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Stick-slip-to-stick transition of liquid oscillations in a U-shaped tube
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The nonlinear decay of oscillations of a liquid column in a U-shaped tube is investigated
within the theoretical framework of the projection method formalized by Bongarzone et al.
[Chaos 31, 123124 (2021)]. Starting from the full hydrodynamic system supplemented by a
phenomenological contact line model, this physics-inspired method uses successive linear
eigenmode projections to simulate the relaxation dynamics of liquid oscillations in the
presence of sliding triple lines. Each projection is shown to eventually induce a rapid loss
of total energy in the liquid motion, thus contributing to its nonlinear damping. A thorough
quantitative comparison with experiments by Dollet et al. [Phys. Rev. Lett. 124, 104502
(2020)] demonstrates that, in contradistinction with their simplistic one-degree-of-freedom
model, the present approach not only describes well the transient stick-slip dynamics, but
also correctly captures the global stick-slip to stick transition, as well as the residual expo-
nentially decaying bulk motion following the arrest of the contact line, which has been so
far overlooked by existing theoretical analyses but is clearly attested experimentally. This
study offers a further contribution to rationalizing the impact of contact angle hysteresis
and its associated solidlike friction on the decay of liquid oscillations in the presence of
sliding triple lines.

DOI: 10.1103/PhysRevFluids.9.034401

I. INTRODUCTION

A. Linear contact line models for partial wetting conditions

Liquid sloshing constitutes an archetypal resonator system in fluid mechanics which sometimes
represents a critical issue in mechanical engineering and daily life [1,2]. It is therefore crucial to
understand the associated damping, as this plays a fundamental role in the mitigation of the maximal
wave amplitude response in resonant conditions [3,4].

Originally the natural frequencies of liquid oscillations in closed basins were derived in the
potential flow limit [5], while the linear viscous dissipation generated at the free surface, at the
solid walls, and in the bulk was typically accounted for by a boundary layer approximation [6–8].
This classical theoretical approach is built on the simplifying assumption that the free liquid surface,
η, intersects the lateral wall orthogonally, and the contact line can freely slip at a velocity ∂η/∂t with
a constant zero slope,

∂η

∂n
= 0 free-end edge condition, (1)

where ∂/∂n is the spatial derivative in the direction normal to the lateral wall. These hypotheses are
acceptable for the modeling of gravity-dominated waves in moderately large containers, i.e., when
capillary effects are negligible [9–12], but become questionable when considering smaller-scale
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containers for which additional dissipations sources originate in the vicinity of the meniscus region,
whose dynamics is the central topic of this work.

With a focus on different contact line conditions, Benjamin and Scott [13] and Graham-Eagle
[14] have computed semianalytically the natural frequencies of liquid oscillations whose contact
line is instead fully pinned at the brim of the container,

∂η

∂t
= 0 pinned-end edge condition, (2)

while the interface slope, ∂η/∂n, is let free to vary. In this case, theoretical predictions have provided
estimations of the system dissipation in better agreement with dedicated experiments [15–21].
Indeed, with the contact line being fixed, the overall dissipation is ruled by that occurring in the
fluid bulk and in the Stokes boundary layers at the bottom and at the solid lateral walls, where the
fluid obeys the no-slip condition.

An intermediate boundary condition that assumes a linear relation between the contact line speed
and the slope was proposed by Hocking [22],

∂η

∂n
= M

∂η

∂t
Hocking condition, (3)

with a proportionality constant, sometimes referred to as mobility parameter M [23]. According to
such a relation, the limiting values M → 0 and M → ∞ would correspond, respectively, to free-end
and pinned-end edge contact line conditions. The agreement with some recent experiments has been
found fairly good [24,25], but the estimation of this proportionality constant is not straightforward
[26–28].

The simplicity of these contact line models, which assume that the damping of the system has a
linear origin, significantly eases the mathematical tractability of the problem. However, they are too
simple to describe the complexity of the region in the neighborhood of the moving contact line.

Improving the modeling of damping effects requires looking more carefully at the dynamics of
the oscillating meniscus and at its wetting conditions, a long-standing problem in fluid mechanics
that dates back to Navier [29] (see also [30–37] among others).

B. Nonlinear contact line models for partial wetting conditions

When a liquid meniscus flows over a dry solid substrate, there is a triple-phase interface (air-
liquid-solid), which experiences a complex nonlinear dynamics. Experimental observations [38–40]
have shown that the dynamic advancing, θa, and receding, θr , contact angles deviate from their
static values depending on the velocity of displacement of the advancing or receding meniscus.
Moreover, there exists a range θ ∈ [θr, θa] within which the contact line seems to remain stationary.
The existence of such a static range, defined as contact angle hysteresis, plays a critical role in the
nonlinear damping and dynamics of capillary-gravity waves.

Several models have been suggested to explain the nonlinear relation between the dynamic
contact angles, θ , and the capillary number defined by the contact line velocity, U , Ca′ = μU/γ ,
with γ and μ, the air-liquid surface tension and dynamic viscosity, respectively. [40–44].

The present investigation focuses on oscillatory flows, for which a brief overview of well-known
contact line models is provided in Fig. 1 and Fig. 2. For instance, the contact angle dynamics
observed for vertical vibrating sessile drops (Fig. 1) or during the relaxation of sloshing waves
(Fig. 2) are seen to obey the nonlinear (cubic) Dussan model, (θ − θs)3 ∼ Ca′ [see Figs. 1(b) and
1(c)], with θs the macroscopic static contact angle, and are sometimes well approximated by a
modified Hocking’s law supplemented with hysteresis [see Fig. 2(b) and 2(c)].

Furthermore, the rich dynamics of an oscillatory meniscus shows some interesting features that
the present analysis aims at reproducing and predicting. Some of those features are illustrated
in Fig. 1(d). In the study conducted by Noblin et al. [46], they investigated the behavior of a
water droplet on a solid surface with a finite contact angle hysteresis under vertical vibration. The
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FIG. 1. (a) Contact angle dynamics in a vertically vibrating droplet. For these oscillatory flows, experi-
ments from (b) Ref. [23] suggest as suitable phenomenological contact angle laws the (c) nonlinear Dussan
model [38,45]. (d) Transition between stick and stick-slip motions in a water sessile drop deposited on a
vertically vibrating substrate characterized by a finite contact angle hysteresis (� ≈ 10 − 15 degrees) [46].
Lower curves are contact angle variations vs time; the dashed line represents θs. Higher curves are the
contact line position around the starting position before vibrations. The six curves for different nondimensional
acceleration amplitudes f /g are joined in the same plot for comparison. The driving frequency is 1/T = 9 Hz.
Panels (b) and (d) are modified versions of figures given in Refs. [23] and [46], respectively.

results showed two distinct types of oscillations. At low forcing amplitude, the contact line remains
pinned and the drop displays eigenmodes at certain resonance frequencies. At higher amplitudes,
the contact line starts to move, remaining circular but with a radius oscillating at the excitation
frequency. This transition between the two regimes occurs when the variations of the contact angle
exceed the hysteresis range. They also observed a decrease in the resonance frequencies at larger
vibration amplitudes for which the contact line is mobile. These features were attributed to the
hysteresis acting as solidlike friction on the oscillations, leading to a stick-slip regime at intermediate
amplitude.

In their seminal work, Cocciaro et al. [48] thoroughly characterized the contact angle dynam-
ics during the natural (free-of-forcing) relaxation phase of the fundamental asymmetric sloshing
mode in a small circular cylindrical container. Two different damping regimes were observed,
corresponding to higher and smaller wave amplitude oscillations [see Fig. 2(d)]. First, the contact
line slides over the solid substrate experiencing progressive stick-slip transitions under the effect
of the dynamic wall friction. In this phase, the damping increases considerably as the wave
amplitude decreases, until it reaches a maximum value, after which it starts to decrease, and the
small-amplitude regime is established. A finite time of arrest for the contact line is found: the
interface irreversibly pins and the ensuing residual pure bulk motion is seen to decay exponentially
owing to the linear viscous dissipation acting in the fluid bulk and in the Stokes boundary layers. The
natural oscillation frequency initially matches the value associated with a free-end edge eigenmode,
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FIG. 2. (a) Contact angle dynamics in sloshing waves (snapshots over a period) [47]. For this oscillatory
flow, experiments from Ref. [48] suggest as suitable phenomenological contact angle laws the (b) Hocking
linear law [22] supplemented with hysteresis. (c) Experimental contact angle dependence on the capillary
number as measured in Ref. [48] during the natural relaxation dynamics of water oscillations in a cylindrical
container initially perturbed. (d) Associated damping rate vs the amplitude of the angle, ϕ, measured at the
container axis as indicated in (a). The vertical dashed line indicates the value for which the contact line
irreversibly pins. Panels (a) and (c)–(d) are modified versions of figures reported in Refs. [47] and [48],
respectively.

it increases during the decay, and it eventually tends to the value associated with a pinned-end edge
eigenmode.

C. Motivation and objective

As an alternative to computationally expensive fully nonlinear direct numerical simulations (see
[49,50] among others), different theoretical frameworks, attempting to rationalize the nonlinear
dependence of the damping rate on the oscillation amplitude, have been recently proposed [51,52].
These works are based on an asymptotic formulation of the full hydrodynamic problem, which
is tackled in the spirit of the weakly nonlinear and multiple timescale approach, under precise
assumptions and range of validity. The asymptotic analysis is found to be able to quantitatively
predict the nonlinear trend of the damping in the higher amplitudes regime and the existence of a
finite-time of arrest for the contact line, in agreement with experiments [48,53]. However, it fails in
capturing the transient stick-slip motion and, most importantly, the transition to the small-amplitude
regime, when the interface pins but the fluid bulk keeps oscillating with a smaller amplitude motion
following a purely pinned dynamics.

