is a major performance degradation factor is
inertial confinement fusion (ICF) (see Refs. [4–9]). RTI appears in the process of generating fusion
using ICF due to the compression of the fuel which resists the implosion of the shell of the capsule.
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This induces a deceleration of the interface which gives rise to Rayleigh-Taylor instability [10]. As
a result, the imploding motion loses its symmetry and deviates from spherical.

The Richtmyer-Meshkov instability (RMI) [11,12] is considered the impulsive counterpart of the
RTI. It is generated by a shock wave (through which the flow properties such as density, pressure,
temperature, and velocity change discontinuously) passing through the perturbed interface between
a heavy fluid and a light fluid and causing the deposition of baroclinic vorticity due to a mismatch
of pressure and density gradients. Unlike RTI, RMI occurs whether the acceleration is applied in the
direction from the heavy to the light fluid or the inverse. The study of RMI is quite important in many
applications of mixing, such as supersonic combustion in rotating detonation engines (RDEs) and
scramjets, where shock waves induce RMI growth that results in a better fuel and oxidizer mixing
and hence more efficient combustion [13]. Another example where RMI plays an important role
is the ICF process where compression of an ICF capsule typically involves multiple shocks, each
of which causes an impulsive acceleration and modifies the growth rate of the instability. RMI and
RTI also play an important role in many other research areas such as supernova explosions [14–18],
premixed combustion [19,20], and interaction between shock waves and premixed flames [21–23].
The reader is referred to the comprehensive reviews in Refs. [24–27] for more details and literature
on RTIs and RMIs.

The perturbations grow initially in a linear fashion and then transition to a nonlinear regime
where the perturbation amplitude is comparable to the wavelength (typically a > 0.1λ). In this
regime, using linear theory to model the growth of the modes is not valid and modeling techniques
able to solve for the nonlinear growth are required. The layer continues to evolve in time, develops
roll-ups and secondary instabilities, and transitions to turbulence. Eventually, the layer may transi-
tion to a fully developed turbulent regime characterized by a self-similar behavior where the integral
quantities reach self-similar values. Thus, it is quite important to understand the development
of turbulence, mixing, and turbulent transport in the mixing layer. For that purpose, different
computational techniques have been used for the understanding of the turbulent mixing process,
such as direct numerical simulation (DNS), large eddy simulation (LES), and Reynolds-averaged
Navier-Stokes (RANS) models. In addition to that, single-mode and multimode models (see, for ex-
ample, Refs. [28–35]) have been developed to predict the linear and nonlinear growth perturbations
using simple ordinary differential equations. The reader is also referred to Refs. [36–45] for more
recent numerical studies on RMI and RTI turbulent mixing.

The limitation in computational power and the challenging very high Reynolds number con-
figurations in RMI- and RTI-induced turbulent flows make the use of mixed models necessary
to account for turbulent effects in variable-density flows where complex additional physics are
involved (reactions, conduction, radiation, etc.) [25]. The RANS approach is one of the most popular
models that are used to solve for the evolution of statistical turbulent quantities due to the reduction
in computational time it offers to achieve convergence compared to LES and DNS approaches.
All the turbulent length scales are modeled in the RANS approach using turbulence models that
approximate the effect of turbulence on the mean flow quantities.

A variety of closure models for RANS approaches can be used for the simulations of tur-
bulent mixing and these models differ principally by the number of transport equations that
are added to the mean equations to close the higher-order correlations. The K-L [46–48] and
K-ε [49] are popular two-equation models that are used for turbulent mixing applications. A
transport equation of the specific turbulent kinetic energy K is considered along with a second
transport equation for the turbulent length scale L (in the K-L model) and the dissipation rate
ε (in the K-ε model) for the closure of the system of equations. Two-equation models have
been used in many examples of variable-density flows such as the prediction of astrophysical
phenomena [50], the estimation of mixing layer widths and statistics in ICF targets [51], two-
dimensional (2D) compressible turbulent mixing flows [52], and constant- and variable-acceleration
Rayleigh-Taylor mixing [53]. A downside of these models is that they are isotropic; however,
RMI and RTI turbulent flows are inhomogeneous and anisotropic [54]. Moreover, careful attention
should be taken while initializing the turbulent flow field variables since some of these models
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assume that the flow is starting from a fully turbulent state and do not consider the transitional
regime [25].

The turbulence transport model derived by Besnard, Harlow, and Rauenzahn (BHR model) [55]
is used for variable-density flows and can incorporate the transitional regime of the mixing process.
The BHR model, in its original form, is based on a Favre-averaged decomposition and includes
transport equations for the Reynolds stresses, turbulent kinetic energy, density self-correlation, and
turbulent mass flux. A detailed derivation of the BHR model equations and the different closure
assumptions can be found in Ref. [55] and Refs. [56,57], respectively. Several variants of the
BHR model have been developed for the prediction of the turbulent mixing process. They differ
in the transport equations that are considered and the method of modeling the terms included in the
evolution equations [56,57]. The reader is also referred to Refs. [58] and [59] for more recent efforts
on RANS approaches and closure models in variable-density mixing applications.

Turbulence budgets and turbulence transport in RM and RT flows was the subject of investigation
of several previous experimental and numerical studies (see Refs. [60–71]). These studies investi-
gated asymmetries and non-Boussinesq effects in compressible turbulent mixing and quantified the
importance of the budget terms and closure models in transport equations. In particular, the study of
Livescu et al. [66] presented quantitative measurements of the budgets of each term in the transport
equations using high-resolution DNS data to investigate the physics of RT variable-density (VD)
flows and non-Boussinesq effects, to explore the applicability of the gradient diffusion hypothesis
as a closure to the terms in the transport equation, and to provide a database to validate turbulence
models. The most recent study by Wong et al. [45] presented a very detailed study of turbulent
budgets for the planar RMI with reshock using very near DNS resolution and examined the impact
of filtering on the budgets.

The work presented in this paper investigates temporal and spatial turbulent transport and budgets
of the density self-correlation, turbulent mass flux, and turbulent kinetic energy considering a
high-Atwood-number spherical implosion case and different broadband and narrowband initial
perturbations defined as multimode cosine perturbations that follow a specified power spectrum.
El Rafei et al. [31,34] presented high-resolution implicit large-eddy simulations (ILESs) of com-
pressible mixing in spherical implosions considering multimode narrowband and broadband initial
perturbations consisting of spherical harmonics and multimode cosine perturbations. A high At-
wood number (At = 0.9) corresponding to a density ratio of 20 was examined by the authors, who
presented a detailed study of integral growth quantities and bubble and spike heights to provide a
detailed understanding of the mixing process and the effect of the initial spectrum of perturbations
on the subsequent mixing. The current study complements the findings of those two studies by
further analyzing turbulent transport and turbulent budgets to provide a more detailed quantification
of the different contributors to the asymmetry in the mixing layer in addition to giving an insight on
the contribution of numerical discretization.

The layout of this paper is as follows. Section II details the numerical schemes, the implosion
model, and the equations of the initial surface perturbations that are adopted for this study. It
also presents the definitions of the various mixing quantities and details the turbulent transport
equations of the density self-correlation, turbulent mass flux, and turbulent kinetic energy. In Sec. III
different mixing quantities such as the molecular mixing fraction and the normalized mixed mass
are presented in addition to the anisotropy tensor. The budgets of all the terms in the transport
equations are also discussed. The conclusions of this study are presented in Sec. IV.

