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We present a parametric study of the unsteady phenomena associated with the flow of
elongated gas bubbles traveling through liquid-filled square capillaries under high Weber
number conditions. These conditions induce the formation of an indentation at the back
of the bubble that commonly gives way to a deep reentrant liquid jet penetrating the
bubble. Subsequent steps include pinch-off events in the penetrating liquid to generate
one or multiple encapsulated drops which may coalesce, in conjunction with the bursting
of the bubble-liquid interface by either the liquid jet or the drops. Some of these interfacial
instabilities have previously been reported experimentally and numerically for liquid-liquid
flow in microchannels. We carry out three-dimensional direct numerical simulations based
on a hybrid interface-tracking/level-set method capable of accounting for the presence and
dynamic exchange of surfactants between the liquid bulk phase and the liquid-gas inter-
face. Our results indicate that the delicate interplay among inertia, capillarity, viscosity,
surfactant adsorption/desorption kinetics, and Marangoni stresses has a dramatic influence
over the nonaxisymmetric morphological structures of the encapsulated drops-elongated
bubble. This strong coupling also influences the pinch-off time, penetration depth of
the liquid, and number, size, and velocity of the encapsulated drops across the bubble.
The observed phenomena are summarized in three main morphological regimes based on
surfactant-related parameters and dimensionless groups. A discussion of the flow regime
maps is also provided.

DOI: 10.1103/PhysRevFluids.9.034001

I. INTRODUCTION

The problem of gas bubbles propagating in confined capillary channels has been the subject
of extensive theoretical, experimental, and numerical investigation (see Etminan et al. [1] and
references therein). In addition to being a classic problem in fluid mechanics, as seen in the
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now-seminal works of Bretherton [2], Taylor [3], and Schwartz et al. [4], these flows are central to
multiple applications in technology development and are found in several real-life systems. To name
a few examples, gas-liquid interfaces in the micro- and capillary scale are involved in two-phase
coolers [5], CO2 sequestration and storage microdevices [6], obstructed pulmonary airways [7],
and volcanic conduits [8]. Since the early works mentioned above, extensive efforts have been
undertaken to understand the phenomena dictating the bubble’s behavior along with the surrounding
thin liquid film, largely through an idealization of the operating conditions and the morphology of
the bubble itself as a flat cylinder bounded by two semispherical menisci. It is well known through
experiments [3] and theory [2] that the film thickness of the flat region scales as h ∼ Ca2/3

b within
the realms of vanishing capillary, Cab, and Reynolds numbers, Reb, and as h ∼ Ca2/3

b /(1 + Ca2/3
b )

for Cab < 2 [9,10]. As inertial effects become non-negligible, Han and Shikazono [11] proposed a
correction to the scaling exponents of Cab and the introduction of the Weber number, Web, in the
scaling law expression. Particular attention has also been placed on exploring the influence of Cab

on the pressure drop ahead of the bubble [12], mapping the full bubble topological profiles [13],
analyzing the undulatory structures that emerge in the vicinity of the bubble rear [14,52] as inertial
effects begin to dominate, and predicting the final shape of the front meniscus [15].

Other researchers have delved into the problem by deviating from the traditional idealized
assumptions of circular and straight channels, absence of surface-active materials, fully dominating
capillary forces, and rigid spherical interfaces. These studies have elucidated critical differences
between the steady-state and axisymmetrical features of idealized bubbles and those that adhere
to more realistic scenarios. For square or rectangular channel cross sections, the experiments of
Chen et al. [16,17] and numerical simulations of Magnini and Matar [18] and Magnini et al. [19]
have uncovered significant angular and axial nonuniformities in the liquid film thickness, whereby
the effects of the rigid walls tend to flatten the interface at the channel’s center-line (hmin ∼ Cab),
depleting it of the liquid phase, and inducing the formation of large lobes protruding towards the
channel corners in the cross section (h ∼ Ca0.445

b ). Furthermore, noncircular channels promote an
exponential thinning of the liquid film along the bubble length from the nose to the rear section,
as reported in Lister et al. [20], Magnini and Matar [18]. The effects of other nonideal geometries
have been examined by Sauzade and Cubaud [21], who carried out an experimental campaign to
study the distortion of a train of bubbles in a constricting-expanding microchannel under varying
Cab and bubble packing conditions. This study provided evidence for the occurrence of bubble
width-to-length ratio hysteresis across the sinusoidal structures of the channel and the attenuation
of these effects with decreasing Cab.

A wide array of investigations have focused on illustrating the effects of (in)soluble surfac-
tants on liquid-gas confined flows, placing particular emphasis on their influence on liquid film
thickness, bubble deformation, and pressure drop (see Olgac and Muradoglu [22] and references).
The literature largely agrees that, under typical surfactant characteristics and negligible inertia,
the liquid film displays a thickening response to surfactants of the order of 1 to 42/3 times that
predicted by the expression of Bretherton [2] for uncontaminated interfaces. This thickening has
been reported to vary with Cab, surface elasticity, and across the bubble length due to Marangoni-
related mechanisms, which act in opposition to liquid drag forces as they push the surfactants
towards the bubble back. Nonetheless, the numerical results of Ghadiali and Gaver [23] in the
context of pulmonary airways suggest the possibility of liquid film thinning surfactant actions
under conditions of large bulk Péclet number, Pec � 1, and Cab > 10−1 due to a bifurcation and
enhancement of Marangoni stresses, which drive fluid away from the thin film region and towards
the bubble nose. In terms of pressure drop and bubble velocity, it has been shown that surfactants
tend to increase the pressure drop across the dispersed phase [24,25] and significantly reduce
the bubble’s mobility along its length [26]. Batchvarov et al. [27] carried out a comprehensive
computational exploration of multiple surfactant characteristics and dimensionless groups with
the novelty of introducing inertial effects (Re = 443–728) to the analysis. A key finding of this
work is the surfactant-induced dampening of the bubble’s rear interfacial oscillatory structures,
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FIG. 1. (Not to scale) Schematic of simulation setup, reentrant liquid jet penetrating the bubble, and
encapsulated drop. The direction of outwards pointing normal vectors, liquid film thickness, h(x), and curvature
sign according to the adopted convention are also highlighted. The location of the Cartesian axis represents the
outset of the geometrical domain (x = 0, y = 0, z = 0).

typical of systems with non-negligible inertia, together with the evidence provided to affirm that
this process is entirely Marangoni-driven rather than a consequence of localized lowered surface
tension. Moreover, this investigation addressed the effect of low solubility surfactants, detecting
a clear arrangement of the bubble’s morphology into two separate regions: one fully covered in
surfactants and of reduced mobility, extending from the bubble rear to a portion in the streamwise
direction that depends on Pec, and one of diminished surfactant concentration that stretches to the
bubble nose, behaving similarly to clean interfaces.

A noteworthy sequence of events transpires in the bubble as Cab is increased to a critical value
that strongly depends on its length and Re. As reported in a number of investigations [15,28–30], the
combination of reduced dominance of capillary forces (given by larger Ca) and heightened inertia
(given by larger Re, leading to larger We = Ca Re) has a distorting impact on the curvature of the
front and back menisci, dragging both interfaces towards the main flow direction and causing the
bubble to adopt an elongated, “bullet-like” shape. With the continued increase in inertial and viscous
forces, the bubble’s rear undergoes a curvature inversion, enabling the liquid phase to infiltrate the
bubble’s domain and form a small liquid jet. The threshold conditions that induce this curvature
inversion phenomenon have been reported to be We ≈ 20 for Re ∼ O(101) in circular channels by
Giavedoni and Saita [15] and Ca � 1 for Re → 0 in circular/square channels by Refs. [10,29,30].
As briefly shown in Sec. III A, our surfactant-free simulations allow us to place the threshold within
the range 17 < We < 20 for Re ∼ O(102) in square capillaries.

The fate of the liquid infiltrating the bubble is highly influenced by a complex interplay of
phenomena that might culminate in a continuous growth in the main axial or radial direction, or
in its capillary breakup to encapsulate and entrap liquid drops within the bubble (see Fig. 1). This
liquid infiltration process shares qualitative similarities with other systems relevant to engineering
applications, such as sheet cavitation. In this type of cavitation, the adverse pressure gradient induces
the development and spreading of a reentrant liquid jet in the upstream direction underneath the
cavity sheet, separating it from the solid surface [31].

The type of encapsulation described above has been observed experimentally in the works of
Goldsmith and Mason [32] and Olbricht and Kung [33] in liquid-liquid flows. Similar findings
are reported in a limited number of numerical pursuits on multiphase confined flows, including the
investigations of Tsai and Miksis [34] and Izbassarov and Muradoglu [35] for contracting/expanding
capillaries in Newtonian and viscoelastic fluids, respectively, Pozrikidis [36] for buoyancy-driven
flows of viscous drops, Nath et al. [37] for liquid drops in creeping flow, and Andredaki et al. [38]
and Atasi et al. [39] for gas bubbles in the absence/presence of surfactants, respectively. The last
three studies have provided an examination of the specific conditions that induce the encapsulation
phenomenon, a general elucidation of the mechanisms at play, and an overview of the encapsulation
aftermath. Nath et al. [37] have remarked that, in the inertialess limit and considering fully circular
channels, there exists a critical Cab beyond which drop breakup and entrapment events will occur.
The authors found this critical value to decrease (increase) with the initial drop-to-channel radius
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(dispersed-to-continuous phase viscosity). Andredaki et al. [38] and Atasi et al. [39] have recently
laid the groundwork for the formulation of general encapsulation and breakup regime maps for
Re � 1, bounded by WeB and the relationship between inertia and pressure drop across the channel
in the former, and Cab and the relative importance of interface surfactant adsorption/desorption in
the latter case.

Despite these initial efforts, much remains unknown and unexplored about these encapsulation
events. Notably, a quantitative and phenomenological description of the underlying dynamics that
govern each step of the process is needed, in combination with a thorough inspection of the reentrant
liquid jet characteristics. It is also crucial to address the multiple examples of interfacial singularities
inherent to the system at hand, which have yet to be analyzed from the perspective of the well-
established problem of capillary breakup, from which multiple parallels naturally emerge between
our system and others (e.g., contracting liquid ligaments and inkjet printing). Likewise, an analysis
of the evolution of the drops beyond pinch-off is required as it is a topic much less understood
than the steps that precede it [40] and could be crucial to potential applications [35]. Finally, and
as will be seen in this paper, extending the set of surfactant parameters explored from those of
Atasi et al. [39] uncovers new encapsulation and breakup outcomes, which allows us to expand
and enhance the original regime maps. The main objective of this paper is therefore to carry out an
extensive characterization of the reentrant liquid jet formation and (post) pinch-off dynamics, taking
into account the interaction between surfactants and inertia, capillarity, and viscosity in a noncircular
channel geometry, which correspond to nonidealities of interest, as seen in the foregoing literature
review.

