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In a two-way coupled Euler-Lagrange (EL) simulation, a particle of size comparable
to the local grid spacing results in self-induced perturbation, which must be subtracted to
obtain the undisturbed velocity of the particle. Several approaches have been advanced to
estimate the self-induced velocity in the limit of an isolated particle. The present work
addresses the effect of nonzero volume fraction in predicting the self-induced velocity of
particles in an EL simulation. In addition to performing EL simulations of flow over a
random distribution of stationary particles, we also perform several hundred companion
simulations covering a range of Reynolds number and volume fraction. In each companion
simulation we have removed one particle from the random distribution whose undisturbed
flow and self-induced velocities are thereby precisely computed. By analyzing the self-
induced velocity obtained from these simulations, a number of key conclusions are drawn.
The most significant of them is the finding that the self-induced correction procedure of
an isolated particle can be applied even at a finite volume fraction, with a simple volume
fraction dependent modification, in order to accurately capture the average behavior.

DOI: 10.1103/PhysRevFluids.9.034306

I. INTRODUCTION

The importance of correcting for the self-induced perturbation in an Euler-Lagrange (EL)
simulation when the particle is of comparable size to the local grid has now been widely recognized
[1–24]. In essence, for particles of size comparable to the local grid, the feedback force of the
particle strongly influences the local momentum balance within the grid cell, and as a result, the
local fluid velocity within the cell is substantially different from that in the absence of the feedback
force (i.e., in the absence of the particle). However, the standard point-particle drag models have
been developed to predict the force on a particle given either the ambient fluid velocity far away
from the particle or the undisturbed fluid velocity that would exist in the absence of the particle.
Therefore, in the case of particles of a size comparable to the grid, the standard drag models, when
applied with the local fluid velocity within the grid cell computed in the EL methodology, will not
accurately predict the force on the particle.

In fact, in general, since the feedback force on the fluid opposes the relative velocity of the
fluid as seen by the particle, the local fluid velocity computed in an EL simulation will be smaller
than what it would be in the absence of the particle, thus resulting in an underestimation of the
particle force. As illustrated by Horwitz and Mani [13], as the particle approaches the grid size,
the underestimation of error can be in excess of 50%. A simple approach to avoiding this error is
to calculate the drag force on the particle not using the local fluid velocity calculated in the EL
simulation, but using a corrected local fluid velocity, which better approximates the undisturbed
fluid velocity. This corrected undisturbed fluid velocity is obtained by removing from the local EL
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fluid velocity the self-induced velocity due to the feedback force of the particle, i.e., by removing
the feedback presence of the particle, the undisturbed flow at the particle can be better represented.

The above-referenced papers offer a variety of approaches to estimating the self-induced velocity
of a particle. These approaches include an analytical solution derived by solving the unsteady Stokes
equation [4,10], Oseen’s solution of a Gaussian force applied to a uniform flow or regularized Oseen
solution [1,2,7,18], a discrete Green’s function solution [12], a solution by interpolation kernels
[16], and solving the model advection-diffusion-reaction equation [25]. These analytical approaches
are generally independent of the details of numerical discretization, with the assumption that the
Gaussian or other regularization functions are adequately numerically resolved. There have also
been solutions to estimating the self-induced velocity of a particle that are built upon numerical
implementations [13–15,21,22].

All the above efforts of self-induced velocity estimation have been for an isolated particle in a
uniform ambient flow. In an unsteady flow, the steady approach must be applied in a quasisteady
manner, based on the instantaneous flow at the particle location. Quasisteady approaches are
adequate in slowly varying flows. The effect of unsteadiness has been explicitly accounted for
in the estimation of self-induced velocity either with analytical solutions of the unsteady Stokes
equation [3,4,7,10] or with a convolution integral whose kernel has been empirically obtained
from finite Reynolds number simulations [1,2,18]. The numerically based correction procedures
[13–15,21,22] enjoy the advantage that they can be readily implemented in unsteady flows. Other
effects, such as the influence of a nearby wall, have also been considered [1,22].

The natural next step of broadening the applicability of the above-discussed self-induced velocity
estimation procedures is to consider problems involving random distributions of particles. A number
of questions arise in the presence of other nearby neighbors. Foremost among them is, how
important is the self-induced correction at a finite volume fraction, where the computed EL flow
at a particle is influenced not only by the self-induced perturbation of that particle, but also by
the perturbation effect of all its neighbors? If important, can the current methods be generalized to
conditions of finite particle volume fraction? Can the estimation procedure developed for an isolated
particle be applied even in the case of a finite volume fraction?

The focus of the present paper is to address the above questions and thereby extend the
existing isolated-particle-based understanding of self-induced velocity correction to finite volume
fraction conditions. This will be accomplished by isolating the self-induced velocity perturbation
of individual particles that are members of a random distribution subjected to a uniform flow. The
self-induced velocity of an isolated particle has been readily calculated by subtracting the local fluid
velocity at the particle computed in an EL simulation from the ambient uniform flow. This approach
is not possible with a distribution of particles since the difference between the local fluid velocity
at the particle and the ambient uniform flow derives contributions not only from the self-induced
perturbation of the particle, but also from the perturbations of all the neighbors.

In fact, plots of velocity perturbation calculated with the feedback force of an isolated particle
represented as a Gaussian force were presented in [2] for a range of Reynolds numbers. These plots
clearly show that the perturbation flow due to a Gaussian forcing extends several particle diameters
downstream, with the length of the wake increasing with the Reynolds number. Furthermore, the
peak velocity perturbation is not at the center of the perturbing particle, but at some distance
downstream. Thus, it can be expected that in a distribution of particles, the neighbor influence can
be substantial and often far in excess of self-induced perturbation.

