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The quest for an unambiguous detection of magnetorotational instability (MRI) in
experiments is still ongoing despite recent promising results. To conclusively identify MRI
in the laboratory, a large cylindrical Taylor-Couette experiment with liquid sodium is under
construction within the DRESDYN project. Recently, we have analyzed the nonlinear
dynamics and scaling properties of axisymmetric standard MRI with an axial background
magnetic field in the context of the DRESDYN-MRI experiment. In this sequel paper,
we investigate the linear and nonlinear dynamics of nonaxisymmetric MRI in the same
magnetized Taylor-Couette flow of liquid sodium. We show that the achievable highest
Lundquist Lu = 10 and magnetic Reynolds Rm = 40 numbers in this experiment are
large enough for the linear instability of nonaxisymmetric modes with azimuthal wave
number |m| = 1, although the corresponding critical values of these numbers are usually
higher than those for the axisymmetric mode. The structure of the ensuing nonlinear
saturated state and its scaling properties with respect to Reynolds number Re are analyzed,
which are important for the DRESDYN-MRI experiment having very high Re � 106. It is
shown that for Re � 4×104, the nonaxisymmetric MRI modes eventually decay, since the
modified shear profile of the mean azimuthal velocity due to the nonlinear axisymmetric
MRI appears to be stable against nonaxisymmetric instabilities. By contrast, for larger
Re � 4×104, a rapid growth and saturation of the nonaxisymmetric modes of nonmagnetic
origin occurs, which are radially localized near the inner cylinder wall, forming a turbulent
boundary layer. However, for all the parameters considered, the saturation amplitude of
these nonaxisymmetric modes is always a few orders smaller than that of the axisymmetric
MRI mode. Therefore, the results of our previous axisymmetric study on the scaling
properties of nonlinear MRI states also hold when nonaxisymmetric modes are included.
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I. INTRODUCTION

Since the inception of magnetorotational instability (MRI [1]) as the most likely mechanism
transporting angular momentum in accretion disks [2], there have been numerous attempts to capture
MRI in the laboratory [3–7]. The detection of a standard version of MRI (SMRI) with an imposed
purely axial magnetic field in a experimental cylindrical Taylor-Couette (TC) device filled with a
liquid metal is challenging. For the onset of SMRI both magnetic Reynolds (Rm) and Lundquist
(Lu) numbers must be high enough ∼1–10, which, because of very small magnetic Prandtl numbers
Pm ∼ 10−6–10−5 of liquid metals used in the experiments, is very difficult to achieve without
destabilizing the flow itself. In spite of great progress over the past two decades on both analytical
and numerical sides (see reviews in Refs. [8,9]), a clear-cut and definitive identification of SMRI in
the laboratory is still missing [3–6]. In this respect, recent claims made by the Princeton team on
the detection of the axisymmetric and nonaxisymmetric modes of MRI [7,10] are currently under
scrutiny by other groups [11]. In their experiment, both the axisymmetric and nonaxisymmetric
modes of the alleged MRI manifest in close proximity to each other and at Lu and Rm that both are
much lower than what global linear stability analysis predicts [10,11]).

By contrast, the helical (HMRI, [12]) and azimuthal (AMRI, [13]) versions of MRI have
been characterized and identified conclusively in the liquid metal (GaInSn) experiment PROMISE
[14–17]. In spite of this success of the PROMISE experiment, its constructional restriction makes
it incapable of achieving Rm ∼ 1–10 required for the onset of SMRI in a TC flow, which, given
very small Pm, amounts to huge Re ∼ 106–107. This has motivated the construction of a much
bigger TC device using liquid sodium as a working fluid within the DRESDYN project [18].
The main advantage of this new, technologically advanced DRESDYN-MRI device is its ability
to achieve high enough Lu ∼ 10 and Rm ∼ 40 necessary for SMRI to set on and grow [19]. The
capabilities of the DRESDYN-MRI device are not restricted only to SMRI, but should allow us to
experimentally study also Tayler instability [20] and the recently discovered Super-HMRI at positive
shear [21]. Previously, we (Mishra et al. [19], hereafter Paper I) carried out a detailed linear analysis
of axisymmetric SMRI for the parameter regimes of the upcoming DRESDYN-MRI experiment.
It was shown that SMRI can, in principle, be detected for all Rayleigh-stable rotation profiles of
interest, including the astrophysically important Keplerian profile, for those ranges of Lu and Rm
accessible in the DRESDYN-MRI experiment.