The rest of the paper is organized as follows: Sec. II introduces our problem formulation, com-
putational setup, and numerical approach. A discussion of our results is presented in Sec. III, where
we focus first on encapsulation in clean interfaces followed by an examination of surfactant-laden
systems. Finally, concluding remarks are provided in Sec. IV.

II. NUMERICAL METHODS AND PROBLEM FORMULATION

A. Numerical modeling and nondimensionalization

We consider a horizontal liquid-filled square capillary of width and height D in a Cartesian three-
dimensional domain, x = (x, y, z), with an elongated gas bubble propagating through its interior (see
Fig. 1). Assuming incompressible flow, Newtonian fluids, and negligible gravitational effects, we
perform direct numerical simulations (DNS) based on the two-phase Navier-Stokes equations and
a hybrid front-tracking/level-set method to handle the interface and surface tension forces. This
method, as formulated and implemented in Shin and Juric [41], is coupled with the resolution of
surfactant transport and exchange between the interface and the liquid phase bulk, as described in
Shin et al. [42]. The relevant variables involved in the system have been rendered dimensionless
(denoted by tildes) by using the scalings depicted in Eq. (1),

x̃ = x
D

, ũ = u
Ua

, t̃ = t

D/Ua
, p̃ = p

ρlU 2
a

, σ̃ = σ

σs
,

�̃ = �

�∞
, C̃ = C

C∞
, C̃s = Cs

C∞
, (1)

where u, t , p, σ , �, C, and Cs represent velocity, time, pressure, surface tension, interfacial surfactant
concentration, bulk surfactant concentration, and bulk surfactant concentration in the vicinity of the
interface, respectively. The physical parameters included in the scaling correspond to the width
of the channel, D, the average inlet velocity of the liquid, Ua, the density of the liquid phase, ρl ,
the surface tension in a surfactant-free interface, σs, the saturation interfacial concentration, �∞,
and the initial bulk surfactant concentration, C∞, in line with the scaling proposed by Batchvarov
et al. [27] for a similar system. In what follows, we refer to each variable by its name to refer to its
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dimensionless version, unless stated otherwise, and add the subscript b to signify that the variable
is reported at the bubble nose.

The mass and momentum equations are written in dimensionless form and according to a “one-
fluid” formulation:

∇ · ũ = 0,

ρ̃

(
∂ũ
∂ t̃

+ ũ · ∇ũ
)

= −∇ p̃ + 1

Re
∇ · [μ̃(∇ũ + ∇ũT )] + 1

Re Ca

∫
Ã(t̃ )

(σ̃ κ̃n + ∇sσ̃ )δ
(
x̃ − x̃ f

)
dÃ,

(2)

ρ̃(x, t ) = ρg + (ρl − ρg)I (x, t ), μ̃(x, t ) = μg + (μl − μg)I (x, t ), (3)

where I (x, t ) is a smoothed Heaviside function that adopts the value of zero in the gas phase and
unity in the liquid phase, ρ the density, and μ the viscosity of the fluids. Here we denote the liquid
and gas phases with the subscripts l and g, respectively. The normal and tangential components
of the surface tension forces are represented by the last two terms on the right-hand side (r.h.s.)
of Eq. (2), wherein κ̃ corresponds to twice the mean interface curvature, n to a unit normal to the
interface, δ(x̃ − x̃ f ) to a Dirac delta function that is zero everywhere except for the interface (located
at x̃ = x̃ f ), Ã(t̃ ) to the time-dependent interface area, and ∇s to the surface gradient operator [43,44].
We adopt the convention that positive n vectors point outwards from the interface towards the liquid
phase. Accordingly, positive values of κ̃ describe a convex interface, as exemplified in Fig. 1. As is
typical in front tracking, the Lagrangian interface is advected by integrating dx f /dt = V f , where
the vertices of the Lagrangian triangular mesh discretizing the interface, x f , are displaced in time
by the fluid velocity, V f , at those vertices.

Note that the gas phase dynamics are not neglected within this one-fluid formulation and are
resolved along with that of the liquid via solution of Eqs. (2) and (3) with the density and viscosity
defined by Eqs. (3). Consequently, the tangential component of the interfacial stress is finite with
further contributions to it arising from the surface tension gradients; the latter owe their existence to
the interfacial surfactant concentration gradients, as will be discussed below.

The mass conservation equations of surfactant species at the interface and bulk are given by
Eqs. (4) and (5) and the source term representing surfactant exchange between the interface and the
bulk region immediately adjacent is given by Eq. (6):

∂�̃

∂ t̃
+ ∇s · (�̃ũt ) = 1

Pes
∇2

s �̃ + Bi(kC̃s(1 − �̃) − �̃), (4)

∂C̃

∂ t̃
+ ũ · ∇C̃ = 1

Pec
∇ · (∇C̃), (5)

n · ∇C̃|interface = −PecDa [kC̃s(1 − �̃) − �̃], (6)

where ũt = (ũs · t)t is the projection of the interface velocity vector, ũs, on the interface unit tangent,
t. The dependence of surface tension on local interface surfactant concentration is represented by a
nonlinear equation of state derived from Langmuir adsorption isotherm, as expressed in Eq. (7),

σ̃ = max(εσ , 1 + βs ln (1 − �̃)), (7)

where βs = RT �∞/σs is the surfactant elasticity number; R and T are the thermodynamic ideal
gas constant and temperature, respectively. The nonlinear equation of state described above is valid
for very dilute systems in which � � �∞. As � increases, the equation of state yields unphysical
negative values of surface tension. To circumvent this, a limiting value for σ̃ , εσ = 0.05, has been
introduced, in accordance with Muradoglu and Tryggvason [45] and Shin et al. [42]. The tangential
surface stresses or Marangoni stresses, extensively discussed throughout the paper, are calculated
as τ̃m ≡ ∇sσ̃ · t = −βs

1
1−�̃

∇s�̃ · t [see last term of Eq. (2)]. The dimensionless groups that appear
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in the above equations and that characterize the system are defined as follows:

Re = ρlUaD

μl
, Ca = μlUa

σs
, Pec = UaD

Dc
, Pes = UaD

Ds
,

Bi = kd D

Ua
, Da = �∞

DC∞
, k = kaC∞

kd
, (8)

where Re and Ca are the Reynolds and capillary numbers, respectively (We = Ca Re, and Oh =√
Ca/Re). Pec and Pes are the bulk and interfacial Péclet numbers, which provide a measure of the

importance of inertia relative to surfactant mass diffusion across the interface (modulated by a dif-
fusivity Dc) or the bulk (modulated by a diffusivity Ds), respectively; Bi represents the Biot number,
describing the competition between convective, tconv = D/Ua, and interface surfactant desorption,
tdes = k−1

d , timescales. The Damköhler number, Da, provides a dimensionless measure of the initial
interface saturation, and the number k reflects the interplay between the characteristic timescales of
interface surfactant adsorption, tad = (kaC∞)−1, and desorption. We note that gravitational effects
have not been taken into account in this study. Hence, we run our simulations with vanishing Bond
number, Bo ≡ (ρl − ρg)gD2/σs = 0.

For an exhaustive description of the discretization schemes and numerical framework employed
for solving the above mentioned governing equations, we refer the reader to Shin et al. [42,44] and
to Shin and Juric [43] for a comprehensive account of the hybrid front-tracking/level-set method,
also called Level Contour Reconstruction Method (LCRM). Here we present a short summary of
the most relevant aspects. The LCRM considers the combination of a fixed structured Eulerian grid
for the resolution of field equations and a moving and deforming Lagrangian grid for the interface,
discretized via an unstructured triangular mesh. These interface elements are consequently advected
through the integration of the Lagrangian equation dx f /dt = v, where v corresponds to the interface
velocity, which is interpolated from the Eulerian grid. This integration is carried out with a second-
order Runge-Kutta method. The spatial derivatives of the fields in the Eulerian grid are discretized
through a standard cell-centered scheme for all terms, with the exception of the nonlinear convective
terms, for which a second-order essentially nonoscillatory (ENO) procedure is used [46,47]. For the
viscous term in the momentum equation, a second-order centered difference scheme is employed. A
second-order Gear method [48] is adopted for the temporal terms, with an implicit time integration
for the viscous terms. The time step is set to be adaptive, according to the following criterion: �t =
min{�tcap = 1

2

√
(ρl +ρg)�x3

πσs
, �tvis = ρg�x2

6μl
, �tCFL = �x

|umax| , �tint = �x
|Vint | }, where the time steps relate

to viscosity, capillarity, Courant-Friedrichs-Lewy condition, and interface, respectively; �x is the
minimum cell size, umax is the maximum fluid velocity, and Vint is the maximum interface velocity.
The time step related to the interface was found to be the limiting time step in all of our simulations
[�tint ∼ O(10−7) s].

B. Simulation setup

As depicted in Fig. 1, our simulation domain consists of a three-dimensional rectangular box
of dimensions 27D × D × D, corresponding to the x (channel length), y (channel height), and z
(channel width) directions, respectively. The value of the channel length was selected to ensure
the attainment of a steady-state bubble propagation for We < 10, following the results of Batch-
varov et al. [27] and Magnini and Matar [18]. Under conditions of We > 10, highly unsteady
encapsulation/bursting phenomena are detected in the system. The channel length chosen allowed
for the observation of all relevant phenomena, including the formation of the reentrant jet, drop
encapsulations and coalescence events, and bubble bursting, for all conditions tested. The elongated
bubble was initialized in quiescent conditions close to the channel inlet and at the center line of the
y and z directions as a horizontal cylinder of length 3.12D with two hemispherical caps of diameter
0.94D on each end. A fully developed liquid velocity profile was imposed at the channel inlet with
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a Neumann condition for pressure (∂ p/∂n = 0). All walls were treated as no-slip boundaries, and
Neumann conditions were imposed for all variables at the outlet. The bubble-liquid interface was
initially covered with surfactant of uniform concentration �0, determined from an initial equilibrium
between surfactant adsorption and desorption [last term on the r.h.s. of Eq. (4) equal to zero], which,
assuming Cs = C∞ initially, reads

�0 = k

k + 1
�∞. (9)

This setup closely resembles the approaches followed in previous numerical investigations for
similar systems [25,37,39].