The purpose of the present work is to provide a different theoretical approach, which overcomes
the limitations of these asymptotic analyses, thus successfully solving the overall flow dynamics and
enabling us to extract and highlight realistic flow features, yet keeping a low computational cost. To
this end, we consider liquid oscillations in the simplest sloshing configuration, i.e., liquid columns
oscillating in a U-shaped tube, as experimentally investigated by Dollet et al. [53], and subjected to a
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FIG. 3. (a) Dimensional interface height h̄(t ) mm vs dimensional time t̄ (s) for water and ethanol in the
hydrophobic tube and for liquid column length l = 14.6 mm. (b) Rescaled interface height, h, vs time t̄ (s), for
water in the hydrophobic tube with a fixed liquid column length l = 14.6 mm and at different initial elevation
hin. The solid curves correspond to the predictions from Eq. (5) with an oscillation period T = 2π/ω0 =
2π

√
l/2g and with σ = 0.06 as a free-fitting parameter common for all experiments. (c) Phenomenological

law used in the present work to model the apparent dynamic contact angle, θ , vs the nondimensional contact
line speed, Ca′ = Ca ∂η/∂t , with Ca = νρ

√
gl/2/γ , ν the kinematic liquid viscosity, ρ the liquid density, and

γ the liquid-air surface tension. Panels (a) and (b) are modified versions of figures given in Ref. [53].

physics-inspired nonlinear contact line model following Bongarzone et al. [54]. Using a piecewise
time splitting of the nonlinear contact line law to which the contact line obeys, we formalize a
mathematical model based on successive projections between different sets of linear eigenmodes
pertaining to each linear split-piece composing the contact line law.

The paper is organized as follows. In Sec. II we summarize the experimental findings reported
by Dollet et al. [53] and comment on the advantages and limitations of the one-degree-of-freedom
(1dof) system employed in their study to model the liquid oscillations. We present the full hydro-
dynamic system in Sec. III, while a numerical characterization in terms of oscillation frequencies
and damping rates associated with the various dynamical phases is carried out in Sec. IV. The
salient points of the projection method presented in Ref. [54] are briefly recalled and described in
Sec. V. Results and comparison with experiments are given in Sec. VI. Finally, final conclusions are
outlined in Sec. VII.

II. THE CASE OF LIQUID OSCILLATIONS IN U-SHAPED TUBES

Dollet et al. [53] studied the decay of liquid oscillations in a U-shaped tube. They experimentally
showed that in the presence of moving contact lines, oscillations are nonlinearly damped, with a
finite-time arrest and a dependence on initial conditions. Consistent with the theoretical analysis
by Viola et al. [51], they also revealed that contact angle hysteresis can explain this behavior and
quantified the solidlike friction attributable to the contact angle hysteresis.

For their experiments, Dollet et al. [53] used two U-shaped glass tubes, one rendered hydrophilic
and the other hydrophobic by specific treatments. The two straight arms of the tubes, separated by a
distance R ≈ 22.5 mm (the authors have provided us with this value in a personal communication),
have a constant inner radius a = 8.15 ± 0.15 mm (see Fig. 4 below). Two liquids, ultrapure water
and absolute ethanol, were used. With regard to the hydrophobic tube, the following wetting
properties were measured: θr = (68 ± 10)◦ and θa = (93 ± 2)◦ for water, and θr = (28±)2◦ and
θa = (34 ± 2)◦ for ethanol.

A controlled volume of liquid, making a column of length l along the centerline, was injected
into the tube. Successively, an initial height imbalance 2hin between the two contact lines in the left
and right straight arms of the tube was introduced and suddenly released. The subsequent natural
oscillations of one of the two interfaces were then recorded with a camera.
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FIG. 4. Sketch of the U-tube configuration. (a) Full 3D geometry. (b) 2D view of the centerline plane. The
tube radius is assumed constant and denoted by a. The length of the liquid column is l . h indicates the height
difference of the liquid column between the left and right straight channels. g is the gravity acceleration. The
advancing and receding dynamic contact angles are, respectively, θa and θr , whereas the static contact angle is
labeled as θs and it is in general 
= 90◦. (c) If the tube curvature is neglected, the 3D geometry can be reduced to
an axisymmetric configuration, by considering only half of the liquid column, of length l/2, and by imposing
antisymmetry conditions at the bottom boundary so as to restore the effect of the gravity term on the missing
straight channel.

The relaxation of liquid oscillations in the hydrophilic tube, not reported here for the sake of
brevity, was observed to be of exponential nature for both ethanol and water. More complex is
instead the scenario when dealing with the hydrophobic tube. For this condition, the relevant results
of their study are reported in Fig. 3. Figure 3(a) shows the oscillation decay for both ethanol and
water and for the same liquid column length and initial elevation hin. For both liquids, the oscillation
period, T , is well predicted by the analytical formula, T = 2π/ω0 = 2π

√
l/2g [5]; however, for

water, the effect of wetting conditions is striking: despite the larger viscosity of ethanol, water
oscillations are much more damped, with a finite-time contact line arrest, tarr, and a dependence of
tarr on the imposed initial condition, hin, as illustrated in Fig. 3(b).

To rationalize such nonlinear relaxation dynamics for the contact line, the authors employed the
1dof model reminiscent of that of Viola et al. [51] and which relies on two assumptions: (1) the tube
curvature is neglected and (2) the flow is hypothesized pluglike. It is difficult to rigorously justify
(1), but (2) appears reasonable as the Stokes boundary layer thickness in these experiments is of the
order of

√
4πν/T ≈ 0.4 mm � a(= 8.15 mm). This 1dof model then results from the interplay of

inertia, gravity as restoring force, linear damping, and nonlinear contact line damping included as
solid friction:

d2h

dt2
+ 2σ

dh

dt
+ h + μ sgn

(
dh

dt

)
= 0, (4a)

h = h̄

hin
, t = ω0t̄, σ = σ̄ω0

2πρga2
, μ = γ (cos θr − cos θa)

ρgahin
, (4b)

with the initial conditions h = 1 and dh/dt = 0 at t = 0 and with the bar symbol denoting
dimensional quantities. Importantly, in Eq. (4a), the linear damping coefficient σ is considered as

034401-6



STICK-SLIP-TO-STICK TRANSITION OF LIQUID …

a free-fitting parameter. In the limit of small damping, σ � 1 and μ � 1, an insightful solution to
Eq. (4a) can be obtained by applying the multiple scales method as outlined in Refs. [51,52,54]. The
elevation h(t ) is expanded as h0 + εh1 . . ., with ε a small nondimensional parameter � 1 and with
a leading order solution h0(t ) = (1/2)A(εt )eit + c.c. Moreover, the amplitude A(εt ) is assumed to
depend on time only through a slow timescale ∼εt . Successively, the imposition of a solvability
condition at order ε yields the asymptotic approximation

h(t ) =
[
− 2μ

πσ
+
(

1 + 2μ

πσ

)
e−αt/2

]
cos t, (5)

if t � tarr, and h = 0 if t � tarr, with tarr = 1
σ

log [1 + (πσ/2μ)] the time of arrest of the contact
line oscillations. Equation (5) predicts an envelope shape that varies from the classical exponential
damping as σ � μ (nearly linear dissipation) to a linear decay in time as μ � σ (solidlike friction).
In spite of the strong oversimplifications, the 1dof model predicts fairly well the experimental
contact line dynamics once the damping σ is fitted from experiments. In the experimental range
of liquid column lengths explored, a unique value of σ , σ = 0.06 (for water), allowed for a good
overall comparison. One can therefore state that the 1dof nonlinear pendulum-like model is capable
of reproducing the global features of the relaxation dynamics in the presence of contact angle
hysteresis, hence providing a powerful tool to obtain a quick estimation, e.g., of the finite-time
arrest.

Nevertheless, a few main limitations are worth to be commented on. Preceding the time of arrest,
the contact line exhibits some transient stick-slip transitions [visible in Figs. 3(a) and 3(b)]. As
discussed in Ref. [54], each time that the contact line transiently reaches a zero speed, the contact
angle will have to adjust from θa to θr (or vice versa) while the contact line remains pinned;
this dynamical variation obviously requires a certain time-interval to happen. Most importantly,
after the time of arrest, the fluid bulk still exhibits oscillations, even if the contact line is pinned.
These secondary oscillations are unaffected by nonlinear friction and, therefore, decay exponentially
under the effect of pure linear viscous dissipation (see Supplemental Material of Ref. [53] for
an experimental quantification of the damping rate and frequency in the pinned regime). Such a
stick-slip-to-stick transition cannot be captured by a the 1dof model, as it intrinsically calls for
a modelization of the many-degrees-of-freedom of the system. Last, the 1dof model requires the
fitting of the linear damping, σ , whose accurate computation can be very subtle. The linear damping
englobes multiple dissipative effects: the dissipation occurring in the Stokes boundary layers at the
tube walls, the one induced by three-dimensional (3D) effects in the curved part of the tube, and,
particularly, possible extra dissipation sources linked to the contact line motion, such as a dynamical
contact angle variation at a nonzero contact line speed [see Fig. 3(c)] which is a ubiquitous feature
of similar experiments (see, for instance, Refs. [22,23,39,44,45,48,55], among others).

