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Effective water/water contact angle at the base of an impinging jet
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The base of a jet impinging on an ultrapure water bath is studied experimentally. At
the impact point, a train of capillary waves develops along the jet. By performing particle
tracking velocity measurements, we show that there is a boundary layer separation between
the jet and the meniscus. We thus describe the shape of this meniscus with a hydrostatic
model. A striking observation is the existence of an effective nonzero water/water contact
angle between the jet and the meniscus. The rationalization of this finite contact angle
requires a full description of the shape of the interface. By doing an analytical matching
between the meniscus and the jet, we show that the capillary waves can be considered as
reflected waves present to ensure pressure continuity. It is finally shown that the value of
the apparent contact angle is fixed by energy minimization, with an excellent agreement
between prediction and experiment for small jets.
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I. INTRODUCTION

Liquid-air interfaces are geometrical objects with an intimate link between their shape and
their properties. They give rise to purely geometrical questions such as surface minimization
problems [1,2]. A physical illustration is foams, whose mechanical stability is linked to the local
bubble packing [3] and whose coarsening is fixed by topology [4,5]. Interfacial geometry can also
play a critical role in dynamical situations. For example, the shape of the cusp at the rear of a sliding
drop or an entrained film fixes the wetting transition [6,7]. More complex interfacial topologies
exist in multiphase flows, such as breaking waves [8] or aeration through weirs or cascades [9].
A paradigm for these flows is the plunging jet, which can entrain air when it impacts a bath [8].
Its geometrical features, such as the shape of the cusp in the viscous case [10,11], or surface
disturbances when inviscid [12], control the whole behavior of the system.

In this paper, we focus on the base of water jets impacting a quiescent water bath. We report on
an intriguing observation: the apparition of an apparent nonzero contact angle at the water/water
junction [see Fig. 1(c)]. We rationalize the presence of this contact angle and provide a description
of the whole shape of this interface.

When a water jet plunges in a water bath, a train of stationary capillary waves will be created
at its base, and decay upstream [Figs. 1(a) and 1(b)] [14]. Their wavelength can be obtained by
equating the phase velocity of the waves with the speed of the jet [15]. The damping coefficient
has been modeled and linked to the properties of the fluid [13,16]. However, less attention has been
given to the meniscus at the connection between the jet and the bath, where it is clear that there
exists an apparent contact angle. This is surprising as the only phases at play are water and air,
hence no contact angle is expected.

II. SHAPE OF THE INTERFACE

To study this contact angle, we produce jets of ultrapure water (resistivity larger than
18.2 M� cm) with radii R ranging from 50 to 400 µm, using a syringe pump (Harvard Apparatus
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FIG. 1. (a) (ii) Experimental image of a water jet of radius R = 100 µm and speed V = 2.1 m s−1 impacting
a bath of water. (iii) Zoom on the capillary waves developing at the jet surface fitted by a function of the form
r(z) = R + a cos(kz + ϕ) exp(− z

zatt
). (i) Zoom on the connection between the meniscus and the jet, where the

nonzero contact angle appears. (d) Comparison between the values of zatt and λ extracted from the experimental
fit and the ones calculated with Eq. (6) in Ref. [13] for a jet of radius R = 160 µm.

PHD ULTRA) connected to a nozzle when R < 100 µm and a pressurized reservoir otherwise.
As shown in Ref. [17], a small amount of surfactants in the recipient bath modifies significantly
the wave pattern, so great care was taken to avoid contamination of the ultrapure water in our
experiments. The pressure in the reservoir is imposed by a pressure controller (Elveflow OB1 Mk4)
connected to a network of compressed air. These setups can create laminar jets with speeds between
1.9 and 8 m s−1 for R < 100 µm and between 1.4 and 5 m s−1 for bigger ones. The base of the jet is
imaged using telecentric lenses (SilverTl 2× or 4× Edmund Optics) to obtain sharp interfaces and
a digital camera (Basler a2A1920-160umPRO). The images were typically taken with an exposure
time of 700 µs.

Measuring the observed contact angle is not straightforward, as it is not possible to place the
contact line between the jet and the meniscus in a nonarbitrary manner. To overcome this problem,
we propose to measure the contact angle by fitting the shape of the interface. Despite the jet having
a speed of a few meters per second, the meniscus at the base of the jet looks very similar to the
one climbing a static fiber plunged in a liquid bath [visual comparison in Figs. 2(a) and 2(b)], as
was previously noticed by Patrascu et al. [13]. We performed particle tracking velocimetry (PTV)
measurements below the interface, using small silica particles (of radius between 30 and 80 µm),
and a fast camera (Photron FASTCAM NOVA S9) recording 6000 images per second. These images