We explore the effect of the dimensionless numbers and flow parameters that characterize the
system [see Eq. (8)] considering the following ranges: Ca = 0.0089–0.0693 (We = 3.94–30.70,
Oh = 4.48 × 10−3 to 1.25 × 10−2), Pec,s = 100, Bi = 0.10–1, Da = 0.01–1, k = 0.10–10.00, and
βs = 0.25–1. For all cases simulated, the viscosity and density ratio between the phases is kept
constant and in line with representative values for water and air: ρl/ρg = 1000 and μl/μg = 100.
We define a “base” case from which our parametric sweep was carried out with the following
conditions: Re = 443, Ca = 0.0693, Pec,s = 100, Bi = 0.10, Da = 1, k = 0.10, and βs = 0.50.
Unless stated otherwise, all results correspond to simulations under these conditions. The selection
of the testing ranges was based on common values encountered in bubbly flow systems in the
presence of surfactants, as reported in Atasi et al. [39], as well as values of We that would allow
a significant disruption of the bubble back to generate the aforementioned penetrating liquid and
consequent drop encapsulation [15,38]. We refer the reader to Appendix A for typical values of
surfactant properties, which support our choice of dimensionless ranges, and for a description of the
competing timescales in our system.

Following numerous studies making use of the numerical methods described above for inertial
and capillary phenomena (see Refs. [27,49,50]), we employ a fully structured and uniform Cartesian
grid divided into 54 × 4 × 4 subdomains, further divided into 64 × 32 × 32 cells per sub-domain,
rendering a global resolution equal to 3456 × 128 × 128 cells. On account of ensuring this resolu-
tion produces mesh-independent results, we have performed a mesh analysis in surfactant-free and
surfactant-laden conditions, detailed in Appendix B along with other resolution considerations. In
this analysis, we showcase how the chosen grid resolution guarantees mesh-independent outcomes
for both global variables like kinetic energy, interfacial area, and bubble velocity, and local variables
associated with interfacial singularities. These encompass the curvature inversion time, the time
until the first pinch-off event of the reentrant jet, and the size of the encapsulated drops, all of
which show less than 3.5% difference between mesh resolutions Furthermore, we illustrate that our
resolution is adept at accurately representing the thin liquid film encasing the bubble, as outlined in
Ref. [18].

The numerical framework and simulation setup presented herein have previously been carefully
validated in the context of elongated bubbles in circular capillary channels. For this validation,
we refer to the work of Batchvarov et al. [27], in which the code was benchmarked against
the well-known correlation of Han and Shikazono [11] for steady-state liquid film thickness in
conditions of non-negligible inertia. For Ca ∼ O(10−2) and Re ∼ O(102), deviations of up to 10%
were reported, which are within the uncertainty of the correlation. A complementary validation is
reported in Appendix C to demonstrate our faithful capturing of the bubble’s main morphological
regimes in square capillary channels, as proposed by Magnini and Matar [18].

To attach a physically relevant meaning to the dimensionless times quoted throughout the
manuscript, we henceforth report all times starting from t̃ = 0.0, which corresponds to the instance
of the bubble rear’s curvature inversion (mentioned in Sec. I and detailed in Fig. 3 below) for each
set of conditions. For the surfactant-free and low Ca cases that do not exhibit a curvature inversion
(see Fig. 2), t̃ = 0.0 was taken as the inversion time of the surfactant-free case that did undergo such
process (see Sec. III A).
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FIG. 2. Effect of Ca on bubble characteristics for surfactant-free cases at t̃ = 0.76. (a) Full bubble length
in the axial direction. (b) Zoom over the trailing undulatory structures at low Ca (3.25 < x̃ < 4.5). From top to
bottom the plots correspond to bubble-liquid interface shape, normalized mean curvature, k̃, normalized normal
component of viscous stress on the interface, τ̃n, and normalized tangential component of viscous stress on the
interface, τ̃t , respectively. Dotted line for Ca = 0.0693 highlights the reentrant liquid jet. All other parameters
remain unchanged from those specified in Sec. II B for the base case. The highlighted zones in (b) represent
the areas bounded by τ̃n local maxima and minima their projections in the ỹ, κ̃ , and τ̃t profiles.

III. RESULTS AND DISCUSSION

The results of our investigation are presented in three parts. The first, Sec. III A, introduces the
phenomenon of drop encapsulation by contrasting the behavior of three surfactant-free cases of
varying Ca and exposed to non-negligible inertial effects (Re = 443, Fig. 2). The second part of
the results, Sec. III B, analyzes selected cases from our surfactant-related parameter sweep (βs, Bi,
k, and Da) and quantifies their influence on drop encapsulation. The final set of results, Sec. III C,
summarizes all encapsulation behaviors observed in two regime maps in the βs-k and Bi-k spaces
(see Fig. 11 below).

A. Bubble dynamics in surfactant-free cases: Tail undulations, curvature disruptions,
and encapsulations

We start our discussion by showcasing the bubble topology at a two-dimensional projection in
the (x, y) plane at the channel center -line (z̃ = 0.5), as well as the normalized mean curvature,
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κ̃ , and the normal, τ̃n, and tangential, τ̃t , components of the viscous stress along the interface
[see Figs. 2(a) and 2(b)]. Here these quantities are defined as κ̃ = κ/κc, τ̃n = τn/(D/Ua), and
τ̃t = τt/(D/Ua), respectively, where τn = (D · n) · n, τt = (D · n) · t, D = (∇u + ∇uT )/2 (rate of
deformation tensor), and κc corresponds to the curvature of a sphere with a volume equal to the
initial bubble volume. Under the sign conventions adopted, τ̃n > 0 denotes stresses exerted on
the interface towards the liquid phase. Conforming to previous observations [15,28–30], our plots
reveal a loss of sphericity (typical of fully dominant capillary forces) at the bubble front and back
with increasing Ca, in conjunction with an overall axial bubble elongation. The interface at the
bubble front sharpens and expands, while the bubble back becomes progressively flattened with
Ca, adopting a “bullet-like” shape (κ̃front > κ̃back). This process continues until a curvature inversion
emerging from ỹ = 0.5 is detected for Ca = 0.0693, which eventually leads to a drop encapsulation.
As mentioned in Sec. I, this type of curvature sign inversion is triggered by a combination of large
Ca and Re. From the surfactant-free results shown in Fig. 2(a) at Re = 443, as well as those reported
in Appendix C, which encompass various Ca and Re values (We = 2.5–50), we place the threshold
value for curvature inversion in the range 17 < We < 20. This range is fully consistent with that
previously found in Giavedoni and Saita [15] [We ≈ 20 for Re ∼ O(101)] in circular channels.

We note that the bubble shapes presented in Fig. 2(a) correspond to the systems’ initial stages
of development in terms of the reentrant jet and the front/rear menisci (t̃ = 0.76). During these
early stages, the systems are still distant from equilibrium, which is typically achieved at t̃ ≈ 6
for the nonencapsulated cases Ca = 0.0089, 0.0377 (and notably not attained for the encapsulated
case, as demonstrated in both our present study and prior research; see Sec. I). Consequently, the
well-established direct relationship between liquid film thickness, h(x), and Ca [2,11,18] has not
materialized fully in the systems at this early stage, explaining the apparent absence of differences
in h(x) for varying Ca. A further discussion of the effects of Ca on h(x) is provided in Appendix C,
where the cross-sectional bubble shapes of the systems depicted in Fig. 2(a) are displayed and
analyzed at a later time (see Fig. 13 below).

Detailing the behavior of κ̃ for Ca = 0.0693 along the interface path going from the reentrant
liquid jet vertex to the bubble nose, a zone of negative curvature is first observed at 3.8 � x̃ � 4.1,
followed by a positive curvature meniscus at 3.3 � x̃ � 3.8. This particular curvature sign inversion
is a manifestation of the early stages that precede pinch-off and drop encapsulation. This process and
its connection to other well-known systems that exhibit capillary instabilities are examined further
along in this paper. Exiting the interior of the liquid jet towards the region adjacent to the liquid
film (3.3 � x̃ � 7.0), a nonuniform low curvature zone that encompasses the majority of the bubble
is identified, later culminating in the high-curvature bubble nose seen for x̃ > 7.0. Contrasting this
evolution to that of the two lowest Ca, it can be noticed that the spatial location that marks the
beginning of the bubble nose [sudden curvature rise from the thin-liquid film region, highlighted
in gray in Fig. 2(a)] shifts to lower x̃ for decreasing Ca. Notable curvature inversions at the bubble
tail are also identified for the low Ca cases, expressed in the undulatory structures emphasized in
Fig. 2(b). These interfacial waves, previously reported in Refs. [15,51,52], moderately diminish in
frequency and amplitude with Ca at the same Re, as illustrated in the figure.

The dynamics of the bubble-liquid interface and its curvature gradients are readily mapped
onto the τ̃n,t spatial profiles of Fig. 2. Pertaining to the trailing undulatory structures (highlighted
in yellow and green for Ca = 0.0089 and Ca = 0.0377, respectively), it is found that these are
first characterized by a sudden surge in τ̃n that terminates in a local maximum, which pushes the
interface towards the channel walls and thus creates the crests of the interfacial waves. These peaks
are promptly followed by a rapid τ̃n decrease approaching a local minimum that contributes to
the formation of the wave troughs by pulling the interface back towards the bubble. Concurrently,
the tangential stresses feature similar inverse patterns of local maxima/minima that promote the
sharpening of the crests/troughs. A substantial drop in τ̃n,t , mirrored by κ̃ , is observed by departing
from the rear undulatory region to the high-pressure central section of the bubble. τ̃n,t remain qua-
siconstant and close to zero throughout this section until the reappearance of local maxima/minima
marks the onset of the bubble nose. Note the generally higher |τ̃t | exerted on the bubble nose at
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FIG. 3. Temporal evolution of interface characteristics in surfactant-free cases. (a) Maximum dimension-
less velocity in the x direction. (b) Zoom on interfacial singularities found for Ca = 0.0693. (c) Detailed
evolution of encapsulation process for Ca = 0.0693. Contour plots of normalized azimuthal vorticity, ω̃z =
ωz/(D/Ua ) (top) and three-dimensional bubble shape (bottom). The interfaces of these contour plots have been
translated in the x direction to have a common point of reference (marked by the black dotted line).

ỹ = 0.5 for decreasing Ca, partly contributing to a lower curvature (more spherical) bubble front.
Similar remarks about the close relationship between curvature, capillarity, and interfacial stresses
have been made by Atasi et al. [39].

We now proceed to detail the encapsulation process by first illustrating the numerous flow
singularities produced by high Ca conditions in uncontaminated interfaces. In Fig. 3(a) we plot the
temporal evolution of the maximum normalized velocity in the x direction, Max ũx. This evolution
reveals five major local peaks in Ca = 0.0693 in the interval 0 < t̃ < 3.5, which materialize in (i)
the previously analyzed curvature inversion at the bubble back, (ii) and (iii) two pinch-offs that give
rise to a “satellite” and a primary drop, (iv) an abrupt retraction and subsequent expansion of the
former, and (v) a coalescence event between the two drops [see Fig. 3(b)]. A first description of
the mechanisms by which these interfacial singularities come about is shown in Fig. 3(c), where a
liquid infiltration deepening in the positive x direction takes place at 0.32 < t̃ < 0.99. The fate of
this liquid structure can be understood through the hybrid lens of the well-known problems of liquid
filament breakup surrounded by a gas phase [53,54] and liquid dripping faucets [55]. Our liquid jet
at t̃ < 0.99 can be thought of as a quasicylindrical liquid filament (Oh = 0.0125) with a low ratio
between its length, 2Ljet , and radius, Rjet undergoing end pinching.