With the aim of building a more refined model so as to overcome these limitations, in the follow-
ing we will characterize the present U-tube dynamics by considering the full hydrodynamic system
of governing equations, to which we will apply the projection method developed by Bongarzone
et al. [54]. The case of water oscillations in the hydrophobic tube described in Dollet et al. [53] and
summarized in Fig. 3 will represent our experimental reference condition.

III. FULL HYDRODYNAMIC SYSTEM

A. Governing equations

With regard to the experimental setup of Ref. [53] previously discussed, let us consider a
U-shaped tube of radius a and filled with a liquid column of length l , as illustrated in Figs. 4(a)
and 4(b). The section of the tube is assumed constant all over the tube length, a first geometrical
approximation already dealt with by Dollet et al. [53]. The geometry of the problem remains
intrinsically 3D. Nevertheless, by analogy with the approach employed by Iguchi et al. [56] and
Dollet et al. (2020), in the following, we neglect the tube curvature. This is certainly a strong a
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priori assumption, which appears worth to be discussed. Appendix A is devoted to discussing, at
least partially, its justification. Under this hypothesis, one may then imagine cutting the tube in
half and unfolding it, so as to consider the z axis as straight and only half of the liquid column, of
length l/2. At this stage, we have reduced the 3D geometry to an axisymmetric configuration that
can now be more easily described in cylindrical coordinates, Orφz. The origin of the cylindrical
reference system is located at the intersection of the unperturbed static interface at z = η0 with
the centerline axis at r = 0. The effect of the gravity term on the missing half of the domain can
be correctly restored by considering proper antisymmetry conditions on the bottom boundary at
z = −l/2 [Fig. 4(c)]. The sudden sign switching of the effect of gravity in z = −l/2 is consistent
with neglecting the curvature in the U-turn region.

The viscous flow within the U-shape tube is thus governed by the incompressible Navier-Stokes
equations

∇ · u = 0,
∂u
∂t

+ (u · ∇)u + ∇p − 1

Re
�u = −1êz, (6)

which are made nondimensional by using the container’s characteristic length l and the velocity
√

gl/2 (Fig. 4). Consequently, the Reynolds number is defined as Re =
√

g(l/2)3

ν
and the term −1êz

denotes the nondimensional gravity acceleration. In Eq. (6), p(r, z, t ) is the pressure field, whereas
u(r, z, t ) = {u,w}T is the velocity field, with u and w the radial and axial velocity, respectively. Note
that the dynamics is assumed axisymmetric, and such assumption will be maintained throughout the
paper. At the free surface, z = η, kinematic and dynamic boundary conditions hold,

D(η − z)

Dt
= ∂η

∂t
+ u

∂η

∂r
− w = 0, (7a)[

−pI + 1

Re

(∇u + ∇T u
)− 1

Bo
κ (η)I

]
· n = 0, (7b)

where D/Dt is the material derivative, n = (1 + η2
r )−1/2{−ηr, 1}T is unit vector normal to the

interface, and κ is the free surface curvature, κ (η) = [ηrr + r−1ηr (1 + η2
r )] (1 + η2

r )−3/2. The Bond

number is defined as Bo = ρga2

γ
( l/2

a )2, with γ designating the air-liquid surface tension. As an-
ticipated above, the restoring effect of the missing half of the tube is reintroduced by imposing
antisymmetry conditions for u and w at the bottom boundary [see Fig. 4(c)]. More precisely, we
impose

u = ∂w

∂z
= 0 at z = −1. (8)

Moreover, owing to the axisymmetric assumption, the axis boundary condition imposes

u = ∂w

∂r
= 0 at r = 0. (9)

B. Treatment of the sidewall: A macroscopic depth-dependent slip-length model

With regard to the modeling of the sidewall boundary condition, the case of a pinned contact line
is compatible with the classical no-slip condition [57]. The latter will be employed throughout the
paper whenever dealing with a fixed contact line. On the other hand, the no-slip condition and a
moving contact line are not compatible with each other, and one must adopt different strategies.

Here we adopt a slip-length model, thus assuming that the fluid speed relative to the solid wall
is proportional to the viscous stress [29,36] and that, together with the no-penetration condition, it
provides the boundary conditions

u = 0, w + ls(z)
∂w

∂x
= 0 at r = a

l/2
. (10)
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Such a condition is indeed needed in order to regularize the stress singularity at the moving contact
line [31,32]. It was hypothesized by Miles [33] and Ting and Perlin [34] that the phenomenological
macroscopic slip length appearing in Eq. (10) should not be assumed constant along the wall, but
rather spatially dependent on the position along the lateral wall and vanishing at a certain distance
away from the contact line, where the flow obeys the no-slip condition. For this reason, we employ
here a depth-dependent slip length as proposed by Bongarzone and Gallaire [58], which has been
shown to correctly estimate the linear dissipation occurring in the Stokes boundary layers at the
lateral solid walls (see Appendix B for further validations specific to the present case). Briefly, we
postulate that the slip length ls(z) is described by the exponential law

ls(z) = lcl exp

[
−
(

z − η

δ

)
log

(
lδ
lcl

)]
, z ∈ [−H, η(r = 1)]. (11)

In Eq. (11), lcl is the slip-length value at the contact line, r = a/(l/2) and z = η(r = 1), whereas lδ
is its value at a distance δ below the contact line, r = a/(l/2) and z = η − δ, with δ representing the
size of the slip region [34]. In principle, lcl , lδ , and δ are all free parameters. However, keeping in
mind that, macroscopically speaking, one aims at mimicking a stress-free condition in the vicinity
of the contact line and a no-slip condition after a certain distance δ, the natural choice is lcl � 1
(∼102–104) and lδ � 1 (∼10−4–10−6). The range of values proposed in brackets is based on the
sensitivity analysis reported in Ref. [58], whereas the slip region penetration depth, δ, as postulated
by Miles [33], is here assumed of the order of the nondimensional Stokes boundary layer thickness,
δ ≈ (l/2)−1δSt = (l/2)−1√2ν/ω0, with ω2

0 = 2g/l . What mostly matters is that δ is kept small with
respect to all other scales at hand in the problem, i.e., l , a, R, capillary length

√
γ /ρg, or Stokes

boundary layer thickness
√

2ν/ω0.

C. Phenomenological contact angle model and static meniscus

Lastly, to model the contact line motion, z = η and r = a/(l/2), we include the phenomeno-
logical law of Fig. 3(c), which describes the nonlinear contact angle dynamic as a function of the
contact line speed,

∂η

∂r
= ± cot θ, θ − θs = αCa

∂η

∂t
+ �

2
sgn

(
∂η

∂t

)
(Hocking+hysteresis), (12)

with Ca = νρ
√

gl/2/γ and with the value of α that will be discussed and specified in the next
section. Note that this model has already been used in Ref. [54] and it results from a combination of
the linear Hocking’s law [22], of slope α, and a static contact angle hysteresis of range �. In the rest
of the paper, to simplify calculations, we will additionally (and somewhat naively) assume that the
advancing and receding phases are completely symmetric and that the hysteresis range is centered
around θs, θ+ = θa − θs = �/2, and θ− = θr − θs = −�/2, while being aware that the advancing
and receding contact line dynamics are generally characterized by different value of α, αA 
= αR

[38,39,41–43,48].
In the limit of small oscillation amplitudes and small static contact angle hysteresis, the fully

nonlinear governing equations (6) together with their boundary conditions (7a)–(12) can be lin-
earized around the rest state, characterized by zero velocity and pure hydrostatic pressure. With
regard to the experiments by Dollet et al. [53] for water in the hydrophobic tube, the measured
advancing and receding contact angles are, respectively, θa = 93◦ and θr = 68◦. If we hypothesize
the equilibrium angle θs to be the averaged value of θa and θr , this amounts to θs = 80.5◦, meaning
that the static free surface is not flat (as it would be for θs = 90◦). We therefore linearize the
system of equations around an initially curved static meniscus, whose resulting axisymmetric shape,
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FIG. 5. Shape of the dimensional static meniscus, η0, computed numerically for θs = (θa + θr )/2 = (93 +
68)/2 = 80.5◦.

reported in Fig. 5, is computed as the solution of the following static equation:

η0 = 1

Bo

⎡
⎣η0,rr + r−1η0,r

(
1 + η2

0,r

)
(
1 + η2

0,r

)3/2

⎤
⎦, with

∂η0

∂r

∣∣∣∣
r=0

= 0,
∂η0

∂r

∣∣∣∣
r=a/(l/2)

= cot θs, (13)

Equation (13) is nonlinear in η0 and can be solved numerically using an iterative Newton method as
described in Appendix A.1 of Ref. [51].

