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On granular flows: From kinetic theory to inertial rheology
and nonlocal constitutive models
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Previous results of discrete simulations of steady, unidirectional particle flows, here
collected and critically reanalyzed, permit to make the case that the kinetic theory of
granular gases, extended to include the correlations in the velocity fluctuations and the
role of friction in collisions, provides the long-sought universal framework to predict the
flow of realistic particles over the entire range of solid volume fraction from dilute to
very dense—the upper limit being the critical value at which rate-independent components
of the stresses arise. The case is made even stronger by the explicit derivation of the
popular inertial rheology and its nonlocal extension to deal with heterogeneities based
on the granular fluidity concept as special limits of the kinetic theory. In the process,
common statements about the frictional-collisional duality in the granular stresses and the
importance of long-lasting contacts creating a percolating network are shown to be greatly
exaggerated for granular flows in practical applications.
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I. INTRODUCTION

Granular materials are assemblies of solid particles that dissipate energy whenever they interact
and for which Brownian motion is irrelevant [1]. Because of the dissipative nature of their interac-
tions, an external input energy is required to support their motion. Granular materials are ubiquitous
in countless industrial and geophysical applications (from the manufacturing of tablets and pills in
the pharmaceutical industries to the propagation of landslides and snow avalanches on Earth and
other planetary bodies), and have been presented as a proxy to understand the behavior of other
disordered athermal systems such as foams, emulsions, and glasses [2].

The scientific interest in granular materials sparked from the pioneering works of Bagnold
[3–5] in the mid-20th century, especially in the engineering community interested in the modeling
of sediment transport. The grains are almost always immersed in a fluid, but for a handful of
applications in astrophysics [6]. Nonetheless, there are situations in which the role of the interstitial
fluid can be neglected [7], and this permits to focus on the solid particles only, without confounding
effects such as drag, lift, and buoyancy [8].

Depending on how much space is filled with grains, locally measured by the solid volume
fraction, the solid particles can be observed with the naked eye (i) to bounce off each other in
a seemingly random fashion, that is reminiscent of the classical picture of molecular gases [9],
or (ii) to form static or quasistatic assemblies of disordered grains characterized by a network of
long-lasting contacts that spans the entire domain [10], perhaps slowly deforming under shear [11].
Accordingly, the granular material is either a granular gas, subjected to rapid deformations, or a
granular packing, subjected to slow deformations. Granular packings and their quasistatic motion
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have been one of the main subjects of soil mechanics [12,13] and represent a very active area of
research. An extensive review on the subject is beyond the scope of the present work.

In the 1980s, the applied mechanics community built on the resemblance with molecular gases
and developed a kinetic theory for granular gases [14–18], in which the stresses originated from
momentum exchange in, for the sake of simplicity, binary, instantaneous, uncorrelated collisions
between identical, frictionless, rigid spheres or disks. The same mechanism of momentum exchange
at the origin of the granular stresses was first identified by Bagnold [4] in his description of
the inertial regime. Unlike Bagnold, however, the kinetic theory of granular gases introduced a
measure of the intensity of the particle velocity fluctuations, the so-called granular temperature, as
an additional hydrodynamic field. The dissipation of the kinetic energy associated with the velocity
fluctuations into true thermal heat through the inelasticity of collisions [16] is the key distinction
between molecular and granular gases [1].

Initially limited to slightly inelastic, frictionless particles, the kinetic theory of granular gases was
later expanded to account for frictional [19–22] and inelastic collisions [23]. Anisotropic distribu-
tions of the velocity fluctuations [1,24–28] have also been accounted for, and have been shown to be
crucial for the explanation of non-Newtonian properties of granular gases such as differences in the
normal stresses. The evidence [29,30] that, at solid volume fraction larger than the freezing point,
say, 0.49 for spheres [31], velocity correlations develop, leading to phenomenological modifications
of the collisional dissipation rate [32–34] that allowed the kinetic theory of granular gases to be
successfully applied to very dense flows, up to about 0.6 in volume fraction [35–37]. Finally,
extensions to finite duration of the collisions [38,39] and nonspherical shapes [40,41] have also
been proposed.

Unfortunately, it is still widely believed [42,43] that the kinetic theory of granular gases can
only apply to dilute flows of frictionless spheres interacting through binary, instantaneous, and
uncorrelated collisions. This original sin motivated the search for a model of granular materials
in a hypothetical dense regime, intermediate between the dilute regime of kinetic theory and
the quasistatic regime of soil mechanics, in which “grain inertia becomes important but where
a contact network still exists that percolates through particles” [44], that is “characterized by
enduring contacts between particles” [43], “interacting both by collision and friction” [43]. The
result of the collective effort by the French community of scientists involved in granular physics
was the well-known inertial rheology [44,45]. In its simplest form, this is a phenomenological,
algebraic relation between the ratio of the shear to the normal stress and a dimensionless measure
of the particle shear rate, the so-called inertial number, that can be employed to determine the
flow field in incompressible, dense granular flows once the distributions of the stresses are known.
Another phenomenological, algebraic relation between the solid volume fraction and the inertial
number permits to deal with compressibility [46]. The simplicity of the inertial rheology, especially
in comparison with the seemingly discouraging complications of kinetic theory, with its heavy
usage of statistical mechanics, integro-differential equations, and somewhat cumbersome notation,
determined its widespread popularity, with applications, to cite a few, ranging from column collapse
[47] to unsteady shearing flows [48], sediment transport [49,50], segregation [51], suspensions
[52,53], and flows of nonspherical particles [54].

As already pointed out in one of the first papers that introduced the inertial rheology [46], the
latter is simply a rearrangement of Bagnold’s rheology in his inertial regime [4] and, therefore,
suffers from the same drawback: it ignores the role of the particle velocity fluctuations and the
kinetic energy associated with them. Especially in the last 15 years or so, a number of experiments
and discrete numerical simulations have been carried out and indeed proved the failure of the inertial
rheology in heterogeneous flows [11,55,56], that is, flows in which the solid volume fraction is not
uniformly or almost uniformly distributed in the domain.

As a result, the inertial rheology has been amended to deal with heterogeneities by either
introducing a Laplacian term in the inertial number directly in the expression for the shear-to-
normal stress ratio [57,58] or proposing a new hydrodynamic field, the granular fluidity, and the
corresponding balance equation that also contains a Laplacian term [56,59,60]. These so-called
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nonlocal models—nonlocality originating from the Laplacian terms—have gained a lot of attention,
because they are able to overcome the weaknesses of the inertial rheology while maintaining the
framework that has become so familiar to a plethora of researchers in the field. In so doing, however,
they have lost much of the simplicity of the original, local inertial rheology: algebraic relations have
been replaced by differential equations, and boundary conditions of unclear physical meaning on
the inertial number or the granular fluidity and their derivatives must be provided. The degree of
complication in nonlocal models is similar to that of kinetic theories of granular gases, without the
clear link between the microscopic properties of the particles and the macroscopic stresses provided
by the latter.

Here, despite the fact that the kinetic theory of granular gases has been naturally derived for
three-dimensional (3D) flows, and that 3D extensions of the local and nonlocal inertial rheology
have been proposed [61,62], the focus is, for simplicity, on unidirectional, shearing flows of identical
spheres. Polydispersity [63] and/or asphericity [64] are not expected to alter the qualitative features
of such flows.

First, already published but scattered results will permit the clarification of some inaccurate, yet
abundant, statements about the mechanisms at the origin of the stresses in dense granular flows of
realistic particles, such as the frictional-collisional duality, and the presence of long-lasting, multiple
contacts forming a network.