At around t̃ = 0.99 in Fig. 3(c), we observe a halt in jet axial growth as capillary pressure builds
at the bubble rear, inducing a vertical expansion towards the channel center line (ỹ = 0.5), creating
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an essentially flat bubble back at t̃ = 1.87 and a nascent pinching neck characterized by a high
|ω̃z| ring. The interface areas covered by the ring are further pulled in the counterflow direction,
prompting an additional curvature inversion at the bubble rear and the first pinch-off thereupon
(see t̃ = 2.09). This capillary singularity promotes a swift and opposite-direction recoil of the
bubble back and the newly entrapped liquid structure, thus forming the globoid-shaped bubble
rear observed in t̃ = 2.27–2.51. The rapidly forming rear pinching neck witnesses the incipience
of an additional capillary neck at the interior of the bubble (see highlight and high ω̃z ring in
t̃ > 2.09). This concludes in a second pinch-off and a precipitous recoil into a satellite drop (see
t̃ = 2.37). Henceforth, we will refer to the first of these pinch-off events as “back pinch-off,” and
to the second as “interior pinch-off”; the times for these events are denoted as t̃p−o,bk and t̃p−o,int ,
respectively. These phenomena of successive back and interior pinch-offs in surfactant-free cases
are in agreement with previous numerical observations [38].

The post-second pinch-off dynamics are driven by rich rotation mechanisms around both the
satellite and primary drops. The two pinch-off events create a small contracting liquid filament,
characterized by local Oh ∼ 0.05 and Lligament/Rligament ∼ 2.62 and similar to those studied previ-
ously [56,57]. This small aspect ratio, in conjunction with the strong contracting kinetic energy
derived from the second pinch-off, overcome capillary pressure forces to avoid an additional
pinch-off instance in the small ligament. Observing the vorticity contours and the highlights at
t̃ = 2.27–2.37, an example of a vortex ring detachment can be noticed at the forming neck of the
filament, where the vorticity boundary layer detaches and advects towards the center of the bulbous
region, pushing flow away from the neck and promoting the escape from pinch-off [49,58,59].
As seen in t̃ = 2.45, succeeding the small liquid filament retraction in the counterflow direction
(t̃ = 2.37) we spot a counterexpansion (see positive ω̃z at t̃ = 2.45) that generates the bullet-like
satellite drop depicted at t̃ = 2.51 and that eventually coalesces with the primary drop. The process
of incorporation of the satellite into the primary drop exhibits the progressive growth of the finite
liquid bridge [60], driven by the two opposite-signed high |ω̃x| rings in its vicinity (see t̃ = 2.98) as
well as complex dynamics of interfacial waves across the newly formed drop (see t̃ = 3.07).

B. Influence of surfactant parameters on reentrant liquid jet formation and encapsulation dynamics

Having examined in detail the different encapsulation phenomena observed for high Ca in
surfactant-free interfaces, we continue our analysis to explore the influence of key surfactant
dimensionless groups. We begin by exploring the locality of the pinch-off in surfactant-free and
surfactant-laden cases. We follow this by highlighting the influence of Marangoni stresses on
the infiltration liquid shape, followed by describing the relative effect of βs and Bi. Thereafter,
we analyze the competition between the rates of interface surfactant adsorption and desorption,
represented by k and Da simultaneously.

1. Focus on the pinch-off dynamics for surfactant-free and surfactant-laden cases

We examine in this subsection the locality of the reentrant jet breakup in our simulations and
contrast the neck thinning behavior to that of the well-established theoretical scalings of Eggers [61]
and Day et al. [62] for the minimum neck radius, rmin, and its evolution over time, tp − t , where tp

is the breakup time. We focus on the first observed breakup singularity for the surfactant-free case,
which corresponds to a “back pinch-off” event, as defined in Sec. III A and Figs. 3(a) and 3(c)
at t̃ = 0.99–2.16. Figure 4(a) contrasts the thinning progression of the pinching necks using the
two mesh resolutions extensively tested in Appendix B (M1 and M2), along with an additional
“medium” mesh with global resolution M1.5 = 5376 × 192 × 192. Figure 4(b) depicts zoomed-in
snapshots, color coded by ω̃z, of the liquid jet as it approaches the singularity.

An inspection of this figure provides further evidence of the nearly complete independence
of our results on the mesh resolution from M1 and beyond, as well as the robustness of our
numerical approach, which is able to correctly capture the system’s universal dynamics at the scale
of the pinch-off in terms of both thinning rate and scaling exponents. Reassuringly, we observe an
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FIG. 4. Neck thinning analysis for the “back pinch-off” event of a surfactant-free interface. (a) Plot of
the minimum neck radius, rmin, vs the time before pinch-off, tp − t , depicting how our simulations correctly
retrieve the well-known inertial-viscous (pink line) pinching regime of Eggers [61] and approximate the
inertial-capillary regime predicted by Day et al. [62]. Here the time has been scaled by the inertial-capillary
timescale, tin−cap = √

ρl D3/σs. (b) Zoomed-in ω̃z contour plots of the pinch-off. All other parameters remain
unchanged from those specified in Sec. II B for the base case.

almost complete overlap of the curves for the three resolutions as rmin(t ) → 0 (t̃b − t̃ � 4 × 10−3),
where the universal scaling for the inertial-viscous (IV) regime of Eggers [61] [rmin ∼ (tp − t )]
is correctly recovered. At early thinning stages (t̃b − t̃ ≈ 2 × 10−1 − 6 × 10−2 in our systems),
the competition between fluid inertia of the opposing capillary forces yields the inertial-capillary
regime (IC [62], dictated by rmin ∼ (tp − t )2/3 and highlighted in red) for the liquid thread, which
later transits into intermediate regimes, as predicted in Castrejón-Pita et al. [63]. It is important to
note that although our obtained solution approximates the IC regime, it does not precisely match
the theoretical preexponent of ≈ 0.7 [54] or the 2/3 exponent proposed in Ref. [62]. For reference,
the closest matches to the scaling were found to be r̃min ≈ 0.67(t̃b − t̃ )2/3, r̃min ≈ 0.6(t̃b − t̃ )0.62,
and r̃min ≈ 0.55(t̃b − t̃ )0.56 for M1, M1.5, and M2, respectively. Moreover, it can be noticed that the
intermediate stages in our plot appear to be moderately sensitive to the resolution.

The above mentioned deviations from the theoretical scalings can be attributed to the dis-
similarities between our system and those studied in Refs. [61,62]. Our system consists of a
three-dimensional confined capillary channel wherein inertial effects are non-negligible, the pinch-
ing thread grows axially due to the action of the main flow, and the pinching domain remains
in motion across the channel. These intricate dynamics are not accounted for in the theoretical
scalings, which were initially proposed in an axisymmetric context under free-flow conditions. It
is these dissimilarities between our system and the theoretical framework that likely contribute to
the observed discrepancy between our solution and the IC regime. As mentioned in our previous
work [49,50], the nature of our 3D simulations makes it prohibitively difficult to capture the dynamic
intermediate regimes reported in Castrejón-Pita et al. [63], a fact that likely explains the deviations
found between mesh resolutions at intermediate times.
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FIG. 5. Neck thinning analysis for the “interior pinch-off” event of a surfactant-laden case characterized by
k = 0.25 (Da = 0.4). (a) Plot of the minimum neck radius, rmin, vs the time before pinch-off, tp − t , depicting
how our simulations correctly retrieve the well-known inertial-capillary (red line) and inertial-viscous (pink
line) pinching regimes predicted by Eggers [61] and Day et al. [62], and the occurrence of three intermediary
regimes. Here the time has been scaled by the inertial-capillary timescale, tin−cap = √

ρl D3/σs. (b) Zoomed-in
ω̃z (top) and �̃ (bottom) contour plots of the pinch-off. All other parameters remain unchanged from those
specified in Sec. II B for the base case.

We further investigate the pinching phenomenon of our system by tracking the reentrant jet
breakup process in the presence of surfactants. To do so, we take as a case study the first “interior
pinch-off” event of a simulation run characterized by k = 0.25 (Da = 0.4), with the remaining
parameters kept constant from those ascribed to the base case in Sec. II B. The results from
this analysis are summarized in Fig. 5. Remarkably, these results are in agreement with the
existing literature on surfactant-covered liquid thread breakup surrounded by a static gas phase
(see, for example, Craster et al. [64], Kamat et al. [65], Liao et al. [66], Wee et al. [67], Xu
et al. [68]); our surfactant-laden system, which is characterized by a moving liquid jet in confined
flow with non-negligible inertia, adheres to a breakup mode in the inertial-viscous regime of
Eggers [61] as rmin(t ) → 0 and to the inertial-capillary regime in the early thinning stages, akin
to our observations for the surfactant-free case. As reported well in the references provided above,
at the locality of the pinch-off, the competing inertial, viscous, capillary, and Marangoni-related
forces balance in a way that makes the thinning neck evolve as if there were no surfactants
present, even if large Marangoni stresses arise near the pinching point to reopen the neck [65].
The intermediary dynamics between that characterized by the (t̃b − t̃ )2/3 and (t̃b − t̃ ) scalings,
however, is influenced by the presence of surfactant. The existence of intermediary scalings that
eventually lead to the inertial-viscous regime has been reported previously in Xu et al. [68] for
small Pe and seen in Kamat et al. [65] and Wee et al. [67], for Pe → ∞ (see Fig. 5 of the
first reference). This is illustrated in Fig. 5(b) where the lower half of the jet is coloured by
interfacial surfactant concentration, �̃. Due to the confinement effects present in our system, the
bulk flow in the axial direction drags surfactants from their accumulation zones at the bubble’s
rear and distributes them along the liquid jet. In our system, this action appears to counteract the
surfactant depletion process at the pinching point typically reported in surfactant-covered capillary
breakup [64,67].
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FIG. 6. Effect of Marangoni stresses on reentrant liquid jet formation and encapsulation. (a) Liquid-filled
jet shape (top), surfactant interfacial concentration (middle), and Marangoni stresses (bottom). (b) Liquid-filled
jet shape (top), normal stresses (middle), and interface curvature (bottom). |τ̃m| > 0 corresponds to Marangoni-
supported, while |τ̃m| = 0 to Marangoni-free. Plots of two-dimensional projection in the x-y plane (z̃ = 0.5)
and at t̃ = 2.09, 2.10, 2.11 for surfactant-free |τ̃m| = 0, and |τ̃m| > 0, respectively. (c) 3D schematic of pinch-
off mechanisms. The interfaces of these images have been slightly translated in the x direction to have a
common point of reference (marked by the black dotted line); for their real location in the channel, refer
to (a, top). t̃p−o,bk = 2.16, 2.55, 2.90 and t̃p−o,int = 2.33, 2.37, 2.62 for surfactant-free, |τ̃m| = 0, and |τ̃m| > 0,
respectively. All other parameters remain unchanged from those specified in Sec. II B for the base case.