II. PROBLEM DESCRIPTION

A. Governing equations and computational methods

The simulations presented here are performed using the high-order fully compressible three-
dimensional FLAMENCO spherical solver [72]. A semi-Lagrangian moving mesh algorithm is
implemented to ensure mesh motion with the mixing layer. The main aim of the moving mesh
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algorithm is to cluster the grid nodes within the mixing layer. The computations solve the com-
pressible multicomponent Euler equations in spherical coordinates. These equations are written in
vector form using conservative variables as

∂U
∂t

+ 1

V

∂ (ArF)

∂r
+ 1

V

∂ (AφG)

∂φ
+ 1

V

∂ (AθH)
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= S, (1)
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, (2)

where ρ is the mass density; u = [ur, uθ , uφ] represents the velocity vector with ur , uθ , and uφ being
the velocity components in the radial, polar, and azimuthal directions, respectively; p is the pressure;
E is the total energy per unit mass; and Y is the mass fraction. The total energy is defined as

ρE = ρe + 1
2 u · u. (3)

The specific internal energy e is defined from the ideal gas equation of state as

e = p

ρ(γ − 1)
, (4)

where a constant ratio of specific heats γ = 5/3 is considered. The vector S in Eqs. (2) represents the
geometric source terms added to the momentum equation to take into account the change in direction
of the local vector basis in spherical coordinates. These source terms act as pseudoforces that do not
change the magnitude of the momentum. They only change the direction of the momentum vector
in the local vector basis. V , Ar , Aφ , and Aθ are the exact cell volume and interface areas in the r, φ,
and θ directions, respectively. The finite volume faces and nodes follow constant radius surfaces for
this spherical geometry setup.

For the implosion case considered here, the mesh motion velocity uG is calculated based on the
minimum average radial speed between the spike, bubble, and mixing layer center. The grid velocity
decreases linearly outside the limits of the mixing layer, towards the boundaries of the domain. The
moving grid approach reduces the numerical dissipation encountered when using Eulerian methods
and permits improved resolution of the mixing layer throughout the duration of the implosion, while
reducing computational effort since no higher grid resolutions might be needed and maintaining
symmetry to machine precision [73]. The mesh velocity is mathematically expressed as

uG(r) =

⎧⎪⎨⎪⎩
min(us, ub, uMC ), Rs � r � Rb

− uG(r=Rb)
Rup−Rb

r + uG(r=Rb)
Rup−Rb

Rup, r > Rb
uG(r=Rs )

Rs−Rl
r + uG(r=Rs )

Rs−Rl
Rl , r < Rs,

(5)
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where us, ub, and uMC represent the average spike, bubble, and mixing layer velocities, respectively.
Rs and Rb represent the positions of the spike and bubble, respectively. Rl is the radius at the
lower bound of the computational domain and Rup represents the radius at the upper bound of
the domain. The governing equations are solved numerically using finite-volume Godunov-type
high-order methods. The fifth-order MUSCL scheme of Ref. [74] is used for spatial reconstruction
and the second-order total variation diminishing (TVD) Runge-Kutta scheme [75,76] is adopted
to evolve the solution in time. The low-Mach-number correction method of Ref. [77] is used to
reduce the dissipation of the turbulent kinetic energy at the small length scales that are characterized
by low Mach numbers. This combination of spatial reconstruction, time integration, and low-
Mach-number correction methods has been well established in previous ILESs and more recently
in high-resolution Navier-Stokes studies studies of shock-induced turbulent mixing [34,78–83].
Future work will present a more detailed derivation of the governing equations, mesh motion, and
numerical methods.

B. Turbulent transport equations and mixing quantities

This study explores the individual transport terms in the turbulent kinetic energy K , density
self-correlation b, and turbulent mass flux ρa equations. Those equations were derived by Besnard
et al. [55] for RANS modeling of mixing in variable-density flows in planar geometries. Advanced
variants of the BHR model were presented in Refs. [56,57]. Lombardini et al. [67] extended
those equations to compressible mixing in spherical geometries and presented different turbulent
statistics and mixing measures considering heavy-to-light and light-to-heavy configurations. The
current study extends the work of Lombardini et al. [67] and presents the turbulent budgets of each
of the terms in the turbulent transport equations derived in spherical coordinates for the density
self-correlation, the turbulent mass flux, and the turbulent kinetic energy.

The density self-correlation b quantifies how well different fluids are mixed at different stages
of the mixing process. This quantity can exhibit non-Boussinesq effects that depend on the density
ratio, and the study of those effects can provide understanding of asymmetries in the mixing layer.
The density self-correlation is defined as

b = −ρ ′v′, (6)

where ρ ′ is the fluctuating density, v′ = (1/ρ)′ is the fluctuating specific volume, and the overline
represents a surface average. Fluctuations from surface-averaged quantities are given as

q′(r, θ, φ, t ) = q(r, θ, φ, t ) − q(r, t ). (7)

The turbulent mass flux is a fundamental measure of the rate of energy conversion in variable-
density flows [66,84]. This quantity affects the production of turbulent kinetic energy through a
direct dependence of the kinetic energy transport equation on the turbulent mass flux. It can also
develop asymmetries between the bubble and spike sides, which is helpful in understanding non-
Boussinesq effects at high density ratios in spherical implosions. The normalized turbulent mass
flux is written as

ai = ρ ′u′
i

ρ
, (8)

where i represents the direction along which the normalized turbulent mass flux is computed (e.g.,
r, θ , and φ). The turbulent kinetic energy K is defined by taking half of the trace of the Reynolds
stress equations:

K = Rkk

2ρ
. (9)

A Reynolds stress component is defined as

Ri j = ρu′′
i u′′

j , (10)
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where u′′ is the fluctuation from the Favre-like surface average. The Favre-like surface average of
any quantity q is written as

q̃ = ρq

ρ
. (11)

The fluctuation derived from q̃ is

q′′(r, θ, φ, t ) = q(r, θ, φ, t ) − q̃(r, t ). (12)

The transport equation governing the evolution of b(r, t ), as derived in Ref. [67], is written as

∂b

∂t︸︷︷︸
(bU )

+ ũr
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∂r︸ ︷︷ ︸
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∂
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r

ρ

)
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+ 2ρ

(
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r
v′ cot θ

)
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+NDb,

(13)

where bIV is equivalent to

2ρ

(
v′∇ � u′ + 1

r
v′ cot θ

)
= 2ρ

(
v∇ � u − v

r2

∂

∂r
(r2ur )

)
. (14)

The term bU represents the variation of density self-correlation in time. Terms b0 and bI form
together the flux of the b term. Term bII is the production of b due to density gradient, bIII is
a turbulent transport term, and bIV is the destruction of b due to correlations of specific volume
dilatation [67]. NDb is the numerical discretization effect estimated as the remainder of Eq. (13).

Numerical discretization effects may cause imbalance in the budget through three distinct
mechanisms: (i) imperfect statistical convergence, (ii) impact of numerical discretization error, and
(iii) difference in the discretization of the budget terms compared to the algorithm implementation
in FLAMENCO. For mechanism (i), we believe it is difficult to eliminate for LES where there is a high
level of fluctuations in the flow field at high wavenumbers (compared with low-Reynolds-number
direct numerical simulation) but as the integral scales are approximately 1/15 of the domain width
this should not be excessive [85]. For item (iii), we have examined the impact of discretization of
the budget terms previously [70] and found that for the majority of terms the order of discretization
is not critical aside from terms which may show sensitivity to fast acoustic waves. This is not the
case here. Thus we are left with mechanism (ii) as the most likely source, hence the terminology
“numerical discretization.”

The variation of terms bI and bII is affected by the turbulent mass flux production. The transport
equation of the radial turbulent mass flux, as derived in Ref. [67], is

∂ (ρ ar )

∂t︸ ︷︷ ︸
arU
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r
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)
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+
(
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ρ

)
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ar IV

+ ρ

{
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}
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ar V

−
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ar VI

−ρ

(
u′

r∇ � u′ + 1

r
u′

r cot θ uθ

)
︸ ︷︷ ︸

ar VII

+NDar , (15)

034501-6



TURBULENCE STATISTICS AND TRANSPORT IN …

where, for any two vectors (c and d , for example),

[∇ � c ⊗ d] � er − 1

r
cθdr cot θ = 1

r2

∂

∂r
(r2crdr ) − cθdθ + cφdφ

r
. (16)

arU is the time rate of change of turbulent mass flux. The terms ar0 and arV are distribution
and transport terms of ar between the heavy and light fluids. The terms arI, arIII, and arIV are
production terms and the term arII is a destruction term. arVI is a turbulent transport of mass flux
term and arVII is the destruction of ar by means of velocity dilatation. The production of turbulent
mass flux depends on the density self-correlation through the term arI. The term NDar is the impact
of numerical discretization on Eq. (15).