Then, despite being already pointed out in a number of papers [34,65], the local inertial rheology
will be explicitly deduced from the kinetic theory of granular gases in the special case of steady,
homogeneous flows. This allows the determination of the coefficients in the inertial rheology from
the microscopic properties of the particles.

Finally, following a few hints [66,67] that already pointed at some common ground, the balance
equation of the granular fluidity will be derived from the balance of fluctuation kinetic energy of
granular gases, to complete a (re)unification of the only two current candidates for a universal theory
of granular flows.

II. FROM MICROSCOPIC INTERACTIONS TO MACROSCOPIC STRESSES

Identical, cohesionless spheres of diameter d and mass density ρp are unidirectionally sheared
in the presence or in the absence of a gravitational field, g being the gravitational acceleration. The
hydrodynamic fields are the solid volume fraction ν, the component of the mean particle velocity
in the flow direction, u, and the granular temperature, T , one-third of the mean square of the
fluctuations in the particle translational velocity. The derivative of u in the direction perpendicular
to the flow is the shear rate, γ̇ . Ignoring the anisotropy in the normal stresses, significant especially
in dilute conditions [27], the only nonzero elements of the stress tensor are, then, the pressure p and
the shear stress s. For simplicity, the particle mean spin and the strength of the fluctuations in the
angular velocity (the rotational temperature) are not considered as additional hydrodynamic fields,
even if this should be the most rigorous approach for frictional particles [20].

A. Hard spheres: Always rate dependent

Let us first focus on the limit case of hard, that is, infinitely rigid, spheres, which is the paradigm
on which kinetic theories are built. For purely repulsive hard spheres, the contact duration is zero
by definition, and there is, therefore, zero probability that more than two particles are in contact at
the same time: hard spheres only interact through binary, instantaneous collisions. The collision is
characterized by the change in the velocity experienced by the particles before and after the contact.
Naturally, the momentum of the system composed of the two particles is conserved, but the single
particles can exchange momentum. Figure 1 shows the most general situation in which two spheres,
labeled 1 and 2, possess translational velocities c1 and c2 and angular velocities ω1 and ω2 prior to
collision that change into c′

1, c′
2, ω′

1, and ω′
2 afterward. The unit vector k is directed from the center

of particle 1 to the center of particle 2. The change in the particle velocities due to the collision
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FIG. 1. Sketch of the collisional encounter between two hard spheres.

is proportional to the impulse of the force exerted on particle 1 by particle 2 [21]. The simplest
but still realistic model for the impulse [68,69] involves three dimensionless constants, namely, the
coefficients of normal, en, and tangential, et , restitution and the coefficient of sliding friction, μ.
The coefficients of restitution are the negative of the ratios of the normal and tangential components
of the relative velocity of the points of contact (so that en, et � 1; collisions are perfectly elastic
when they are equal to one), while the coefficient of sliding friction originates from Coulomb’s
law and relates the tangential to the normal component of the impulse when sliding occurs (μ � 0;
frictionless particles have μ = 0). Indeed, collisions can be sticking if the tangent of the angle
between k and the relative velocity of the contact points is less than a critical value, given by
7μ(1 + en)/[2(1 + et )], and sliding otherwise [21]. Sticking collisions only depend on en and et ,
while sliding collisions depend on en and μ. These three coefficients can be measured in experiments
[70] and are microscopic inputs of most of the numerical simulations based on the discrete element
method (DEM) [71].

Kinetic theories make use of statistical mechanics to perform averaging and obtain a continuum,
hydrodynamic description of granular gases. This averaging involves the single-particle velocity
distribution function that describes the probability that a particle possesses a certain velocity at a
certain location and at a certain time. To describe the change in quantities associated with the binary
collisions, one should use the two-particle velocity distribution function of the two colliding spheres.
In the absence of velocity correlations (molecular chaos) [72], and for particles of finite size, kinetic
theories adopt the Enskog approximation [20], so that the two-particle velocity distribution is taken
to be equal to the product of the two single-particle velocity distribution functions times a factor χ0.
The latter is the radial distribution function at contact, a function of the solid volume fraction, that
accounts for excluded volume and hindrance [72]. Although in principle χ0 can be directly measured
in, e.g., numerical simulations [30], it is more commonly fitted to match the measurements of, e.g.,
the stresses [30,36]. For instance, by fitting the dependence of the pressure on the solid volume
fraction in steady, heterogeneous shearing flows of frictionless spheres between rigid, bumpy planes
[36], later extended and tested against DEM simulations of steady, homogeneous flows of frictional
spheres [65], the following expression has been proposed:

χ0 =
[

H(ν − 0.4)

(
ν − 0.4

νc − 0.4

)2
]

2 − ν

2(1 − ν)3 + H(ν − 0.4)

(
ν − 0.4

νc − 0.4

)2 2

νc − ν
. (1)
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In Eq. (1), H(·) is the Heaviside function. Equation (1) is similar to the expression first proposed
by Torquato [31], but limited to nearly elastic spheres (en ≈ 1), in that it recovers the well-known
Carnahan-Starling radial distribution function at contact [73] at small solid volume fractions and
is singular at a maximum value of the solid volume fraction less than unity. Unlike Torquato’s
expression, however, Eq. (1) shows a superior agreement with the discrete simulations if en � 0.95
[36] and has the advantage that the derivative of χ0 with respect to ν is continuous over the entire
range of admissible solid volume fraction, thus facilitating the numerical solution of the differential
equations governing granular flows [74]. The radial distribution function tends to unity for ν → 0,
and is inversely proportional to νc − ν for ν → νc [36], where νc is a critical volume fraction. The
singularity of χ0 at νc implies that random assemblies of hard spheres are forbidden at volume
fractions larger than the critical—larger volume fractions are accessible if crystallization occurs
[25]. DEM simulations [65] have shown that νc is a decreasing function of the friction coefficient,
μ (see later).

Now, repeating Maxwell’s arguments [72], one can imagine spheres having an ensemble-
averaged velocity field, u, in one particular direction, and random fluctuations around it, of
magnitude equal to the square root of the granular temperature. With the particle diameter, d ,
providing the only length scale of the system, the collision frequency must be proportional to
T 1/2/d . The inverse of the collision frequency is the time of free flight, t f , i.e., the time that on
average a particle spends without interacting with other particles. The collision frequency is also
the rate at which particles cross a certain surface, thus carrying momentum and kinetic energy
with them. The transport of momentum across a surface is precisely the physical mechanism at the
origin of the so-called streaming (or kinetic) components of the granular stresses. Momentum and
kinetic energy can also cross a surface through the collisional exchange between two spheres whose
centers lie on opposite sides of the surface. This second mechanism gives rise to the collisional
components of the stresses [16]. On average, the particles have mT 1/2 momentum in the direction
perpendicular to the flow, and md γ̇ in the direction parallel to the flow, where m = πρpd3/6 is the
mass of a sphere. Pressure and shear stress are the rate of exchange of momentum perpendicular
and parallel to the flow, respectively, per unit surface area (proportional to d2). Then, it must
be p ∝ ρpd3T 1/2T 1/2/d/d2 = ρpT and s ∝ ρpd3d γ̇ T 1/2/d/d2 = ρpdT 1/2γ̇ . These are the kinetic
theory scaling laws and show that stresses are inertial, because they are proportional to the particle
mass density, and rate dependent, through the shear rate and the frequency of collisions (see later).