Here we perform several hundred simulations with and without the presence of individual
particles in order to carefully isolate the self-induced perturbation velocity. The results have allowed
us to answer the following questions: (i) How important is self-induced perturbation compared to
the perturbation effect of neighbors at varying values of Reynolds number and volume fraction? (ii)
Does self-induced velocity averaged over many particles depend on volume fraction, in addition to
being a function of Reynolds number and feedback force magnitude? (ii) How does the self-induced
velocity of individual particles deviate from the average behavior (similar to drag of an individual
particle in a random distribution being different from the average)?
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An important limitation of the present investigation must be emphasized. While we will gain a
better understanding of the self-induced flow at a finite volume fraction, this will not necessarily lead
to a better deterministic force model. Since the perturbation influence of the neighbors as computed
in an EL simulation will not capture the actual perturbation as in a PR simulation, even without the
self-perturbation effect, the undisturbed flow of a particle in an EL simulation will not be the same
as the true value of a PR simulation. This difference must first be well understood in order to develop
better EL predictive force models. In contrast, in the case of an isolated particle, an improved
understanding of self-induced velocity immediately led to better force prediction. Nevertheless, here
we will investigate the effect of particle volume fraction on self-induced perturbation, following the
methodology of our previous work [1,2]. However, the conclusion to be drawn applies equally to all
other correction methods as well.

The rest of the paper is arranged as follows. First we will present the statement of the problem
and the EL numerical methodology to be pursued in Sec. II. The results are then presented and
analyzed in Sec. III. Finally, in Sec. IV we draw the conclusions.

II. STATEMENT OF THE PROBLEM

Consider a triply periodic cubic domain of size L3. Inside is a random distribution of N
stationary particles of diameter dp, such that we achieve the desired average volume fraction
of 〈φp〉 = Nπd3

p/(6L3). The particles are distributed with uniform probability using the random
insertion algorithm. In the EL simulation, the interfaces between the particles and the surrounding
fluid are not resolved, and only the filtered governing equations of the flow are solved. The filtered
particle volume fraction field is defined as

φp(x) =
∫

Ip(x′) G(x − x′) dx′. (1)

The corresponding complementary fluid volume fraction is given by φ f (x) = 1 − φp(x). In the
present problem, they are time-independent since the particles are stationary. In the above, Ip is the
indicator function that is unity inside the region occupied by the particles (i.e., Ip = 1 for |x − Xl | <

dp/2, l = 1, . . . , N , where Xl is the position of the lth particle) and zero everywhere outside. Also,
the integral is over the entire triply periodic box. We take the filter function used in regularization
to be an isotropic Gaussian [2,26]:

G(ξ) = 1

(2π )3/2σ 3
exp

(
− |ξ|2

2σ 2

)
, (2)

where σ is the parameter that controls the width of the Gaussian. With this definition, Eq. (1) can
be integrated and the volume fraction field can be expressed as

φp(x) =
N∑

l=1

φ1(x − Xl ) =
N∑

l=1

erf (Al ) − erf (Bl )

2
+ exp

(−A2
l

) − exp
(−B2

l

)
√

π (Al + Bl )
, (3)

where Al = (2|x − Xl | + dp)/(2
√

2σ ) and B = (2|x − Xl | − dp)/(2
√

2σ ). Since the particle vol-
ume fraction field is a superposition of that due to each of the particles, the corresponding fluid
volume fraction φ f has local minima at the center of the particles and increases away from the
particles. It should be noted that for particles that are close to the sides of the periodic box, the
Gaussian is extended on the other side to properly satisfy periodicity. With the above definition, the
condition

∫
φp(x) dx = 〈φp〉 is strictly satisfied. In this study, we have chosen σ/dp = 2, and the

effect of this parameter will be discussed later.
A mean streamwise pressure gradient along the positive x-direction drives a mean flow U along

this direction. In the EL simulations and the subsequent analysis, σ is chosen as the length scale,
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TABLE I. List of simulation cases considered.

Volume The number of Box Gaussian Particle Feedback
fraction (〈φp〉) particles (N) size (L) parameter (σ ) Reσ diameter (dp) force (F )

0.0015 1000 35.2052 1 1, 10, 100 0.5 1
0.01 6666 35.2052 1 1, 10, 100 0.5 1
0.033 22000 35.2052 1 1, 10, 100 0.5 1
0.1 66667 35.2052 1 1, 10, 100 0.5 1

and the mean fluid velocity within the box is chosen as the velocity scale. This yields Reσ = σU/ν.
The corresponding time, pressure, and force scales are σ/U , ρU 2, and ρU 2σ 2. We consider each
particle to be applying a unit nondimensional feedback force along the negative x-direction on
the surrounding fluid. The forces are applied using the Gaussian function, and the resulting three-
dimensional feedback force field can be expressed as

Fp→ f (x) =
N∑

l=1

Fl = −
N∑

l=1

exG(x − Xl ), (4)

where ex is the unit vector along the x-direction. This is just a simple model to help us understand
the nature of self-induced flow in the context of finite volume fraction. It does not account for the
shielding/drafting effect.

While the geometry is triply periodic, the flow is solved with periodic boundary conditions
along the lateral y and z directions. A constant unit inflow is applied along the x-direction and
the flow is allowed to freely exit without reflections along the outflow. An alternate approach is
to apply periodicity in the streamwise direction as well and choose the velocity scale to be such
that streamwise pressure gradient is unity. The relative merits of the two approaches are known. By
imposing the mean flow velocity to be unity, we strictly control the mean flow Reynolds number.
On the other hand, the particles near the inlet and outlet boundaries are excluded from the statistics.
The interior region that was chosen for statistical averaging was determined to ensure that the
results are converged and are in agreement with the results of periodic boundary conditions (periodic
simulation required iteration to match the mean flow Reynolds number).

