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The degree to which particles such as larvae, seagrass pollen, and microplastics are
dispersed by waves and currents influences many ecologically important aspects of their
transport and fate. Particle transport models often assume dispersion is simply a function
of the local turbulence, but there are many additional parameters related to both the
particle characteristics and the flow dynamics that can impact how particles disperse.
Here, we perform a parametric study of solutions to the Maxey-Riley equation and Euler’s
equation for rigid body motion for negatively buoyant, ellipsoidal particles dispersing
in a wave-current flow. We systematically examine the impact of a comprehensive set
of parameters on particle dispersion: the ratio between the time scales associated with
particle settling and the waves, the Archimedes number, the particle eccentricity, the wave
steepness, the Keulegan-Carpenter number, and the Stokes number. Our results show that
no parameters can be discounted, but that the settling-wave time scale ratio has the largest
influence on particle dispersion.

DOLI: 10.1103/PhysRevFluids.9.034302

I. INTRODUCTION

The extent to which particles are dispersed by ocean flows has many ecological consequences.
These include effects related to natural particles, such as the retention rate of larvae in a region
[1] and the level of genetic connectivity between different areas of seagrass [2], as well as to
anthropogenic particles, such as the spread of microplastics from a river mouth [3]. Although they
are small, particles such as larvae, seagrass pollen, and microplastics still have finite size and are
not typically neutrally buoyant. As a result, they have some inertia of their own so that they do not
simply follow the flow as tracers (e.g., Refs. [4,5]) and their physical characteristics as well as the
flow dynamics impact how they disperse.

Particle properties that can impact dispersion include size, density, and shape. Particle size is
known to modulate the dispersion of spheres in turbulence [6] and microplastics with different sizes
distribute differently between the coastline and the open sea [7]. Many of the commonly found
particles in the ocean (e.g., microplastics, seagrass pollen, and larvae) are typically nonspherical,
which also complicates their transport and hence dispersion. Particle shape strongly influences
particle transport in both quiescent fluids [8—11] and turbulent flows [12-16], and disks and rods
have been shown to have dispersion values modulated by shape [17,18].

Waves are often a dominant flow feature in coastal areas and near the surface of the ocean. Models
of particle transport sometimes include their effects by relating dispersion to wave-induced turbu-
lence (e.g., Ref. [19]), but the unsteadiness of the waves themselves enhances particle dispersion
even when the waves do not generate turbulence. Stokes drift [20,21] creates the opportunity for
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Taylor dispersion [22,23] and variations in both the initial orientation of the particles and the initial
phase of the waves can also lead to dispersion [24,25]. Recently, we performed an experimental
study on the dispersion of nonspherical particles in a wave-current flow and found that particles
dispersed up to four times as much in a current with waves as they did in a current alone [26].
The degree to which waves increased particle dispersion was a function of both particle shape and
particle size. However, it was not feasible to discern the exact individual impacts of both particle
shape and particle size experimentally, nor was it possible to explore the impact of each of the other
relevant parameters on particle dispersion. We have also previously shown that the magnitude of
the dispersion of ellipsoidal particles in a wavy flow is related to both particle shape and a ratio
between the time scales associated with particle settling velocity and with waves, but the impact of
these parameters was not disentangled from that of other varying parameters [24]. Other studies have
likewise demonstrated the relevance of both particle and wave properties to particle distributions in
the surf zone [27,28], but were also not able to explore the full parameter space.

Both particle properties and flow characteristics clearly matter to particle dispersion in a wavy
flow. However, it is unclear what the individual contributions of each of these characteristics are.
Therefore, we systematically examine the impact of a complete set of nondimensional parameters on
particle dispersion using numerical simulations. We consider a nonturbulent wave-current system
with sparsely distributed, finite-size, non-neutrally buoyant, ellipsoidal particles. A Buckingham
IT analysis shows that this system can be fully described by six nondimensional parameters. We
chose these parameters to be the settling-wave time scale ratio mentioned above, the Archimedes
number, the particle eccentricity, the wave steepness, the Keulegan-Carpenter number, and the
Stokes number. Our results show that the settling-wave time scale ratio causes the greatest range
in dispersion, but that every parameter impacts dispersion in a nontrivial way. The relevance of
each parameter highlights the complexity of the dynamics that determine dispersion. Models of
large-scale transport of microplastics and other ocean particles often assume that dispersion rates
are modified, if at all, only by the strength of the local turbulence [3,29,30]. Our results, however,
show that parameters that describe wavy flow and particle characteristics are relevant to dispersion
and can each lead to large ranges in dispersion values. Although the purpose of this study is to
understand the effects of waves on particle dispersion and not to propose a new parametrization for
particle dispersion, we note that our results imply that it is necessary for models to consider waves
and particle characteristics in addition to turbulence in order to accurately predict particle transport.