The turbulent kinetic energy transport equation, as derived in Ref. [67], is written as

∂ (ρK )

∂t︸ ︷︷ ︸
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)
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where

R : ∇ũ + 1

r
(Rθφ ũφ − Rφφ ũθ ) cot θ = Rrr

∂ ũr

∂r
+ Rrθ

(
∂ ũθ

∂r
− ũθ

r

)
+ Rθθ

ũr

r
+ Rrφ

(
∂ ũφ

∂r
− ũφ

r

)
+ Rφφ

ũr

r
. (18)

The term KU is the time rate of change of turbulent kinetic energy and K0 is a transport term.
KI represents the exchange of turbulent kinetic energy (TKE) between mean and fluctuating
components. The term KII transports the TKE from the edges of the mixing layer to the interior and
KV transports the turbulent kinetic energy to the edges of the mixing layer [67]. KIII is a production
term that depends on the normalized turbulent mass flux ar , and the pressure dilatation term KIV is a
destruction term. NDK represents the numerical discretization effect calculated as the residual of the
turbulent kinetic energy transport equation. It should be noted that no physical viscous dissipation
terms are considered in Eqs. (13), (15), and (17) since only inviscid cases are computed. The terms
in the transport equations represent the resolved large-scale components contributing to the variation
of density self-correlation, turbulent mass flux, and turbulent kinetic energy, and the effect of the
unresolved small scales (unclosed budget terms) is included in the numerical discretization term of
each equation.

C. Initial conditions

The aim of this study is to explore the turbulent budgets of different turbulent statistics in
spherical implosions. For that purpose, the spherical implosion model from Refs. [86–88] was used.
The computational domain consists of a spherical wedge centered at the equator of the sphere shown
in Fig. 1. The source region has a high pressure to create a shock wave (Mach approximately 18) that
moves into the domain and hits the perturbed interface between the light and heavy fluids, and that
is the mechanism that drives the implosion in time. A heavy-light configuration is considered for
the implosion model. The molecular weights of the heavy and light fluids are W2 = 124.72 g/mol
and W1 = 6.24 g/mol. The radial extent of the domain is 0.05 < r < 1.5 mm. In the azimuthal and
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FIG. 1. Initial conditions of the spherical implosion model.

polar directions, π/2 − π/8 < θ, φ < π/2 + π/8, where θ and φ represent the polar and azimuthal
directions, respectively.

The inner radius of the boundary region depends on time and is defined as

rsrc(t ) = rshell − v0t, (19)

where rshell = 1.2 mm and v0 = 0.24 mm/ns. The velocity of the source region depends on time
and space via

vsrc(r, t ) = −v0r/rsrc(t ). (20)

The reader is referred to Refs. [86–88] for visualizations of the initial profiles of energy, velocity,
and density of this implosion model.

In regards to the boundary conditions, an outflow boundary condition is used at the upper
boundary to ensure that the reflected waves exit the domain. The lower radial boundary at the
core is a reflective condition and the boundary conditions in the polar and azimuthal directions
are also reflective. Several computations were repeated using periodic boundary conditions and
the postprocessed results are indistinguishable. For the reflective boundary conditions, the flow
variables are symmetrized while the normal component of the velocity vector changes signs. A
small cutout of radius 0.05 mm is employed at the core of the domain to speed up the calculations
and prevent problems of very small time step near the origin due to convergence of the radial grid
lines. We selected the size of the cutout in a way to prevent any important changes in the shock
timing. We performed several numerical experiments that showed that this choice of cutout size
and reflective boundary conditions does not affect the quantities analyzed here in any appreciable
manner. Numerical experiments by Flaig et al. [86] also showed that this cutout does not have
any effects on the growth of small perturbations in the linear phase. The reader is also referred to
Ref. [34] for more details about the boundary conditions.

Figure 2 shows a wave diagram from a one-dimensional unperturbed interface implosion setup
carried out with 4096 cells in the radial direction. The implosion is driven at t = 0.5 ns by the
shock wave that hits the interface between the heavy and light fluids. A shock wave is then
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FIG. 2. Wave diagram of the implosion model.

transmitted through the interface and a rarefaction wave is reflected outward since a heavy-to-light
fluid configuration is considered [89]. The transmitted shock wave is reflected at the core of the
domain near t ∼ 1.5 ns, which then hits the interface again near t ∼ 1.9 ns. In this case, both
transmitted and reflected waves are shock waves. A second reshock occurs at t ∼ 2.4 ns before
the interface stagnates at t = 2.5 ns.

D. Surface perturbation

Different initial spectra of perturbations are considered for the study of the implosion case
including NB surface perturbations and BB initial perturbations that are characterized by a wider
range of modes compared to narrowband perturbations. The perturbations at the interface between
the fluids of different densities are defined in Fourier space as a power spectrum similar to what has
been done in Refs. [90] and [78]. The power spectrum of the perturbations has the form

P(k) =
{

Ckα, kmin < k < kmax

0, otherwise, (21)

where α = −2 for the BB case and α = 0 for the NB perturbations. The wave number k =√
k2
φ + k2

θ is a two-dimensional wave number of the perturbation and C is a constant that has to be
chosen to ensure the linearity of the perturbations at the highest wave number. The power spectrum
of the broadband and narrowband initial perturbations is shown in Fig. 3.

From the power spectrum equation, the inverse Fourier transform is taken and the amplitude of
the perturbations in real space is given using the Euler formula as

A(φ, θ ) =
N∑

m,n=0

[am,n cos (mk0φR0) cos (nk0θR0) + bm,n cos (mk0φR0) sin (nk0θR0)

+ cm,n sin (mk0φR0) cos (nk0θR0) + dm,n sin (mk0φR0) sin (nk0θR0)], (22)

where N is the number of modes and R0 is the initial interface position. The coefficients
am,n, bm,n, cm,n, dm,n are chosen randomly through the generation of random numbers using a
deterministic Mersenne Twister algorithm. This ensures that the standard deviation is proportional
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FIG. 3. Power spectrum of the initial broadband perturbations.

to the Fourier coefficients and that the same random numbers are used across multiple grid levels.
The mean standard deviation of each mode is given by

σ 2
mn = 1

4

(
amn

2 + bmn
2 + cmn

2 + dmn
2) = 1

2π

P(kmn)

kmn
�kφ�kθ . (23)

The total standard deviation is written as (see Ref. [81])

σ =
√

C
kα+1

α + 1
(1 − 1/Rα+1), (24)

where R = kmax
kmin

. The mean standard deviation σmn is written in terms of σ as

σmn = 2πσ

L

√
kmax

2π (R − 1)
k−3

mn σmn = 2πσ

L

√
α + 1

2πkmax(1 − 1/Rα+1)
kα−1

mn . (25)

The constant C in Eq. (21) is determined in the BB case such that the highest wave number is linear
(kmaxakmax = 1

2 ), which gives

CBB = 1

16kmax
. (26)

That is not a great concern in the NB case as it is easy to specify the standard deviation of the
perturbation satisfying linear mode amplitude. It should be noted that the perturbations are defined
in a way to maintain the mixing layer to be a relatively small proportion of the overall radius, to avoid
any perturbations going to the core of the domain at very late times of the mixing process. While the
configuration generates significant compressible flow features, the turbulent Mach number defined
as

√
(u′2

r + u′2
θ + u′2

φ )/a varies significantly from 1.25 at 2 ns down to 0.07 at t = 2.4 ns).
A sharp interface is employed here, where the perturbation is employed to assign varying

mass fractions to a single layer of mixed cells along the interface at the initial perturbation, a
commonly employed approach [91] especially where interfaces in practice are often sharp (solids).
For dimensionless times >0.15, Youngs and Thornber [32] show that results from diffuse layer

034501-10



TURBULENCE STATISTICS AND TRANSPORT IN …

TABLE I. Broadband and narrowband perturbations setup.