After linear analysis, of immediate interest is subsequent nonlinear saturation and evolution
of SMRI, which have been extensively investigated since its rediscovery in both astrophysical
[22–24] and laboratory [25,26] settings. Recent liquid metal experiments on MRI in a magnetized
TC devices and related numerical simulations have advanced our understanding of the nonlinear
saturation and dynamics of SMRI [27–31]. Early work by Liu et al. [26] performed numerical
simulations of axisymmetric (with azimuthal wave number m = 0) SMRI in a TC geometry without
endcaps and observed a jet-like outflow at the midheight of the cylinder, the reconnection layer,
and different scalings for normalized perturbation torque at moderate and large magnetic Reynolds
numbers, but still much lower Reynolds numbers than those found in experiments. Subsequent
studies further explored the scaling for saturation amplitude of energy and angular momentum
transport in a channel or TC geometry using weakly nonlinear analysis with periodic axial boundary
conditions [32–35]. However, these scaling properties turned out to depend on the geometry of the
TC setup (thin or wide gap, height of cylinders, etc.) in question. Recently, we (Mishra et al. [36],
hereafter Paper II) have studied in detail the fully nonlinear evolution and saturation properties of
axisymmetric SMRI in a wide-gap TC flow without endcaps and analysed its scaling behavior over
a wide range of Lu, Rm and Re accessible in the DRESDYN-MRI device. It was shown that the
saturation of SMRI occurs via magnetic reconnection. The dependence of the saturated magnetic
energy and torque on Reynolds number was also analyzed and shown to follow a power law scaling
Rea, where −0.6 � a � −0.5, and Reb, where 0.4 � b � 0.5, respectively, at large Re � 4000 and
all sets of (Lu, Rm), so that the exponents always satisfy the relationship b − a ≈ 1.

033904-2



NONAXISYMMETRIC MODES OF MAGNETOROTATIONAL …

TABLE I. Nondimensional parameters of the DRESDYN-MRI experiment with liquid sodium at T =
130 ◦C (see also Paper I).

Dimensionless parameter Definition Values

μ �out/�in (0.25,0.35]
Aspect ratio Lz/rin 10
Reynolds number (Re) �inr2

in/ν �7.72×106

Lundquist number (Lu) B0zrin/η
√

ρμ0 �10
Magnetic Prandtl number (Pm) ν/η 7.77×10−6

Magnetic Reynolds number (Rm) Re×Pm �40

Relaxing the idealization of infinite cylinders, a number of studies [7,28–31] focused on the
saturation properties and nonlinear dynamics of SMRI in a more realistic setup of finite-height TC
flow with top and bottom endcaps primarily in the context of the Princeton MRI experiment. These
studies analyzed the dependence of the saturated amplitude on Lu, Rm and Re under the influence
of insulating or conducting endcaps, and revealed different scalings with Pm (or Re) in these two
cases, taking into account the complexity introduced by Ekman circulations near the top and bottom
endcaps.