The governing filtered fluid equations solved in the Euler-Lagrange numerical simulations are

∇ · (φ f u) = 0,

∂u
∂t

+ u · ∇u = −∇p + 1

Reσ

∇2u + Fp→ f

φ f
, (5)

where the variables are nondimensional. In the above filtered EL equations, u is the phase-averaged
fluid velocity that has been averaged over the fluid phase, and we have ignored the Reynolds stress
and the residual viscous terms.

The three important parameters of the numerical simulation are the Reynolds number Reσ , the
average volume fraction 〈φp〉, and the nondimensional feedback force applied by the particles.
We consider three different Reynolds numbers Reσ = 1, 10, and 100, and four different volume
fractions 〈φp〉 = 0.0015, 0.01, 0.033, and 0.1. The nondimensional feedback force is chosen to be
unity along the negative x-direction. The periodic box size is chosen to be L/σ = 35.2052, so that
the number of particles with the periodic box is 1000, 6666, 22 000, and 66 667, respectively.
This information along with other details of the different simulations are presented in Table I. All
simulations are computed using the spectral element code Nek5000 [27,28] with a discretization of
12×12×12 spectral elements and 6×6×6 Legendre-Gauss-Lobatto grid points within each element.
Due to the smooth nature of the Gaussian forcing, the flow fields are smooth as well and therefore a
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FIG. 1. Particle distribution within the triply periodic box and contours of particle volume fraction field
at 〈φ〉 = 0.0015 (top row) and 〈φ〉 = 0.1 (bottom row). It should be noted that for visualization purposes, the
particles are not drawn to scale.

modest grid is sufficient to adequately resolve the flow. Grid independence has been established in
all the cases to be presented.

A sample distribution of particles and the corresponding volume fraction on three different planes
within the domain for the low and high volume fractions of 〈φp〉 = 0.0015 and 0.1 are presented
in Fig. 1. The rms volume fraction variations within the entire volume of the domain for the
four different volume fractions considered in this study are 0.001 343, 0.003 35, 0.005 874, and
0.0077, respectively. This variation is due to the random distribution of particles. Furthermore,
the observed variation is dictated by the half-width of the Gaussian function, which is chosen
to be 2.35dp. A simple estimate of mean particle separation can be obtained as (π/6φp)1/3dp,
which yields mean separation distances of 7.04, 3.74, 2.51, and 1.74 at the four different volume
fractions. A comparison of these distances with the Gaussian width explains the higher volume
fraction variation relative to the mean volume fraction at small values of 〈φp〉. Nevertheless, as
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FIG. 2. Histogram of volume fraction field evaluated at the particle centers. The results are shown for
four different values of average volume fraction. Gaussian fits are plotted in red. The mean and one standard
deviation on either side are shown.

a result of this variation, some particles happen to be in regions of higher local volume fraction
surrounded by many close neighbors than others whose local volume fraction is lower than the
average. In all the cases, the particle volume fraction averaged over the entire box is equal to the
average value.

The volume fraction at the lth particle is denoted as φp,l = φp(Xl ). The mean Lagrangian
particle volume fractions averaged over all the particle centers for the four average volume fractions
are 〈φp〉L = 0.005 22, 0.013 53, 0.036 07, and 0.101 74, respectively. These are higher than the
corresponding domain averages. If we denote the self-induced volume fraction of an individual
particle at its own center to be φ1(x = 0) for dp/σ = 1/2, we obtain φ1(x = 0) = 0.004 08. Thus,
deviation from this value is the contribution to volume fraction from all other neighbors. This
explains 〈φp〉L being substantially larger than the Eulerian average 〈φp〉 in the limit of 〈φp〉 → 0.
Another reason we expect 〈φp〉L to be greater than 〈φp〉 is because more particles are in regions of
higher volume fraction, and as a result an average over particles will lead to a higher value [29].
The difference between the Lagrangian and domain-averaged volume fraction is generally small at
larger volume fraction. Nevertheless, it must be noted that the average volume fraction seen by the
particles will be higher than the domain average.

Figure 2 shows the normalized histogram of particle volume fraction φp,l for all four volume frac-
tions. The mean is marked along with the range denoting one standard deviation. At 〈φp〉 = 0.0015,
the Lagrangian volume fraction distribution is positively skewed, and due to the limited sample size,
the distribution is somewhat noisy. With increasing mean volume fraction, the distributions become
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FIG. 3. Contours of fluid velocity computed in the EL simulation with feedback force applied at all the
particles. The results are shown for two different mean Reynolds numbers and volume fraction.

smooth and are well approximated by a Gaussian. The standard deviations of Lagrangian volume
fraction for the four different cases are 0.001 34, 0.003 35, 0.005 86, and 0.007 71, respectively.

The simulated streamwise velocity contours on three different planes within the domain for the
low and high volume fractions of 〈φp〉 = 0.0015 and 0.1 for Reφ = 1 and 100 are presented in
Fig. 3. Several observations can be made. The velocity perturbation due to the feedback from the
particles increases both with volume fraction and Reynolds number. Although the particles are many
in number with increasing volume fraction, the level of spatial complexity of the flow does not scale
with the number of particles, since the force feedback has been smoothed with the Gaussian, whose
size remains the same in all cases. For the Reσ = 100 cases there is long streamwise coherence in
the perturbation flow, which is due to the very long wake structure of individual particles at higher
Reynolds number, as observed in the isolated particle simulations of [2]. This streamwise coherence
somewhat decreases at the higher volume fraction due to the higher interference of the downstream
particles.