II. METHODS

A. Nondimensional parameters

We consider negatively buoyant ellipsoidal particles dispersing in a wave-current flow. A Buck-
ingham IT analysis shows that a set of six independent IT groups will fully describe the system
because there are nine independent input variables (particle length scale d;, particle eccentricity e,
particle density p,, fluid density pr, dynamic viscosity u, gravity g, wave number k, wave amplitude
A, and mean current velocity U) and three dimensions (length, time, and mass). We chose the IT
groups to be the ratio between the settling time scale and the wave transport time scale :—;, the
Archimedes number Ar, particle eccentricity €, wave steepness kA, the Keulegan-Carpenter number
KC, and the Stokes number St. The definitions of the IT groups are given below and also in Table I.
To understand the variation in dispersion with these IT groups, we normalize the final standard
deviation o of the particles by %, as this is the only relevant horizontal length scale.

The ratio between the settling and wave transport time scales was shown to be helpful in
understanding particle dispersion in wavy flow in [24], so we also include it here. It is defined
as T,/Ty = [(L/wp)l/[(L/us)] = us/wp, where L is the wavelength, u, is the Stokes drift velocity

wkA?, and w » 1s the particle settling velocity. We define w), as lgd*(B — 1)1/ (18vf/), where K is
the arithmetic mean of the eigenvalues of the resistance tensor K;; and B is p,/py. Note that [24]
instead used a resistance value based on the preferential alignment of the particles; we do not do
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TABLE I. Definitions of IT groups.

IT group Mathematical definition Physical meaning

2 . . .
T/ Tw % Settling to wave time scale ratio

[gdg (B—1)/(18vK")]
d3 - . . . .
Ar W Gravity to viscosity force ratio
2 .
€ et Particle shape
kA kA Wave steepness
KC W Maximum fluid excursion length to particle length ratio
S ke Bd?/(18v) . . . .
t e Particle response time to flow time scale ratio

this because the particles have competing wave- and settling-preferred orientations in our system.
High values of 7,/7,, correspond to particles being transported by the waves for a long time prior to
settling out and low values of /7, correspond to particles settling out of the waves quickly.

The Archimedes number Ar is defined as Ar = [gd?p,(p, — p)1/u>. It represents the ratio be-
tween gravitational and viscous forces. We include it because it is reasonable that both gravitational
and viscous forces would impact particle dispersion and because our previous experimental work
indicated that dispersion varies with Ar [26].

We investigate the effects of particle shape through the particle eccentricity. The particle eccen-
tricity is defined as € = (A*> — 1)/(A%? 4 1), where A is the particle aspect ratio. The particle aspect
ratio is defined as the ratio between the length along the axis of symmetry and the length along an
orthogonal axis (see Fig. 1). So € = —1 corresponds to an infinitely thin disk, € = 0 corresponds to
a sphere, and € = 1 corresponds to an infinitely thin rod.

The Keulegan-Carpenter number KC expresses the ratio between the maximum fluid excursion
length and the particle length scale. We define it as KC = (wA + |U|)(1/w)/d;. KC is the only IT
group containing the current velocity U, so its variation is tied to variation in the current magnitude.
A high value of KC corresponds to a current-dominated flow where particles are pushed through
many wave orbitals at a rapid speed and a low value of KC corresponds to a wave-dominated flow.
Holding KC constant between runs with variation in other IT groups keeps the distance traveled by
a particle relative to the particle size constant across runs.