IV. NATURAL PROPERTIES OF THE SYSTEM

Notwithstanding the linearization of the governing equations around the rest state, the system is
still nonlinear owing to the hysteretic contact angle model (12). Nevertheless, it appears intuitive
that the underlying contact line motion can be split into two distinct dynamical phases, namely, a
pinned phase, described by the condition

∂η

∂t
= 0 (pinned phase) (14)

and a free phase with

∂η

∂r
+ αCa

∂η

∂t
= −θ± (free phase), (15)

both evaluated at r = a/(l/2). The nonhomogeneous term in the right-hand side of Eq. (15) will be
dealt with within the formalism of the projection method. Let us ignore this term for the moment by
rewriting

∂η

∂r
+ αCa

∂η

∂t
= 0. (16)

Then the system of governing equations closed by these two boundary conditions, taken indepen-
dently, translate into two separated fully linear homogeneous problems, that both can be written in
the form

B f ,p
∂

∂t
q f ,p = A f ,pq f ,p. (17)

with q f ,p = {u f ,p, p f ,p, η f ,p}T the state vector. The symbolic expressions of the mass matrix B f ,p

and the stiffness matrix A f ,p are explicitly given in Ref. [54], while the subscripts f ,p are here used
to designate either the free ( f ) or the pinned (p) phase. By introducing the ansatz

q f ,p = q̂ f ,peλ f ,pt + c.c., (18)
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FIG. 6. Eigenvalue spectrum associated with the two contact line boundary conditions, i.e., pinned (green
markers) and free (blue markers), computed numerically by solving the generalized eigenvalue problem (19).
For the case of a free contact line condition, the calculation here reported has been performed by imposing a
value of α = 0. Both spectra are computed for a liquid column length l = 14.6 cm. Fluid properties: water,
ρ = 1000 kg/m3, γ = 0.0725 N/m, and ν = 1 × 10−6 m2/s.

with λ f ,p = −σ f ,p + iω f ,p, Eq. (17) reduces to the following generalized eigenvalue problem:

λ f ,pB f ,pq̂ f ,p = A f ,p. (19)

Matrices A f ,p and B f ,p are numerically discretized by means of a Chebyshev collocation method
implemented in Matlab in the same fashion of Refs. [51,52,54,58]; the resulting eigenvalue problem
is also solved in Matlab via the built-in eigs function.

The eigenvalue spectrum associated with the solution of the two independent eigenvalue prob-
lems is reported in Fig. 6. This figure shows, for both wetting phases, a spectrum that contains
two families of oscillating natural modes, namely, a free/pinned U-tube mode and free/pinned
capillary-gravity waves. However, these waves oscillate at a much larger frequency, at least ten
times higher, than the fundamental U-tube mode, and are typically more damped than the U-tube
mode. The latter mode, with its dynamical properties and structure, displayed in Fig. 7, is, therefore,
the mode that is expected to govern the dynamics.

Hence, in the next two subsections we will carefully comment on the eigenvalue properties of
such U-tube modes, tackled separately in the two dynamical phases. For simplicity, we will start
from the pinned phase, which appears easily describable from a numerical perspective. Successively,
we will handle the free phase, whose description hinges on the subtle modeling of the moving
contact line and slip length conditions.

FIG. 7. (a) Eigen-interface associated with the U-tube free mode computed in Fig. 6. The free surface
dynamics in the free-phase consists of an upward-downward oscillation of a flat interface. (b) Eigen-interface
associated with U-tube pinned mode computed in Fig. 6. Instead, the surface dynamics in the pinned-phase
consists of an interface oscillating with a bell-like shape whose edges are anchored at the wall.
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FIG. 8. Dimensional oscillation period, T , and damping coefficient, σ , vs the water column length and
associated with a pinned contact line dynamics of the fundamental U-tube mode. Green diamonds: values
computed fully numerical eigenvalue calculation. White circles: values measured experimentally as reported
in Ref. [53].

A. Pinned phase

The dependence of the oscillation period and of the damping coefficient on the liquid column
length for the U-tube pinned mode, as numerically computed, is shown in Fig. 8. Only one
experimental value has been reported by Dollet et al. [53] (in their Supplemental Material), and it
seems in agreement with our trend, which is also reminiscent of that displayed in Fig. 3(c), although
no analytical dispersion relation exists for a pinned contact line.

More experimental values are available with regard to the damping coefficient. Although some
discrepancies are observed at larger values of l , an overall fair agreement is found when compared
with our numerical estimates.

In this regard, it is important to realize that a pinned contact line condition is mathematically
fully compatible with a no-slip wall condition, i.e., no stress singularity needs to be resolved at the
contact line, hence allowing one for a precise numerical estimation of the damping. If we ignore
experimental errors and ensure numerical convergence, the main possible source of disagreement
with these experiments is attributable to free surface contamination or 3D effects, overlooked by
our ideal axisymmetric model, which neglects the tube curvature. To be sure that 3D effects are not
important, in Appendix A, we perform a full 3D eigenvalue calculation so as to refine the numerical
values reported in Fig. 8. This calculation proves 3D corrections to be small.

B. Free phase

1. Ignoring dynamical contact angle variation: α = 0

By analogy with the pinned case, the dependence of the oscillation period and of the damping
coefficient on the liquid column length for the U-tube free mode is shown in Fig. 9. The numerics
slightly overestimate the oscillation period, but overall it is in good agreement with the experiments.
The fact that the experimental data are better described by the theoretical formula, which does not
account for viscous dissipation, is, however, counterintuitive. Pure viscous dissipation should indeed
introduce a viscous correction to the natural frequency, which should result in a diminished value
or, equivalently, in a higher oscillation period T . This may suggest that there is a second effect
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FIG. 9. (a) Dimensional oscillation period, T , and (b) damping coefficient, σ , vs the water column length,
l (cm) and associated with a free contact line dynamics of the fundamental U-tube mode. Blue diamonds: values
computed fully numerical eigenvalue calculation by accounting for the variable slip length model discussed
in Eq. (16) with α = 0. White circles in (a): values measured experimentally as reported in Ref. [53]. The
experimental range investigated in Ref. [53] is indicated by the gray arrow in (b). Within this range, the damping
coefficient is nearly constant with the tube length.

counteracting and compensating for such a viscous correction to the natural frequency. Appendix A
shows that, among the small 3D effects ignored in the present analysis, the curved part of the U-tube
may lead to a small increase in the natural frequencies that can contribute to this compensation
effect.

In employing the 1dof model, Dollet et al. [53] used a nondimensional linear damping coefficient
σ fitted from experiments and whose best-fit value amounts to 0.06. This coefficient is difficult to
predict precisely, as it comprises several contributions, among which is the dissipation occurring in
the laminar Stokes boundary layers at the lateral walls.

The numerical approach here employed, based on the slip length model previously discussed,
provides a tool to compute the dissipation associated with the Stokes boundary layers (see Ref. [58]
for further details).

Figure 9(b) shows that within the experimental range of liquid column length, l (cm), considered,
the damping σ does not vary much with l , thus possibly explaining why a single value of σ

fitted from experiments can allow a good match with those measurements. The present numerical
calculation for the damping is also compared to an analytical estimate developed in Appendix B
that also validates the numerical scheme.

Nevertheless, the nondimensional averaged value in the experimental range of water column
lengths amounts to σ ≈ 0.027, which is less than half the one needed for a good agreement with
the data. The averaged value is computed as σ = n−1

i

∑ni
i σ i

√
li/2g, with ni the number of lengths

l used to sample the experimental range.
As discussed in Appendix A, 3D effects related to the tube curvature can produce an increase

in the damping of a few percentages, but this is not sufficient to explain such a mismatch. The
extra dissipation missing in the modeling of the free phase is therefore very likely attributable to the
contact line dynamics.
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FIG. 10. Same as in Fig. 9 (here in σ - log scale), but with the light blue crosses indicating the values
computed by also accounting for extra contact line dissipation produced by Hocking’s law [22,54] with α =
200 rad). Within this range, the damping coefficient is nearly constant with the tube length, l , even for α =
200 rad. The average value in this range is σ ≈ 0.06, which matches the one used in Fig. 3 and obtained from
the best fit of the experiments.

2. Accounting for dynamical contact angle variation: α �= 0

As in the experimental conditions considered here the extra contact line dissipation is well
incorporated into a linear damping coefficient, we propose to adopt a linear law for the dynamic
contact angle variations being proportional to the contact line speed. We therefore reintroduce
the contact line parameter that characterizes the Hocking law, α 
= 0. Recalling the contact line
condition for the free phase (16), one can see how a value of α = 0 would correspond to a contact
line sliding over the solid substrate with a constant and zero slope (dashed lines in Fig. 3). On
the other hand, the pinned condition (14) is nothing more than a limiting case of Eq. (15) with
α → +∞. We are supposing here to be in an intermediate situation where α, sometimes also
referred to as friction coefficient [27] or mobility parameter M [23], assumes a finite value different
from zero.

Let us first blindly consider α as a free fitting parameter. A value of α = 200 rad leads to
a nondimensional averaged (in the experimental range of Fig. 10) damping coefficient of σ =
σ
√

l/2g ≈ 0.06, which is exactly the value that was fitted by Dollet et al. [53]. If this procedure
shows that a simple linear dynamic contact line model is sufficient to explain the missing dissipation,
one can wonder whether the value of α used is meaningful for the experimental conditions discussed
here.

Hamraoui et al. [27] have studied the kinetics of capillary rise of pure water and pure ethanol
as well as their mixtures that, under static conditions, wet glass capillary tubes in both dry and
prewetting wall conditions. Specifically, they have postulated a dynamic contact angle term that
is linearly dependent on the velocity of the capillary rise and whose correction, in this linear
approximation, takes on the form of a three-phase line friction coefficient, M, equivalent to our
parameter α, up to a proper dimensionalization factor. The value of M for ethanol, water, and a
water-ethanol mixture is reported in Table I.
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TABLE I. Values of the nondimensional contact line parameter α for water, water-ethanol mixture, and
pure ethanol as measured by Hamraoui et al. [27]. The dimensional value of the friction coefficient M (denoted
by β in their study) is converted in the dimensional, α, and nondimensional, α, contact line parameter.