Note that the EL simulations compute the fluid velocity over the entire domain, even in the
regions occupied by the particles. In fact, the drag force on the particles is typically calculated
based on the fluid velocity evaluated (or interpolated) at the particle center. From Fig. 3 it can be
seen that fluid velocity at the particle location deviates from the mean nondimensional value of
unity. This deviation increases with 〈φp〉 and Reσ . Let the fluid velocity at the location of the lth
particle computed in the EL simulation be u@l = u(Xl ). Figure 4 shows the normalized histogram
of streamwise velocity perturbation (1 − u@l · ex ) for all four volume fractions and three Reσ . The
mean is marked along with the range denoting the standard deviation. The histograms are smoother
for the higher volume fraction cases due to the availability of many more particle samples. All the
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FIG. 4. Histogram of deviation from unity in the streamwise component of fluid velocity measured at
the particle centers obtained for all 12 cases considered. The Gaussian fits are shown in red. Again the
mean and one standard deviation are shown, along with the mean computed without the self-induced velocity
perturbation, which is denoted as “mean-SIV.”

distributions are positively skewed, with the peaks slightly shifted to the left of the mean value. The
normalized histograms are also faster decaying than the Gaussian distribution. It should be noted
that this velocity distribution is unique to the idealized case of unit forcing being investigated in the
present study. In a typical EL simulation, the feedback force of a particle is a variable and depends
on the particle Reynolds number and local volume fraction.

An interesting aspect of EL simulations at finite volume fraction is the nonzero value of
the resulting velocity field. From the mass balance equation given in (5), we obtain ∇ · u =
(u · ∇φp)/(1 − φp). Contours of this quantity are plotted in Fig. 5 for Reσ = 1 for the four different
volume fractions considered. From the figure it is clear that fluid velocity divergence is quite small
at low volume fractions. At an average volume fraction of 10%, divergence is still small only at
0.01. Thus, in all the results to be discussed in this work, the importance of velocity divergence due
to random particle distribution is not large.

III. RESULTS—SELF-INDUCED VELOCITY

In the absence of particles (i.e., φ f = 1) and the feedback force Fp→ f , the flow over the entire
domain would have been the unit vector ex. The difference ex − u@l is the effect of all the particles.
Part of it is due to the self-induced perturbation arising from the feedback force of the lth particle.
There is also the effect of perturbation flow due to the neighbor’s feedback forces.

Separation of the self-induced perturbation of a particle from the perturbative effect of all the
neighbors is the focus of this study. In the present work, we achieve this separation by performing
many companion (N − 1)-particle simulations, in each of which the steady flow is computed with all
the particles except one. For each (Reσ , 〈φp〉) case listed in Table I, we perform M = 30 simulations,
and in each of these simulations one particle at random is removed from the simulation (i.e., the
volume effect and the Gaussian feedback force of this particle are not applied). The resulting flow
will be denoted as uun(x) and the fluid velocity at the removed lth particle will be denoted as
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FIG. 5. Contours of fluid velocity divergence for the four different volume fraction distributions at Reσ = 1.
The results are qualitatively similar at other Reynolds numbers.

uun
@l = uun(x = Xl ). With this, the self-induced velocity of the lth particle can be computed as

usi
@l = u@l − uun

@l . (6)

The interpretation is as follows. In the absence of all two-way coupling effects, the nondimensional
flow would be the constant vector ex. In the presence of all the neighbors, but without its own
presence, the velocity at Xl is uun

@l . This is the undisturbed velocity of the lth particle as calculated
in the EL simulation, which in general will not be the same as what one would obtain in a PR
simulation. The velocity u@l includes the added self-induced effect of the lth particle, which can
be isolated with the equation given above. The biggest drawback of the above approach is that with
each additional companion simulation, we obtain the self-induced velocity of only one particle.
Thus, conclusions need to be drawn with only a small set of self-induced velocities (i.e., for small
values of M). Here the volume fraction effects are investigated with 372 simulations (for M = 30).
It should be noted that when the lth particle is removed, it is not only the fluid velocity at the
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FIG. 6. Self-induced velocity from all 360 (N − 1)-particle simulations.

removed particle that changes due to self-induced perturbation. The velocity at all other particles
also changes slightly, due to the removal of the lth particle. However, this change is far smaller than
the change in the velocity at the location of the removed particle.

Figure 6 plots the x-component of the self-induced velocity, where the first M points are
〈φp〉 = 0.0015, the next M are 〈φp〉 = 0.01, etc. The three Reσ are plotted in different colors.
The different shaded vertical bands separate the different 〈φp〉 values. It is clear from the plots
that the self-induced velocities of the M particles are not exactly the same. Substantial particle-
to-particle variation in self-induced velocity is observed, the amplitude of which increases with
increasing volume fraction. The increase in self-induced velocity with increasing Reσ is expected
based on observations made in earlier studies of isolated particles. Fortunately, the effect of mean
particle volume fraction on average self-induced velocity is not strong, although a slight increase
with increasing volume fraction can be observed. The mean values of the self-induced velocity
(denoted as usi,S

@l ) computed based on the M = 30 samples are presented in Table II for the different
combinations of 〈φp〉 and Reσ . The corresponding standard deviation is presented in parentheses.
These mean values are presented in Fig. 4 as “mean-SIV,” while the “mean” in the figure corresponds
to the average total velocity perturbation at the particles, including both the self-induced contribution
as well as the perturbation from neighbors. It should be noted that the mean and standard deviation
presented in Table II are based on the limited sample of only 30 particles. Assuming a Gaussian
distribution for the self-induced perturbation velocity, from statistical theory, the sample mean
can be expected to follow the t-distribution and the variance to follow the χ2 distribution. The
corresponding confidence intervals of both that mean and the standard deviation are also presented
in Table II.

The standard deviation of self-induced velocity goes to zero with decreasing volume fraction. At
the lowest Reynolds number considered, the standard deviation is less than about 7% of the mean
at all volume fractions considered. At higher Reσ , standard deviation increases to about 35% of the
mean, at higher volume fractions. Nevertheless, the range of self-induced velocities measured at the
30 particles is much smaller than the range of velocity perturbations due to the neighbor influence
seen in Fig. 6. In other words, for any particle within a random distribution, the perturbation effect
of its neighbors will often be far larger than the self-induced perturbation of the particle on itself.