FIG. 1. Example oblate (left) and prolate (right) ellipsoids. The particle aspect ratio is defined as A = {.
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FIG. 2. Schematic of simulation. Particles were released one wave amplitude A below the surface of a
wave-current flow with varied initial orientations and initial wave phase. The streamwise standard deviation of
the particles was calculated once the particles had fallen to a depth where the wave velocities were diminished
by 90%. Note that the particles remain submerged at all times; a trajectory appears to leave the fluid because
the waves move in time.

The Stokes number St is defined as the ratio between the particle response time and the flow
characteristic time scale. We define the flow characteristic time scale as 1/w and the particle
response time as (kadf) /(18v), where k, is a shape-dependent correction factor that accounts for
the resistance equally in all directions [12,31]. This definition is an approximation because the true
response time of nonspherical particles is a function of their orientation [16,24], but we still include
the Stokes number in our IT set because it is so commonly used to describe particles in unsteady
flows.

B. Simulation

We simulated negatively buoyant spheroidal ellipsoids released into a wave-current flow and
measured their dispersion after they had fallen to a certain depth relative to the wave strength (see
Fig. 2 for a schematic). The simulation was adapted from that used in [24], which simulates the
motion of ellipsoidal particles using the Maxey-Riley equations and Euler’s equation for rigid body
motion. Full details about the simulation can be found in [24], so here we only describe the model
in general and explain the adaptations we made to it—namely, including inertial torques in the
rotational equations of motion and adding a current to the flow field.

The spatial trajectories of the particles were computed using the Maxey-Riley equation [32]. The
Maxey-Riley equation assumes a Stokes number much less than one. We neglect the Basset history
forces because the particles are settling and traveling with the current, so they should interact very

little with their own wakes. We also neglect Saffman lift forces because they scale with dTSZ % which
remains less than 0.1 for disks and less than 1 for spheres and rods in the cases we examined.
Here, d, is the diameter of a volume-equivalent sphere, v is the kinematic viscosity of the fluid,
and % is the scale of the velocity gradients in the undisturbed flow, which is wAk, where w is the
wave frequency, A is the wave amplitude, and k is the wave number. Additionally, particle-particle
interactions are not included because the particles are sparsely distributed in the applications we are
considering.

To adapt the Maxey-Riley equation for ellipsoidal particles, the added mass term is implemented
with a shape-dependent tensor of added mass coefficients ;7 [33-35] and the drag term is im-

plemented with a shape-dependent resistance tensor K;; [36-38]. The version of the Maxey-Riley
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equation used in the simulation is therefore

dv; 1 Du; lCmd( )18 UK( ) 1 1 s )
e T " (v —u)— 18—K;;(v; —u;)— [ 1 — = )i,
dit _ BDr B a7 gttt T B)%"
where B is the ratio between the particle density and the fluid density and g is the acceleration due
to gravity.
The simulation calculates the orientations of the particles using Euler’s equation for rigid body
motion in the body-axis frame of the particle, namely
dw, J I
I;; i + €rwilyw; = M; +M;, (2)
where [;; is the particle moment of inertia tensor, w; is the rate of angular rotation of the particle,
€ijx is the Levi-Civita symbol, M/ represents the Jeffery torques [39], and M/ represents the inertial
torques, which were an addition to the simulation for this study. The inertial torque is computed as

M! = F)pslv; — u;2d3, pi(v; — ) eitmpi(Vm — th), 3)

where F'(1) is a shape factor (Egs. 4.1 and 4.2 in [40]), o is the density of the fluid, dp.x is the
maximum length dimension of the particle, p is a unit vector pointing along the particle’s axis of
symmetry (Fig. 1), and the hat (7) indicates that a vector has been normalized by its magnitude
[41,42]. Due to the inertial torques, particles simulated in quiescent fluid orient with their broad
side facing down, such that their drag coefficient is maximized, as expected from prior literature
[41,43]. They reach this preferred orientation more quickly when they are more inertial.