2. Marangoni stresses, surface elasticity, and Biot number

Here we elucidate the behavior of a surfactant-laden system under the conditions ascribed to the
“base” case (refer to Sec. II B) and compare it to that of clean interfaces. To isolate the effects of
lower surface tension from those arising from Marangoni stresses on the encapsulation dynamics,
we have set up an additional case, denoted by |τ̃m| = 0, in which we have suppressed the last term
on the r.h.s. of Eq. (2) to inhibit Marangoni stresses while simultaneously allowing the reduction of
surface tension. Figures 6(a) and 6(b) show the shape of the liquid jet and a few other characteristics
along its interface at t̃ = 2.09 − 2.11. We have duplicated the plots of interfacial shape on both
column panels for clarity. Examination of the plots uncovers an almost surfactant-free interface at
the liquid jet for |τ̃m| = 0, which exhibits a significant drop in �̃ going from the edge to the interior
of the reentrant jet in the streamwise direction and a slight surge after surpassing the incipient
pinching neck. This rapid loss of surfactant for |τ̃m| = 0, as opposed to the Marangoni-supported
case, |τ̃m| > 0, is explained by noticing that the base case’s operating conditions promote surfactant
desorption (large Da and small k) as �̃ → 1 [see Eq. (6)] as well as slow interface surfactant
diffusion (large Pes). Reverting to the remarks by Batchvarov et al. [27] and Atasi et al. [39],
the motion of the bubble prompts surfactant accumulation at the back due to drag forces from the
liquid phase, partially counteracted by Marangoni stresses in the opposite direction for |τ̃m| > 0. The
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absence of Marangoni stresses in the |τ̃m| = 0 case leads to a continuous process of local surfactant
accumulation at the back and desorption into the bulk, depleting the interface of surfactants.

Figure 6(c) portrays a key difference in the encapsulation behavior between the three cases, where
the succession of back pinch-off first and interior pinch-off second observed for clean interfaces is
reversed in the presence of surfactants and the overall pinch-off dynamics are delayed (see the
figure caption for the pinch-off times). This delay is accentuated for |τ̃m| > 0, as can be observed
from the local peaks in κ̃ and τ̃n of Fig. 6(b), which, in the case of |τ̃m| = 0, are already pulling
the interface towards the channel center, signaling the onset of capillary neck closure. Part of
the role of Marangoni stresses can be seen in the green-shaded region of Fig. 6(a), where these
tangential stresses counteract capillary forces at both the back and interior pinch-off regions. These
observations are in complete agreement with Refs. [49,65,69] for liquid threads, although we note
that in our system the Marangoni forces exerted on the interface are not sufficient to escape pinch-off
completely. The inversion of back and interior pinch-off times in contaminated interfaces can be
attributed to the noticeably nonuniform surfactant distribution along the liquid jet, which displays
its highest values in the regions neighboring the capillary neck at the back of the jet, lowering surface
tension and providing additional disruption to neck closure in comparison to the interior neck.

The effect of the surfactant-induced interior and back pinch-off delays can be further described
through the evolution of the satellite drop, illustrated in Fig. 6(c) for |τ̃m| > 0. Unlike its surfactant-
free counterpart (see Fig. 3(c), t̃ = 2.37−2.98), this satellite drop does not recoalesce with the main
drop before the bubble reaches the end of the channel domain in our simulations. Nevertheless, we
note that the satellite drop’s average velocity exceeds that of the main drop by about 30% under the
conditions displayed in Fig. 6(c), suggesting an eventual drop coalescence in an extended channel.
In surfactant-laden scenarios, the delayed coalescence of drops is attributed to the reentrant jet’s
lower surface tension, allowing faster infiltration into the bubble due to reduced resistance to liquid
flow. This, in combination with Marangoni stresses opposing the jet’s breakup, causes a delay in the
back and interior pinch-off events and increases the spatial separation between the main and satellite
drop. Measurements at t̃ = 2.66 reveal a dimensionless distance (d̃main,sat) of 0.13 for surfactant-free
cases and 0.31 for the surfactant-laden case depicted in Fig. 6(c). We note that the formation of
the satellite drop is confined to surfactant-laden cases with highly desorptive characteristics, as
explained in Sec. III C.

For the first part of our parametric investigation, we study the effect of βs on encapsulation and
the post-pinch-off dynamics. As Fig. 7(a) depicts, and in line with previous studies in the context
of ink-jet printing [70,71], increasing surfactant strength gradually increases the speed of liquid
infiltration and decreases the rate of neck thinning at both the back and interior of the reentrant
jet [see locations of jet nose in Fig. 7(a) and pinch-off times in the figure caption]. This delay is
materialized in the larger |κ̃| peaks seen for βs = 0.25 at the incipient pinching necks, as well as
the higher |τ̃m| that arise at their vicinity, seeking to counteract capillary draining [72]. Figure 7(b)
illustrates the progression of the primary encapsulated drop as it travels across the bubble domain
in the form of its volume-averaged x velocity, ux,d , normalized by Ub (top), interfacial area, Ad ,
normalized by its area after pinch-off, Ad,0 (middle), and ratio between drop length in the x and y
directions, a/b (bottom). The encapsulated drops exhibit three common characteristics irrespective
of the presence of surfactants, namely, a higher streamwise velocity than the bubble nose, highlight-
ing the potential for a scenario in which the bubble nose interface is ruptured by the drop, an overall
decrease in interfacial area, and dampening a/b oscillations in time, which culminate in virtually
spherical drops. This bubble nose rupture is further analyzed in Sec. III C. Under the conditions
considered, the addition of a strong surfactant (βs = 1) decreases the rate of surface area reduction
and significantly increases drop velocity relative to the bubble nose. The nonmonotonic behavior of
ux,d/Ub with regard to a clean interface and weak surfactants (βs = 0.25–0.50) can be explained by
observing in Fig. 7(c) the spatial distribution of �̃, σ̃ , and τ̃m in the encapsulated drop at t̃ = 7.70.
Despite the largest |τ̃m| opposing drop propagation in the streamwise direction for the strongest
surfactant, it is seen that these effects are fully countered by the lower surface tension across the
drop’s domain, yielding a higher drop velocity than the surfactant-free case. In contrast, the weak
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FIG. 7. Effect of βs on reentrant liquid jet formation and encapsulation. (a) Liquid-filled jet shape, surfac-
tant interfacial concentration (left axis, continuous line), and surface tension (right axis, dotted line), Marangoni
stresses, and interface curvature at t̃ = 2.09, 2.10, 2.10, 2.09 for surfactant-free and βs = 0.25, 0.50, 1, re-
spectively. (b) Temporal evolution of primary encapsulated drop velocity normalized by bubble velocity,
primary drop interfacial area normalized by area after pinch-off, and ratio between drop length in the x
and y directions. Data points computed for all cases every 10−3 s. (c) Primary encapsulated drop shape,
surfactant interfacial concentration (left axis, continuous line), and surface tension (right axis, dotted line)
and Marangoni stresses at t̃ = 7.70. Plots on two-dimensional projection in the x-y plane (z̃ = 0.5) for (a), (c).
t̃p−o,bk = 2.16, 2.52, 2.90, 3.83 and t̃p−o,int = 2.33, 2.40, 2.62, 2.77 for surfactant-free and βs = 0.25, 0.50, 1,
respectively. All other parameters remain unchanged from those specified in Sec. II B for the base case.

surfactant cases feature an almost clean interface with surface tension values very close to the clean
case, but with nonzero Marangoni effects that induce a delay in drop propagation.

The morphological deformations that characterize drop behavior after pinch-off, as depicted in
Fig. 7(b) (bottom), demonstrate the presence of a semiperiodic oscillating pattern monotonically
influenced by surface elasticity. In the inset of this figure, a higher deviation from a fully spherical
drop can be appreciated for the surfactant-free case in both the major crests and troughs of the
oscillatory structures. Considering these results, we draw parallels with the study of Wang et al. [73]
in an ink-jet system, whose main results suggest that the extent of deformation decreases with
Ca (after a critical Ca has been reached), in line with our numerical observations for increasing
βs. Estimating the frequency of a/b oscillations through the classic expression of Rayleigh [74]
( f ∼

√
σ/ρcr3

d , where rd is the drop’s spherical equivalent radius) at the latest time recorded
(t̃ ≈ 13.17), we obtain f̃ ∼ 1.49, 1.55, 1.55, 1.57 for surfactant-free and βs = 0.25, 0.50, 1,
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FIG. 8. Effect of Bi on reentrant liquid jet formation and encapsulation. (a) Liquid-filled jet shape,
surfactant interfacial concentration (left axis, continuous line), and surface tension (right axis, dashed
line), Marangoni stresses, and interface curvature at t̃ = 2.09, 2.10, 2.10, 2.10 for surfactant-free and Bi =
1, 0.10, 0.01, respectively. (b) Temporal evolution of primary encapsulated drop velocity normalized by bubble
velocity, primary drop interfacial area normalized by area after pinch-off, and ratio between drop length in the
x and y directions. Data points computed for all cases every 10−3 s. (c) Primary encapsulated drop shape,
surfactant interfacial concentration (left axis, continuous line), surface tension (right axis, dashed line), and
Marangoni stresses at t̃ = 7.70. Plots of two-dimensional projection in the x-y plane (z̃ = 0.5) for (a), (c).
t̃p−o,bk = 2.16, 2.63, 2.90, 3.09 and t̃p−o,int = 2.33, 2.37, 2.62, 2.68 for surfactant-free and Bi = 1, 0.10, 0.01,
respectively. All other parameters remain unchanged from those specified in Sec. II B for the base case.

respectively, implying a dominating effect of lower drop radius over lower surface tension on the
frequency of deformation cycles for increasing βs.