Deriving the scaling is easy, but obtaining the full expressions for the stresses requires lots of
calculations [20,23] with perturbations in terms of small parameters involving the spatial gradients
[72] and the coefficients of restitution [16]. Then, there are different versions of the kinetic theory,
depending on the highest order retained in the perturbations. In, perhaps, the simplest kinetic theory
able to capture most of the physics of granular gases composed of realistic, frictional particles [21],
the constitutive relations for the stresses are

p = ρpν[1 + 2(1 + en)νχ0]T, (2)

and

s = ρp
8Jν2χ0

5π1/2
dT 1/2γ̇ , (3)

where

J =
{

1 + en

2
+ π

32

[5 + 2(1 + en)(3en − 1)νχ0][5 + 4(1 + en)νχ0][
24 − 6(1 − en)2 − 5

(
1 − e2

n

)]
ν2χ2

0

}[
1 + π

12

5 − 3(2 − en)

3 − en

]
.

(4)

The term between curly brackets coincides with the expression reported in Ref. [36], based on
the calculations of Ref. [23], a kinetic theory that does not account for the anisotropy in the
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single-particle velocity distribution function [24]. The factor between square brackets has been de-
termined in Ref. [27] as the lowest-order correction to the shear stress that captures this anisotropy.

Given that the stresses depend on the granular temperature, a balance for the kinetic energy
associated with the fluctuations in the translational velocity is required. In unidirectional flows, the
balance is

3

2
ρpν

dT

dt
= −∇ · Q + sγ̇ − �, (5)

where the term on the left-hand side represents the rate of change of the fluctuation kinetic energy;
the first term on the right-hand side is the diffusion of fluctuation kinetic energy through the particle
agitation, with Q the flux of kinetic energy (actually, in unidirectional flows, it should be ∇ · Q =
∂yQy); the second term on the right-hand side is the production of fluctuation energy through the
work of the shear stress; and the last term on the right-hand side, �, is the rate of dissipation of the
fluctuation energy. This energy balance relates the granular temperature to the shear rate; hence, as
anticipated, the collision frequency and the pressure for hard spheres are always rate dependent.

The energy flux can be written as

Q = −ρp
4Mν2χ0

π1/2
dT 1/2∇T − ρp

25π1/2N

128ν
dT 3/2∇ν, (6)

where [36]

M = 1 + en

2
+ 9π

144

[5 + 3(1 + en)2(2en − 1)νχ0][5 + 6(1 + en)νχ0][
16(1 + en) − 7

(
1 − e2

n

)]
ν2χ2

0

, (7)

based on the calculations of Ref. [23]. The analytical expression for the coefficient N = N (en, ν, χ0)
can be found in Ref. [36].

The rate of dissipation, �, includes the direct dissipation of kinetic energy through the inelasticity
of the collisions and, for frictional spheres, an exchange term, eventually also dissipated, between
the kinetic energy associated with fluctuations in translational velocity and the kinetic energy
associated with fluctuations in rotational velocity [20]. It has been shown [21,75] that, at least in
homogeneous shearing flows, the exchange term is proportional to the rate of collisional dissipation
through a function of the coefficients of restitution and friction. Hence, � has the following
expression [21,33]:

� = ρp
12

(
1 − e2

eff

)
ν2χ0

π1/2

T 3/2

L
, (8)

where eeff = eeff (en, et , μ) is an effective coefficient of restitution [22] that accounts for the addi-
tional pseudodissipation of translational fluctuation energy into rotational fluctuation energy. The
expression for the effective coefficient of restitution in the limit of nearly elastic particles was
analytically derived in Ref. [21] as eeff = en − (π/2)μ + (9/2)μ2. A more general but implicit
expression, so that eeff must be determined numerically, was obtained in Ref. [22]. The quantity L
in Eq. (8) is the correlation length [32,33], a phenomenological quantity introduced to account for
the reduction in the rate of dissipation due to correlations in particle velocity fluctuations (breaking
of the molecular chaos assumption) observed in discrete numerical simulations at volume fractions
larger than 0.49 [30]. The correlation length could be directly measured in numerical simulations
[76]. However, its expression has been obtained through indirect fitting of the dependence of the
granular temperature on the solid volume fraction in homogeneous shearing flows [77], and reads

L

d
=

[
2J

15
(
1 − e2

eff

)
]1/2[

1 + 26(1 − eeff )

15

H(ν − 0.49)(ν − 0.49)

0.64 − ν

]3/2 d γ̇

T 1/2
, (9)

where 0.64 is the value of the solid volume fraction at random close packing for spheres [31].
Direct measurements of the correlation length in different flow configurations would permit a more
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thorough assessment of the general validity of Eq. (9). However, it is striking that is has been shown
to hold even in steady, homogeneous shearing flows of cylinders [41]. Crucially, Eq. (9) indicates
that the correlation length is singular at the random close packing, while the stresses, proportional
to the radial distribution function at contact [Eqs. (2) and (3)], are singular at νc [65].

B. Soft spheres: Rate-dependent and rate-independent stresses

Real particles are not infinitely rigid and deform when interacting. Simple contact models are
used in DEM simulations to reproduce the dynamics of the interaction between soft spheres.
In most of these simulations, the particles retain their spherical shape, and the deformation is
replaced with overlapping volumes. Elastic springs, viscous dashpots, and sliders normal and
tangential to the plane of contact are, then, employed to translate the overlap into dissipative,
repulsive forces between the particles [71]. This simple contact model permits to understand
the different physics that arises because of the finite particle stiffness, quantified through the
stiffness of the elastic spring in the direction normal to the contact, kn. The stiffness of the
spring in the tangential direction is usually taken to be proportional to kn, so that the latter is
the only additional microscopic parameter that is necessary to characterize, at the microscopic
level, the soft particles (it can be shown that setting the properties of the viscous dashpots is
equivalent to imposing the values of the coefficients of restitution). A graphical summary of the
differences between the interaction of hard and soft spheres is shown in Fig. 2. Hard spheres
do not overlap, impulses with associated momentum exchanges are generated at instantaneous
contacts, and the average time between two successive impulses or collisions is the time of free
flight, t f .

For soft spheres, the contact duration, tc, is nonzero, and decreases with kn. In that time, the
overlap grows, reaches a peak, and then decreases, and so does the repulsive force between the
spheres, that is an increasing function of the overlap. If the solid volume fraction is less than
the critical, then the distance between the edges of the nearest spheres is, on average, larger than
zero. Hence, in between two successive contacts, the particles follow a nonzero mean free path
in a nonzero time t f (Fig. 2). It has been proposed [38,39] to substitute the collision frequency in
the constitutive relations of kinetic theory of hard spheres with the inverse of t f + tc to model the
collisional behavior of soft spheres. This modification accounts for the finite duration of the contacts,
while still assuming only binary interactions, although the probability of multiple contacts increases
with the contact duration [78,79]. However, the notable agreement, shown in Ref. [39], between
the stresses predicted by the theory and the measurements [80] in DEM simulations of steady,
homogeneous flows [Fig. 3(a)], over a range of 11 orders of magnitude in the particle stiffness,
indicate that multiple contacts only play a minor role. Given that t f vanishes at the critical volume
fraction, but tc remains finite there, the finite stiffness of the particles also permits to regularize the
stresses and remove their singularity at νc.

Indeed, unlike hard spheres, random assemblies of soft spheres at solid volume fraction larger
than the critical are possible, because they can overlap. If the solid volume fraction is larger than the
critical, the average distance between the centers of the nearest spheres is less than one diameter.
Hence, there is an average nonzero overlap between adjacent spheres. On top of this, particles
still fluctuate, breaking and reforming contacts under shearing flow conditions. The picture is that
of a network of permanently compressed elastic springs that is constantly rearranging. Phases, of
average duration tc, of overlap growing, reaching a peak, and decreasing associated with momentum
exchange (collisions) can still be identified on top of a ground state of permanent repulsive
forces associated with the residual overlap (Fig. 2). The latter is at the origin of rate-independent
components of the stresses, proportional to the particle stiffness, superimposed upon inertial,
rate-dependent components of the stresses still due to collisional interactions, with the collision
frequency set by 1/tc. For sufficiently rigid particles, the rate-independent contributions dominate
[39]. The rate-independent components of the stresses have been termed elastic [39,81], because of
the proportionality to the particle stiffness.
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FIG. 2. Schematics of a single interaction between two spheres (on the left, the overlap area is indicated in
orange) and corresponding time sequence of impulse or overlap for three such events (on the right) for (from
top to bottom) hard spheres, soft spheres at subcritical volume fraction, and soft spheres at supercritical volume
fraction. Also shown are the time of free flight and the finite duration of the interaction.