We simulate a flow field similar to that from our previous experiment on particle dispersion [26],
with linear, deep-water surface gravity waves opposed by a nonturbulent current. The current is
uniform and the flow (unlike in the experiment) is infinitely deep. Wave-current interactions are not
included. We assume that the particles do not affect the flow. The flow is given by

u(x, z, 1) = wA é[cos(kx — wt)é, + sin(kx — wt)é,] — Ue,, 4)

where k is the wave number and U is the current magnitude. We define w using the deep-water
approximation for the dispersion relation: w = /gk.

To vary the IT groups independently and systematically, we chose a desired set of IT group values
and then set the values of the dimensional parameters in the equations of motion accordingly, using
MATLAB’s symbolic solver to find the value of each of the dimensional parameters as a function
of the IT groups. For each set of I1 values, we performed 200 realizations of an individual ellipsoid
falling in a wave-current flow. The initial orientation of the particle in each realization was selected
from a uniform distribution of points on a unit sphere and each particle was released at a wave phase
selected from a uniform distribution. The variation in the particles’ initial conditions meant that they
all followed different orientational and spatial trajectories, allowing for dispersion. The particles
were released at a depth A below the instantaneous free surface with an initial velocity equal to
the sum of the local flow velocity and the terminal settling velocity of a volume-equivalent sphere.
Because the waves are deep-water waves and the particles are negatively buoyant, the particles fall
out of the wave-influenced flow region over time. We ran the simulations until the mean vertical
position of all of the particles reached a depth where the waves were reduced to 10% of their
surface magnitude (i.e., until the mean depth of the particles was %ln 0.1 =~ 0.37L, where L is the
wavelength). We then took the streamwise standard deviation o of the particle locations to measure
the dispersion, as particles primarily dispersed along the streamwise axis. Error bars on the standard
deviations were calculated with bootstrapping [44].

Figure 3 demonstrates how individual particle orientations and particle group dispersion develop
over time ¢ (normalized by wave period T') for two example cases. Subplots (a) and (c) correspond to
a case of disks with nondimensional parameters set to the values used in the base case (referred to as
Example Case 1). Subplots (b) and (d) correspond to a case where disks reorient more slowly relative
to the speed with which they fall out of the waves (referred to as Example Case 2). After being
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FIG. 3. Subplots (a) and (b) show the variation in the angle, ¢, between the axis of symmetry of particles
and gravity over time ¢ normalized by the period length 7', with each curve corresponding to the orientational
trajectory of a specific particle. Subplots (c) and (d) show how the streamwise standard deviation of a full
set of particles o normalized by 1/k varies over nondimensionalized time ¢ /7. The red asterisks in subplots
(c) and (d) denote the time when the particles reach the cutoft depth of 0.37L. Subplots (a) and (c) correspond
to Example Case 1, where the nondimensional parameters are set to the base case, and subplots (b) and
(d) correspond to Example Case 2, where particles align more slowly than in the base case.

released with randomly varied initial conditions, each of the particles takes a different orientational
trajectory [subplots (a) and (b)]. In both example cases, the waves cause the particles to rock back
and forth at the period of the waves (oscillations in the orientational trajectories). In Example Case
1, the disks align over time to settle with their broad side facing down, i.e., an orientation of ¢ = 0
or ¢ = m, where ¢ is the angle between the axis of symmetry of the particle and gravity [subplot
(a)]. In Example Case 2, the particles align more slowly and do not reach a preferential alignment
prior to falling out of the waves [subplot (b)].
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Subplots (c) and (d) show the change over time of the streamwise standard deviations of the
particles o normalized by 1/k. The dispersion oscillates over time as the particles are pushed
towards and apart from each other by the wave orbitals. These oscillations weaken as the particles
fall out of the waves. In Example Case 1, dispersion asymptotes to roughly 0.4 as the particles
reach their preferential alignment and fall out of the waves [subplot (c)]. In Example Case 2,
the particles only reorient very slowly after they have fallen out of the waves and their varied
orientations continue to provide a dispersion mechanism long after the waves have ceased to provide
a direct dispersion mechanism [subplot (d)]. The red asterisks in subplots (c) and (d) show the time
when the particles reach a depth of 0.37L, which is where dispersion is measured in all subsequent
simulation runs. The depth cutoff allows us to focus on the effects of waves on dispersion rather
than on dispersion increases due to particle misalignment alone after the particles are no longer in
the waves.