In the DRESDYN-MRI experiment, the main parameters Lu, Rm, and Re are high enough (see
Table I) for nonaxisymmetric (m �= 0) SMRI modes to grow also in parallel with axisymmetric
ones, although with a smaller growth rate. For clear identification of different modes and the
parameter regimes in which each mode can be excited, it is important to study the linear stability of
nonaxisymmetric modes too. In Papers I and II, we discussed the linear and nonlinear axisymmetric
SMRI in the context of DRESDYN-MRI experiment. Extending this analysis, in this paper our
aim is to investigate in detail the dynamics of nonaxisymmetric SMRI modes. Although nonax-
isymmetric SMRI in TC flows has been investigated before both in ideal [37–40] and nonideal
MHD primarily for liquid metals [10,27,41,42], its analysis in the parameter regimes specific to the
DRESDYN-MRI experiments at very small Pm ∼ 10−6–10−5 of liquid sodium and comparison with
axisymmetric SMRI mode is still lacking. Motivated by this, in the present paper we first investigate
the linear regime of nonaxisymmetric SMRI and then its nonlinear development, saturation and
scaling properties as a function of different system parameters.

The paper is organized as follows. The setup of the problem and the basic equations are described
in Sec. II. The formulation of the linear stability problem is given in Sec. III where the main
results for nonaxisymmetric SMRI and the comparison of the growth rates of axisymmetric and
nonaxisymmetric SMRI modes are also discussed. Nonlinear evolution and saturation properties of
the nonaxisymmetric modes are discussed in Sec. IV. A summary and conclusions are in Sec. V.

II. PHYSICAL MODEL AND MAIN EQUATIONS

As in Papers I and II, we consider a cylindrical TC flow setup—a basis for the DRESDYN-MRI
experiment, which contains liquid sodium as a working fluid in the cylindrical coordinate system
(r, φ, z) (Fig. 1). In this setup, the inner and outer cylinders with radii rin and rout rotate, respectively,
with the angular velocities �in and �out. In the DRESDYN-MRI device, the ratio of the inner and
outer cylinder radii is fixed to rin/rout = 0.5 and the aspect ratio Lz/rin = 10 is large, where Lz is
the length of the cylinders (Table I). For simplicity, here we assume that the cylinders do not have
endcaps and perturbations can extend along the cylinder axis. The ratio of the angular velocities of
the outer and inner cylinders, μ = �out/�in, can be varied (see Table I). A uniform axial magnetic
field B0 = B0zez is imposed by a current-carrying solenoid surrounding the outer cylinder. This field
is current-free between the cylinders and therefore does not exert any Lorentz force on the fluid. As
a result, in the absence of endcaps, the equilibrium azimuthal flow U0 = (0, r�(r), 0) between the
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FIG. 1. A sketch of a cylindrical Taylor-Couette flow setup with an axial background magnetic field.

cylinders has a classical hydrodynamical TC profile of angular velocity

�(r) = C1 + C2

r2
, (1)

where the coefficients C1 and C2 are

C1 = �outr2
out − �inr2

in

r2
out − r2

in

, C2 = (�in − �out)r2
inr2

out

r2
out − r2

in

.

In laboratory TC experiments, this equilibrium profile is inevitably modified due to Ekman circula-
tions (pumping) induced by the endcaps [15,28,43,44]. This effect for DRESDYN-MRI experiments
will be discussed elsewhere. Here we only note that the DRESDYN-TC device has a large aspect
ratio Lz/rin = 10 and split ring system at the endcaps designed such as to minimize Ekman pumping
as much as possible [44].

The basic equations of nonideal MHD governing the motion of an incompressible conducting
fluid are

∂U
∂t

+ (U · ∇)U = − 1

ρ
∇P + J × B

ρ
+ ν∇2U, (2)

∂B
∂t

= ∇ × (U × B) + η∇2B, (3)

∇ · U = 0, ∇ · B = 0, (4)

where ρ is the constant density, U is the velocity, P is the thermal pressure, B is the magnetic field,
and J = μ−1

0 ∇×B is the current density with μ0 being the magnetic permeability of vacuum. The
fluid has constant kinematic viscosity ν and Ohmic resistivity η.