Based on the above-mentioned findings on the physics of flows of hard and soft spheres, granular
flows are inertial or, equivalently, collisional if ν < νc (subcritical). If ν � νc (supercritical), and the
rate-independent components of the stresses dominate, granular flows are in the quasistatic regime.
Then, the determination of the critical solid volume fraction and its dependence on the microscopic
properties of the particles is crucial in modeling granular flows.

C. Critical point

The critical point marks the transition from a purely rate-dependent to a mix of rate-dependent
and rate-independent behavior. So far, this critical point has been characterized in terms of a
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FIG. 3. Unidirectional flow configurations with the frame of reference: (a) steady, homogeneous (simple)
shearing with linear distribution of the mean velocity and uniform distribution of the solid volume fraction;
steady, gravity-driven, heterogeneous flow over (b) an erodible bed with lateral confinement and (c) a rigid,
bumpy bed without lateral confinement; (d) steady, heterogeneous flow between parallel, rigid, bumpy plates
in relative motion (Couette flow) in the absence of gravity. In (c) and (d), the core region, in which the solid
volume fraction is uniform, is sandwiched between two conductive boundary layers (B.L.).

particular value of the solid volume fraction, νc. However, measurements [79] in DEM simulations
of steady, homogeneous flows [Fig. 3(a)] of soft spheres show a monotonically increasing relation
between the solid volume fraction and the coordination number, Z , the average number of contacts
per particle. Thus, there is also a critical coordination number, Zc. Four different methods have been
proposed in the literature to identify the coordinates {νc, Zc} of the critical point:

(i) In DEM simulations of steady, homogeneous, shearing flows (also called simple shearing)
carried out in a periodic cell of fixed volume [Fig. 3(a)], one can adjust the number of particles
in the cell to obtain a particular value of the solid volume fraction. For a given set of the particle
contact properties (en, et , μ, and kn) and the shear rate, γ̇ , the average pressure and shear stress
can, then, be measured. The ratio of the contact time, tc = d3/2/

√
kn/ρp [82], over the timescale

associated with the shearing flow, 1/γ̇ , is a dimensionless shear rate that quantifies the influence of
the particle stiffness on the collisions, for subcritical flows, and the influence of the rate-dependent
components of the stresses, for supercritical flows. As shown in Fig. 4(a) for the particular case
of frictional spheres with μ = 0.5, changing the dimensionless shear rate at two slightly different
values of the solid volume fraction, 0.584 and 0.594, permits to identify a bifurcation in the behavior
of the dimensionless pressure, pd/kn [80]. At the lowest values of the dimensionless shear rate, the
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FIG. 4. (a) Dimensionless pressure as a function of the dimensionless shear rate measured in DEM
simulations [80] of volume-controlled, steady, homogeneous shearing flows of spheres with en = 0.7, et = 1,
and μ = 0.5, at ν = 0.594 (solid circles) and ν = 0.584 (open circles). (b) Magnitude of the fluctuations in
the coordination number as a function of the solid volume fraction measured in DEM simulations [82] of
steady, heterogeneous, gravity-driven flows of spheres with en = 0.88, et = 1, μ = 0.5, and kn ≈ 3×106ρpgd2.
(c) Same as in (a), but the dimensionless pressure is plotted as a function of the solid volume fraction (only
data in the quasistatic limit are shown). (d) Coordination number as a function of the solid volume fraction
measured in DEM simulations [79] of volume-controlled, steady, homogeneous shearing flows of spheres with
en = 0.7, et = 1, and μ = 0.5, for different values of the dimensionless stiffness, kn/(ρpd3γ̇ 2), ranging from
102 (light gray circles) to 107 (black circles). In all plots, the dashed lines represent the coordinates of the
critical point for μ = 0.5.

dimensionless pressure is either rate independent (quasistatic regime) at ν = 0.594 or grows as
the square of the shear rate (collisional regime for hard spheres, see later) at ν = 0.584. Then, νc

must lie somewhere between 0.584 and 0.594. At the largest values of the dimensionless shear rate,
regardless of being subcritical or supercritical, the pressure is rate dependent, but the exponent in
the power law is less than 2. In this regime, the granular assembly can be imagined as composed of
agitated, squishy spheres that exchange momentum in collisions (soft collisional regime).
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FIG. 5. Measured critical (a) solid volume fraction and (b) coordination number as functions of the friction
coefficient as reported in Ref. [85] (circles), Ref. [84] (triangles), Ref. [80] (squares), and Ref. [83] (diamonds).

(ii) Even under steady conditions, measurements in DEM simulations reveal fluctuations in time.
The magnitude of the fluctuations of the coordination number in steady, homogeneous [simple
shearing, Fig. 3(a)] [80] and heterogeneous [gravity-driven, inclined flows over erodible beds,
Fig. 3(b)] [74] flows reaches a peak at the critical solid volume fraction [Fig. 4(b)]. The peak is likely
associated with the fact that the contact network is unstable at the critical point, and intermittently
builds up and disappears. Although it has not been proven yet, it is likely that the stiffer the particles,
the more pronounced would be the peak in the fluctuations.

(iii) A third method that has been used in static [83,84] and quasistatic [85] conditions consists
in determining the values of the solid volume fraction and the coordination number at which the
pressure, originating from the elastic contacts between the particles, vanishes (jamming point) [2].
This is obtained by extrapolating to zero the dependence of the rate-independent component of p on
ν and Z [Fig. 4(c)].

(iv) Finally, as mentioned, the coordination number and the solid volume fraction are in a one-
to-one relation under steady and homogeneous conditions. In simple shearing, this curve depends
on the dimensionless shear rate d3/2γ̇ /

√
kn/ρp [79,86]. At the critical point, the average distance

between the edges of adjacent spheres is zero, and the average overlap is also zero: the stiffness
plays no role. Then, the above-mentioned curves, Z = Z (ν), must intersect there [Fig. 4(d)]. This
method has been employed to determine the coordinates of the critical point also for cylinders [87].

Figure 5 shows that the coordinates of the critical point measured by various authors using the
above-mentioned methods only depend on the friction coefficient. Some discrepancies between
the measurements can be spotted for extremely frictional spheres, but the data nicely collapse for
any realistic values of μ (say, up to 0.5, as determined in physical experiments [70] on colliding
particles).

It is worth emphasizing that, in the more general case of unsteady and/or heterogeneous
flows, the solid volume fraction and the coordination number uncouple. It has been shown that
rate-independent components of the stresses arise: only for ν � νc and Z � Zc for unsteady,
homogeneous flows [88], while even for ν � νc and Z < Zc for steady, heterogeneous flows [82].

As a final remark, even if a more realistic Hertzian rather than a linear (Hookean) contact model
is employed in the discrete numerical simulations, the plots of, e.g., Fig. 4 remain qualitatively
the same. However, different scalings arise, so that, for example, pd/kn in Fig. 4 must be replaced
by (pHz/kHz )2/3, with pHz the pressure measured using the Hertzian contact model and kHz the
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corresponding normal stiffness [85]. Intuitively, the contact model cannot have any influence on the
results when the collisions are nearly instantaneous.