Perturbation type λmin λmax σ0 At Mesh size

BB1 L/64 L/4 0.1λmin 0.9 424 × 256 × 256
BB2 L/64 L/4 0.1λmin 0.9 848 × 512 × 512
BB3 L/64 L/4 0.1λmin 0.9 1296 × 768 × 768
NB L/64 L/32 0.1λmin 0.9 848 × 512 × 512

computations and sharp layer computations are within just a few percent. The key differences are at
very early times, where sharp interfaces have higher initial velocities, and our present computations
go well beyond those times.

Table I shows the different specifications of the broadband and narrowband perturbations adopted
for this study in terms of standard deviation and minimum and maximum wavelengths. In addition,
the grid resolutions chosen for this study are also presented in the table. L in Table I represents the
circumference at the initial radial position of the interface (R0 = 1 mm). A high Atwood number
(At = 0.9) is adopted for all the cases and a density ratio ρ2

ρ1
= 20 is considered (ρ2 and ρ1 are the

densities of the heavy and light fluids, respectively). A summary of the grid convergence of the
results can be found in Sec. III A and the Appendix.

III. RESULTS

A. Grid convergence

This section summarizes the grid convergence assessment of the ILESs presented here. The grid
convergence study only examines the BB results. The BB layer consists of a wider range of long-
to short-wavelength perturbations compared to the NB layer which has a well-defined range of
high-wave-number perturbations that is similar to the short-wavelength component of the BB case.
The NB layer is expected to be more homogeneous at late times compared to the BB case in which
the longer-wavelength perturbations grow slowly without contributing much to the growth at early
times. The reader is also referred to Ref. [34], in which the authors presented a grid convergence
study of mixedness quantities including the mixed mass, normalized mixed mass, and molecular
mixing fraction using the same setup and perturbation types as in the current study, including the
NB perturbation. For the NB perturbation, higher power in the high wave numbers initially translates
to a more homogeneous NB mixing layer, which prior studies have demonstrated may be sufficiently
resolved at a lower mesh resolution than the BB layer [78].

A quantitative measure of the perturbation growth is the integral mix layer width defined as

W (t ) =
∫ ∞

0
f 1(1 − f 1)dr, (27)

where f 1 is the surface average of the light fluid volume fraction. The integral width gives a good
measure of the layer width and can minimize the late-time statistical fluctuations of the mixing
width that are observed using threshold measures.

The grid convergence of the integral bubble and spike heights is also investigated. Integral
definitions of the heights are used to smoothly approximate the bubble and spike distances in time
and that is convenient for modeling purposes where approximations of the bubble and spike velocity
and/or acceleration are needed. The integral distances are expressed as weighted averages from the
mixing layer center considering a bilinear volume fraction distribution. The bubble and spike heights
are then expressed as

h
(m)
b =

[
(m + 1)(m + 2)

2

∫∞
0 |r|m f dr∫ 0

−∞ f dr

] 1
m

, (28)
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h
(m)
s =

[
(m + 1)(m + 2)

2

∫ 0
−∞ |r|m(1 − f )dr∫ 0

−∞ (1 − f )dr

] 1
m

, (29)

where m = 1, 2, 3. Those definitions are adopted from the work of Youngs and Thornber [33] and
adapted to the spherical implosion case.

The convergence of the bubble and spike positions is also presented in this section. The spike
and bubble positions are reasonably defined from threshold or cutoff measures where the bubble
position is the radius at which the surface average volume fraction of the light fluid, f 1 = 0.01,
and the spike position represents the radius at which f 1 = 0.99. Moreover, this section presents the
volume-averaged turbulent kinetic energy in time. The kinetic energy is volume averaged over the
width of the mixing layer and is normalized by the impulsive change of velocity imparted by
the shock wave at the interface.

Figure 4 plots the integral mixed layer width, bubble and spike positions computed from the
threshold measures, integral bubble and spike heights, and volume-averaged turbulent kinetic energy
at all the different grid resolutions adopted for this study. The integral bubble and spike heights
are calculated using m = 2 in this study. The integral mix layer width starts growing after the
incident shock wave due to RMI. The small-wavelength perturbations dominate the growth at early
times and the long-wavelength perturbations do not contribute much to the growth. The growth
is then dominated by the low-wave-number perturbations at late times (after the first reshock).
For quite some time, a developing mixing layer will exist, wherein the turbulent kinetic energy
is one component within a broadband kinetic energy spectrum caused by the shock interaction.
This mixing layer consists of a combination of the kinetic energy associated with linear growth
associated with the initial broadband Richtmyer-Meshkov instability (RMI) and that resulting from
the low-wave-number end of the fully turbulent part of the mixing layer. Given the perturbation
wave numbers typically studied—in the range of modes 6–200, for example—it is not possible to
sustain an infrared range of multiple orders of magnitude to the extent as can be seen in planar or
homogeneous turbulent cases.

In a computation of a full sphere it could be envisaged that as the turbulent layer continues to
evolve, approaching the lowest wave number supportable within the spherical shell, the spherical
symmetry of the turbulent layer would be broken by background asymmetries giving rise to a
form of three-dimensional decaying turbulence that exhibits an infrared range at modes lower than
the fundamental mode on the sphere. With no background asymmetry, it could be expected that a
spherical case would become “box constrained” and experience accelerated decay rates similar to
box-constrained homogeneous decaying turbulence [92].

In the present computation a sector does not permit this symmetry breaking due to the physical
constraint of computing a sector of the sphere. Previous research [85,93] examined constrained
RM and homogeneous decaying turbulence (HDT) and demonstrated that turbulence becomes
“influenced” by physical constraints (e.g., domain size, sector size) when the integral width is
approximately 0.1 times the width of the domain but that the dominant effect is lack of statistical
convergence. It is anticipated that the results presented in our paper will hold true when the integral
width is smaller than 0.1 times the sector size in φ/θ (and as a function of time as it converges).
In our case, this is satisfied for the whole calculation. The reader is referred to Ref. [34] for more
details on the physics of the integral mix layer width and the difference in behavior between the NB
and BB cases. For all those quantities, the greatest difference between the results is observed at the
lowest mesh size. Figure 4(a) shows an excellent grid convergence of the mixing layer width at the
medium and fine grids where almost no differences can be observed starting from an early stage of
the implosion (t > 1.2 ns). The greatest difference on the finest grids can be noticed at very early
times (just after the passage of the shock wave at the interface) when the layer is being stretched,
which is a clear indication of the challenge of accurately resolving the early linear stage of mixing.
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FIG. 4. Grid convergence of (a) integral mixing layer width, (b) spike and bubble positions computed from
cutoff measures, (c) integral bubble and spike heights, and (d) normalized turbulent kinetic energy.

A very good grid convergence is observed with the bubble and spike positions shown in
Fig. 4(b), although a small difference of ∼2.5% between the medium and fine grids is observed
in the time range between the first reshock and stagnation. The maximum difference between the
integral bubble and spike heights in Fig. 4(c) at the finest resolutions is ∼6%, which indicates that
the convergence of the integral heights is quite reasonable compared to the coarse grid results.
Figure 4(d) shows that the volume-averaged turbulent kinetic energy plots at the medium and fine
grids are almost identical, which is a good indication of the convergence of the mean quantities.

To the authors knowledge, there is only one published study which examines grid convergence of
spatial distribution of budgets for RMI [45] which is both for a planar interaction and employs DNS.
DNS studies have considerably lower energy at high wave numbers [39], and thus are relatively
easier to converge than LES. The current model implosion considers convergent geometries,
multiple reshocks, Rayleigh-Taylor instability, and a very high Atwood number using LES, thus
it is expected that convergence would be challenging. With this as context, the Appendix presents
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FIG. 5. Variation of normalized mixed mass and molecular mixing fraction in time.

further analysis of the grid convergence of the radial distribution of the turbulent kinetic energy
components, the volume fraction distribution, the convergence of the different terms in the density
self-correlation, turbulent mass flux and turbulent kinetic energy equations, and the numerical
discretization error. Although the chosen measures are not perfectly grid converged (medium
indistinguishable from fine), they are sufficiently converged to allow conclusions to be drawn about
the dominant flow physics.