Liquid ρ (kg/m3) γ (N/m) ν (m2/s) M(Pa s) ᾱ = M
γ

(s/m) α = ᾱ
γ

νρ
(rad)

Water 1000 0.072 1.0 × 10−6 0.2 6.25 200
Mixture 983 0.050 1.0 × 10−6 0.14 2.8 140
Ethanol 786 0.022 1.4 × 10−6 0.04 1.82 36

Particularly relevant to our study is the value measured by Hamraoui et al. [27] for pure water,
M = 0.2 Pa s, which translates into α = 200 rad, hence matching precisely the value found to fit
the experimental data. As a side comment, the use of the coefficient α also produces an increase in
the natural frequencies, thus bringing the numerics closer to the experimental values.

Through this careful comparison with experiments by Hamraoui et al. [27] and Dollet et al.
[53], we have been capable of quantifying numerically the natural properties of the system in the
two dynamical phases of interest, handled independently. All our estimates and hypotheses seem
consistent with these measurements.

The idea is now to combine the two separated descriptions for the pinned-phase and free-phase,
so as to account for a dynamic change in the contact line boundary conditions and predict the
nonlinear relaxation dynamics. This is done in the next section by employing the projection
algorithm.

V. PROJECTION METHOD

A. General formalism

A detailed step-by-step description of the projection algorithm is already provided in Bongarzone
et al. [54]. In this section, we recall the salient points of the method, and we comment on the few
differences intrinsic to specific dynamics of the problem here considered.

When the contact line motion is schematized using Hocking’s law amended with a static
hysteresis range, we can identify two well-distinct phases of the dynamics, one in which the angle
varies linearly with a slope α as a function of the contact line speed, Ca∂η/∂t (Hocking’s linear law)
and one in which the contact line is pinned at a certain elevation with zero velocity (static hysteresis)
and the angle changes from θs + θ+ to θs + θ− (� = θ+ − θ−) or vice versa. We remind that we
denote these two phases as free, f , and pinned, p, phase, respectively.

The solution in these two phases is then expressed as the sum of the corresponding particular
static solution (meniscus mode), q fs and qps (the subscripts fs,ps stand for free static or pinned static),
and a truncated basis of linear eigenmodes, q̂ fn and q̂pm , weighted by their unknown amplitudes:

q f = θ±q fs︸ ︷︷ ︸
free-end meniscus mode

+ (
A0q̂ f0 eλ f0 (t−Tf ) + c.c.

)︸ ︷︷ ︸
free-end U-tube mode

+
⎛
⎝ Nf∑

n=1

A fn q̂ fn eλ fn (t−Tf ) + c.c.

⎞
⎠

︸ ︷︷ ︸
free-end capillary-gravity waves

, (20a)

qp = e f pqps︸ ︷︷ ︸
pinned-end meniscus mode

+ (
B0q̂p0 eλp0 (t−Tp) + c.c.

)︸ ︷︷ ︸
pinned-end U-tube mode

+
⎛
⎝ Mp∑

m=1

Bpm q̂pm eλpm (t−Tp) + c.c.

⎞
⎠

︸ ︷︷ ︸
pinned-end capillary-gravity waves

. (20b)

All these ingredients are visually summarized in Fig. 11. As described in the previous section and
in contradistinction with the two-dimensional (2D) system of Ref. [54], the present U-tube dynamics
is characterized by two families of oscillating natural modes, namely, a free/pinned U-tube mode
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FIG. 11. (a) Axisymmetric meniscus modes associated with the free-phase and (b) with the pinned-phase.
In (a), the slope at the wall is 1, whereas the contact line elevation is F0. In (b), the slope is 1/F0, whereas the
contact line elevation is 1. (c) Real part of the eigen-interface associated with the free and (d) pinned U-tube
modes, with the corresponding eigenvalues, λ f0 = −σ f0 + iω f0 and λp0 = −σp0 + iωp0 reported on top. The
free mode is normalized such that the contact line elevation is 1, while the pinned mode is normalized such that
the slope at the wall is 1. For completeness, in (c), we have also reported the interface shape when α = 0 (thin
blue line) as shown in Fig. 7(a). [(e)–(i)] Real part of the eigen-interface associated with the five least damped
free and [(j)–(n)] pinned capillary-gravity waves. The same normalization as in (c) and (d) is employed.

(n = 0 or m = 0) and free/pinned capillary-gravity waves (n ∈ [1, Nf ], m ∈ [1, Mp]). However,
these waves oscillate at a much larger frequency and are more damped than the U-tube modes.
Accounting for them in the algorithm is useful if one is interested in capturing fast transients, but
with the purpose of modeling the global dynamical features of the system, their inclusion in the
analysis is not strictly necessary. Hereinafter we will ignore the capillary-gravity waves, and we
will retain only the dominant free and pinned U-tube natural modes described in Sec. IV and here
denoted by q̂ f0 (free) and q̂p0 (pinned), with amplitudes A0 and B0, and eigenvalues λ f0 = −σ f0 +
iω f0 and λp0 = −σp0 + iωp0 , respectively.

Including a meniscus mode in the solution form (20a) associated with the free phase, q fs , is
necessary in order to properly deal with the nonhomogeneous term in the right-hand side of the
contact line condition (15). The particular solution resulting from this static forcing term, −θ±,
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FIG. 12. Workflow of the projection algorithm [from (a) to (c)].

consists in a static meniscus modification η fs (with u fs = 0) that satisfies the linearized meniscus
equation

η fs − 1

Bo

⎡
⎣ 1(

1 + η2
0,r

)3/2

∂2η fs

∂r2
+

(
1 + η2

0,r

)
(
1 + η2

0,r

)5/2

1

r

∂η fs

∂r

⎤
⎦ = 0, with

∂η fs

∂r

∣∣∣∣
r=a/(l/2)

= −θ±, (21)

with the terms in brackets representing the first-order variation of the nonlinear curvature linearized
around the static meniscus η0 and applied to η fs . For the convenience of notation, note that, in
Eq. (21), we actually impose the slope ∂η fs/∂r = −1 instead of −θ±, while keeping the term θ±
explicit in front of the particular solution in (20a).

The pinned condition (14) is homogeneous, and it is explicitly accounted for in the corresponding
eigenvalue problem. However, the condition ∂η/∂t = 0 also allows for a static particular solution
with ηps = constant at the contact line r = a/(l/2) (and with ups = 0). The meniscus mode for the
pinned phase is therefore computed as ηps = η fs/F0, with F0 the value of η fs at the wall r = a/(l/2),
so as to have a unitary value, ηps = 1, at r = a/(l/2) (see Fig. 11). This unitary value is weighted
by the contact line elevation e f p in (20b), with e f p kept fixed during the pinned phase.

B. Workflow of the method

A visual workflow of the algorithm is illustrated in Fig. 12. Let us suppose to initialize the system
in the upper free phase [Fig. 12(a)] by assigning the amplitude of the free U-tube mode, A0, at
t − Tf = 0. The system is let evolve in time according to (20a). When the contact line speed reaches
the null value, we have the first transition, i.e., from free to pinned. At this time instant, t = Tp,
we require the continuity of all variables of the system, qp(0) = q f (Tp − Tf ). This corresponds to
imposing

θ+q fs + (
A0q̂ f0 e(−σ f0 +iω f0 )(Tp−Tf ) + c.c.

) = e f pqps + (
B0q̂p0 + c.c.

)
, (22)

which, using the fact that the contact line elevation at the end of the free-phase reads (noting that
η̂ f0 = 1 at r = a/(l/2) and ηps = η fs/F0)

e f p = θ+F0 + (A0 e(−σ f0 +iω f0 )(Tp−Tf ) + c.c.), (23)

can be conveniently rewritten as

B0q̂p0 + c.c. = A0
(
q̂ f0 − qps

)
e(−σ f0 +iω f0 )(Tp−Tf ) + c.c. ≡ f f p, (24)

where the resulting term on the right-hand side is fully known.
The amplitude of the U-tube mode pertaining to the next pinned phase, B0, still unknown at this

stage, is computed by projecting, with respect to a specific weighted inner product, the final-time
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free solution, f f p, on the initial-time pinned solution as

B0 =< q̂†
p0

, f f p >E (25)

with q̂†
p0

the adjoint U-tube pinned-mode.
We are now entering the pinned phase [Fig. 12(b)]. The initial contact angle is θs + �/2 =

θs + θ+, and the time evolution of the system is described by (20b). The contact angle progressively
changes with a fixed contact line elevation e f p, and once it reaches the value θs − �/2 = θs + θ−,
the second transition occurs. We impose again the continuity of the flow variables, q f (0) = qp(Tf −
Tp),

e f pqps + (
B0q̂p0 e(−σp0 +iωp0 )(Tf −Tp) + c.c.

) = θ−q fs + (
A0q̂ f0 + c.c.