D. The myth of long-lasting, multiple, frictional contacts in dense granular flows

As already mentioned, the kinetic theory was supposed to fail in the presence of long-lasting,
multiple, frictional contacts that are allegedly abundant in dense granular flows, “between random
loose packing and random close packing” [42]. Random loose and random close packing are now
understood as the values of the critical volume fraction νc for μ → ∞ and μ = 0, respectively [84].
Then, on a more rigorous basis, granular flows are dense if ν is between 0.49 and νc, that is, in the
range where the molecular chaos assumption breaks, but the elastic components of the stresses are
still absent.

The idea of long-lasting, multiple contacts in dense granular flows has actually originated from
experiments [89] and simulations [90] on quasistatic flows, where the contact duration is much
larger than the mean free path, which vanishes, and the coordination number is larger than Zc (that
is, larger than four), indicating multiple contacts.

As explained, the contact duration and the likelihood of multiple contacts are related to the
particle stiffness and the rate of shear. For a given value of kn, at slow shearing, particles at
subcritical volume fractions behave as hard grains; that is, collisions are binary and instantaneous
[Fig. 4(a)]. In the homogeneous shearing of 1 mm sand (or glass) particles, ρp = 2650 kg/m3, and
Young’s modulus, proportional to kn/d , of order 100 GPa, at 50 Hz, already one order of magnitude
larger than typical experimental values [91], d3/2γ̇ /

√
kn/ρp ∼ 10−7/2, well within the hard col-

lisional limit [Fig. 4(a)]. Indeed, at the corresponding dimensionless stiffness kn/(ρpd3γ̇ 2) ∼ 107,
the coordination number is less than one (binary interactions) up to volume fractions very close to νc

[Fig. 4(d)]. Even when measured in DEM simulations of gravity-driven, heterogeneous flows over
erodible beds [74], relevant for many geophysical applications, the coordination number remains
less than one up to solid volume fractions that are 0.02 below the critical value [Fig. 6(a)], although
the particle stiffness is three orders of magnitude less than that of sand grains. Figure 6(b) indicates
that the pressure measured in DEM simulations of steady, homogeneous flows is independent of the
stiffness, and very well captured by the kinetic theory for hard spheres (see next section) for any
realistic value of kn. Departures at solid volume fractions significantly less than the critical can be
observed only for extremely soft systems, like 1 mm hydrogel spheres—mass density identical to
that of water and Young’s modulus of order MPa—sheared at very large rates, say, 50 Hz.

As pointed out in a previous section, the widely believed contrast between collisional and
frictional contacts [81,92–96] is indeed fictitious: collisions can be sticking or sliding for frictional
particles, or only sliding for frictionless particles. In any case, momentum exchange characterizes
the interaction at ν � νc.

The frictional sliding mechanism at the microscopic level has been invoked to justify the use of
a Coulomb-like law to express the elastic component of the shear stress [81,96]. However, at large
friction—and unrealistic high values of μ are usually adopted in the numerical simulations to speed
up the computations—most of the contacts are sticking, not sliding. More importantly, the elastic
stresses are absent in dense granular flows at ν � νc.

III. STEADY, HOMOGENEOUS FLOWS: BAGNOLD, INERTIAL RHEOLOGY,
AND KINETIC THEORY

In Bagnold’s seminal work [4] on steady, homogeneous shearing of granular materials under
what he called the inertial regime, the author basically repeated Maxwell’s arguments [72] that
lead to the scalings of kinetic theory for the stresses, but neglecting the role of particle agitation.
He assumed that the particle momentum in both the direction parallel and perpendicular to the
flow was md γ̇ , and that the frequency of collisions was set by the shear rate, γ̇ . Then, Bagnold
obtained p ∝ ρpd3d γ̇ γ̇ /d2 = ρpd2γ̇ 2 and s ∝ p ∝ ρpd2γ̇ 2. In these expressions, the coefficients
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FIG. 6. (a) Coordination number as a function of the solid volume fraction measured in DEM simula-
tions [82] of steady, heterogeneous, gravity-driven flows of spheres with en = 0.88, et = 1, μ = 0.5, and
kn ≈ 3×106ρpgd2. The dashed line indicates the value of νc. (b) Dimensionless pressure as a function of the
solid volume fraction measured in DEM simulations [80] of volume-controlled, steady, homogeneous shearing
flows of spheres with en = 0.7, et = 1, and μ = 0.5, at different values of the dimensionless particle stiffness,
kn/(ρpd3γ̇ 2), ranging from 1 to 1011 (the arrow indicates the direction of increasing stiffness). The two dashed
lines highlight the data corresponding to 1 mm sand (or glass) and hydrogel spheres sheared at 50 Hz, while
the solid line is the prediction of the kinetic theory for hard spheres.

of proportionality are, in general, functions of the solid volume fraction. Obviously, Bagnold’s
rheology cannot apply in the absence of shearing, nor in situations in which the shear stress vanishes
but the pressure does not, as along the midsection of vertical chutes [97].

The inertial rheology [44], proposed 50 years after Bagnold, consists of two phenomenological
relations describing, in dense granular flows, the dependence of the solid volume fraction and the
stress ratio, μ∗ = s/p, on the inertial number, I = d γ̇ /

√
p/ρp. Based on fitting with experimental

and numerical measurements, the dependence of the solid volume fraction on the inertial number
was taken to be linear [46],

ν = νc − aI, (10)

where a is a fitting parameter, and the solid volume fraction at vanishing I is taken to be its critical
value νc. Actually, in many situations, the dense granular flow is treated as incompressible, and only
the dependence of the stress ratio on the inertial number is employed. The most common form of
the latter [45] is

μ∗ = μc + μ2 − μc

I0 + I
I, (11)

which implies that the stress ratio tends to its quasistatic, yield value, μc, when I vanishes, and
asymptotically tends to μ2 for large I . The coefficients μc, μ2, and I0 are material dependent
and must be empirically determined. Equation (11) is often mistaken as indicating the coexistence
of rate-independent and rate-dependent mechanisms at the origin of the shear stress. However, a
rate-independent component of the stress ratio does not imply rate-independent stresses. Indeed,
Eqs. (10) and (11) can be rephrased as

p = ρp
a2

(νc − ν)2 d2γ̇ 2, (12)
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and

s = ρp
μcaI0 + μ2(νc − ν)

aI0 + νc − ν

a2

(νc − ν)2 d2γ̇ 2, (13)

which is exactly Bagnold’s rheology, as already recognized [46]. Interestingly, the inertial rheology
suggests that both the pressure and the shear stress diverge at the critical volume fraction, but the
stress ratio there remains finite.

One of Bagnold’s general assumptions was that the “kinetic energy per unit volume of the
system is maintained constant by frictional losses” [4]. Despite the only partially correct reference to
friction as the source of dissipation, while ignoring the role of inelastic collisions, this is indeed what
Eq. (5) shows under steady (dT/dt = 0) and homogeneous (∇ · Q = 0) conditions: the fluctuation
kinetic energy produced through the work of the shear stress is dissipated through the particle
interactions, sγ̇ = �. The latter, with Eqs. (3), (8), and (9), implies

T = 2J

15
(
1 − e2

eff

)[
1 + 26(1 − eeff )

15

H(ν − 0.49)(ν − 0.49)

0.64 − ν

]
d2γ̇ 2, (14)

which is that the granular temperature is proportional to the square of the shear rate and not an
independent field. Inserting Eq. (14) into Eqs. (2) and (3) gives

p = ρp
2Jν[1 + 2(1 + en)νχ0]

15
(
1 − e2

eff

) [
1 + 26(1 − eeff )

15

H(ν − 0.49)(ν − 0.49)

0.64 − ν

]
d2γ̇ 2 (15)

and

s = ρp
8Jν2χ0

5π1/2

[
2J

15
(
1 − e2

eff

)
]1/2[

1 + 26(1 − eeff )

15

H(ν − 0.49)(ν − 0.49)

0.64 − ν

]1/2

d2γ̇ 2, (16)

which is Bagnold’s rheology deduced from the kinetic theory. The only parameters in Eqs. (15) and
(16), unlike Eqs. (12) and (13), are the microscopic contact coefficients en, et , and μ. Moreover,
Eqs. (15) and (16) are valid over the entire range of solid volume fraction less than the critical, and
not only under dense conditions.