Importantly, the numerical discretization (ND) error terms and terms which are impacted by
numerical discretization may be seen to be reasonably converged. The former are presented in
Fig. 18. One example of the latter is the destruction term [term bIV, Eq. (13)] in the density
self-correlation equation, which directly measures the impact of numerical discretization in the
ILES approach, since the divergence of the velocity field is zero in the absence of diffusive mixing.
Examining Figs. 15 and 16, it can be seen that the medium and fine mesh are reasonably converged
that the remaining differences may be attributed to statistical convergence over the averaging
plane.

To examine statistical convergence, computations were undertaken of the same problem with the
same perturbations while changing the initial random number seed. The initial standard deviation
and power law remain the same, so changing the random number seed delivers a different instance
of the same problem. Results using the different seeds are presented in Fig. 17 for the density self-
correlation, turbulent kinetic energy, and turbulent mass flux equations at t = 2.2 ns, considering the
BB2 case. All the curves have the same general trends but slightly different “noise,” which indicates
that the results are reasonably statistically converged.

B. Molecular mixing fraction and normalized mixed mass

This section presents two mixedness measures that characterize the amount of mixed fluids
within the mixing layer. The first is the normalized mixed mass that gives information on the mixed
mass of material within the mixing layer. This quantity is particularly important in ICF applications
where it is crucial to understand the mass of ablator that is mixed within the hot spot to reduce that
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FIG. 6. (a) Isosurfaces of equal volume fraction from the BB3 case, (b) volume fraction contour at θ = π

2
from the BB3 results, (c) isosurfaces of equal volume fraction from the NB case, and (d) volume fraction
contour at θ = π

2 from the NB results. All the contours are taken at t = 2.5 ns.

effect. The mixed mass is defined as (see Ref. [94])

M =
∫

4ρY1Y2dr, (30)

FIG. 7. Radial distribution of the diagonal elements of the anisotropy tensor in (a) BB3 and (b) NB cases
at t = 2.4 ns.
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FIG. 8. Radial profiles of the density self-correlation b plotted at different times from the NB and BB3
results.

where Y is the mass fraction of a species. The normalized mixed mass is given as


 =
∫

ρY1Y2dr∫
ρ Y1 Y2dr

. (31)

The molecular mixing fraction is written as

�(t ) =
∫

f (1 − f )dr∫
f (1 − f )dr

. (32)

It represents the ratio of the total chemical product thickness to the maximum thickness due to
complete mixing [95]. The study of mixedness parameters provides a further understanding of
the mixing activity and the factors contributing to mixing, which can complement the analysis of
the different statistics conducted later on in this paper. Figure 5 shows the time variation of the
normalized mixed mass and the molecular mixing fraction from the NB and BB3 results. It should
be noted here that � (or 
) = 1 represents a fully mixed fluid and a value of zero represents full
heterogeneity.

The initial values of � and 
 are due to mixed cells along the initially perturbed interface and
that is related to the discrete representation of the interface between the light and heavy fluids. The
incident shock wave compresses the perturbations, inducing a substantial reduction in the mixing
layer width and a moderate reduction in the thickness of the chemical product, which causes the
sharp increase in the mixedness measures at the shock passage. The perturbations then stretch and
grow first linearly and then transition to a nonlinear regime due to RTI, RMI, and Bell-Plesset effects
causing the decrease in � and 
. The decay of 
 is faster before the reshock where elongated
structures dominate and where the layer has not yet started transitioning to turbulence and no mixing
occurs. The normalized mixed mass 
 starts increasing again earlier than �, inducing an earlier start
of transition.

The mixedness measures predict a late-time mixing level of ∼0.7 in the BB case, which is
consistent with the study in Ref. [69], and ∼0.86 ± 0.02 in the NB case. This analysis shows that
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FIG. 9. Budgets of the b transport terms at different times in the NB and BB3 cases.

the BB layer has lower mixing levels compared to the NB case near stagnation. It also shows that
the NB layer starts the transition to turbulence earlier than the BB case and that was observed
from the earlier increase in the mixedness quantities before the reshock in the NB case. This
means that the narrowband layer is more homogeneous at late times compared to the BB case.
The same conclusion has also been shown in Ref. [34], where the authors compared the mixedness
quantities from the NB and BB cases at the same grid resolution (848 × 512 × 512) and showed
that the NB layer transitions faster to turbulence. The lower mixing in the BB case is due to
the long-wavelength perturbations that are still contributing to the growth of the layer after the
reshock. Those long-wavelength perturbations do not contribute much to the mixing, which means
that unmixed fluid still exists and turbulent structures would grow on top of the long-wavelength
perturbations. A recent study [81] investigated compressible mixing in NB and BB planar cases and
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FIG. 10. Radial profiles of the normalized turbulent mass flux ar plotted at different times from the NB and
BB3 results.

showed that the value of the molecular mixing fraction increases as the exponent m in the power
spectrum definition increases towards zero, which is consistent with the higher values of � in the
NB spherical case presented here. Moreover, Thornber et al. [78] showed that a reshock increases
the value m for modes whose amplitude is mostly due to RM of the previous shock; thus, the
multiple reshocks considered in the current implosion model act to push the power spectrum of the
perturbations in the BB case to values that are higher than −2. These factors explain the higher value
of � in the BB case compared to single-shock BB planar cases recently investigated in Ref. [81],
where � had a value of ∼0.39 in the low-Atwood-number BB planar case.

Figure 6 shows visualizations of the mixing layer state from both the NB and BB3 results before
stagnation at t = 2.5 ns, using isosurfaces of equal volume fraction distribution and 2D volume
fraction slices at θ = π

2 . A wide range of length scales is observed in the BB case where the layer
consists of multiscale structures and large bubbles and spikes growing in addition to the smaller
turbulent length scales. The NB case is more isotropic and more homogeneous relative to the BB
case. In both cases, the transition to turbulence is well under way.

C. Anisotropy

This section examines anisotropy in the given three-dimensional spherical implosion case con-
sidering narrowband and broadband initial perturbations. The mechanism of perturbation growth
is complicated since it is driven by RMI, RTI, and Bell-Plesset effects. The contributions of all
those factors and also the choice of initial conditions affect the anisotropy in the mixing layer. The
large-scale anisotropy is measured here by the Reynolds stress anisotropy tensor, given as

Bi j = Ri j

Rkk
− 1

3
δi j . (33)

The diagonal elements of the anisotropy tensor are bounded between −1/3 and 2/3, where Bii = 2
3

corresponds to 100% of the turbulent kinetic energy in the i direction and Bii = − 1
3 corresponds to

no energy in that direction. A value Bii = 0 corresponds to isotropic turbulence. Figure 7 shows the
cross-stream profiles of the diagonal components of the anisotropy tensor near stagnation in both the
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FIG. 11. Individual terms in the ar transport equation at different times. [(h) and (i)] The variation of the
volume-averaged terms in time in the BB3 and NB cases.
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FIG. 11. (Continued.)

NB and BB cases. This figure demonstrates that the normal stresses at the end of the implosion are
showing strong anisotropy. The normal component Brr has an average value of ∼0.3 which accounts
for 65% of the kinetic energy in the broadband case and an average value of ∼0.24 in the narrowband
case which represents approximately 57% of the kinetic energy. This behavior is consistent with
previous RMI and RTI studies in both planar and spherical geometries (see Refs. [66,67,69,96]).
The radial component of the anisotropy tensor in both the NB and BB cases dominates compared
to the polar and azimuthal components that represent 17.5% each in BB case and 21.5% each in the
NB case.

The BB case shows an asymmetry in the distribution of Brr with a larger anisotropy on the spike
side compared to the narrowband case which is more homogeneous. That is related to the persistent
growth of the long-wavelength perturbations in the BB case at late times that contribute to this
asymmetry compared to the NB case where the perturbations are at later dimensionless time and
more isotropic.

D. Density self-correlation transport

The density self-correlation b is a fundamental quantity in second-moment RANS modeling
of variable density mixing and was the subject of several previous numerical and experimental
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FIG. 12. Radial profiles of the turbulent kinetic energy K plotted at different times.