)
, (26)

with

θ− = e f p/F0 + (B0 e(−σp0 +iωp0 )(Tf −Tp) + c.c.), (27)

so that Eq. (26) can be rearranged as

A0q̂ f0 + c.c. = B0
(
q̂p0 − q fs

)
e(−σp0 +iωp0 )(Tf −Tp) + c.c. ≡ fp f . (28)

We thus project the final-time pinned solution on the initial-time free solution, so as to determine
the new amplitude A0,

A0 =< q̂†
f0
, fp f >E , (29)

with q̂†
f0

the adjoint U-tube free mode.
The system enters the lower free phase [Fig. 12(c)], and the cycle is repeated. Each projection

eventually induces a rapid loss of total energy in the liquid motion and contributes to its nonlinear
damping. After a few cycles, the inertia of the oscillating liquid column will no longer be sufficient
to surpass the static solid-like friction and the system will get trapped in the pinned phase. The
time instant associated with the last projection from the free to the pinned dynamical phases, T last

p ,
provides a univocal definition of the final time of arrest for the contact line, tarr = T last

p . Note that,
according to the prescribed contact angle model of Fig. 12, the method predicts that for t � tarr the
contact line speed is strictly zero and the contact line elevation remains fixed. The secondary fluid
bulk motion following the arrest of the contact line will decay exponentially under the effect of the
linear viscous dissipation characteristic of the pinned dynamics.

C. E-norm inner product and definition of adjoint modes

We note that, owing to the axisymmetric configuration, the inner product employed in this context
differs from that used in Ref. [54]:

< w, u >E=
∫

V
uwuv r dr dz +

∫
z=η0(r)

⎡
⎣ηwηv + 1

⎛
⎝ 1(

1 + η2
0,r

)3/2

⎞
⎠∂ηw

∂r

∂ηv

∂r

⎤
⎦ rdr, (30)

where v = {uv, pv, ηv}T and w = {uw, pw, ηw}T are two generic vectors, the bar designates the
complex conjugate, and the subscript E stands for energy. We recall that (30) represents the total
energy norm, where the volume integral measures the kinetic energy, whereas the two boundary
terms are, respectively, the gravitational and surface potential energies. We also note that the surface
integral associated with the surface energy (curvature term) is further weighted by (1 + η2

0,r )−3/2,
resulting from the linearization around an initially curved static meniscus, η0(r) 
= 0.

As a final comment, in Eqs. (25)–(29) we have invoked the concept of adjoint modes, solutions of
the adjoint linearized homogeneous problem, whose formal derivation is given in the Supplemental
Material of Bongarzone et al. [54]. In this regard, here we limit ourselves to reporting the final
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FIG. 13. Contact line elevation vs time for different initial conditions. Dashed line: 1dof model. Red solid
lines: predictions from the projection model. Markers: experiments by Dollet et al. [53]. We note that in
performing the calculation, we have considered an effective tube length of 16.2 cm, where an excess length of
l ′ = 1.6 cm is introduced to take into account the fact that the cross section along the curved part of the tube is
not constant due to the fabrication process. See Ref. [53] for further details.

result, according to which

q̂†
f ,p =

⎧⎨
⎩

û†

p̂†

η̂†

⎫⎬
⎭

f ,p

=
⎧⎨
⎩

−û
−p̂
η̂

⎫⎬
⎭

f ,p


= q̂ f ,p, λ
†
f ,p = −σ f ,p − iω f ,p = λ f ,p. (31)

The above-mentioned supplementary notes also provide a demonstration that direct modes, q̂ f ,p

and adjoint modes, q̂ f ,p, form a biorthogonal basis with respect to the scalar product (30), with the
adjoint modes that appear, therefore, as the most suitable choice for the projection step.

VI. COMPARISON WITH EXPERIMENTS AND RESULTS

A. Contact line dynamics and finite-time arrest

In this section the most relevant results are discussed. First, we compare the contact line dynamics
predicted by the projection method versus that predicted by the 1dof model and that measured
experimentally by Dollet et al. [53]. This comparison is outlined in Fig. 13 for different initial con-
tact line elevations, hin. The improvement brought by the present projection method is not striking
from this comparison. Both the 1dof model and the present model are in fairly good agreement
with experiments. Nevertheless, we can see, e.g., in Fig. 13(a)–13(c) that our model predicts a few
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FIG. 14. Finite time of arrest vs the imposed initial elevation. Black solid line: analytical prediction from
the 1dof model proposed by Dollet et al. [53]. White triangles: experimental measurements by Dollet et al.
Colored circles: projection method. The black dashed line only serves a guide for the eye.

stick-slip transitions preceding the final contact line arrest. These time periods, indicated in Fig. 13
by the horizontal red arrows, correspond to the intervals comprised between a transition from the
free to the pinned phase, at t = Tp, and the consecutive one from the pinned to the free phase, at
t = Tf . Within the time interval Tp − Tf , and owing to the imposed contact angle model (12), the
algorithm numerically prescribes zero contact line speed at a fixed elevation. Although over these
intervals the experimental contact line elevation appears to remain only approximatively constant,
we can infer that those dynamical phases visible in the experiments correspond to phases where the
contact line is almost or fully pinned.

An interesting aspect highlighted by the projection model is related to the dependence of the
finite-time arrest for the contact line, tarr, on the initial elevation, hin. The time arrest of the
contact line is indicated in Fig. 13 by the vertical black dashed lines, while its dependence on
hin is characterized more in detail in Fig. 14, which shows how tarr follows a steplike function.
Unfortunately, the available experimental data are not sufficient to assess whether the same trend
realistically occurs.

From our knowledge, such a trend has not been reported in the literature yet, but it appears
intuitively correct. Indeed, the arrest of the contact line occurs when, after a few oscillation cycles,
the inertia of the system is no longer sufficient to overcome this static friction. Figure 14 suggests
that there are ranges of initial elevations hin for which the final time of arrest is tarr remains
unchanged. To prolong the oscillatory contact line motion, the system needs to surpass this final
energy barrier, which is possible only by starting from a sufficiently larger potential energy, and
thus, from a larger hin. These intuitive observations hence call for further dedicated measurements
of tarr as a function of hin and in controlled wetting conditions.

B. Global damping properties and frequency modulation

As the projection method deals with the full hydrodynamic system, we have access to all
the degrees of freedom of the system. Looking away from the contact line and rather focusing
the attention, for example, on the centerline dynamics at r = 0, the useful insights brought by the
present approach are evident. The centerline dynamics is of course affected by what happens at the
contact line, but at the same time, it does not undergo a finite-time arrest. The associated time series,
computed for different initial elevations, is reported in Fig. 15.
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FIG. 15. Centerline free surface elevation, r = 0 and z = 0 (in log-scale), vs time for different initial
elevations, hin. The gray solid lines show the actual signal produced by the projection method, and the
colored solid lines indicate the amplitude envelope only. The colored dashed lines correspond to the analytical
prediction given by the 1dof model employed by Dollet et al. [53]. An almost abrupt change in the trend
of these signals is well visible. This is a clear sign of the final transition to a pinned contact line dynamics
following the contact line arrest.

An inspection of this time-signal evolution reveals, consistently with previous experimental
observations [48], how the contact line arrest is followed by the secondary bulk motion characterized
by an exponential relaxation with a constant damping coefficient (i.e., the final linear trend in
the log-scale plot of Fig. 15), which is completely overlooked by the 1dof model. By monitoring
the nonlinear decay of such a signal, we can estimate the damping rate and the modulation of the
oscillation frequency as a function of the time-dependent oscillation amplitude

FIG. 16. (a) Dimensional damping rate and (b) frequency modulation vs time at different initial conditions.
The damping rate, DR(t ) is computed as the logarithmic decrement of the amplitude of the centerline free
surface elevation, shown in Fig. 15. The frequency is computed from the same signal by evaluating the period
from peak to peak, with the resulting value that is then roughly assigned to the midpoint of the corresponding
time interval [colored filled circles in (a) and (b)]. The colored solid lines represent the best fit (smoothing
splines) of these time signals, whereas the colored dashed lines correspond to the analytical prediction given
by the single-degree-of-freedom model employed by Dollet et al. [53].
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The result of this procedure is explained and illustrated in Fig. 16. Similarly to the weakly
nonlinear analysis formalized by Viola and Gallaire (2018) [52], the 1dof model predicts the initial
increase in the damping rate, DR(t ), but it diverges around t ≈ tarr. This finite-time singularity is
not surprising as the contact line arrests at t = tarr, but it is only locally correct, and it does not
represent a good description of the global damping rate. On the contrary, the damping rate resulting
from the projection shows an increase as the wave amplitude decreases, until it reaches a maximum
value, at a time instant close to t = tarr after which it decreases to a nearly constant value. Once the
pinned dynamics is established, the damping rate is approximately constant and equal to the viscous
damping coefficient of the pinned U-tube mode. Concerning the frequency modulation in time, we
find a smooth evolution from the characteristic value of the initially dominant free U-tube mode to a
final value, reached for t ≈ tarr and corresponding to the natural oscillation frequency of the pinned
U-tube mode. Although no results concerning the damping rate and frequency modulation in time
were reported in Ref. [53], the initial and final values match well the experimental ones (as indicated
in Fig. 16 by the values of ωfree

exp , ω
pinn
exp , and σ

pinn
exp ), and the intermediate behavior is fully consistent

with that experimentally reported by Cocciaro et al. [48] in a sloshing configuration.
We note that the centerline elevation, as the contact line elevation, is also a local measurement,

but it is more representative of the overall dynamics. Similar trends for the damping and frequency
are found by monitoring, e.g., the decay of the total energy (see Ref. [54]), which represents instead
a global observable.

VII. CONCLUSIONS

In this work we have employed the projection method developed in Bongarzone et al. [54] to
study the natural relaxation dynamic of small-amplitude liquid oscillations in a U-shaped tube, as
experimentally investigated by Dollet et al. [53].