It may therefore be tempting to conclude that the self-induced velocity correction of a particle
can be ignored with increasing volume fraction. While this may be true at the level of individual
particles, the same does not hold in the statistical sense. When averaged over all the particles, the
perturbation effect of the neighbors becomes zero, while the self-induced perturbation has a finite
value, which in Table II can be as large as 8.5%. In other words, the influence of neighbors, though it
can be large in magnitude, varies from positive to negative values for different particles, depending
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TABLE II. The mean and standard deviation (shown in parentheses) of the self-induced velocity of the
M = 30 samples. Also presented are the 95% confidence intervals.

usi,S
@l usi,M

@l

〈φp〉 Reσ = 1 Reσ = 10 Reσ = 100 Reσ = 1 Reσ = 10 Reσ = 100

0.0015 0.0259 0.0657 0.0779 0.0285 0.0710 0.0826
(0.00060) (0.00405) (0.00744) (0.00046) (0.00060) (0.00014)

0.01 0.0263 0.0698 0.0721 0.0290 0.0702 0.0821
(0.00098) (0.01731) (0.01459) (0.00144) (0.00409) (0.00362)

0.033 0.0275 0.0706 0.0849 0.0297 0.0710 0.0837
(0.00197) (0.02388) (0.02925) (0.00319) (0.00933) (0.00358)

0.1 0.0306 0.0814 0.0817 0.0335 0.0742 0.0879
(0.00188) (0.03071) (0.02146) (0.00338) (0.01123) (0.00659)

95% confidence interval of usi,S
@l

〈φp〉 Reσ = 1 Reσ = 10 Reσ = 100

0.0015 0.0257; 0.0262 0.0642; 0.0672 0.0751; 0.0807
(0.00048; 0.00082) (0.00328; 0.00554) (0.00603; 0.01017)

0.01 0.0259; 0.0266 0.0632; 0.0764 0.0665; 0.0776
(0.00079; 0.00134) (0.01402; 0.02367) (0.01182; 0.01995)

0.033 0.0268; 0.0283 0.0615; 0.0796 0.0738; 0.0960
(0.00159; 0.00269) (0.01935; 0.03265) (0.02369; 0.03999)

0.1 0.0299; 0.0313 0.0698; 0.0931 0.0735; 0.0898
(0.00152; 0.00257) (0.02487; 0.04198) (0.01738; 0.02934)

on where the neighbors are located. The average neighbor effect can be expected to be nearly zero,
since the perturbation flow due to an isolated particle obtained by solving the EL equations (5), when
averaged over a large volume around the particle, can be shown to be quite small. In comparison,
the self-induced perturbation of each particle has a persistent component, and when averaged over
many particles it appears to be about the same as that of an isolated particle. As a result, in Fig. 4
we observe “mean-SIV” and “mean” to be quite close.

A. Self-induced correction model

In this section, we evaluate the applicability of the self-induced velocity model, developed in
[1,2] for an isolated particle, in the present finite volume fraction cases. We recall that they obtained
their results by solving the governing equations (5) with φ f (x) = 1 − φ1(x) to represent only one
particle at the center of the domain. The resulting nondimensional self-induced velocity correction
is given as

usi = |F| ψos χ Reσ

3π
√

2π
, (7)

where the analytic function obtained from Oseen’s approximation is

ψos = 3√
2π

π − √
2πReσ + (π/2)Re2

σ − πeRe2
σ /2erfc(Reσ /

√
2)

Re3
σ

, (8)

and the empirical nonlinear force correction obtained from numerical simulations is

χ = 10A(Reσ )|F|+B(Reσ )|F|2 with

{
A(Reσ ) = 0.0213 exp

(−3.16Re−0.88
σ

)
,

B(Reσ ) = 0.0027 exp
(−5.54Re−0.76

σ

)
.

(9)
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In general, χ is typically close to unity.1 It should be noted that for a constant |F|, while ψosχ

decreases with Reσ , usi increases, as seen in Fig. 6.
We now apply this self-induced velocity estimation to a distribution of particles. To be precise, we

evaluate the self-induced velocity of the lth particle located at Xl . In an EL simulation that includes
all the N particles, the input to the simulation around the point Xl is the local particle volume
fraction φp(x′ + Xl ) and the feedback force Fp→ f (x′ + Xl ), where x′ = x − Xl is centered about
the lth particle. This results in the fluid velocity u@l at the lth particle. Instead, in an EL simulation
that includes only the (N − 1) particles, without the lth particle, the local particle volume fraction
and the feedback force around Xl are given as

φun
l (x′) = φp(x′ + Xl ) − φ1(x′) and Fun

l (x′) = Fp→ f (x′ + Xl ) + ex G(x′), (10)

where the contribution from the lth particle has been subtracted. We denote the corresponding fluid
velocity at Xl that would be computed in the (N − 1)-particle EL simulation as uun

@l . This is the
undisturbed fluid velocity at the lth particle that we want to recover from u@l that is available from
the N-particle EL simulation.