FIG. 2. (a) Fit of the meniscus, on the right and on the left, by Eq. (1) for a jet of radius R = 280 µm and
speed V = 2.65 m s−1 and for (b) a glass fiber of R = 250 µm. (c) Results of the PTV experiments under the
water surface for a jet of radius R = 280 µm and speed V = 2 m s−1 and a jet of radius R = 80 µm and speed
V = 2.8 m s−1.
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were then analyzed with PYTHON. The results can be seen in Figs. 2(c) and 2(d) for two different jet
radii and velocities. The measurements confirm that there is a boundary layer separation between
the dynamic jet and the static meniscus, with a typical velocity ratio of 20 between the velocity in
the dynamic jet and in the still zone of the meniscus. This is consistent with the observation and
description of Sebilleau et al. [18], where this boundary layer separation is expected for Re > 60
and has been observed for jets with radii 2 mm < R < 5 mm and We = ρV 2R

γ
< 0.14. We show that

their findings hold for smaller jets, and for higher Weber numbers (up to 15 in our experiments).
This justifies the use of hydrostatic equations to describe the shape of the meniscus.

The shape of the static meniscus is fixed by a balance between the hydrostatic pressure ρgz,
with ρ the liquid density, g the acceleration of gravity, z the surface elevation, and the Laplace
pressure γ C, with γ the liquid/air surface tension and C the curvature of the interface. The typical
length scale of the meniscus is thus the capillary length �c = √

γ

ρg . An equation for z(r), with r
the coordinate in the radial direction, in the nonlinear part of the meniscus attached to a fiber of
radius r0 with a nonzero contact angle has been proposed by James [19]. The linear small slope
solution is z(r) = AK0( r

lc
), where A is a constant and K0 a modified Bessel function of the second

kind of order zero. By matching it with the equation of a catenoid satisfying the boundary condition
z′(r0/r0) = −cotan(θ ) where θ is the contact angle, he obtains, in the vicinity of the fiber,

z(r) = r0 cos(θ )

⎛
⎝− ln(ε) + ln(4) − � − ln

⎧⎨
⎩ r

r0
+

[(
r

r0

)2

− cos2 (θ )

] 1
2

⎫⎬
⎭

⎞
⎠, (1)

where ε =
√

ρgR2

γ
is the square root of the Bond number and � is Euler’s constant. We use James’

equation to fit the meniscii in Figs. 2(a) and 2(b). The contact angle is used as a free parameter and
can be different on the right and on the left. This leads to slightly different values of the contact
angle on the jet, which will be taken into account while evaluating the error bars. On the fiber, the
difference is larger, probably due to impurities at its surface. The agreement between the fit and
the experimental shape confirms that this region can be considered as static, and that there exists
a nonzero contact angle between the meniscus and the jet. Replacing directly the fiber radius r0 in
James’ equation with the jet radius R proves unsatisfactory, because the actual radius is altered with
the capillary wave field. We thus need to write proper matching conditions between the capillary
wave field and the static meniscus.

In the following, we propose a matching between James’ description of the meniscus and
the jet decorated with capillary waves. The parameters needed to describe the meniscus using
James’ equation are r0 and θ . The capillary wave field is approximated by an attenuated sinusoidal
wave r(z) = R + a cos(kz + ϕ) exp(− z

zatt
), with k = 2π

λ
the wave number, λ the wavelength, a the

amplitude, ϕ a phase shift, and zatt the attenuation length. k and zatt are predicted by the model of
Patrascu (Eq. (6) in Ref. [13]). It agrees very well with the fitted values of zatt and λ, as can be
seen in Fig. 1(d). We then have five unknowns θ , r0, z0, ϕ, and a. The first matching condition is the
radial matching position, which gives r0 = r(z0). The height matching position z0 is given by James’
equation z0 = z(r0). The slope matching yields ∂r

∂z = − tan(θ ). The last condition is the matching
between the jet curvature

κjet = 1 + r′(z)2 − r(z)r′′(z)

r(z)[1 + r′(z)2]3/2

and the meniscus curvature κm = 0, as the meniscus is a catenoid. Practically, we used a linearized
version of κjet as full nonlinear computations did not show significant differences.

This curvature matching is in fact a pressure matching between the jet, which has an overpressure
�P = γ

R , and the meniscus, which has an underpressure �P = −ρgz. Capillary wave emission
stems from this pressure mismatch. The reflected waves lower the curvature of the impinged jet
base to accommodate with the meniscus’ pressure, as sketched in Fig. 3(a). This is similar to the
stationary wave rippling the air cavity entrained behind an object dropped in a liquid [20]. In this
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FIG. 3. (a) Sketch of the jet impacting a bath. In the first virtual case, a straight jet connects to the meniscus,
and exposes the impossibility of a pressure continuity between the two regions. In the second case, the capillary
waves allow for pressure continuity. (b) Fitted interfaces of jets of various radii and speeds. The red line is the
fitted meniscus, the blue line the wave field with the calculated amplitude, and the violet cross the calculated
matching point (r0, z0).

case, a reflected stationary wave is needed so that the cavity is attached to the side of the moving
object. These situations are reminiscent of classical problems in wave physics, where boundary
conditions are impossible to meet without a reflected wave [21].