First, we attempted to rationalize the linear dissipation properties of the system in both the free
and pinned dynamical phases so as to explain the fitting parameter used in the 1dof model of Dollet
et al. [53] [see Eq. (4a)]. After having numerically estimated the effect of three-dimensionality,
i.e., of the tube curvature, and the contribution of the Stokes boundary layers on the overall linear
damping coefficients (see Appendixes A and B), a linear Hocking’s law for the dynamic variation
of the contact angle with the contact line speed has been accounted for in order to compensate
for the missing dissipation, hence allowing for a good match with experiments. The combination
of such a linear law with the static hysteresis range considered in Dollet et al. translates into the
phenomenological nonlinear contact line model already used in Refs. [22,27,54].

The full hydrodynamic system, supplemented with this contact line model, has been then studied
in the framework of the projection approach, so as to compare the resulting predictions with those
from the simple 1dof damped pendulum model employed in Dollet et al. [53] and with their
experimental measurements. When looking at the contact line dynamics only, the improvement
brought by the present model is not striking. Both the 1dof model and the present model are in
fairly good agreement with experiments and predict well the contact line arrest. However, our model
seems to correctly capture some of the stick-slip transitions occurring, in a more pronounced way,
just before the finite-time arrest. If one is interested in having a quick estimation of the finite-time
arrest for the contact line, we, therefore, recommend using the damped pendulum model.

Nevertheless, although the peculiar contact line dynamics, with its stick-slip motion and finite-
time arrest, is the main factor responsible for the initial nonlinear dissipation of the system, it is
not fully representative of the global dynamics. Through the projection method, we have access to
all the degrees of freedom of the system. This allowed us to explore, for example, the centerline
dynamics, which is affected by what happens at the contact line but does not undergo a finite-time
arrest. An inspection of this time-signal evolution reveals, consistently with previous experimental
observations [48] in the context of sloshing dynamics, how the contact line arrest is followed by the
secondary bulk motion characterized by an exponential relaxation. By monitoring the nonlinear
decay of such a signal obtained via the projection approach, we have been able to estimate
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the damping rate and the oscillation frequency (both amplitude-dependent) of the system, hence
correctly capturing the transition from an initial stick-slip motion to a final pinned dynamics, which
has been so far overlooked by the theoretical analyses reported in the literature.

The projection method, here applied to the case of a piecewise linear contact line model, has
already been generalized to any smooth nonlinear contact line dynamics, e.g., a cubic law according
to the Dussan model (see Ref. [54]). Replacing the linear Hocking’s law with a more sophisticated
nonlinear law, e.g. cubic, and combining the latter with a range of static hysteresis is of interest and
appears natural. Other future perspectives include the introduction into the model of small-amplitude
external forcing, i.e., axial time-harmonic excitations, and the extension to 3D nonaxisymmetric
oscillatory dynamics, which is of great relevance for sloshing-related problems [10–12] and in the
description of oscillatory sessile drop dynamics [23,46,49,50].
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APPENDIX A: EFFECT OF THE TUBE CURVATURE ON THE DAMPING

In this Appendix, we perform the full 3D eigenvalue analysis for a pinned contact line. The latter
condition is easier to resolve numerically, as no stress singularity emerges from the imposition of
a no-slip wall. Although the flow dynamics for a moving contact line and the resulting damping
properties may differ from the one considered here, the purpose of this Appendix is simply to have
a first estimation of the effect of the curved part of the tube on the global linear damping coefficient.
This computation serves us to partially justify the fundamental assumption of neglecting the tube
curvature. With respect to the real experiment, we can obtain only a rough estimation, as the tube
used by Dollet et al. [53] shows a significantly smaller cross section in its curved part than in its
straight parts, where it is circular of uniform radius a = 8.15 mm within a few tens of microns. As
it is difficult to measure this variation locally, we lack information to mesh numerically the actual
geometry with full fidelity. For these reasons, we will simply consider a constant cross section of
radius a.

Thus, the linearized governing equations with their boundary conditions have been implemented
in the finite-element software COMSOL Multiphysics v5.6. To mesh the physical domain, we have
adopted a hybrid hexahedrical-tetrahedrical mesh. Specifically, tetrahedral elements were used in
the interior, while hexahedron elements were adopted in the neighborhood of the free surface,
sidewalls and bottom, where, in addition, boundary layer refinements were used to better model
the viscous Stokes boundary layers. The linearized equations were manually written in their weak
formulation using the Weak Form PDE tools available in the software. We used P2 for the velocity
field and P1 elements for the pressure field, so as to avoid spurious pressure mode. The interface
variable was discretized with P2 elements. Globally, the grid is made of approximately 300 000
degrees of freedom, for which convergence was tested.

The results of this computation are reported in Fig. 17. Figure 17(a) gives a picture of the
3D natural U-tube mode for a pinned contact line: the full domain has been resolved, but for
visualization purposes, only a quarter of it is shown. The nondimensional axial velocity profile
is reported in Fig, 17(b) at different locations along the tube as indicated by the colored arrows.
We can see how the effect of the curvature is locally important from the asymmetry in the velocity
profile: the velocity is higher where the curvature is higher. This asymmetric profile gradually adapts
to a symmetric pluglike flow in the straight arm of the tube, and eventually, it relaxes to a bell-like
profile at the interface. This last profile seems peculiar, but it is consistent with the fact that the axial
velocity at the surface equals the time derivative of the interface, which, for a pinned dynamics, has
indeed a bell-like shape (see Sec. IV).
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FIG. 17. (a) Three-dimensional natural U-tube mode for a pinned contact line. The full domain has been
resolved, but only a quarter of it is shown here for visualization purposes. (b) Axial velocity profile plotted at
different sections along the tube, as indicated by the colored arrows. The liquid column length in (a) and (b) has
been set to l = 14.6 cm. (c) Dimensional oscillation period, T = 2π/ω, associated with the pinned contact line
dynamics and as a function of the liquid column length, l . (d) Same as in (c), but for the dimensional damping
coefficient. In (c) and (d), empty circles correspond to the present 3D calculation, black crosses are from our
axisymmetric model, while filled black diamonds are experimental measurements from Ref. [53]. Only one
measurement has been reported for the oscillation period.

Although the curvature seems to affect the flow locally, Figs. 17(c) and 17(d) suggest that it
does not significantly influence the eigenvalue properties of the system, i.e., the oscillation period
[Fig. 17(c)] and the damping coefficient [Fig. 17(d)]. Specifically, the oscillation period predicted
by the axisymmetric model is only slightly larger than that predicted by the full 3D calculation,
and both trends, with respect to variations of the liquid column length, are consistent with the
experimental measurements.
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The damping coefficient is always larger than that computed via the axisymmetric model. This
increase is attributable to 3D effects, and to a slightly higher oscillation frequency. However, such
an increase is bounded to less than 3% for the lengths l considered. Hence, neglecting the curved
part and employing a simplified axisymmetric model appears as a justifiable assumption for the
geometrical and fluid properties examined in this work.

APPENDIX B: THEORETICAL ESTIMATE OF THE STOKES BOUNDARY LAYER
CONTRIBUTION TO THE DISSIPATION AND COMPARISON WITH THE NUMERICAL

SLIP-LENGTH MODEL

In the first part of Sec. IV B, which deals with a description of the natural properties of
the system in the free phase, we have computed numerically the damping coefficient associated
with the dissipation originating in the oscillating Stokes boundary layer at the lateral wall. This
numerical estimate, based on an exponentially evanescent slip-length model (10)–(11), has provided
a nondimensional averaged damping value equal on average to σ ≈ 0.027, which is less than half the
one needed for a good agreement with the data (σ ≈ 0.6). Such a disagreement has then motivated
the introduction of an extra source of dissipation originating in the contact line region, which has
eventually led to the desired value of σ .

The use of the phenomenological contact line model (16) and, specifically, of the chosen value
of the contact line coefficient α 
= 0, has already been justified throughout the paper. Nevertheless,
it is still worth making sure that the original numerical estimate, obtained for α = 0, represents in
the first place a good prediction of the lower bound for σ , so as to not overfit the value of α required
to increase σ up to the desired experimental value.

In this Appendix we therefore attempt to derive an analytical estimation of the damping coeffi-
cient produced by the Stokes boundary dissipation. To this end, as in Sec. IV B, we neglect the tube
curvature and we assume a pure free-end edge contact line condition, α = 0. Additionally, for the
sake of mathematical tractability, we ignore here the curvature of the static interface, η0(r) = 0, by
taking θs = 90◦. Note that the experimentally measured value is θs = 80.5◦; this angle produces
a static meniscus whose characteristic length is approximately 5%–6% the tube radius, i.e., its
influence is likely negligible (see Fig. 5).