III. RESULTS AND DISCUSSION

In our base case, the IT groups had values of 7,/t,, = 10, Ar = 20, ¢ = —0.9 (oblate), kA = 0.2,
St = 0.05, and KC = 500. These values were chosen because they were associated with relatively
high dispersion, signifying that none of the parameters had been pushed to a regime where they
overwhelmed dispersion induced by other parameters. For reference for readers accustomed to
working with the particle Reynolds number, these base case values correspond to a particle Reynolds
number Re, = d,w,/v of 0.6. To explore the impact of each IT group on particle dispersion, we
systematically varied two IT groups at a time while holding the other IT groups’ values fixed at their
base case values. In the sets of plots that follow, the horizontal axis shows the range of one IT group,
while the different curves correspond to different values of the second IT group. In each set of plots,
the subplot that would have the same IT group both defining the horizontal axis and the different
curve values is omitted. Because we normalize dispersion by 1/k, it is not reasonable to show plots
against kA, but we can generally state that larger values of kA lead to enhanced dispersion.

Figure 4 shows nondimensional dispersion plotted against the settling-wave time scale ratio
T,/ Ty. Variation in 7,/ 1, led to the largest range of dispersion values out of all of the IT groups in the
set. The maximum range of dispersion values caused by variation in 7,/t,, was 1 (in dimensionless
units), while no other nondimensional parameter led to a range in dispersion values greater than
0.2. Higher values of 7,/t,, correspond to higher values of dispersion, which is expected because
the particles have more time to have their orientations and positions scrambled by the waves when
7,/1y is large. The increase in dispersion with 7,/7,, is in agreement with the results of [24] and,
although the magnitude of the increase may vary slightly with different values of other parameters,
the same trend can be seen in every subplot. We note that, for intermediate and high values of t;/1,,,
the particles align with their broad side down by the time they fall out of the waves, while the
initial orientations of particles with low values of t,/t,, persist. The variability in the orientations
of particles with low /7, at depth means that if the simulation were run longer dispersion would
continue to increase without bound for these cases (as discussed earlier with respect to Fig. 3).

Although the settling-wave time scale ratio leads to the greatest range in dispersion values,
each of the other parameters can lead to small variations in dispersion and the impacts of each
of the parameters are interconnected. Figure 5 shows nondimensional dispersion plotted against the
Archimedes number Ar. The maximum range of the dispersion with Ar is 0.2, which, although much
smaller than the range associated with /1, corresponds to dispersion tripling between Ar = 5 and
Ar = 40 for rods and spheres [subplot (c)]. For all of the curves except those associated with low
values of t,/1, in subplot (a) and those associated with ¢ = 0 and € = 0.9 in subplot (c), the value
of dispersion initially increases with increasing Ar and then decreases for higher values of Ar. This
variation in dispersion with Ar is what one might expect: in the low Ar limit, the particles are more
like flow tracers and therefore disperse less. When Ar is high, gravitational forces dominate so the
particle is less impacted by the waves. At intermediate Ar, the particle experiences high enough
gravitational forces so that they do not follow the flow, but not so high that they simply plummet
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FIG. 4. Streamwise standard deviation of the particles normalized by 1/k plotted against the settling-wave
time scale ratio t,/t,. Different curves correspond to different values of the other IT groups. Error bars show
95% confidence intervals computed with bootstrapping. Subplot (a) is omitted; see text.

without being affected by the waves. Low values of 7,/t,, [subplot (a)] do not allow for high enough
dispersion for this trend to be seen, which further highlights the importance of t,/t,, in determining
dispersion. Rods and spheres [subplot (c)] are associated with lower dispersion for low values of Ar
than any of the disk cases but with higher dispersion for higher Ar.

Figure 6 shows dispersion plotted against particle eccentricity €. When shape mattered at all,
oblate particles (lower eccentricity) were associated with higher dispersion. In these cases, oblate
particles tended to align more slowly and “rock” (oscillate orientationally at the period of the waves)
more as they aligned, which enhanced their dispersion. Higher values of 7,/t, [subplot (a)] or Ar
[subplot (b)] or lower values of kA [subplot (d)] or KC [subplot (e)] could cause them to align more
quickly and/or rock less.