RMI and RTI investigations (see Refs. [45,60–67]). The density self-correlation is a measure of
how well fluids are mixed, where a value b = 0 represents a perfect mixture. It provides insights
into turbulent transport and non-Boussinesq effects across the mixing layer and also affects the
production of turbulent mass flux through the dependence of the ar equation on b as explained
in Sec. II A. Non-Boussinesq effects include asymmetries in the mixing layer around the mixing
center, as opposed to a Boussinesq behavior where the density difference is small and the layer is
symmetrical [66,67].

Figure 8 shows the radial surface-averaged distribution of b within the mixing layer in the
narrowband and broadband cases at different times where transition to turbulence and mixing are
most relevant. The comparison between NB and BB cases provides more insights into the effect
of the initial spectrum of perturbations on turbulence statistics at late times. In all cases, the peak
density self-correlation decreases in time within the mixing layer, indicating an increase in mixing
between the light and heavy fluids. The density self-correlation distribution within the
mixing layer at t = 1.8 ns is characterized by a single peak behavior that is located close to
the mixing center but shifted towards the spike side. As the layer grows in time and transition
to turbulence increases, the density self-correlation spreads in an asymmetric fashion where the
curves are shifted towards the spike side and higher values are observed near the spikes, indicating
more mixing on the bubble side where the bubbles interact near the mixing center. That is a clear
indication of highly non-Boussinesq effects at this high density gradient considered across the layer.

The peak value of b in both BB3 and NB cases at t = 1.8 ns is between 0.6 and 0.65, indicating
partial mixing near the first reshock. The NB curve at t = 1.8 ns is shifted towards the spike
relative to the layer center, indicating higher asymmetry between the bubble and spike sides. That
observation is also confirmed in the study of integral quantities presented from the NB results in
Ref. [34], which showed more asymmetry in the NB case compared to the BB layer throughout the
mixing process. The peak value of b decreases and reaches b ∼ 0.26 in the BB3 case near stagnation
where the highest mixing levels are observed and that is consistent with the peak values presented
in Refs. [67,69]. The distributions are in good qualitative agreement with the planar RMI results of
Ref. [45].
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FIG. 13. Individual terms in the K transport equation at different times.

The peak value of b in the NB case at t = 2.4 ns is ∼0.07, which is approximately four times
smaller than the BB case, due to the persistent long-wavelength perturbation growth dominat-
ing the BB layer at late times and not contributing much to mixing. The NB case has mainly
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FIG. 14. Grid convergence study of turbulent kinetic energy components (Kr , Kθ , Kφ) and volume fraction
distributions at different selected times.

high-wave-number perturbations that have transitioned to a more isotropic turbulent layer and
hence inducing more mixing at the final stages of the computation, making the NB layer more
homogeneous. It should be noted that the density self-correlation does not change much between

034501-23



MOUTASSEM EL RAFEI AND BEN THORNBER

FIG. 15. Grid convergence study of (a) density self-correlation b, (b) normalized turbulent mass flux Ar at
t = 2.4 ns, and (c) b terms.

2.2 and 2.4 ns and the biggest difference is observed between 1.8 and 2.2 ns. That is due to the
first reshock that is exciting the smaller scales, pushing forward the transition and mixing within the
layer.

Figure 9 presents the individual terms on the right-hand side of the density self-correlation
transport equation [Eq. (13)] in both NB and BB3 cases. The term bI contributes to the distribution of
the density self-correlation in the mixing layer; it is characterized by a bimodal trend that transports
b from the light to the heavy side. The second term is bII; it represents the production of b by the
density gradient and is characterized by a single peak behavior that is shifted in the direction of the
spike throughout the late stages of the mixing process.

The asymmetry in the production terms of b also explains the asymmetry in the b curves shown in
Fig. 8. The term bIII is the one containing the triple correlation; it is responsible for the transport of
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FIG. 16. Grid convergence study of [(a) and (b)] K terms and [(c) and (d)] Ar terms at t = 2.4 ns.

b towards the edge of the mixing layer and the spreading of the density self-correlation profiles. This
term is closed using gradient diffusion hypothesis [55,56] that yields a modeled form that includes
the effect of diffusion of density self-correlation in the equation. The trends of bI, bII, and bIII are
similar in behavior to that observed in the study by Livescu et al. [66] for RTI planar cases and the
RMI experiments of Tomkins et al. [62]. The last term, bIV, is responsible for the decay of b by
means of specific volume dilatation; it shows a radial distribution characterized by a small positive
peak near the inner edge of the mixing layer (where the spike is located) and a large negative peak
on the bubble side. This term is closed using decay models where the dissipation of b is modeled
using a turbulent viscosity that is a function of the turbulent kinetic energy and turbulent length
scale [55,56]. The negative region of bIV dominates the distribution at late times compared to the
small positive peak, inducing a small contribution to the density self-correlation production by bIV
near the spike position and more decay near the mixing center and bubble side in the BB case. In the
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FIG. 17. Statistical convergence analysis, examining results using different initial perturbation seeds for
the density self-correlation, turbulent kinetic energy, and turbulent mass flux equations at t = 2.2 ns using the
BB2 case.

NB case, the term bIV purely represents a destruction with negative values throughout the mixing
layer at late times.

It is important to note that the term bIV directly quantifies the implicitly modeled diffusion
of density self-correlation by the numerical method. For example, if numerical diffusion may be
represented by Fickian diffusion, we would have the following result:

∇ · u = −∇ ·
(

D

ρ
∇ρ

)
, (34)

where D in these ILESs represents solely numerical diffusion. While the actual truncation error of
the algorithm is considerably more complex, we expect a similar impact.

The numerical discretization term calculated at t = 2.2 ns shows that the effect of NDb is grid
converged and not negligible in both the NB and BB cases. It acts to reduce the change of b by
reducing the gap between the production and destruction terms and has positive values near the
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FIG. 18. Grid convergence study of (a) NDK , (b) NDb, and (c) Nar at t = 2.2 ns from the BB case.

bubble side and negative values at the spike side. The impact of under-resolution on the evolution
of the density self-correlation is expected to be felt through each of the production, advection,
diffusion, and destruction terms, and all these effects are incorporated in the numerical discretization
term in this ILES. The reader is referred to Ref. [59] for more details on the modeling of unresolved
density self-correlation and the different terms affecting the gradient of b at the unresolved scales.
The impact of the smaller scales represented by the numerical discretization is most significant on
the diffusion and dissipation of b terms that are closed using turbulent models. This means that the
contribution of the numerical discretization is not solely expected to be dissipative and also acts in a
diffusive manner and can have positive contribution to the rate of change of b, as shown in Fig. 9(c).

The budgets of the density self-correlation terms in the NB case are quite similar to the BB3
case at the early stages of mixing that are dominated by linear or nonlinear growth. Near the first
reshock, the destruction in the NB case is higher than the BB layer and shows more non-Boussinesq
effects and more asymmetry of all the terms towards the spike side. After the first reshock, where
most of the turbulent activity and mixing occur, the terms bII and bIV are the dominant terms in
the b-transport equation; thus, these terms are key in understanding the differences in the density
self-correlation distribution observed in Fig. 8.
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At late times of the mixing process (t = 2.2 and 2.4 ns), the production term bII from the NB
results has an average maximum value that is approximately four times smaller than the BB case,
which contributes to the higher values of b in Fig. 8 at late times. Although bIV is on average
similar between the two cases, the destruction in the narrowband case is much larger than the BB
case relative to the density self-correlation state within the layer at t = 2.2 and 2.4 ns. In other
words, the destruction terms have similar magnitude in both the NB and BB cases at late times;
however, b is four times smaller in the NB case, which means that the destruction has a much larger
effect in the NB case. The terms bI and bIII are negligible in the NB case and small compared to bII
and bIV in the BB case.

E. Turbulent mass flux transport

This section provides an analysis of the turbulent mass flux transport and budgets. The rate of
conversion of potential energy to kinetic energy is directly proportional to the turbulent mass flux
as shown in Ref. [66]; thus, the analysis of this quantity gives more understanding of the effect of
mass flux on the turbulent kinetic energy production and of the asymmetry in turbulent transport
within the mixing layer.