The basic TC flow (1) is hydrodynamically stable according to Rayleigh’s criterion μ >

r2
in/r2

out = 0.25, ensuring that all the linear instabilities in this flow are of magnetic nature. The
values of μ are extended up to quasi-Keplerian rotation when the cylinders’ angular velocities are
related through Kepler’s law, �in, out ∝ r−3/2

in, out, giving μ ≈ 0.35, which is important for astrophysical
disks.
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We nondimensionalize time by �−1
in , angular velocity profile �(r) by �in, length by rin,

velocity u by rin�in, pressure and kinetic energy density by ρ�2r2
in and magnetic field B by

the background field B0z. The main parameters are Reynolds number Re = �inr2
in/ν, magnetic

Reynolds number Rm = �inr2
in/η, magnetic Prandtl number Pm = ν/η = Rm/Re and Lundquist

number Lu = VArin/η, where VA = B0z/
√

ρμ0 is the Alfvén speed. Table I gives the ranges of these
parameters typical of the DRESDYN-MRI experiment, which we use below.

III. LINEAR ANALYSIS OF NONAXISYMMETRIC SMRI

The linear instability of this base TC flow U0 with the imposed constant axial magnetic field
B0 to small perturbations, u = U − U0, p = P − P0, b = B − B0 is studied. These perturbations
are assumed to have a standard modal form ∝ exp(γ t + imφ + ikzz), where γ is the complex
eigenvalue and m and kz are, respectively, the azimuthal (integer) and axial wave numbers. The
flow is unstable when the real part of γ is positive, Re(γ ) > 0. Linearizing the main Eqs. (2)–(4),
we obtain the system of nondimensional perturbation equations as given in Paper I. Employing
a similar spectral collocation method as in Refs. [12,13], we discretize the radial structure of the
variables using the Chebyshev polynomials with typical resolution N = 120–140 for a given pair of
(m, kz ). This resolution is taken to be higher than that used for axisymmetric m = 0 SMRI modes
in Paper I to resolve a thin region around corotation radius rc, where m�(rc) = −Im(γ ), in the
structure of nonaxisymmetric SMRI mode eigenfunctions (see below). Here we assume at least one
full axial wavelength of nonaxisymmetric |m| � 1 modes fits in the cylinder length Lz, so we set
for the minimum axial wave number kz,min = 2π/Lz and maximize the growth rate over larger wave
numbers kz � kz,min. No-slip boundary conditions are used for the velocity and insulating for the
magnetic field. The linearized Eqs. (2)–(4) supplemented with these boundary conditions constitute
a large matrix (4N×4N) eigenvalue problem for γ the real part of which, when positive, is the
growth rate of the instability.

In the linear analysis below, we focus on the nonaxisymmetric |m| = 1 SMRI mode [45], which
is the second most unstable mode after the axisymmetric m = 0 SMRI mode, while higher |m| � 2
modes appear to be linearly stable in the considered ranges of the main parameters as given in
Table I. However, in the more interesting fully nonlinear regime, we include also high-m modes,
because, as shown below, they can grow as a result of the modification (deviation) of the radial
shear of the mean azimuthal velocity from the initial TC profile (1) due to the nonlinear saturation
of the axisymmetric SMRI mode. For numerical reasons, we adopt Pm = 10−5 in the linear stability
analysis below, which is about 1.3 times larger than the experimental value Pm = 7.77×10−6

(Table I). But since at small Pm 	 1 the linear dynamics and hence the growth rate of SMRI for a
given Lu and Rm are essentially insensitive to Pm ([41], see also Appendix A 1), this difference in
Pm is not important.