For every value of ν, then, Eqs. (15) and (16) permit to calculate the corresponding dimensionless
pressure, p/(ρpd2γ̇ 2), and dimensionless shear stress, s/(ρpd2γ̇ 2). The dimensionless pressure is
the inverse of the square of I , and the ratio of the dimensionless shear stress over the dimensionless
pressure is μ∗. Hence, the relations I = I (ν) and μ∗ = μ∗(ν), or, equivalently, ν = ν(I ) and μ∗ =
μ∗(I ), can also be deduced from the kinetic theory and plotted against the data.

Figures 7 and 8 show the notable agreement between the predictions of kinetic theory and the
results of DEM simulations of steady, homogeneous flows, for different values of the coefficient
of normal restitution and friction [80,86,98]. The same measurements of pressure and shear stress
are plotted: in the inertial rheology framework, that is with the dimensionless triad {ν, I, μ∗}; using
the Bagnold’s scaling, that is with the dimensionless triad {ν, p/(ρpd2γ̇ 2), s/(ρpd2γ̇ 2)}; and using
the kinetic theory scaling, that is with the dimensionless triad {ν, p/(ρpT ), s/(ρpdT 1/2γ̇ )}. The
solid lines are the predictions of kinetic theory using the three representations—e.g, for Bagnold’s
and the kinetic theory scalings, Eqs. (15) and (16) or Eqs. (2) and (3) are employed, respectively.
The solid volume fraction ranges from 0.2 to its critical value, which is from dilute to very dense
conditions. The value of the critical volume fraction is that reported in Ref. [80] for the different
friction coefficients, while the expression for χ0 is that suggested in Ref. [36]. Interestingly, and
perhaps counterintuitively, the influence of the coefficient of normal restitution is less evident
when the kinetic theory scaling is adopted [Figs. 7(c) and 7(f)]. The DEM simulations reveal a
nonmonotonic behavior of the stress ratio with the inertial number [Figs. 7(d) and 8(d)], which
is not captured by Eq. (11). The kinetic theory, instead, reproduces the peaks in the stress ratio,
which correspond to ν = 0.49, where the correlation in the velocity fluctuations first appears. The
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FIG. 7. Measurements (DEM simulations, solid circles) [98] and predictions from kinetic theory (lines) of
pressure and shear stress in steady, homogeneous flows at ν < νc for et = 1, μ = 0.5, kn/(ρpd3γ̇ 2 ) > 106 and
en = 0.7 (in blue), en = 0.8 (in orange), en = 0.9 (in yellow), en = 0.95 (in purple), and en = 0.99 (in green).
The data are plotted using [(a) and (d)] the inertial rheology representation, [(b) and (e)] Bagnold’s scalings,
and [(c) and (f)] the kinetic theory scalings. Also shown in (d) are DEM data [80] for ν � νc (open diamonds).

divergence of χ0 at ν = νc permits the kinetic theory to capture the singularities [65] in the stresses
and their dependence on the coefficient of friction [Figs. 8(b)and 8(c) and Figs. 8(e) and 8(f)].

It is worth noticing that also the kinetic theory, like the inertial rheology, predicts that the stress
ratio remains finite at the critical volume fraction, even if the stresses diverge. Indeed, the dense
limit, i.e., where νχ0 
 1 and

J = J∞ ≈
[

1 + en

2
+ π

4

(1 + en)2(3en − 1)

24 − 6(1 − en)2 − 5
(
1 − e2

n

)
](

1 + π

12

3en − 1

3 − en

)
, (17)

of the ratio of Eq. (16) over Eq. (15), evaluated at ν = νc provides the value of the yield stress ratio,

μc =
[

24J∞
(
1 − e2

eff

)
5π (1 + en)2

]1/2[
1 + 26(1 − eeff )

15

νc − 0.49

0.64 − νc

]−1/2

, (18)
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FIG. 8. Measurements (DEM simulations, solid circles) [86,98] and predictions from kinetic theory (lines)
of pressure and shear stress in steady, homogeneous flows at ν < νc for en = 0.7, et = 1, kn/(ρpd3γ̇ 2 ) > 106,
and μ = 0.5 (in blue), μ = 0.1 (in orange), and μ = 0 (in yellow). The data are plotted using [(a) and (d)] the
inertial rheology representation, [(b) and (e)] Bagnold’s scaling, and [(c) and (f)] the kinetic theory scaling.
Also shown in (d) are DEM data [80] for ν � νc (open diamonds).

as a function of en, eeff = eeff (en, et , μ) [22], and νc = νc(μ) [Fig. 5(a)]. The agreement between this
prediction and the measurements in DEM simulations was shown in Ref. [65] and can be appreciated
in Figs. 7(d) and 8(d). The same figures also indicate that Eq. (18), which is the stress ratio of
purely rate-dependent stresses at ν = νc, equals the stress ratio of the rate-independent stresses in
the quasistatic regime at ν > νc. The physical reason for this is an open question.

One of the advantages of the inertial rheology was that, in many situations, one can conveniently
assume incompressibility and only employ Eq. (11), which does not contain information about the
solid volume fraction, to solve for dense granular flows, despite some mathematical issues about its
ill behavior in certain limits [99]. Due to the strong nonlinear dependence of the stresses on ν, it is
not possible, in general, to explicitly express the stress ratio as only a function of the inertial number
by manipulating Eqs. (15) and (16). However, if Eq. (11) is a valid approximation of the dependence
of the stress ratio on the inertial number for 0.49 � ν � νc, the dependence of the coefficients μc,
μ2, and I0 on the microscopic contact parameters can be deduced from the kinetic theory.
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The yield stress ratio expression is given by Eq. (18). The value of μ2 can be interpreted as the
peak stress ratio shown in Figs. 7(d) and 8(d), which is the stress ratio at ν = 0.49. Then, the dense
limit of the ratio of Eq. (16) over Eq. (15), evaluated at ν = 0.49, provides

μ2 =
[

24J∞
(
1 − e2

eff

)
5π (1 + en)2

]1/2

. (19)

Finally, the coefficient I0 is the value of the inertial number at which the stress ratio equals the
intermediate value between μc and μ2. This corresponds to a value, ν∗, of the solid volume fraction
intermediate between νc and 0.49, which, from the dense limit of the ratio between Eqs. (16) and
(15), is

ν∗ = 26π (1 + en)2(1 − eeff )(μc+μ2)20.49 − 15π (1+en)2(μc+μ2)20.64+288J∞
(
1 − e2

eff

)
0.64

26π (1 + en)2(1 − eeff )(μc + μ2)2 − 15π (1 + en)2(μc + μ2)2 + 288J∞
(
1 − e2

eff

) .

(20)

Then, from Eqs. (15) and (16),

I0 = 5π1/2(1 + en)1/2(μc + μ2)

23/2J∞ν∗χ∗1/2
0

, (21)

where χ∗
0 is the radial distribution function at contact evaluated at ν = ν∗.