In the case of an isolated particle, the self-induced velocity (7) was obtained by solving the
linearized Oseen form of the governing equations (5) with undisturbed volume fraction and feedback
force at the particle to be zero (i.e., there were no other particles). Now, in the presence of (N − 1)
other particles, the undisturbed volume fraction and feedback force fields are nonzero and given
in (10). The linearized Oseen form of the governing equations can again be solved to obtain the
perturbation flow due to the introduction of the lth particle. From this we can obtain the self-induced
velocity of the lth particle in the presence of (N − 1) other particles, which can be calculated as

usi,M
@l =

(
1 − φ1c@l

1 − φp@l

) |Fl | ψos χ Reun
@l

3π
√

2π
, (11)

where the superscript “si, M” represents self-induced velocity predicted by the model. Three differ-
ences between the above and (7) for an isolated particle must be observed: (i) In the multiplicative
factor contained within the parentheses, φ1c@l = φ1(x′ = 0) is the fluid volume fraction at Xl due to
the presence of only the lth particle, and φp@l = φp(x′ = 0) is the fluid volume fraction at Xl in the
presence of all the N particles. As we discussed earlier, for σ/dp = 2, φ1c@l ≈ 1, and as can be seen
in Fig. 3, the fluid volume fraction at the particles varies around the average value of 1 − 〈φp〉. Thus,
in general, the multiplicative factor increases above unity as the particle volume fraction increases.
(ii) Since the undisturbed fluid velocity at the particles is different from the unit nondimensional
ambient flow, the Reynolds number is calculated as Reun

@l = |uun
@l |σ/ν. (iii) The function ψos must

be computed based on Reun
@l .

The feedback force and the self-induced correction of the lth particle must be solved simulta-
neously in a general implementation of the EL simulation. As pointed out earlier, the computed
influence of neighbors in an EL simulation is not accurate to compute the correct force. We
avoid this complication, by simplifying the problem with a constant unit nondimensional feedback
force. However, as a result of the fixed feedback force, in general it will not be aligned along the
undisturbed velocity uun

@l (or the EL velocity u@l ). A vectorial version of the self-induced velocity
estimation has been presented in [1], which must be used since the feedback force and undisturbed
flow directions are not aligned. In the present EL simulations, we observe the effect of misalignment
to be generally small. Furthermore, Eq. (11) is implicit due to the dependence of the Reynolds
number on self-induced velocity. An approximation can be made to avoid the burden of an iterative
solution of the implicit equation by estimating the Reynolds number Reun

@l based on the previous
time step or with the uncorrected value, etc.

1We draw attention to a minor error in [2]. The force, which has been nondimensionalized by σ , must have
been scaled by a factor 8 ln(2), which has been corrected above.
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FIG. 7. (a) Self-induced velocity as a function of Reun
@l . (b) A plot of usi,S

@l − usi,A vs Reun
@l − Reσ .

B. Model evaluation

We denote the x-component of self-induced velocity of the lth particle obtained from the EL
simulation to be usi,S

@l and the corresponding quantity evaluated with the vector form of the model
to be usi,M

@l . Figure 7 presents a plot of usi,S
@l versus Reun

@l obtained from all the (N − 1)-particle
simulations. The different volume fraction cases are plotted in different colors, and the results of the
three different Reσ appear grouped as three clusters. For each Reσ , the average self-induced velocity,
averaged over the 120 EL simulations (M = 30 and 4 values of 〈φp〉), is shown as open white
diamond symbols. The corresponding average self-induced velocity obtained from the theoretical
model is shown as open white squares. It is quite clear from their overlap that the model is able to
capture the computed average self-induced velocity. Table II shows the mean and standard deviation
of usi,S

@l and usi,M
@l for the 12 cases of different (Reσ , 〈φp〉) combinations. At the lower two Reynolds

numbers, the simulation average shows a slight increase with increasing volume fraction. This
increase is consistent with the volume fraction dependent multiplication factor that appears in the
model [see (11)]. However, this increase is not clearly identified in the model average, partly due to
the smaller sample size of M = 30.

In Fig. 7, from the scatter it can be gathered that the particle-to-particle variation in self-induced
velocity is significant. The level of variation increases with both Reσ and 〈φp〉, and the corre-
sponding standard deviations are presented in Table II. The table shows that while the model is
reasonably accurate in predicting the average self-induced velocity, it is quite inaccurate in capturing
the standard deviation. Specifically, the model overpredicts the standard deviation at the lowest
Reynolds number, and incurs substantial underproduction as the Reynolds number increases.

The observed particle-to-particle variation in self-induced velocity is clearly due to the specific
arrangement of neighbors. As a result of the manner in which the neighbors influence the local
flow condition, usi,S

@l of some particles are higher than the average, while those of others are lower.
Such particle-to-particle variation is also seen in the context of quasistudy drag force on a random
distribution of particles subjected to a uniform flow [30–33]. The neighbor’s influence can be
considered to occur at two different levels. First, in the absence of the lth particle, the effect
of neighbors is to change the undisturbed flow at Xl from the unit ambient flow. This effect of
neighbors is accounted for in the particle-to-particle variation of its undisturbed ambient flow uun

@l
(whose variation will be similar to that shown in Fig. 4). This in turn results in particle-to-particle
variation in particle Reynolds number, Reun

@l , which is plotted along the horizontal axis of Fig. 7.
Second, in the presence of the lth particle, the local perturbation flow generated in response to its
Gaussian feedback force does not appear to follow the behavior of an isolated particle subjected to
a local uniform flow of uun

@l , but it seems to be further influenced by the presence of the neighbors
(also see [25]).
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FIG. 8. A plot of predicted self-induced velocity using (12) vs actual values obtained from the EL
simulations.

The most striking aspect of Fig. 7 is the negative correlation between usi,S
@l and Reun

@l . With
increasing undisturbed flow velocity, and the corresponding increase in Reun

@l , the model (11)
predicts the self-induced velocity to increase (this is the first effect discussed in the previous
paragraph). The observed negative correlation clearly indicates the dominance of the second mech-
anism in generating the negative correlation. In other words, the arrangement of neighbors results
in the undisturbed velocity of a particle being larger or smaller than the average, but this same
arrangement of neighbors also alters the self-induced perturbation of the particle in such a way
that the self-induced perturbation is larger (or smaller) when the undisturbed velocity is smaller (or
larger). The reason for this negative correlation requires further investigation.