The effects arising from altering Bi in the range 0.01–1 are depicted in the plots of Fig. 8.
An interface covered by a highly soluble surfactant (i.e., high Bi) undergoes rapid rates of mass
exchange between the interface and bulk as a result of its comparatively low (high) characteristic
desorptive (inertial) time. This is demonstrated by noticing the significantly lower �̃ distributed
along the liquid jet for the highest Bi considered, which, barring the surfactant-free case (Bi → ∞),
exhibits the slowest rate of jet formation and the fastest pinch-off events [see location of jet nose
in Fig. 8(a) (top) and figure caption for the pinch-off times]. Similar to our previous remarks, the
signature |τ̃m|, |κ̃|, and capillary pressure peaks (not shown) that signal the onset of capillary neck
closure and the advent of pinch-off are already developing in a noticeable manner for Bi = 1, in
contrast to Bi = 0.01–0.10. The post-pinch-off temporal evolution of the primary drop, as depicted
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FIG. 9. Impact of surfactant parameters on pinch-off dynamics and evolution of first encapsulated drop for
a highly desorptive surfactant (k = 0.1). (a) Effect of βs at Bi = 0.1. (b) Effect of Bi at βs = 0.5. All other
parameters remain unchanged from those specified in Sec. II B for the base case.

in Fig. 8(b), reveals similar trends to those referenced in the above analysis of βs in terms of drop
shrinkage, its attenuation in surfactant-laden cases, and semiperiodic drop size oscillations.

Figure 9 elucidates the functional relationships that interlink βs and Bi to key outcomes char-
acterizing the encapsulating system. These outcomes encompass the first pinch-off event (t̃p−o,1),
the post-detachment volume-averaged drop velocity (ũx,d ), the first encapsulated drop’s volume
(normalized by the bubble’s initial volume, Vd/V0), and the drop’s interface surfactant concentration
(normalized by the initial concentration, �d/�0). The figure incorporates best-fit curves for each
variable for reference. An examination of the relationships pertaining to βs in Fig. 9(a) unveils
a distinct divergence between behavioral modes for βs < 0.4 (highlighted in blue) and βs � 0.4
(highlighted in green). This divergence is particularly evident for t̃p−o,1 and ũx,d . In the latter βs

range, well-established surfactant-induced effects, discussed in this paper and widely reported in
the literature, come to the forefront. These include the concurrent impact of stabilizing Marangoni
stresses and reduced local surface tension (i.e., increase in local Oh) contributing to thwart/delay
capillary breakup and reduce drop size, as previously reported in Refs. [65,69,75].

Our simulation results reveal that a surface elasticity surge (maintaining all other dimensionless
groups unchanged) brings about the generation of encapsulated drops of increasing surfactant
concentration and smaller size (see plots of �d/�0 and Vd/V0). A larger �/�0, in tandem with an
augmented sensitivity of σ̃ to �̃ for increased βs [indicated by the Langmuir relation in Eq. (7)]
point to lower σ̃ during the reentrant jet infiltration and pinch-off events. In fact, applying the
Langmuir relation to the �d/�0 data of Fig. 9(a), we find that σ̃ ranges from 1 to 0.869 for
βs = 0 and βs = 1, respectively. Coupling this analysis with the understanding that |τm| ∼ βs (see
Sec. II A), it is possible to rationalize the direct relationship between t̃p−o,1 and βs by invoking the
above mentioned compounded action of larger Marangoni stresses and lower surface tension to
resist capillary breakup for larger values of βs.
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The direct relationship registered between ũx,d and βs for βs � 0.4, featuring a linear growth
under our studied conditions, owes its behavior to the diminished capillary resistance to liquid
infiltration into the bubble’s domain, as mentioned previously in Sec. I. This directly proportional
response of ũx,d to βs is akin to the well-established links between velocity of drops formed
through end pinching and Oh (∼σ−1/2, precipitated by larger βs in our simulations, as previously
explained) in the problem of jet droplets released to the atmosphere through bursting bubbles [76].
The inversely monotonic ũx,d vs βs relationship, evident for βs < 0.4, embodies the nuanced effects
of surface tension and Marangoni stresses, as briefly discussed in our analysis of Fig. 7. The uneven
distribution of surfactant across encapsulated drops [larger concentration at the drop’s nose; refer to
Fig. 7(c), bottom)] instigates counterflow Marangoni stresses (τ̃m,x < 0), hindering the motion of the
drop. These Marangoni stresses, though small, are non-negligible, constituting approximately 10%
of the Marangoni forces exerted on the infiltrating jet prior to pinch-off (see Fig. 7). For instances
where βs < 0.4, the anticipated acceleration of the drop due to reduced surface tension is offset
by these Marangoni stresses, thereby resulting in a slightly decreased drop velocity with increased
surfactant strength.

The parameter sweep of surfactant solubility elucidated in Fig. 9(b) mirrors that of βs in the
discernible emergence of dual behavioral modes, this time noticeable for ũx,d and Vd/V0 and clearly
separated by Bi ≈ 0.30. Before understanding this duality (highlighted in gray and magenta), we
examine the expected behavior detected for t̃p−o,1 and �d/�0. Both variables conform to a conspicu-
ous exponential decline with increased Bi. This signals that elevated rates of mass transfer between
the interface and the bulk compared to convection—indicative of enhanced solubility or larger
Bi—predominantly deplete the interface of surfactant and concurrently accelerate capillary breakup
with respect to lower Bi. Notice that these cases correspond to k = tdes/tad = 0.1, stipulating that
surfactant desorption is heavily promoted over adsorption, leading to the high-rate plummeting of
�̃/�̃0 with Bi and the roughly surfactant-free drops observed for Bi > 1 (σ̃ ≈ 1 − 0.08e−3.81Bi,
not shown in the plot). The inverse exponential dependence recovered for t̃p−o,1 and �d/�0 im-
poses explicit bounds for these values between the two limiting cases: surfactant-free (Bi → ∞,
t̃p−o,1 = 2.48 and �/�0 = 0) and insoluble surfactant (Bi = 0, t̃p−o,1 = 2.81 and �/�0 = 1.87). The
approximately twofold increase in drop surfactant concentration with respect to initial surfactant
coverage as the insoluble limit is approached is consistent with other applications. For instance, in
the context of jet drops formed via bursting bubbles, Ref. [77] reports a 1.6 times increase in �̃ of
the released drops with respect to that of the equilibrated bubble interface before bursting.

Focusing on the behavioral divergence obtained for Bi ≈ 0.3, an inverse relation between Vd/V0

and Bi is recovered for Bi > 0.3. In a similar fashion to the trends elucidated for surface elasticity,
the diminished σ̃ associated with augmented surfactant coverage as Bi decreases generates smaller
encapsulated drops. As we venture into the Bi � 0.3 territory, a pronounced plunge in the sensitivity
of Vd/Vd to Bi is identified with respect to that of Bi > 0.3. The Bi < 0.3 range adheres to
|d (V0/Vd )/dBi| = −0.0125Bi−3/4, whereas Bi > 0.3 is driven by |d (V0/Vd )/dBi| = 0.105Bi−1.35

[one to two orders of magnitude larger |d (V0/Vd )/dBi| for Bi > 0.3 within the entire Bi range
studied]. This analysis hints at a saturation of surfactant effects for increasingly insoluble contam-
inants. To finalize the present discussion of Fig. 9, we call attention to the similar behavior of ũd,x

in Bi > 0.3 as that in βs < 0.4, that is, a neutralization of the drop acceleration effects introduced
by lower surface tension (prompted by larger βs or smaller Bi) by counterflow Marangoni stresses
(τ̃m,x < 0).

3. Effect of surfactant adsorption/desorption kinetics (Da and k)

We now proceed to examine the influence of directly contrasting the characteristic times of
adsorption and desorption, along with the initial interface saturation through varying k and Da
simultaneously. This concurrent variation allows us to maintain all other parameters constant.
Figure 10(a) portrays a monotonic response of the liquid infiltration depth and �̃ with k and Da,
where the rapid rates of surfactant adsorption inherent to the high k (low Da) cases are materialized

034001-19



P. PICO et al.

FIG. 10. Effect of k and Da on reentrant liquid jet formation and encapsulation. (a) Liquid-filled jet shape,
surfactant interfacial concentration, Marangoni stresses, and interface curvature at t̃ = 2.09, 2.10, 2.09, 2.09
for surfactant-free and k = 0.1, 1, 10, respectively. (b) Interior pinch-off time vs k and Da, and schematic of
the three regions that divide thinning behavior. (c) Contour plots of normalized vorticity in the z direction and
comparison of infiltrating liquid shape for k = 10.0, Da = 0.01 (top), and k = 0.1, Da = 1.0 (bottom). The
interfaces of these contour plots have been translated in the x direction to have a common point of reference
(marked by the black dotted line). Plots on two-dimensional projection in the x-y plane (z̃ = 0.5). All other
parameters remain unchanged from those specified in Sec. II B for the base case.

in the relatively large and comparatively constant �̃ distributions along the reentrant jet. In line with
our previous results, general reductions in local surface tension at the bubble rear, brought about
by higher k or βs and lower Bi conditions, promote a faster and deeper infiltration of liquid into
the bubble domain. In Fig. 10(b) we record the time until the first pinch-off instance at the bubble
interior as a function of k for the entire parameter space explored. A retardation of the capillary
instabilities that lead to end pinching is seen as k is increased in the range 0 (surfactant-free)
< k < 1, consistent with our previous remarks about the combined effect of σ̃ and Marangoni
stresses on opposing drop encapsulation. This behavior is mirrored by the τ̃m and κ̃ peaks exposed
near the nascent pinching necks for the lowest k cases displayed in Fig. 10(a) (k = 0.1–1.0), while
the oscillations seen for k = 10 correspond to capillary waves in the infiltrating liquid, reported by
Constante-Amores et al. [49] for long liquid ligaments.
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Similar to our previous analyses of βs, Bi, and Marangoni-free case for k = 0.10, it is found
that increasing k in the range k < 0.10 results in a sequence inversion of the two main pinch-off
events (t̃p−o,bk > t̃p−o,int) identified in clean interfaces (t̃p−o,bk < t̃p−o,int; see caption of Fig. 10).
Interestingly, it is also found that for all cases above k = 0.25, the large accumulation of surfactants
near the bubble rear provides a strong resistance to capillary pressure buildup in those regions,
resulting in the partial elimination of the “back pinch-off” event until bubble bursting events occur.
This will be further discussed in the following section. Another notable feature to highlight from
Fig. 10(b) is the sharp decrease in t̃p−o,int above the critical value of k = 1. This discontinuity in
the function t̃p−o,int vs k in conjunction with our observations about the elimination of the back
pinch-off suggests a partition of the encapsulation dynamics into two major regions according to
the rates of adsorption/desorption: (i) the above described region for k < 1, in which the presence
of surfactants exerts a stabilizing effect, leading to a delay in neck thinning in relation to a fully
clean interface, and (ii) a region of rapid liquid-filled jet formation in the axial direction alongside
a significant acceleration of the first interior pinch-off event for k > 1. The first region is further
segregated by the occurrence (k < 0.25, region i.a) or elimination (k > 0.25, region i.b) of the
back pinch-off. An explanation for the marked transition from the first to the second region in
terms of thinning rates is as follows. A general increase of surfactant coverage due to high rates
of adsorption introduces high rates of viscous and inertial deformation to the interface, as noted
by Bazhlekov et al. [78], hence increasing the axial velocity of the infiltrating liquid and its aspect
ratio. Recalling the observations of Wang et al. [59] and Ambravaneswaran and Basaran [72] in
contracting/expanding liquid filaments, we show in Fig. 10(c) how in cases above the critical k,
Ljet/Rjet surpasses a given threshold value to enter the breakup regime and accelerate end pinching,
even if the local values of surface tension are lower than those of smaller k conditions.