Figure 10 plots the distribution of the surface average radial normalized turbulent mass flux ar

defined in Eq. (8) at different times during the implosion process. The radial normalized turbulent
mass flux is shown within the limits of the mixing layer where most of the turbulence activity is
located and ar is normalized by the initial impulsive change of velocity U that is due to the passage
of the incident shock wave. The radial position is taken with respect to the mixing layer center rc

and normalized by the integral mix layer width W . The study of mixedness quantities in Sec. III B
showed that the transition to turbulence and mixing starts near the first reshock, which is why the
distribution of ar is only plotted at t = 1.8, 2.2, and 2.4 ns, where the turbulent mass flux is more
prominent compared to the early stages of the implosion where no turbulence occurs.

In the BB3 case, the normalized mass flux ar decreases after the reshock due to compression and
then starts increasing again to peak near stagnation. In contrast, the normalized turbulent mass flux
in the NB case did not have a noticeable recovery after the reshock. Moreover, the peak normalized
turbulent mass flux in the BB case near stagnation is approximately three times (in absolute value)
higher than the NB case at t = 2.4 ns, which means that the rate of conversion of potential energy
to kinetic energy in the NB case at late times is less than what is observed in the BB case. The
low-wave-number perturbations in the BB case that keep growing after the reshock and contribute
to the growth of the layer boost the conversion of potential energy to kinetic energy. However,
the NB mixing layer at this late stage is more homogeneous and more mixing between the length
scales and less growth of the layer width occur. These results are similar to previous incompressible
RTI studies that used ILESs in Cartesian geometries, considering similar initial conditions with the
current study (see Refs. [97–99]).

In all cases, the peak normalized turbulent mass flux is located within the mixing layer and is
shifted towards the spike side, meaning that most of the mass flux is associated with the spikes that
are more energetic and that penetrate further into the domain compared to the bubbles that are closer
to the mixing center as shown in Fig. 4(b). The distribution of ar shown here is a clear indication of
the highly non-Boussinesq asymmetries.

Figure 11 shows the budgets of the terms on the right-hand side of the turbulent mass flux
transport equation [refer to Eq. (15)] from the NB and BB3 results. The terms arI, arIII, and arIV
represent the production of turbulent mass flux. The term arI is the largest at early times until the
first reshock, which indicates that, in cases where no mixing occurs or large amounts of nonmixed
fluids exist, this term will affect the most the rate of change of the mass flux. It should also be noted
that the term arI depends on the density self-correlation and the closure of this term requires using
the transport equation of b shown previously.

The destruction term arII, which includes the specific volume-pressure gradient correlation, is
one of the dominant terms at the late stages of the implosion and shows the highest levels of turbulent
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mass flux destruction near the bubble side, which contributes to the asymmetry observed in Fig. 10.
This term is modeled as a decay that is related to the turbulent kinetic energy, the turbulent length
scale, and the turbulent mass flux as suggested in Refs. [55,56,59]. By looking at Figs. 11(a)–11(e),
the term arII is of similar magnitude and sign to the destruction term arVII in the BB case, which is
not the case in the NB results. At t = 2.4 ns, arII shows the highest peak near the mixing center in
all cases and has an averaged value similar to arVII in the BB results. Those observations are also
confirmed in Figs. 11(h) and 11(i), which show the variation of the volume-averaged terms in the ar

equation within the mixing layer in time. The term arIV is symmetric at the mixing center at early
times (t = 1.2 ns) but then becomes asymmetric at late times and shifted towards the spike side.

The asymmetry in the ar-terms distribution at the different stages of the mixing process is again
a manifestation of the high density gradient across the layer that induces high non-Boussinesq
effects. The unbalanced production and destruction terms also explain the continuous variation of
the normalized turbulent mass flux shown in Fig. 10.

The budgets of the NB case at early times are similar to the BB case but show higher values
of production, arI. That could be explained by the higher density self-correlation on the spike side
at this stage due to the faster growth of the short-wavelength perturbations to nonlinear regimes
compared to the BB layer. At late stages of the mixing process (t = 2.2 and 2.4 ns), the budgets of
the turbulent mass flux terms in the NB case are lower than in the BB case, indicating lower energy
conversion rate due to the NB layer being at a later dimensionless time with more mixing and more
homogeneity. Figures 11(h) and 11(i) show that the budgets of terms arV and arVI are negligible
in the NB case and their effect can be just canceled from the transport equation. Those figures show
that arV and arVI have overall close magnitudes (which is not the case at the reshocks) but with
opposite sign in the BB case; thus, they cancel each other at the late times in the BB case. It should
be noted that the triple correlation term arVI can be modeled using a gradient diffusion hypothesis
(see Refs. [55,56,59]) and this modeling represents the diffusion effect in the turbulent mass flux
transport equation.

The numerical discretization term NDar calculated at t = 2.2 ns has a dominant effect near the
bubble side and the peak value is of similar magnitude to the physical term arI. The diffusion and
destruction terms that are closed using the gradient diffusion hypothesis and decay models are the
most sensitive to the effect of the small scales and thus include a diffusion effect, which explains
the small positive contribution of NDar near the spike side.

F. Turbulent kinetic energy transport

Figure 12 shows the radial distribution within the mixing layer of the turbulent kinetic energy
K from the NB and BB3 results. The kinetic energy K is normalized by the square of the initial
impulsive velocity change U 2 induced by the incident shock wave. In both NB and BB cases, the
turbulent kinetic energy distribution before the reshock is shifted towards the spike side, which is a
representation of the more energetic spikes before the reshock. The NB case shows a higher peak of
kinetic energy before the reshock, which is expected due to the faster transition of the perturbations
to turbulence at this stage in the NB case compared to the BB layer.

The first reshock causes the compression of the perturbations and deposits vorticity within the
layer while accelerating the transition to turbulence. The highest levels of turbulent kinetic energy
are observed near stagnation and the peak of K is located close to the mixing center. The kinetic
energy given from the BB results is approximately two times higher than the NB case. Near
stagnation, the NB layer is not growing much and the density gradient effect is also lower due to
more mixing, making the layer more homogeneous compared to the BB case that has dominant
growth from the long-wavelength perturbations and more density gradient effects at this stage
inducing growth and increasing kinetic energy.

Figure 13 shows the budgets of the individual terms in the K equation at different times in the
NB and BB3 cases. The turbulent kinetic energy distribution in the NB case shows more asymmetry
towards the spike side before the reshock due to the faster transition of the short-wavelength
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perturbations to turbulence. At late times, the budgets of turbulent transport terms in the NB case
are lower than the BB3 terms, which is, as explained before, due to the more homogeneous nature
of the NB layer at this stage. In all cases, the production term KIII shows the largest peak in the
inner region of the layer throughout the mixing process, which is an indication of the importance of
the turbulent mass flux on the energy conversion since this term depends on ar . The highest levels of
turbulent kinetic energy production are shifted toward the spike side, which explains the asymmetry
in the kinetic energy distribution in Fig. 12.

The term KII is a transport term that redistributes the kinetic energy from the edges to the interior
of the mixing layer. The transport term KV represents the triple correlation in Eq. (17); it is not
negligible as shown in Fig. 13 and contributes to the transport of energy to the edges of the layer.
This term has negative values in the region of highest kinetic energy production (term KIII) and
positive values toward the bubble side. The gradient diffusion hypothesis proposed in Ref. [55]
could be used to provide a closure for the diffusion effect of this term.

The pressure dilatation term KIV has a negative distribution across the mixing layer and is one
of the main contributors to the destruction of kinetic energy. The closure of this term can use eddy
viscosity approaches to represent the decay of kinetic energy. The mean velocity gradient term KI
is small compared to the other terms before the first reshock and then becomes non-negligible at the
late stages of the mixing process due to the reshocks that induce an increase in the velocity gradient.
This term decays between the first and second reshocks due to the decay of the velocity gradient
after the first reshock and then it is expected to increase again at the second pulse before stagnation.