Figure 2 shows the growth rate for the unstable nonaxisymmetric |m| = 1 mode of SMRI,
maximized over axial wave numbers kz � kz,min, in the (Lu, Rm) plane at various μ. It is seen
that, similar to the axisymmetric case studied in Paper I, the instability region for the |m| = 1 mode
moves towards higher Lu and Rm with increasing μ. This, in turn, increases the critical Luc and Rmc

for the instability onset with μ, as given in Table II, but the critical Luc ≈ 6.7 and Rmc ≈ 30.9 for
the highest adopted μ = 0.35 is still well within the maximum achievable ranges of Lundquist and
magnetic Reynolds numbers in the DRESDYN-MRI experiment (Table I). Notably, on comparison
with Fig. 2 of Paper I, it is seen that the nonaxisymmetric |m| = 1 mode has about 2–3 times smaller
growth rate than that of the axisymmetric m = 0 mode for a fixed pair of (Lu, Rm). At any rate, this
nonaxisymmetric mode for all considered μ ∈ (0.25, 0.35] appears to be unstable within the range
of Lundquist and magnetic Reynolds numbers accessible in DRESDYN-TC device and hence it can
in principle be excited in the upcoming experiments together with the axisymmetric SMRI.

In the DRESDYN-MRI experiment, large values of Lu and Rm are achievable where the
axisymmetric and nonaxisymmetric modes can coexist in the flow. Given the importance of
definitive detection of these modes, one should determine the parameter ranges over which these
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FIG. 2. Growth rate, Re(γ ) > 0, of the nonaxisymmetric |m| = 1 mode of SMRI for Pm = 10−5 and
(a) μ = 0.26, (b) μ = 0.27, (c) μ = 0.30, (d) μ = 0.32, (e) μ = 0.35. (f) The marginal stability curves for
the |m| = 1 mode at these μ.

axisymmetric m = 0 and nonaxisymmetric m = 1 SMRI modes can be uniquely identified. For
comparison, in Fig. 3 we show the marginal stability curves for these modes together for different
μ ∈ {0.27, 0.30, 0.35}. As mentioned above, the instability region for both m = 0 and |m| = 1
modes in the (Lu, Rm) plane becomes smaller as μ increases, because in this case the shear of
the basic TC flow, which mainly drives SMRI, decreases. Evidently, the instability region of the
axisymmetric m = 0 mode is much larger than that of the nonaxisymmetric |m| = 1 mode and
therefore the critical Luc and Rmc for m = 0 mode are, respectively, about 1.3–2.87 and 1.9–4.85
times smaller than those of the nonaxisymmetric |m| = 1 mode for fixed μ (see Table II and Paper I).
Hence, this gap between the m = 0 and |m| = 1 modes’ critical values at fixed μ can be used for
the detection of axisymmetric SMRI mode distinct from nonaxisymmetric one. The characteristic
points A, B, and C in Fig. 3, which lie, respectively, within the instability region of the m = 0 SMRI
mode but outside that of the |m| = 1 mode, near the marginal stability of the latter mode, and within
its instability region in the case of the quasi-Keplerian rotation μ = 0.35, are used as the reference
points in the following nonlinear analysis.

Figure 4 shows the typical structure of the radial and axial velocities, (ur, uz ), and magnetic
field, (br, bz ), eigenfunctions in the (r, z) plane for the nonaxisymmetric m = 1 mode at μ = 0.35,

TABLE II. Critical values for the onset of axisymmetric m = 0 and nonaxisymmetric |m| = 1 SMRI modes
for different μ obtained via 1D linear stability analysis.

(Luc, Rmc )

μ m = 0 |m| = 1

0.26 (1.5, 4.8) (4.3, 23.3)
0.27 (2.1, 6.9) (4.7, 24.5)
0.30 (3.5, 11) (5.7, 26.9)
0.32 (4.2, 13.2) (5.9, 28.5)
0.35 (5.1, 16.2) (6.7, 30.9)
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FIG. 3. Marginal stability curves for the axisymmetric m = 0 (solid lines) and nonaxisymmetric |m| = 1
(dashed lines) SMRI modes at different μ = 0.27 (black), 0.30 (red), 0.35 (blue), and Pm = 10−5. For all μ,
m = 0 mode has much lower critical Luc and Rmc than the |m| = 1 mode. Points A, B, and C, which lie,
respectively, outside, near and inside the marginal stability curve of the |m| = 1 mode for the classical TC
profile with quasi-Keplerian rotation μ = 0.35, are used for the nonlinear analysis below.