C. Bubble bursting, back deformations, and regime maps

This section provides a more detailed account of the post pinch-off dynamics, focusing specifi-
cally on the process of bubble bursting via the liquid jet/entrapped drops and the temporal fate of the
bubble back and accompanying trailing structures. In Figs. 11(a) and 11(b) we summarize the three
main bursting behaviors observed in the βs-k and Bi-k (Da) spaces, leaving all other conditions
specified in the baseline case unchanged. As captured in the figure, a first regime (I), distinctly
bounded by a surfactant-free interface and k below the critical value defined in the previous section,
is identified for all βs and Bi tested. This regime adheres to a behavior mode of slow infiltration
of liquid, monotonic delay of the first interior pinch-off event with increasing (decreasing) βs (Bi)
(see Fig. 9), and most importantly, eventual restoration of the interfacial morphology of the bubble
back, depicted in Fig. 11(c), top. This restoration ensures a pseudo-stable entrapment of one or
multiple drops of varying size and �̃ within the bubble domain, disrupted only by a potential
rupture of the bubble nose by the first drop. We note that this rupture was not observed for
any of the cases encompassed within (I) given the channel length employed in our simulations
and the significant elongation of the bubble across the channel. The stability of the encapsulated
drops-bubble compound in regime I poses a potential avenue for future research.

A second regime (II) emerges as k approaches the critical value, where a much faster and
deeper liquid jet develops across the bubble and, ensuing from diminished capillary forces, further
delays to pinch-off are recorded. These delays lead to the entrapment of the first drop in regions
approaching the bubble nose in the axial direction, promptly leading to its rupture, as illustrated at
t̃ = 5.19 in Fig. 11(c), middle. Following a series of end-pinching events, the liquid jet undergoes
several instances of escapes of pinch-off, in conjunction with a surge of surface capillary waves
across its domain, and a radial growth that gives rise to a large bulbous end (see t̃ = 8.73).
These mechanisms are closely related to the intricate phenomena stemming from retracting liquid
filaments, as addressed in Refs. [49,79]. This substantial growth causes the liquid jet to burst the
interface near the channel walls, thereby fully separating the original bubble into two individual
entities.
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FIG. 11. Encapsulation and bursting regime maps in the (a) βs-k and (b) Bi-k spaces. Bi = 0.10 for (a) and
βs = 0.50 for (b). Our results, shown as markers colored by the first interior pinch-off event, reveal three
distinct regimes: I (squares), II (circles), and III (stars). The black markers correspond to the data set of Atasi
et al. [39], which does not differentiate regime II from III. (c) Schematic contour plots of normalized vorticity
in the z direction and comparison for the three regimes identified. All other parameters remain unchanged from
those specified in Sec. II B for the base case. Regime maps developed for Bo → 0.

The third regime (III) is confined to regions of above critical k with moderate βs and 0.01 < Bi <

1 and closely resembles the mechanisms of II, with the pinch-off times being the key differentiating
characteristic. In III the fast expansion of the liquid jet expedites the first pinch-off with respect to the
surfactant-free case (see previous subsection). Although the location of the first entrapment is much
farther away from the bubble nose than in Sec. II, the encapsulated drops exhibit a comparatively
faster velocity [e.g., ux,d/Ub = 1.27 and ux,d/Ub = 1.47 at t̃ = 4.75 for the cases in Secs. II and III
emphasized in Fig. 11(a), respectively], also leading to bubble nose ruptures by the drops and the
consequent radial rupture by the bulbous end of the liquid jet mentioned above (see t̃ = 10.50).

Figure 11 also displays the numerical data derived from the regime maps proposed in Atasi
et al. [39] for surfactant-laden systems. A qualitative comparison is drawn between the bubble rear
bursting phenomena characteristic of regime III [see t̃ = 10.50 in Fig. 11(c)] and the observations of
Nath et al. [37] for liquid-liquid flow in clean interfaces (see Fig. 15 of this reference). As depicted
in the figure, our proposed transition from regime I (curvature inversion without bursting) to regimes
II and III (bubble bursting) at k ≈ 0.45 for varying βs and Bi aligns remarkably well with that found
in Atasi et al. [39] for Ca → 1 (see Fig. 16 of this reference). Notice that Ref. [39] does not dive
into the pinch-off dynamics of the system, precluding us from making a direct classification of their
bubble bursting cases into our regimes II and III.

A few caveats are worth mentioning concerning these comparisons against previous investi-
gations. While our regimes and observations of the bubble’s behavior are entirely in line with
previous results, we must emphasize that our operating conditions vary significantly from those
of Atasi et al. [39] and Nath et al. [37]. The former reference explores a system with vanishing
inertia, a close-to-spherical bubble, and a circular cross-sectional channel. The latter reference, as
previously mentioned, involves the motion of a drop in the absence of surfactant material. These
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characteristics explain why their encapsulation phenomena are observed for Ca much larger than
ours [Ca ∼ O(100] compared to Ca = 0.0693) and why it is not possible to map the exact operating
conditions of Nath et al. [37] into ours.

To finalize our analysis, we wish to highlight the limitations of our proposed encapsulation
regime maps. As briefly mentioned in Sec. II A, gravitational forces are neglected in our simu-
lations (Bo = 0) because their effects typically become significant only in channels larger than
1 mm [80], given the prevailing influence of capillary forces at the microscale. Our primary focus
in this study was to characterize encapsulation mechanisms within scenarios involving inertia,
noncircular geometries, and the presence of contaminants. Hence, isolating these influences from
other nonidealities, including gravitational effects, was essential for our objectives. It is crucial to
recognize, however, that the diminished influence of capillary forces—an essential condition for en-
capsulation, accentuated by surfactants—could potentially magnify the importance of gravitational
forces, consequently impacting encapsulation dynamics.

We have assessed the potential impact of gravity by comparing characteristic timescales within
our system to the free-falling time of an encapsulated drop. Adopting Bo = 0.15, a moderate value
of Bo that still induces noticeable gravitational effects on gas-liquid systems [81]), we find that
the falling time of encapsulated drops (≈4.5 × 10−2 s) largely exceeds the reentrant jet’s pinch-off
times under our tested conditions (≈5–7 × 10−3 s) but is comparable to the total travel time of
the bubble across our channel domain (≈3–6 × 10−2 s). This suggests that gravitational effects are
unlikely to significantly influence the curvature inversion, jet infiltration, and breakup processes
elucidated in this study, or the impact of surfactants. Nevertheless, gravity is certain to disrupt the
trajectory, velocity of entrapped drops, and thus the proposed regime maps illustrated in Fig. 11.

IV. CONCLUDING REMARKS

This work presents an in-depth characterization of the unsteady mechanisms describing elon-
gated bubbles flowing across liquid-filled channels via numerical simulations under negligible
gravitational effects. These mechanisms arise in opposition to the well-known steady-state phe-
nomena of Taylor bubbles under the traditional assumptions of negligible inertial/viscous effects,
symmetric cross-sectional channels, and the absence of interfacial contaminants. As reported in
limited instances (see Atasi et al. [39] and Sauzade and Cubaud [29]) and confirmed here, interesting
dynamics emerge as We → O(10). Notably, the concomitant reduced capillary effects of high Ca
(and We) induce a loss of sphericity at the bubble’s front and back, triggering an elongation in
the flow direction of the former and a flattening and subsequent curvature inversion of the latter.
The underlying mechanisms by which this curvature inversion evolves into a reentrant liquid jet
infiltrating the bubble, how this liquid structure collapses into small liquid drops entrapped in
the bubble domain, and the overall role of surfactants in these processes have been analyzed in
detail. We emphasize the multiple parallels that can be readily drawn between the various interfacial
features and singularities that ensue in our and other well-known systems involving capillary liquid
breakup, such as inkjet printing, two-phase microfluidics, contracting liquid filaments, and sheet
cavitation.

By performing a systematic sweep of a number of surfactant parameters and characteris-
ing dimensionless groups, we have elucidated the coupled effect of lower surface tension and
Marangoni stresses and their interactions with inertia and viscosity. Two distinct modes of liquid
jet breakup/drop encapsulation were found for comparatively low rates of surfactant adsorption
(low k): one closure of the liquid jet at the bubble’s rear and one end-pinching breakup mode at
the interior of the jet. Our simulations have shown that the combined and individual effects of both
surface tension and Marangoni stresses induce a delayed response in terms of pinch-off times, as
well as an inversion of the sequence of breakup modes with respect to clean interfaces. Provided
that k is low enough, these effects are maintained for increasingly strong (large βs) and less soluble
(small Bi) surfactants. Under the baseline conditions considered, a critical value of k = 1 represents
a phenomenological limit from which an increase of k represents an acceleration of the second mode
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of jet breakup when compared to an uncontaminated interface. This is due to the fast and deep liquid
infiltration in the bubble at high k, which promotes capillary breakup.

A summarizing map with three regimes of behavior was constructed in the βs-k and Bi-k (Da)
spaces, where regime I, limited by the critical k, allows for a semistable drop entrapment due to
the eventual closure and restoration of the bubble back in the aftermath of pinch-off. Conversely,
in regimes II (delayed pinch-off) and III (expedited pinch-off), the deep infiltration of the liquid
jet that precedes end pinching, together with the high relative velocity of the entrapped drops are
responsible for the subsequent bursting of the bubble nose. These two regimes, in addition, display
a multitude of rich interfacial events following the liquid jet end pinching, including escapes from
pinch-off, radial growth, and an eventual bubble bursting in the vicinity of the channel walls.