In Fig. 7(b) we plot fluctuating self-induced velocity usi,S
@l − usi,A versus Reun

@l − Reσ , where usi,A

is the model prediction for a unit forcing at the average conditions of Reσ and 〈φp〉. The results for
the three different Reσ are presented in different colors, and negative linear regression coefficients β

are obtained from these plots. We obtain β = −0.0087, −0.0058, and −0.000 57 for Reσ = 1, 10,
and 100, respectively. A simple empirical relation of the following form can predict the self-induced
velocity of individual particles located within a random distribution:

usi,M
@l =

(
1 − φ1c@l

1 − φp@l

) |Fl | ψos Reσ

3π
√

2π
+ β

(
Reun

@l − Reσ

)
, (12)

where ψos is calculated based on the average Reynolds number Reσ . The performance is evaluated
by plotting this prediction against the simulation results in Fig. 8. The model is able to capture
the observed, self-induced velocity quite well. It must, however, be cautioned that the regression
coefficient β will not be a function of Reσ , but it can be expected to depend on the Gaussian filter
width and average volume fraction. Since the particle-to-particle variation in self-induced velocity
is far weaker than the particle-to-particle variation in the influence of neighbors, here we will be
satisfied with an accurate prediction of the average self-induced velocity, and we will not pursue
modeling of particle-to-particle variation.

IV. DISCUSSION

In this section, we will discuss how the present findings apply to multiphase flow simulations by
focusing on three aspects. First we will consider the limit of only two particles interacting in an EL
simulation and use this to interpret the results for a random distribution of particles. Second, since
the results of the previous section are for σ/dp = 2, we will discuss how these results apply to other
values of σ/dp. Third, we will consider a practical implementation where the force on the particle,
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and as a result the feedback force, will in turn be related to the undisturbed flow of the particle. Each
will be considered below.

A. Two-particle interaction in an EL simulation

To understand the above-obtained results for a distribution of particles, here we will consider the
much simpler problem of two-particle interaction. In an EL simulation, each particle will be fed
back to the fluid in terms of the volume fraction and the feedback force, both of which are smoothed
with a Gaussian. We consider two distinct limits: (i) the two particles being far apart, and (ii) the two
particles overlapping each other. In the limit where the two particles are far apart, the self-induced
velocity of each particle is unaffected by the presence of the other particle. As the particles approach
each other, their mutual interaction becomes significant, and the self-induced velocity of a particle
will deviate from the theoretical prediction (7) of an isolated particle. We want to quantify this
influence of one on the self-induced velocity of the other.

The limiting case of two-particle interaction is when their feedback forces overlap on top of each
other. Clearly, this is not possible in reality, since the two particles must be separated by the sum of
their radii. This extreme case is considered here only as an example, since its analysis can be done
easily. From (7), let the self-induced velocity of only one particle be usi

1 ∝ |F|ψosReσ χ1, where F
is the feedback force of a particle. Here the subscript “1” represents the result of a single particle.
When two particles overlap, the feedback force doubles. For the same ambient flow, however, Reσ

remains the same, and also ψos, which only depends on Reσ . The self-induced velocity of two
overlapping particles is usi

2 ∝ 2|F|ψosReσ χ2. Note that while χ1 is evaluated using (9) as it is, χ2

is evaluated with F replaced with 2F. The effect of one particle on the self-induced velocity of the
other can be quantified by the ratio (usi

2 /2)/usi
1 , which can be approximated as(

usi
2

/
2
)

usi
1

= 10A(Reσ )|F|+3B(Reσ )|F|2 ≈ χ1, (13)

where the approximation uses the fact that B(Reσ )|F|2 is usually much smaller than A(Reσ )|F|. The
interpretation is simple. In the self-induced velocity model given in (7), χ accounts for the nonlinear
effect and therefore it is the nonlinear amplification factor when one particle overlaps another. It is
important to note that while the self-induced velocity of a particle increases due to the presence of
a neighbor, the local undisturbed flow of a particle, due to the presence of the other, decreases. This
is consistent with the negative correlation seen in Fig. 7. In essence, in a distribution of particles,
the increase in self-induced velocity accompanied by a reduction in local undisturbed flow is due to
nonlinear interaction between the particles.

The self-induced velocity of two interacting particles is important in its own right, since in dilute
systems a pair of particles do occasionally come close together to influence each other. However,
the influence must now be considered properly as a function of the separation vector between the
two particles relative to the ambient flow direction. By considering an array of two-particle EL
simulations, one can construct a map of the nonlinear influence of a neighbor, much like the drag
and lift perturbation maps that account for the influence of a neighbor on quasisteady force. As
obtained above, χ offers a quick estimate of such a map when particles are very close to each other.
Although overlapping particles are a limiting configuration, unfortunately, χ does not provide an
upper bound, since at finite Reσ the peak perturbation flow due to a Gaussian force is not at the center
of the particle, but rather at several diameters downstream (see Fig. 2 of [2]). Nevertheless, χ − 1
remains small over a wide range of Reynolds numbers and feedback force values, and therefore
two-particle interaction in terms of self-induced velocity may in general be modest.

B. Effect of σ/dp

The only parameter that was not varied in the Result section was σ/dp. Its role can be established
by looking at its effect on the volume fraction field. The Gaussian parameter σ is related to the
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averaging volume, and given its value, the only quantity that determines how the volume fraction
and feedback force vary over the triply periodic box is the number of particles contained within
the averaging volume, which can be shown to be ∝ 〈φp〉(σ/dp)3. Thus, important quantities such
as ratios of standard deviation to mean volume fraction and feedback force depend only on the
parametric combination 〈φp〉(σ/dp)3, which for the cases considered takes the values of 0.012,
0.08, 0.264, and 0.8. For example, the standard deviation to mean ratios of volume fraction measure
in the simulations are σφ/〈φp〉 = 0.895, 0.335, 0.178, and 0.077, respectively. Thus, for any value
of σ/dp, other than that considered, the random distribution of particles will be the same as that
considered in the present simulation, provided 〈φp〉(σ/dp)3 is matched.