Under these hypotheses, the problem of free-phase U-tube oscillations is formally equivalent to
the Stokes second problem for axial oscillations governed by

∂w

∂t
= ν

(
1

r

∂w

∂r
+ ∂2w

∂r2

)
, w|r=a = W cos ω0t, (B1)

with the additional constraint the the axial velocity remains bounded for r → 0. The solution of
Eq. (B1) gives the axisymmetric axial velocity profile inside the cylinder, i.e., for 0 � r � a,

w(r, t ) = W Real

[
I0(r

√
iω0/ν )

I0(a
√

iω0/ν)
eiω0t

]
, (B2)

where I0 is the modified Bessel function of the first kind.
We can then compute the total force exerted by the fluid on the lateral wall as

F = μ
∂w

∂r

∣∣∣∣
r=a

= (πal ) μW Real

[√
iω0

ν

I0(r
√

iω0/ν)

I0(a
√

iω0/ν )
eiω0t

]
, (B3)

where the term (πal ) represents the total wall surface for half tube of radius a and length l/2. The
associated power reads

P = F · w|r=a = (πal ) μW 2 Real

[√
iω0

ν

I1(a
√

iω0/ν )

I0(a
√

iω0/ν)
eiω0t

]
Real[eiω0t ]. (B4)
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The power dissipated by viscous forces during the steady-state oscillatory motion can be expressed
as

〈Ė〉 = − ω0

2π

∫ 2π
ω0

0
P dt = −ω0al

2
μW 2 C (B5)

with brackets 〈·〉 denoting the temporal average over one period and the auxiliary coefficient C
defined as

C =
∫ 2π

ω0

0
Real

[√
iω0

ν

I1(a
√

iω0/ν)

I0(a
√

iω0/ν)
eiω0t

]
Real[eiω0t ] dt . (B6)

Outside the thin Stokes boundary layers, the U-tube linear dynamics can be approximated by a
plug flow with an interface rigidly oscillating in time at natural oscillation frequency ω2

0 = 2g/l and
without deforming in the radial direction. This simple dynamics can be described by introducing
the generalized coordinate q(t ), such that the interface position η and the axial velocity w read,
respectively, η = q and w = q̇(t ).

Let us now evaluate the total mechanical energy E , sum of the kinetic (K) and potential (P)
energies, associated with the oscillatory motion:

E = K + P = ρ

2

∫ 0

− l
2

∫ 2π

0

∫ a

0
w2 r dr dφ dz + ρg

2

∫ 2π

0

∫ a

0
η2 r dr dφ = ρg

2
πa2

(
q̇2

ω2
0

+ q2

)
.

(B7)
Assuming the ansatz q(t ) = Dq(t ) cos ω0t , one finds

E = ρgπa2

2

[
D2

q + Ḋq

(
Ḋq

cos2 ω0t

ω2
0

− Dq
sin 2ω0t

ω0

)]
≈ ρgπa2

2
D2

q (B8)

with the last approximation on the right-hand side that holds for small damping, i.e., whenever
Dq(t ) represents a slow-time damping process over the characteristic fast timescale typical of the
oscillations at frequency, ∼1/ω0, so that ω−1

0 Ḋq � Dq. The time derivative of the total energy then
reads

Ė = ρgπa2DqḊq. (B9)

In contradistinction with the standard Stokes second problem, where the lateral wall is oscillating
harmonically at a frequency ω0 with amplitude W , in the U-tube dynamics the sidewall is fixed
and the liquid column is oscillating at frequency ω0 with amplitude |w| = |q̇|. Recalling that 〈Ė〉 =
−ω0al

2 μW 2 C, we can thus express W 2 as |w|2 = |q̇|2 = ω2
0D2

q. Finally, by assuming that 〈Ė〉 ≈ Ė ,

Ė = ρgπa2DqḊq = −ω3
0al

2
μC D2

q = 〈Ė〉 �⇒ Ḋq = −ω0νC

πa
Dq, (B10)

where we have used ω2
0 = 2g/l , and

Dq = Dq0 exp

(
ω0νC

πa
t

)
�⇒ E = ρgπa2

2
D2

q0︸ ︷︷ ︸
E0

exp

(
2ω0νC

πa
t

)
, (B11)

which eventually leads to the analytical estimation of the damping coefficient σ as

E

E0
=
(

Dq

Dq0

)2

= exp

(
2ω0νC

πa
t

)
= exp(−2ω0σ t ) �⇒ σ = νC

πa
, (B12)

which must be compared with the numerical estimation reported in Fig. 9. This is done in Fig. 18.
Both the theoretical and numerical models neglect the curvature of the tube and the extra contact
line dissipation. We can see that the two predictions compare very well, hence confirming that the
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FIG. 18. (a) Nondimensional, σ , and (b) dimensional, σ = σ
√

2g/l , damping coefficient versus the water
column length, l (cm) and associated with a free contact line dynamics of the fundamental U-tube mode for α =
0 rad. Blue diamonds: values computed fully numerical eigenvalue calculation by accounting for the variable
slip length model (16). The red solid lines correspond to the analytical estimate of the damping coefficient
as estimated in this Appendix according to Eq. (B12). The vertical black dashed lines in (a) and (b) indicate
the length of the U-turn region, πR ≈ 7 cm. Below this length, the liquid column is all contained in the U-
turn region. In proximity and, particularly, below this limit value (as indicated by the gray-shaded regions),
neglecting the curvature of the tube is no longer a justifiable assumption.

slip-length model (10)–(11) allows for a fair estimation of the Stokes boundary layer dissipation,
as already suggested by the analysis of Bongarzone and Gallaire [58]. This calculation also
further confirms that the laminar boundary layer dissipation alone is not sufficient to justify the
experimentally fitted damping coefficient.

The effect of U-tube curvature on the damping has been discussed in Appendix A. The increase
in the damping attributable to the three-dimensionality of the flow in the U-turn region appears
too small to close to the gap with experiments, hence reinforcing the hypothesis that the additional
dissipation indeed comes from the contact line dynamics.

APPENDIX C: SENSITIVITY ANALYSIS TO THE LAW DESCRIBING THE VARIABLE SLIP
REGION AND TO THE VALUE OF ITS PENETRATION DEPTH

In Sec. IV B, by employing the slip-length model introduced in Sec. III B [58], we have computed
the damping coefficient associated with the free dynamical phase for the contact line. Within this
numerical approach, we have postulated that the slip-length ls(z) depends exponentially on the
distance z away from the contact line. Such a dependence was suggested by Ting and Perlin [34] as
an alternative to their discontinuous linear law.

Those two dependences are not the only models that have been proposed in the literature:
similarly to the discontinuous linear decay, Fullana [59] has adopted a discontinuous law consisting
of a bell function describing the contact line region and a constant (zero) value starting at a given
distance δ away from the contact line; in large-scale molecular dynamics simulations on two-phase
immiscible flows, Sheng et al. [60] showed that there is a partial-slip region associated with the
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FIG. 19. Different slip-length models employed in this Appendix: (a), (b) exponential, (c), (d) Gaussian,
(e), (f) linear, (g), (h) bell, and (i), (j) inverse. The abscissa in panels (a), (c), (e), (g), and (i) is in linear scale,
whereas the logarithmic scale is used in panels (b), (d), (f), (h), and (j). Black solid lines show the various
continuous functions; while markers represent the Chebyshev collocation points actually resolved. For the
specific calculations outlined in this Appendix, 40 radial and 200 axial points were used.

moving contact line with a value of the slip depending inversely on the distance z from the contact
point; furthermore, although we are not aware of a similar model being already proposed in the
literature, the Gaussian function appears as a natural smoother version of the exponential model
employed in this work.
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FIG. 20. (a) Dimensional damping coefficient associated with the fundamental U-tube mode, σ = σ
√

2g/l ,
numerically computed for a fixed water column length, l = 14 cm and for a free contact line dynamics
α = 0 rad, but changing the depth-dependent slip-length model and its main free parameter δ, i.e., the
extension of the slip region. Different markers correspond to different models, namely, (circles) exponential,
(squares) Gaussian, (triangles) linear, (diamonds) bell, and (crosses) inverse. The black dashed line indicates
the analytical estimate according to Eq. (B12) for l = 14 cm. The abscissa value

√
2ν/ω0, with ω2

0 = 2g/l ,
denotes the thickness of the Stokes boundary layer. (b) Corresponding dimensional oscillation period. The
black dotted line corresponds to the theoretical value 2π/ω0 = 2π

√
l/2g and serves to highlight the viscous

correction introduced by the sidewall boundary layer, whose numerical description according to the variable
slip-length model adopted. The viscous frequency correction to the theoretical value (horizontal dotted line) is
also indicated by the black vertical double-headed arrow.

Given the variety of slip-length models proposed in prior studies, it is worth discussing how
different z dependence of ls(z) may affect the results, e.g., the calculation of the global damping, σ

and oscillation period, T , for the system here investigated. This Appendix is precisely dedicated to
address this point. In the following, we repeat the calculation outlined in Sec. IV B, but replacing
the (1) exponential model with different laws, namely, the (2) Gaussian, (3) linear, (4) bell, and
(5) inverse functions. All of these laws, listed and represented in Fig. 19, require the values of
three parameters to be assigned. By analogy with Sec. III B and Ref. [58], here we impose a large
value of the slip length at the contact line, e.g., lcl = 102, to mimic the stress-free condition, and,
simultaneously, we require that the slip assumes a small value, e.g., lδ = 10−4 at a given distance
δ below the contact point so to reproduce the no-slip condition. Note that the specific values of
lcl and lδ are not important as soon as they are, respectively, large enough, lcl � 1 (�102), and
small enough, lδ � 1 (� 10−4) [58]. The sensitivity to the value of the penetration depth δ is then
carefully explored.

The results of this procedure are reported in Fig. 20, which shows how the different slip-length
functions impact the predicted damping coefficient and oscillation period. We observe that the
influence of the shape function is significant only at large values of δ, i.e., when a large portion
of the lateral wall behaves as a slip wall. As the value of δ is progressively decreased, the relative
differences between the various laws rapidly decrease and all models eventually prescribe the same
values of damping and frequency.

Given that the theoretically predicted value of σ requires a small δ to be numerically retrieved, we
can argue that the shape of the slip function does not have a relevant impact on the global properties
of the system investigated in this work.
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