To the best of our knowledge, this is the first thorough and detailed characterization of the
phenomenon of drop encapsulation in moving bubbles in the presence of surfactants. There are,
however, a few avenues worthy of further pursuit in this topic, for instance, an examination of the
influence of surfactant parameters, βs, for example, on the critical k value. Based on our numerical
results, it is likely that this critical k will decrease with increasing βs, but additional evidence is
required. A deeper exploration of the stability of the encapsulated drops in regime I may also be
of interest to determine if there exists a set of conditions that allow for a perpetual entrapment of
these drops, and the potential applications of such systems in the context of emulsification. Finally,
an expansion of our proposed regime maps to include the effects of gravitational forces represents
an interesting avenue for further research.
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APPENDIX A: SURFACTANT PROPERTIES AND TIMESCALES

For typical ionic and nonionic surfactants in water, such as sodium dodecyl sulphate (SDS), N-
dodecyl-N,N-dimethylammonio-3-propane sulfonate, and Triton X-100 (TX100), the value of �∞
ranges between O(10−6 to 10−5) mol/m2 and Ds between O(10−12 to 10−8) m2/s, which results in
Pes = O(103 to 106) [77,82]. As noted previously in Constante-Amores et al. [83] and Batchvarov
et al. [27], saturation of the system’s dynamics is reached above Pes ∼ 100. Pec was set to be equal
to Pes, following the study of Agrawal and Neuman [84].

Based on Refs. [65,83] and our range of characterizing Oh, we define an inertial-capillary
or Rayleigh timescale as tin−cap =

√
ρlD3/σs for Oh � 1 and a Marangoni timescale as tm =√

(μlD)/�σ , where �σ = σs − 0.05σs is a measurement of the surface tension gradients. The
ranges for the characteristic timescales of the system are estimated to be tad ∼ O(10−4 to 100) s,
tdes ∼ O(10−3 to 10−1) s, tin−cap ∼ O(10−3 to 10−2) s, tconv ∼ O(10−3 to 10−2) s, and tm ∼ O(10−4)
s (for surfactant-laden cases). These timescales ensure that sorptive/desorptive, inertial, capillary,
and Marangoni phenomena will play an important role in the dynamics of the system.

034001-24



DROP ENCAPSULATION AND BUBBLE BURSTING IN …

FIG. 12. Results of mesh independence study for surfactant-free and surfactant-laden cases. (a) Case 0
(surfactant-free); (b) Case 1; (c) Case 2.

APPENDIX B: MESH INDEPENDENCE AND RESOLUTION ANALYSIS

For the assessment of our results’ (in)dependency on the mesh, we have tested two uniform
Cartesian grids with varying resolutions on both surfactant-free and surfactant-laden cases. The
operating conditions for all testing cases are those that allow the development of the liquid jet and
drop encapsulation phenomenon, thus evaluating the resolution on small velocity and time scales.

Figure 12 depicts the temporal evolution of the kinetic energy, Ek = ∫
V (ρu2)/2 dV , the inter-

facial area, and the position of the bubble nose, x̃b, the first two being normalized by their values
at t̃ = 0. The tested mesh resolutions correspond to M1 = 3456 128 128 and M2 = 6912 256
256, and the cases to surfactant-free for “Case 0” and surfactant-laden with Da = 1, k = 0.1 for
“Case 1” and Da = 0.1, k = 1 for “Case 2.” All other parameters remain unchanged from those
specified in Sec. II B. Table I reports a few additional features of the tested mesh resolutions,
including the minimum cell size, �xmin, the maximum relative variation of the gas phase volume,
�Vg = (Vg − Vg0)/Vg0, and that of the liquid phase, �Vl = (Vl − Vl0)/Vl0. Considering the adaptive
nature of our time-step treatment (see Sec. II A), we highlight that modifying the mesh resolution
alters the simulation time step in accordance to the cell size. For Case 1, we observed �t ≈ 8 × 10−7

s and �t ≈ 4 × 10−7 s for M1 and M2, respectively. The almost complete overlapping of the plots
displayed in Fig. 12 for the grids considered and the three sets of operating conditions suggests
that increasing the resolution by twofold on each direction does not lead to the development of
significantly different dynamics. Unless stated otherwise, all simulations have been run with M1

given that it provides enough resolution to ensure mesh-independent results, while also requiring
substantially less computational resources, as seen in Table I. This table also indicates that M1
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TABLE I. Additional features of the mesh resolutions tested.

Computing time/CPU
Case name Mesh to reach 10 ms (h) �xmin (µm) max(�Vg) (%) max(�Vl ) (%)

Case 0 M1 ∼0.60 7.81 7.70 × 10−3 1.04 × 10−3

M2 ∼8.46 3.91 −6.13 × 10−3 8.27 × 10−4

Case 1 M1 ∼0.78 7.81 7.65 × 10−3 3.02 × 10−4

M2 ∼12.71 3.91 3.84 × 10−3 5.19 × 10−4

Case 2 M1 ∼2.21 7.81 8.00 × 10−3 2.61 × 10−4

M2 ∼7.34 3.91 7.28 × 10−3 9.83 × 10−4

allows us to achieve volume conservation for both phases with a deviation of 8 × 10−3 % or lower
from the onset of the simulations.

An additional mesh independence test was carried out to specifically evaluate the pinch-off
dynamics’ sensitivity to the mesh resolution. For this test, we contrast the time taken to reach
the curvature inversion, tinv (described in Sec. III A), and the back and interior pinch-off times,
t̃p−o,bk and t̃p−o,int , respectively, for Case 0 and Case 1. Table II depicts these values for the two
mesh resolutions considered. We note that both t̃p−o are reported with t̃inv as the reference frame.
As a complement to the pinch-off times, we compare in Table III the size of the entrapped drops at
selected times after the pinch-off event and before their stabilization [see Figs. 7(b) and 8(b)]. These
results indicate that increasing the mesh resolution by a factor of 8 does not alter the dynamics at
the locality of the pinch-off more than 3.5% for surfactant-free and surfactant-laden cases.

The mesh size selected also allowed to capture accurately the thin liquid film surrounding the
bubble, which, according to previous works [18,85], requires a minimum of 5–10 computational
cells covering its domain for a correct development of the liquid velocity profile. In our simulations,
we have ensured the placement of at least five or six cells in the liquid film section for the cases that
exhibit encapsulation (We ∼ 30), for which h(x)/D ∼ 5−2 (see Fig. 11 of Magnini and Matar [18]).
This condition is further achieved in the surfactant-laden simulations, which develop a thicker liquid
film. We note, however, that the size of the entire domain, as well as the comprehensive sweep
over dimensionless numbers presented, makes it prohibitively expensive in terms of computation
to achieve the refinement levels reported in works such as Castrejón-Pita et al. [63] and Li
and Sprittles [86] to fully capture all regime transitions leading to the interfacial singularities of
pinch-off.

APPENDIX C: VALIDATION IN SQUARE CAPILLARIES

A supplementary validation for square capillary channels is conducted using the numerical
data and conditions described in Magnini and Matar [18] for surfactant-free scenarios under non-
negligible inertia. Satisfactory quantitative agreement between our results and those of Magnini and
Matar [18] is achieved in terms of bubble-to-liquid velocity ratio, Ub/Ul , and gas area fraction,
ε [see Figs. 13(a) and 13(b)], with maximum deviations of 2.7%; and 3.1%;, respectively. We

TABLE II. Recorded t̃inv, t̃p−o,bk , and t̃p−o,int for the two mesh resolutions tested. Values of �t̃ represent the
percent change of t̃ going from M1 to M2.

t̃inv t̃p−o,bk t̃p−o,int

M1 M2 �t̃inv M1 M2 �t̃p−o,bk M1 M2 �t̃p−o,int

Case 0 0.122 0.120 −1.964% 2.158 2.098 −2.762% 2.328 2.265 −2.696%
Case 1 0.117 0.120 2.389% 2.904 2.829 −2.593% 2.647 2.563 −3.129%
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TABLE III. Interfacial area (Ad in mm2) of encapsulated drop after pinch-off. Values of �Ad represent the
percent change of Ad going from M1 to M2.

Case 0 Case 1

t̃ 2.979 3.422 3.865 4.308 2.984 3.427 3.870 4.313
Ad M1 0.800 0.762 0.755 0.754 0.713 0.709 0.709 0.709
Ad M2 0.777 0.747 0.739 0.741 0.693 0.693 0.697 0.694
�Ad −2.943% −1.898% −2.242% −1.714% −2.805% −2.257% −1.693% −2.116%

underline that the cases that do not have a direct counterpart from the above mentioned reference
(i.e., Ca = 0.0089, Ca = 0.0377, and Ca = 0.068 for Re = 443) adequately follow the qualitative
trend of increasing Ub/Ul and decreasing ε with Ca and Re.

Figures 13(c) and 13(d) exemplify the well-known bubble morphological regimes found in
noncircular channels, as well as our model’s correct capturing of the nonaxisymmetric bubble

FIG. 13. Validation for square capillary channels and We > 1 in terms of (a) bubble nose velocity relative
to average liquid phase velocity, and (b) gas phase area fraction. Each marker corresponds to a different Ca
(as seen from the legend). Red represents our numerical results and the other colors the results of Magnini and
Matar [18]. (c), (d) Replication of the bubble morphological structures proposed in the same reference with our
numerical simulations in terms of (c) distance from channel center to any point of the interface normalized by
the channel’s hydraulic radius, Rh, and (d) normalized relative pressure, p̃ref = (p − pb)/ρlU 2

a . From outermost
to innermost series, we show our results for Ca = 0.0089, Ca = 0.02, Ca = 0.0377, and Ca = 0.1 at Re =
443–500. Results in (b)–(d) are measured at a cross-sectional plane normal to the streamwise direction located
at a distance of 5.5D behind the bubble nose, as reported in Magnini and Matar [18].
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shapes that arise below a threshold Ca [16,87,88]. In accordance with Ferrari et al. [89], the corner
flow effects exhibited in Ca � 0.01 promote the development of a saddle-shaped interface near the
channel center lines [see outermost series in Figs. 13(c) and 13(d)], which brings about the formation
of four lobes projecting towards the channel corners. As portrayed in Fig. 13(c), these lobes are
located farthest from the channel center point (highest r/Rh) and will continue to grow as the saddle
deepens (rd > rc) with decreasing Ca. The presence of the saddle shifts the minimum liquid film
thickness, hmin, from the center line of the channel to a position, ly, that varies as a function of Ca. We
compute ly/Rh = 0.2 for the case highlighted in the figure, which matches remarkably well the value
reported by Magnini and Matar [18] for We � 1 [ly/Rh ≈ 0.195; see Fig. 7(b) of the reference. The
high pressure zones at the saddles showcased in Fig. 13(d) are evidence of significant capillary flow
drainage away from the thin-liquid film region, as reported in Magnini and Matar [18].

The other morphological regimes represented in Figs. 13(c) and 13(d) correspond to an additional
nonaxisymmetric cross-sectional regime for 0.01 � Ca � 0.05, characterized by rd > rc and the
absence of the saddle (ly = 0; see Ca = 0.02 in the figure), and a fully symmetric bubble topology
(rd = rc; see Ca = 0.1 in the figure) for the final regime. We draw attention to the almost perfect
alignment of these regimes and the ranges of Ca in which they occur between our numerical
predictions and those of the literature, notwithstanding that the regimes documented in the literature
were observed under conditions of vanishing inertia.
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