Only a limited range of values of σ/dp is of interest to self-induced velocity estimation. For
values of the ratio larger than 2.0, which was the value considered in the present simulations,
the average self-induced correction will decrease in magnitude, which can be well predicted with
(11). The particle-to-particle variation can also be inferred from the present results by matching
〈φp〉(σ/dp)3. For σ/dp � 6, self-induced correction can be ignored altogether, since the particle
becomes much smaller than the grid spacing. The value of σ/dp cannot be too small either, since
this will make the particle size much larger than the grid spacing. Also, from (3), σ/dp > 0.55 for
the volume fraction field to be larger than the close-packing limit at the center of the particle.

C. Implementation

We now briefly discuss a possible approach to implementing self-induced velocity correction
in an EL simulation at a finite volume fraction. According to the present results, in order to
predict the correct average self-induced correction in a distribution of particles, it is sufficient to
use the same approach as that of an isolated particle, with the inclusion of a volume-fraction-
dependent modification factor. More specifically, the model (11) can be used to calculate the
self-induced velocity of a particle with the Reynolds number Reun

@l and volume fraction φp@l of that
particle.

There is an important point to consider in an actual implementation. While our study here
assumed a unit force, in an actual application Fl of each particle must be calculated based on
the local relative velocity between the undisturbed fluid velocity and the particle velocity. But
to calculate the undisturbed fluid velocity at the particle from the EL simulation, self-induced
correction is needed, which in turn depends on the feedback force Fl . This requires an implicit
solution. We emphasize again that an accurate prediction of individual particle force is not possible
even with self-induced velocity correction due to inaccuracy in the estimation of perturbation effects
of neighbors in an EL simulation.

Finally, it must be stressed that the self-induced velocity predicted with the above implementation
is accurate only in the average sense. The prediction will not accurately capture the particle-to-
particle variation in the self-induced flow. Empirical relations such as those given in (12) can be used
to better predict the self-induced velocities of individual particles. But such an approach may not
be necessary, since the particle-to-particle variation in u@l often will overwhelm the corresponding
variation in self-induced flow.

V. CONCLUSIONS

It is now well accepted that a particle of size comparable to the local grid spacing results
in substantial self-induced perturbation in a two-way coupled Euler-Lagrange (EL) simulation.
This self-induced velocity must be subtracted from the computed EL fluid velocity to obtain
the undisturbed velocity of the particle. Over the past decade, several analytical and numerical
approaches have been advanced to estimate the self-induced velocity, which can be used to calculate
the undisturbed ambient fluid velocity and the correct hydrodynamic force on the particle. These
past efforts have all been in the limit of an isolated particle. The present work is an extension of
these past efforts to address the question of self-induced velocity of a particle when it is surrounded

034306-16



FINITE VOLUME FRACTION EFFECT ON SELF-INDUCED …

by neighbors. In other words, we consider the effect of a nonzero volume fraction in predicting the
self-induced velocity of particles in an EL simulation.

Toward this end, in addition to performing EL simulations of flow over a random distribution of
N stationary particles, we also perform 30 companion EL simulations of flow over N − 1 particles,
where in each companion simulation one particle has been removed from the original random
distribution. Thus, each companion simulation allows a precise evaluation of both the undisturbed
flow as well as the self-induced perturbation of the removed particle. Several hundred companion
simulations have been performed to cover a range of Reynolds numbers and volume fractions. By
analyzing the self-induced velocity obtained from these simulations, a number of key conclusions
can be drawn, which are summarized as follows:

(i) A simple rederivation of Oseen’s solution in the presence of volumetric and feedback
force influence of neighbors shows that the self-induced velocity of an isolated particle obtained
in earlier works [1,2] can still be used at a finite volume fraction with a modification factor
(1 − φ1c@l )/(1 − φp@l ), where φp@l is the particle volume fraction evaluated at the lth particle
in the presence of all the particles, and φ1c@l is the particle volume fraction at the lth particle in the
presence of only that particle.

(ii) Simulation results show that the above simple volume fraction correction is quite accurate
in predicting the average effect of volume fraction. That is, in a random distribution of particles
of average volume fraction 〈φp〉, the self-induced velocity averaged over all the particles can be
well predicted with the above simple volume fraction modification. According to this model, the
average self-induced velocity increases with increasing 〈φp〉. The volume fraction effect has only
been tested in the context of the Oseen solution model advanced in [1,2]. However, we expect the
volume fraction modification to apply well for other proposed models as well in the prediction of
the average self-induced velocity.

(iii) In a random distribution of particles, the velocity computed at a particle in an EL simulation
deviates from the macroscale average due to both the particle’s own self-induced perturbation
and the perturbation flow induced by all other neighbors. With increasing volume fraction, the
perturbation induced by neighbors far outweighs the self-induced velocity. However, when averaged
over all the particles in a neighborhood, the perturbation influence of neighbors averages to zero,
since this neighbor effect can be both positive and negative, whereas the self-induced perturbation
is sustained and its average can make a substantial contribution.

(iv) In a random distribution of particles, the self-induced velocity of individual particles deviates
from the average, and the standard deviation of particle-to-particle variation of self-induced velocity
increases with increasing volume fraction. Predicting this variation is less important since it is typi-
cally much smaller than the particle-to-particle variation of neighbor-induced velocity. Nevertheless,
it is observed that the self-induced velocity of a particle in a random distribution is higher or lower
than the average depending on whether the particle’s Reynolds number is lower or higher than
the average. This negative correlation is surprising, since it is counter to the Reynolds number
dependence of the self-induced velocity of an isolated particle. This illustrates the importance of
nonlinear interactions. A simple one-parameter empirical modification can be developed to more
accurately predict the self-induced velocity of individual particles in a random distribution.
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