Figures 13(e) and 13(f) show that the peak of KI near the mixing center has approximately the
same magnitude as the peak of KIV but with opposite sign, which means that those two peaks cancel
each other, inducing maximum kinetic energy production at this stage through the term KIII. The
production of kinetic energy dominates the resolved destruction at late times, which explains the
increase of the turbulent kinetic energy at the late stages in Fig. 12. The effect of the small scales
is shown through the numerical discretization term NDK that is calculated at t = 2.2 ns. While
not negligible, it is small relative to the resolved terms and the magnitude is insensitive to grid
resolution. In the NB case, NDK is uniformly dissipative due to the later dimensionless time which
is achieved by the mixing layer and the smaller turbulent length scales.

IV. CONCLUSIONS

Turbulence statistics and quantitative budgets of density self-correlation, turbulent mass flux, and
turbulent kinetic energy have been examined from the results of high-resolution three-dimensional
high-Atwood-number spherical implosion simulations. The simulations were performed using a
semi-Lagrangian high-order spherical algorithm implemented in the FLAMENCO solver considering
different broadband and narrowband initial multimode perturbations. This study reported on several
quantities of interest to give a more in-depth understanding of the mixing activity, transition to
turbulence, and asymmetries in the mixing process and also to quantify the importance of the
budgets of the terms on the right-hand side of the transport equations while considering different
perturbation spectra. The effect of numerical discretization was computed as the residual of the
turbulent transport balance was also investigated.

The analysis of the mixedness quantities, including the molecular mixing fraction and the
normalized mixed mass, showed that the NB layer reaches a later dimensionless time where the
scales are more mixed, making the layer more homogeneous compared to the BB layer that has
a persistent growth from the long-wavelength perturbations that are not contributing much to the
mixing. The study of the normal components of the anisotropy tensor showed strong anisotropy in
both the NB and BB cases with the NB case being more isotropic and homogeneous compared to the
BB layer, which showed more asymmetry and anisotropy on the spike side. The radial component
of the turbulence kinetic energy accounts for most of the kinetic energy (65% in the BB case and
57% in the NB case) as opposed to the azimuthal and polar components, which represent a smaller
fraction of the energy (17.5% each in BB case and 21.5% each in the NB case).
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The mean density self-correlation was investigated and showed highly non-Boussinesq effects
and also indicated higher mixing in the NB case, consistent with the observations from the
mixedness parameters. The budgets of the terms in the b equation showed that the production and
destruction terms are dominating the late stages of the mixing process and the other transport terms
are negligible. The effect of the destruction terms on the density self-correlation is much larger in
the NB case relative to the state of density self-correlation within the layer, which contributes to the
higher density self-correlation values in the BB case. In all cases, the highest change in the density
self-correlation was observed between 1.8 and 2.2 ns due to the first reshock that increases quickly
the layer mixing.

The examination of the mean radial normalized turbulent mass flux and mean turbulent kinetic
energy showed high asymmetry in the distribution of ar and turbulent kinetic energy across the
mixing layer, which is also a manifestation of the initial high-density gradient effect considered
in this study. This is due to the fact that the spikes are more energetic compared to the bubbles
that are interacting near the mixing center. This study showed higher levels of turbulent mass
flux and turbulent kinetic energy in the BB case, or in other words, higher potential to kinetic
energy conversion rates. This is related to the low-wave-number perturbations in the BB case that
dominate the growth at late times making the spike and bubbles spread further into the domain,
enhancing the conversion of potential energy to kinetic energy at the late stages of the mixing
process.

The budgets of the terms on the right-hand side of the turbulent mass flux equation showed that
production due to density self-correlation and pressure gradient, the destruction due to the specific
volume-pressure gradient correlation, and the destruction by velocity dilatation are the dominant
terms across the layer in both the NB and BB cases. The re-distribution and transport terms arV
and arVI are negligible in the NB case and cancel each other in the BB case since they have
close magnitudes but with opposite signs. The turbulence budgets from the turbulent kinetic energy
transport equation indicated the importance of the turbulent mass flux on energy conversion since
the production term that depends on ar showed the largest peaks across the mixing process. This
study also showed that the triple correlation term is not negligible and requires accurate modeling
to close the problem. The triple correlation term moderates the production of kinetic energy in
the regions where the production terms are maximum and contributes to the production of TKE
near the bubble side. The effect of the transport term KII is negligible and could be canceled
out from the budget equation. The production terms dominate the destruction at the late stages
of the mixing process, inducing higher turbulent kinetic energy at this stage. Moreover, production
due to pressure dilatation and mean velocity gradient terms and transport due to pressure velocity
fluctuations are not negligible after the reshock, which increases the complexity of modeling this
equation.

The study of the residuals of the turbulent transport equations showed that the numerical dis-
cretization modeling the effect of the small scales contributes to both diffusion and dissipation and
may have positive or negative sign in the computed budgets. It is also shown to be quite insensitive
to grid resolution in the grid sizes employed here. That was clear in the density self-correlation and
turbulent mass flux equations where the numerical discretization had positive impact on the rate of
change of b and ar in some of the regions within the mixing layer. The numerical discretization
moderated the change of b by reducing the gap between the production and dissipation terms in the
density self-correlation equation and showed a largely dissipative effect in the ar and K equation.
Finally it was noted that destruction of b through the term bIV is principally due to numerical
diffusion, and this provides an interesting quantification of numerical discretization, shown here to
be reasonably grid converged.
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APPENDIX

Figures 14–16 show the grid convergence assessment of the radial components of the turbulent
kinetic energy distribution, the volume fraction distribution, and the grid convergence of the budgets
in the density self-correlation, turbulent mass flux, and turbulent kinetic energy distribution. It also
shows a statistical convergence analysis where computations of the same problem are undertaken
with the same perturbations (BB2 case) while changing the initial random number seed. Results
using the different seeds are presented in Fig. 17 for the density self-correlation, turbulent kinetic
energy, and turbulent mass flux equations at t = 2.2 ns. The grid convergence analysis of the residual
terms is presented in Fig. 18.

The radial distribution of the turbulent kinetic energy components in the radial, azimuthal, and
polar directions and the volume average distribution plots in Fig. 14 show a reasonable convergence
where the average error varies between 8% and ∼11% at the highest resolutions. Figures 15 and 16
present the radial distribution of the density self-correlation and turbulent mass flux and the budgets
of all the terms on the right-hand side of the turbulence transport equations considering different
grid resolutions at t = 2.4 ns.

The two simulations with the highest resolutions in Figs. 15(a) and 15(b) show that the density
self-correlation and turbulent mass flux have converged on average across the mixing layer. The
budget terms show that the statistics are oscillatory and more challenging to converge. However, the
results at the highest grid resolutions are on average matching compared to the coarse grid results.

Table II shows the L2 error norms, defined as

L2 =
√

1
N

∑
N ( fi − ffine)2

fpeak
, (A1)

where fi are the individual terms (e.g., bI, bII, etc.) for i = (coarse, medium) with N points and
fpeak is the peak value of that term at that time instant. The results are shown in Table II. For the
terms bI–bIII, the coarse and fine mesh results have a normalized L2 norm less than 2% of the
peak value from the fine mesh result. The term bIV has a normalized L2 norm of 18% of the peak
value for the coarse mesh, and 8.2% for the medium mesh when compared with the fine mesh. It
is converging at an order of 1.15, as may be expected for a complex flow with shock waves and
material discontinuities. Thus although it is not as well converged as the other terms, it is showing a
clear trend towards convergence. This analysis also provides an indicator that statistical errors may
be the most likely remaining dominant error in these surface-averaged quantities for bI–bIII.

The greatest difference between the medium and fine grids is observed near the spike side, which
is the most challenging small vortical large-scale structure to resolve. This impact of the spikes on
the kinetic energy budgets was also observed in previous planar RMI studies [70,79]. Based on the

TABLE II. Normalized L2 error norms for the b equation.

Quantity L2 coarse L2 medium Order of convergence

bI 0.018 0.013 0.47
bII 0.013 0.010 0.41
bIII 0.016 0.019 −0.18
bIV 0.185 0.083 1.15
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analysis presented here, the results of the highest grid resolution BB case (BB3) have a good grid
convergence and are adopted for the subsequent discussions.
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