Dispersion is plotted against the Keulegan-Carpenter number KC in Fig. 7. Higher values of KC
correspond to a higher current and the particles being “pushed” through the waves more quickly.
There is somewhat less variation in dispersion with KC than with Ar or € and it is difficult to
identify any trends for most of the cases. Because particles are quickly pushed through the wave
field at high values of KC, the way they trace out wave orbitals is not as likely to generate
dispersion. However, the particles can still disperse if the waviness of the flow leads to variation
in their orientations. Most of the cases plotted are for disks with at least intermediate values of Ar.
These rock easily in response to small perturbations and so disperse even at high values of KC.
However, for low values of Ar [subplot (b)] and for spheres and rods [subplot (c)], increasing KC
generally corresponds to decreasing dispersion. Spheres are symmetric and therefore the dynamics
are not affected if they reorient and rods preferentially orient perpendicular to the flow at high
values of KC, so they do not rock easily. Lower values of Ar correspond to tracerlike particles,
which also tend to rock less. Therefore, in these three cases the particles disperse less at high values
of KC.

Dispersion is plotted against the Stokes number St in Fig. 8. In order to satisfy our assumptions
for the simulation, St must be small, so we could not explore a large range of St numbers. Therefore,
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FIG. 5. Streamwise standard deviation of the particles normalized by 1/k plotted against the Archimedes

number Ar. Subplot (b) is omitted; see text.

there is limited variation with St, although it is likely that dispersion would vary more with St over
a larger range of St values. Arguably, when t,/7,, [subplot (a)] is large, dispersion increases with
increasing St. For low Ar [subplot (b)] and disks and rods [subplot (c)], higher values of St are
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FIG. 6. Streamwise standard deviation of the particles normalized by 1/k plotted against particle eccen-
tricity €. Subplot (c) is omitted; see text.
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FIG. 7. Streamwise standard deviation of the particles normalized by 1/k plotted against the Keulegan-
Carpenter number KC. Subplot (e) is omitted; see text.

associated with lower dispersion. Dispersion does not vary with St for any of the values of kA

[subplot (d)] or KC [subplot (d)] tested when the other parameters have values associated with the
base case.

(a) (b) (c)
e=-0.9
1 7/ =5 1 1 Te=0
TS/TW:1O Fe=09
0.8 —+-1/7r =15 0.87 0.8
- S W
X X X
0.6 0.6+ 0.6
S b b
0.4 %%%%%‘%‘*H% 0.4 0.4
' A A : I =S P = o a N ==""=suay
0.2 02 0.2 = = S
0 : ot ‘ ‘ 0 ‘ ‘
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
St St St
(d) (e) (f)
kA =0.18 KC = 250
1 FkA=02 1 +-KC =500
+ kA =0.22 +-KC =750
0.8 0.8+
_E 0.6 ': 0.6 Not Applicable
0.4 f i\f:%fiﬁ*’i@\ eE s I 047 e == £
0.2 0.2
0 0
0 0.05 0.1 0 0.05 0.1
St St

FIG. 8. Streamwise standard deviation of the particles normalized by 1/k plotted against the Stokes number
St. Subplot (f) is omitted; see text.
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IV. CONCLUSION

In summary, we found that the settling-wave time scale ratio causes the largest range of dis-
persion values within our chosen set of nondimensional numbers. High values of the settling-wave
time scale ratio are associated with enhanced dispersion because the particles remain in the waves
longer so that the waves have greater opportunity to disperse them. When models of particle
transport incorporate wave effects, they typically only include dispersion due to wave-induced
turbulence [19]. The large range of dispersion values associated with the settling-wave time scale
ratio shows that the unsteadiness introduced by the waves can also lead to significant dispersion.
While the settling-wave time scale ratio leads to the greatest range in dispersion values, all of the
other parameters we examined impact dispersion as well, often in interrelated ways. These results
highlight the richness of the dynamics of nonspherical particles settling in a wavy flow and indicate
the importance of accounting for both the flow and particle parameters in order to accurately predict
particle transport in coastal flows.
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