IV. HETEROGENEOUS FLOWS: NONLOCAL RHEOLOGY AND KINETIC THEORY

As mentioned, the Bagnold or inertial rheology cannot apply in the absence of shearing, as in
homogeneous cooling where random, inelastic collisions gradually dissipate the kinetic energy of
the systems so that the granular temperature decays with time [9]. However, this rheology also fails
under steady conditions, in the presence of heterogeneities.

Perhaps the simplest systems to observe these shortcomings are steady, gravity-driven flows over
rigid beds in the absence of lateral confinement [Fig. 3(c)] and Couette flows, i.e., steady flows
between parallel, rigid beds in relative motion in the absence of gravity [Fig. 3(d)]. In both cases,
the momentum balance implies that the ratio of the shear stress to the pressure, μ∗, is uniformly
distributed along the direction perpendicular to the flow, while DEM simulations [36,37,100,101]
indicate that the solid volume fraction is a function of y: there is a dense core region where the solid
volume fraction is large and approximately constant, surrounded by two more dilute (boundary)
layers with significant variation in ν [Figs. 3(c) and 3(d)]. Obviously, neither Eqs. (10) and (11) nor
Eqs. (12) and (13) can reproduce this behavior, given the lack of monotonicity of μ∗ with ν. The
thickness of these boundary layers is a few particle diameters [101]. Hence, in fairness, the inertial
rheology can still do a good job in predicting the features of such flows, if they are thick enough,
say, larger than 10–15 diameters, so that the core region dominates [102].

Figure 9 shows the pressure measured in DEM simulations of steady, inclined flows over erodible
beds [74] and Couette flows between rigid, bumpy plates [36] as a function of the solid volume
fraction, using either the Bagnold (equivalent to the inertial rheology) or the kinetic theory scaling.
The data do not collapse onto a master curve if the Bagnold scaling is adopted [Figs. 9(a) and 9(c)],
while they do with the kinetic theory scaling: the pressure is very well predicted by Eq. (2) over
the entire range of solid volume fraction [Figs. 9(b) and 9(d)]. The scattering of the measurements
when the Bagnold scaling is adopted is due to the fact that the one-to-one relation between the shear
rate and the square root of the granular temperature [Eq. (14)] does not hold everywhere.

The shortcomings of the inertial rheology are even more evident in situations in which the
granular material flows, i.e., the inertial number is nonzero, but the stress ratio is less than the
yield, μc, as in vertical chutes [97], annular shear cells [11], and split-bottom cells [60].
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FIG. 9. Measurements (DEM simulations, black circles) [36,74] and predictions from kinetic theory
[Eq. (2), red lines] of pressure in [(a) and (b)] steady, heterogeneous, gravity-driven flows over erodible
beds with lateral confinement where en = 0.88, et = 1, μ = 0.5, and kn ≈ 3×106ρpgd2 (angles of inclination
between 24◦ and 55◦ and channel width between 10 and 30 particle diameters) and [(c) and (d)] Couette flows
with en = 0.8, et = 1, μ = 0, and kn = 2×105ρpdV 2. The data are plotted using [(a) and (c)] the Bagnold
scaling and [(b) and (d)] the kinetic theory scaling.

By recognizing that the heterogeneities were the reason for the failure of the inertial rheology,
various research groups have proposed to account for the so-called nonlocal effects in dense granular
flows by either (i) a gradient expansion of the relation between μ∗ and I [57],

μ∗ =
(

μc + μ2 − μc

I0 + I
I

)(
1 − b

I
d2∇2I

)
, (22)

where b is an additional material-dependent parameter to be determined; or (ii) introducing a new
hydrodynamic field, the granular fluidity g = γ̇ /μ∗, and a balance for it, that, at least under steady
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conditions [59,60], is

ξ 2∇2g = g − gloc, (23)

where

gloc = I0

μ∗
H(μ∗ − μc)(μ∗ − μc)

μ2 − μ∗

√
p

ρpd2
(24)

is the local value of the fluidity, which permits to recover the inertial rheology, Eq. (11), under
homogeneous conditions. The Heaviside function is introduced because gloc is taken to vanish if
the stress ratio is less than the yield value, as in flows with ν > νc. The material parameter ξ is a
cooperativity length for plastic rearrangement [60], and is taken to be proportional to the particle
diameter d through a function of μ∗ that is singular at μc [60]. An extension of this nonlocal granular
fluidity (NGF) model to deal with unsteadiness has also been proposed [56].

Both Eqs. (22) and (23) are similar in spirit: they deal with dense, heterogeneous flows by
introducing Laplacian terms, i.e., diffusive terms, either in the inertial number or in the granular
fluidity, and, therefore, turning an algebraic into a second-order differential equation. In so doing,
they lose the advantage of the inertial rheology with respect to the kinetic theory, because the
number of differential equations that are to be solved is identical. More importantly, boundary
conditions on I and its derivative, or g and its derivative, must be provided. Due to the definitions
of the inertial number and the granular fluidity, these boundary conditions are conditions on the
first derivative and the second derivative of the particle velocity at the boundary, whose physical
meaning is unclear. Indeed, successful applications of the NGF model have been obtained by taking
the simple conditions g = gloc and ∂yg = 0 at the boundaries [56,59,60], without accounting for,
e.g., the actual geometrical features of the boundary itself. Moreover, once the granular fluidity
field is determined, usually in situations for which the stress fields are simple enough to be used
as inputs, the particle velocity field can be determined only if the value of the velocity is known at
the boundary. Once again, this is either simply taken to be zero, which works for extremely rough
surfaces, or is taken from the DEM simulations and not predicted [57,59].

Boundary conditions for the kinetic theory, that allow also the determination of the slip
velocity, can be derived, instead, from the usual balances of fluctuation kinetic energy and mo-
mentum phrased at the boundaries, taking into account their geometry and microscopic properties
[69,103,104]. The dense limit of the balance of fluctuation kinetic energy, Eq. (5), under steady
conditions, is

γ̇ p

�s
∇ ·

(
ρp

4M∞ν2χ0

π1/2
d2T ∇T 1/2

)
= γ̇ p

s
− γ̇ p

�/γ̇
, (25)

with Eq. (6), neglecting the term proportional to the gradient of ν in dense conditions, and

M = M∞ ≈ 1 + en

2
+ 9π

8

(1 + en)3(2en − 1)

16(1 + en) − 7
(
1 − e2

n

) . (26)

By defining, with Eqs. (2), (3), and (8) in the dense limit,

g = γ̇ p

s
≈ 5π1/2

2

T 1/2

d
(27)

and

gloc = γ̇ p

�/γ̇
≈ π1/2(1 + en)

6
(
1 − e2

eff

) L

d

γ̇ 2d

T 1/2
, (28)

Eq. (25) can be rewritten as

1

3ρp
(
1 − e2

eff

)
ν2χ0T

M∞
1 + en

L

d
d2∇ · (p∇g) = g − gloc. (29)
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The local value of the granular fluidity, Eq. (28), is defined by substituting, in the expression of g, the
shear stress, s, with the ratio of the dissipation rate over the shear rate, �/γ̇ . Then, the condition g =
gloc coincides with the algebraic balance between the energy production and the energy dissipation
that results in Eq. (14). From there, both the Bagnold rheology, Eqs. (12) and (13), and the inertial
rheology, from the constitutive relations of the kinetic theory [Eqs. (2) and (3)], are recovered.