With five unknowns but only four matching conditions, the problem is underconstrained as stated.
However, if we set a θ , we can get all the other values owing to the following system,

r0 = R
[
R2 + z2

att (k
2R2 − 2) + 2zattR tan(θ )

]
R2 + z2

att (k2R2 − 1)
,

z0 = r0 cos(θ )

[
log

(
4R

r0ε[1 + sin(θ )]

)
− �

]
,

ϕ = −kz0 + arctan

(
r0 − R − zatt tan(θ )

kzatt (R − r0)

)
,

a = (r0 − R) exp(z0/zatt )

cos(kz0 + ϕ)
,

(2)

where ϕ can be shifted by π to get a positive amplitude. To test that our equations of matching
indeed set the amplitude of the capillary waves, we follow this fitting procedure: For a jet of given
R and V , we first get k and zatt by fitting the wave pattern at the base of the jet, or from the Patrascu
equation (that only depends on R and V ) when the waves become barely visible on our images. This
fixes r0(θ ) through Eq. (2). We then obtain θ by fitting the meniscus with James’ equation.

When θ is fitted, we inject it in system (2) and deduce the values of z0, ϕ, and a. In Fig. 3(b),
the resulting wave field is plotted on the image, together with James’ equation for the fitted θ . We
can see that, for various radii and jet velocities, the obtained amplitude agrees very well with the
experimental one. This confirms that the pressure matching between the meniscus and the jet sets
the amplitude of the capillary wave field.

III. PREDICTION FOR THE CONTACT ANGLE

To get a complete model of the interface, we miss a prediction for θ , as all θ are compatible
with our equations of matching. However, the total energy of the system depends on θ . As can be
seen in Fig. 4(a), when θ is small, the meniscus joins the jet at a higher altitude, resulting in an
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FIG. 4. (a) Energy excess of the meniscus (�Ejet), of the jet (�Emeniscus), and their sum (�Etot) plotted
against the speed for a jet of radius R = 190 µm. The inserted sketches show the difference between the shape
of the interface for a low and high contact angle. (b) Apparent contact angle fitted and predicted by our model
for jets of various radii, plotted against the speed of the jet. The two experimental images show two reasons for
the deviation from our model, the first one being instationarity (at the top) and the second one (at the bottom)
the loss of axisymmetry, even when the stationarity is restored.

excess surface compared to a flat meniscus. When θ is large, the amplitude of the capillary waves is
larger, so the excess of surface compared to an unperturbed jet is higher. The kinetic energy excess
caused by the capillary waves is equal to the surface energy excess according to Chandrasekhar
[see Eqs. (154) and (57) of Chap. XII in Ref. [22]]. It is then possible to calculate the difference in
energy �E with a virtual cylindrical waveless jet and flat meniscus as a function of θ ,

�Etot (θ ) = 2πγ

⎧⎨
⎩2

∫ ∞

z0(θ )

⎡
⎣R(z, θ )

√
1 + ∂R(z, θ )

∂z

2

− R

⎤
⎦dz +

∫ ∞

r0(θ )
r

⎛
⎝

√
1 + ∂z(r, θ )

∂r

2

− 1

⎞
⎠dr

⎫⎬
⎭

+ ρg
∫ ∞

r0(θ )
πrz(r, θ )2dr, (3)

where the last term accounts for the gravitational potential energy of the meniscus [23]. The sum
of the jet energy, �Ejet [first term in Eq. (3)] and the meniscus energy �Emeniscus (second and
third term in Eq. (3)) is plotted in Fig. 4(a), revealing a value θmin which minimizes �Etot. This
θmin depends on V and R as these variables set k and zatt, which affect �Ejet . In Fig. 4(b), the
prediction of θmin is plotted together with the experimental data as a function of V for different
radii. The uncertainty for the experimental value of θw comes from the numerical uncertainty on
the fit of the meniscus. For small jets (R = 56 µm and R = 76 µm), the model agrees well with
the experiments without any fitting parameters, especially when V > 3 m s−1. For lower speeds,
a/R is not negligible and capillary waves are not well described by an attenuated sinusoid [24] [see
the first image in Fig. 3(b)], so we expect a bigger difference with our model. For wider jets, non-
stationarities, and a certain degree of swirl [13] can appear [see Fig. 4(b)], which result in deviations
from our model, as our assumptions of stationarity and axisymmetry are no longer fulfilled.

IV. CONCLUSION

In conclusion, the observation of an apparent contact angle when a jet impacts a bath has been
rationalized. Capillary waves are due to a pressure matching between the jet and the meniscus, and
energy minimization fixes the effective contact angle at least. Our data are in excellent agreement
with this prediction for tiny jets. Discrepancies appearing for wider jets underline the necessity to
better understand the nonstationary and asymmetric regimes.
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