Lu = 6.78, Rm = 35 (point C in Fig. 3) and the axial wave number kz = 1.88, which we have
chosen to relate the linear analysis results with the nonlinear evolution presented below (see
Appendix A 2). In the nonlinear analysis, the flow domain is periodic in the z direction with a period
of Lz and hence the axial wave number is discrete kz = 2πnz/Lz, where the integer nz = ±1,±2, ...

(by contrast, in the linear analysis kz is a free parameter). The chosen kz = 1.88 = 3×2π/Lz,
corresponding to nz = 3 wavelength within the cylinder length Lz, yields the maximum growth
rate among the discrete kz values (see Fig. 14 in Appendix A 1).

The radial and axial velocity eigenfunctions reach their highest values and have a strong elonga-
tion of the cells in the axial direction within a thin layer around rc ≈ 1.3. This point represents the
corotation radius at which the azimuthal phase velocity of the mode is equal to the flow velocity,
i.e., m�(rc) = −Im(γ ), and is located closer to the inner boundary. This is consistent with the
results of Ref. [40] that nonaxisymmetric m = 1 SMRI mode eigenfunctions are confined between
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FIG. 4. Structure of the (a) radial velocity ur , (b) axial velocity uz, (c) radial magnetic field br , and
(d) axial magnetic field bz eigenfunctions in the (r, z) plane for m = 1 mode of SMRI at μ = 0.35, Lu = 6.78,

Rm = 35, Pm = 10−5 (point C in Fig. 3) and kz = 1.88. A zoomed in axial velocity uz at the cylinder
boundaries in panel (b) confirms the validity of the no-slip condition for velocity.
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two Alfvén resonance points located on either side of the corotation radius and reach higher values
around that radius [46]. Since it is a higher-frequency mode, its corotation radius and hence the
eigenfunctions tend to be located nearer the inner cylinder wall. Similarly, the radial and axial
magnetic field eigenfunctions are also elongated near the corotation radius, but to a lesser degree,
and reach higher values there. In Appendix A 2, we compare these eigenfunctions obtained from
the one-dimensional (1D) linear stability code with the velocity and magnetic field structures at the
early exponential growth stage in the nonlinear simulations.

IV. NONLINEAR EVOLUTION OF NONAXISYMMETRIC MODES

From the above 1D linear stability analyses, we inferred that the axisymmetric and nonaxisym-
metric SMRI modes can coexist in the same parameter regime with the latter typically having several
times lower growth rates. In the experiments, a flow is allowed to reach a steady state before the
measurements are taken. Thus, to uniquely identify different modes in the flow, it is necessary to first
understand the nonlinear saturation properties of both axisymmetric and nonaxisymmetric modes. In
Paper II, we studied the nonlinear saturation and dynamics of axisymmetric SMRI mode, since it is
the most unstable one in the considered TC flow. It was shown to saturate via magnetic reconnection
and the corresponding scaling relations of the total magnetic energy and torque of perturbations at
the cylinders in the saturated state were derived with respect to Reynolds number Re. Importantly,
these scalings have allowed us to extrapolate and estimate the expected magnitudes of velocity and
magnetic field perturbations at those high Re � 106 which are relevant for the DRESDYN-MRI
experiment. In this section, focusing on the quasi-Keplerian rotation μ = 0.35, we investigate the
nonlinear evolution and saturation of nonaxisymmetric modes in comparison with axisymmetric
ones, which is important for the preparation of the DRESDYN-MRI experiment and understanding
its outcomes.