If ∇p is small, Eq. (29) takes the final form

2M∞
3
(
1 − e2

eff

) L

d
d2∇2g = g − gloc, (30)

that is exactly Eq. (23) with an explicit expression for the cooperativity length,

ξ =
√

2M∞
3
(
1 − e2

eff

) L

d
d. (31)

Using the energy balance of kinetic theory, it is natural to identify the diffusive term involving the
granular fluidity in the NGF model as the diffusion of fluctuation kinetic energy induced by the
velocity fluctuations.

The algebraic relation between the granular fluidity and the square root of the granular temper-
ature, Eq. (27), has been already proved in DEM simulations [66]. The ratio g/T 1/2 was actually
shown to depend on the solid volume fraction as the critical value is approached, and this behavior
can be captured if one employs kinetic theories that provide constitutive relations for the stresses
that include terms that are quadratic in the shear rate [105]. Here, the analysis is limited to kinetic
theories that are linear in the shear rate, and Eq. (27) is a sufficiently good approximation.

Interestingly, Eq. (30) was obtained by employing the constitutive relations for the stresses, the
fluctuation energy flux, and the collisional dissipation rate valid for dense, subcritical (ν < νc) flows
of hard spheres. However, the exact same equation holds even if the finite contact duration associated
with the finite particle stiffness [39] is included, because p, s, Q, and � would all be proportional
to the stiffness-dependent frequency of collisions. Perhaps more importantly, Eq. (30) is also valid
for supercritical (ν > νc) flows, with the reasonable assumption that the fluctuation kinetic energy
is produced through the work of only the rate-dependent component of the shear stress, and that
s and p in Eqs. (27) and (28) are, then, to be understood as the rate-dependent components of the
stresses [39]. DEM simulations [39,76] of steady, homogeneous, supercritical flows suggest that the
correlation length, L, is approximately constant there and equal to

L

d

∣∣∣∣
ν�νc

= 1 + 26(1 − eeff )

15

νc − 0.49

0.64 − νc
. (32)

The magnitude of the cooperativity length ξ =
√

(g − gloc)/∇2g, from Eq. (23), can be inferred
from local measurements of T and γ̇ at ν � νc in DEM simulations of steady, heterogeneous flows,
using Eqs. (27), (28), and (32). In so doing, one must pay particular attention in that the evaluation
of the Laplacian term, ∇2g, requires the determination of the second spatial derivative of T 1/2,
given the definition of g in Eq. (27), and that greatly magnifies any numerical errors already present
in the data.

Figure 10 shows the supercritical cooperativity length as a function of the solid volume fraction
and the stress ratio extracted from DEM simulations [74] of inclined flows over erodible beds
[Fig. 3(c)] over a large range of angles of inclinations. The measurements of granular temperature
and velocity, needed to evaluate g and gloc, have been smoothed using a Gaussian-weighted moving
average over a window equal to eight data points. Despite the residual scattering, the cooperativity
length is in good agreement with Eq. (31).

It is worth emphasizing that, in the framework of the kinetic theory, it is not necessary to assume
that gloc vanishes when the stress ratio is less than the yield: Eq. (28) retains its validity, regardless
of the value of μ∗. Also, as suggested by Eq. (31) with Eq. (32), the cooperativity length at ν � νc is
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FIG. 10. Cooperativity length as a function of (a) the solid volume fraction and (b) the stress ratio inferred
from DEM simulations (black circles) [74] of steady, heterogeneous, gravity-driven flows over erodible
beds with lateral confinement at ν � νc (en = 0.88, et = 1, μ = 0.5, kn ≈ 3×106ρpgd2, angles of inclination
between 24◦ and 55◦, and channel width between 10 and 30 particle diameters) and predicted from the kinetic
theory [Eq. (31), red lines].

approximately constant and shows no sign of singular behavior at μ∗ = μc ≈ 0.38 (from Eq. (18),
with νc = 0.587 when μ = 0.5 [80]).

V. CONCLUSIONS

As bluntly pointed out in a review paper on dense granular flows back in 2008, whereas “classical
fluids are well described by the Navier-Stokes equations, no constitutive law can reproduce the
diversity of behavior observed with a cohesionless granular material” [43]. This opinion is still
widely spread among the research community, and it is hard to find a paper without a generic
sentence in its introduction about the lack of universally valid constitutive relations of stresses in
granular flows.

A synthesis of previously published results under steady conditions has permitted to conclude
that the kinetic theory of granular gases, extended to account for the breaking of the molecular
chaos assumption through a correlation length and the role of particle friction through an effective
coefficient of restitution, offers indeed a universal framework to describe the flows of realistic grains
from dilute up to very dense conditions. The upper limit is set by the critical volume fraction, above
which rate-independent components of the stresses, proportional to the particle stiffness, appear.
Given that realistic particles are rather stiff, DEM simulations have revealed that, in the subcritical
regime, the stresses originate from momentum exchange in collisions, and the collisions are binary
and almost instantaneous, contrary to popular belief. In the supercritical regime, on the other hand,
the rate-independent components of the stresses dominate. The transition from the subcritical to the
supercritical regime is so abrupt for particles of realistic stiffness that it seems convenient to model
flows in which the two regimes coexist through two spatially distinct domains.

Perhaps more rigorously than in previous works, it has been shown how the inertial rheology and
Bagnold’s rheology are special cases of the kinetic theory of granular gases applied to steady, ho-
mogeneous flows. This has allowed the determination of the dependence of the material parameters
in the inertial rheology on the microscopic contact properties of the particles, i.e., the coefficients
of collisional restitution and friction.
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The nonlocal granular fluidity model, proposed to extend the inertial rheology to heterogeneous
flows, has also been derived from the kinetic theory of granular gases. The differential equation for
the granular fluidity coincides with the balance of fluctuation energy of the kinetic theory, with
the granular fluidity proportional to the square root of the granular temperature, and has been
shown to be valid in both the subcritical and supercritical regimes. In the latter, indeed, although
the rate-independent components of the stresses dominate, the velocity fluctuations are still crucial
in determining the diffusions of momentum and energy that, in turn, permit the particles to flow.
When applied to DEM simulations of steady, heterogeneous, flows driven by gravity, the NGF
model derived from the kinetic theory has the advantages that the local fluidity must not be assumed
to vanish in the supercritical regime, and that the cooperativity length is constant there and does
not diverge when the stress ratio approaches its yield value, at the onset of the rate-independent
components of the stresses. Indeed, the link between the cooperativity length of the NGF model and
the correlation length of the kinetic theory has been made explicit.

There are still issues that need to be clarified and addressed. The kinetic theory of granular gases
relies on two physical quantities, the radial distribution function at contact and the correlation length,
for which, at the moment, only phenomenological expressions are available. The only parameters
in these expressions are the microscopic contact properties of the particles; nonetheless, it would
be desirable to directly measure the radial distribution function at contact and the correlation length
in numerical simulations, as done in a few cases in the past, and systematically investigate their
dependence on the coefficients of restitution and friction. Also, the dependence of key values of the
solid volume fraction, such as the random close packing, and the critical and the freezing points, on
polydispersity and shape remains to be determined.

So far, extensive tests of the kinetic theory of granular gases have been mostly carried out on
steady flows with divergence-free velocity fields: shifting the focus to unsteadiness and expanding
or contracting flows, where the volumetric viscosity must play an important role, is the next
natural step.

Finally, the realm of the kinetic theory, with its hydrodynamic fields—solid volume fraction,
velocity, and granular temperature—must be further extended to incorporate additional fields,
such as the coordination number and the fabric tensor, in the hope to describe unsteady and/or
heterogeneous situations in which, e.g., velocity fluctuations progressively diffuse into the skeleton
of a solidlike granular assembly and cause it to flow (onset or erosion processes), or a network of
long-lasting contacts develops in the granular material and resists the flow (arrest or deposition).
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