To solve the basic nonideal MHD Eqs. (2)–(4), as in Paper II, we use the pseudospectral code
described in Ref. [47]. This code employs a high-order finite-difference method for radial expansion,
and Fourier expansions in the axial and azimuthal directions. The time-update is done using an
implicit Crank–Nicolson scheme of second order. The nonlinear terms are calculated using the
pseudospectral method with the 2/3-dealiasing rule. As in the linear analysis above, the boundary
conditions are no-slip for velocity and insulating for magnetic field at the cylinder walls, which is
consistent with the conditions present in the DRESDYN-MRI facility, and periodic in the axial z
direction. Additional details about this code and its validation can be found in [47]. The cylindrical
flow domain is defined by the cylindrical coordinates (r, φ, z) ∈ [rin, rout]×[0, 2π ]×[0, Lz], where,
as before, the nondimensional inner and outer radii rin = 1, rout = 2, and the cylinder length Lz =
10. To achieve high resolution close to the cylinder walls, the Chebyshev collocation method is
used to distribute points radially. We take Nr = 480 finite difference points in the radial direction
and a total of Nz = 480 Fourier modes in the axial z direction, that is, |kz| � 2πNz/Lz. The number
of nonaxisymmetric modes, Nφ , is set to 20, that is, the azimuthal wave number |m| � Nφ = 20.
In Appendix A 3, we perform a resolution study for different Nφ and Nz Fourier mode numbers to
optimize them. It was found that the adopted values Nφ = 20 and Nz = 480 are in fact sufficient
for the convergence of the azimuthal m and axial kz spectra of energy and hence for the reliable
representation of the nonaxisymmetric mode dynamics in the present setup. Still, future higher-
resolution studies are needed to further explore the fully nonlinear dynamics of nonaxisymmetric
modes, especially at larger Re � 106 relevant to MRI-experiments than those considered here. As
in the linear analysis, the minimum axial wave number is set to kz,min = 2π/Lz to ensure at least
one full axial wavelength fits in the domain length Lz.

To qualitatively analyze the growth and saturation of nonaxisymmetric modes, we define a
radially integrated spectral magnetic energy density [48],

Ēmag(m, kz ) = πLz

∫ rout

rin

(|b̄r |2 + |b̄φ|2 + |b̄z|2) rdr, (5)
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FIG. 5. Evolution of the magnetic energy of axisymmetric m = 0 modes, Emag(0) (red), of all the non-
axisymmetric |m| � 1 modes, Emag,|m|�1 (black), and their sum Emag (dashed) for Lu = 5, Rm = 20 (point A
in Fig. 3) and (a) Re = 3×104, (b) 4×104 and (c) 6×104. The nonaxisymmetric modes are linearly stable
and hence initially decay for all Re in the exponential growth phase of the axisymmetic SMRI mode. As
seen in panels (b, c), a rapid growth of the nonaxisymmetric modes occurs at large enough Re (or small Pm)
just when the dominant axisymmetric SMRI mode saturates and, as a result, the mean azimuthal flow profile
changes (deviates) from the original TC flow (1). At Re = 6×104 in panel (c), the nonaxisymmetric modes’
total magnetic energy does not decay after the growth and settles down to a constant value, which is still several
orders smaller than that of the axisymmetric mode.

where b̄r, b̄φ, b̄z are the Fourier transforms of the perturbed magnetic field components with respect
to m and kz wave numbers at a given radius r,

b̄i(r, m, kz ) = 1

2πLz

∫ 2π

0

∫ Lz

0
bi(r, φ, z)e−imφ−ikzz dφdz, (6)

with i = r, φ, z. We define the azimuthal m spectrum of the magnetic energy density as the sum of
Ēmag(m, kz ) over all kz, Emag(m) = ∑

kz
Ēmag(m, kz ), which thus represents a total magnetic energy of

modes with a given m. In a similar manner, we define the nondimensional kinetic energy spectrum
Ēkin(m, kz ) by replacing the magnetic field b with the velocity u in Eq. (5) and hence its azimuthal
component Ekin(m) = ∑

kz
Ēkin(m, kz ).

A. Magnetic energy—Evolution and radial dependence

Figure 5 shows the evolution of the magnetic energy for axisymmetric m = 0 modes, Emag(0),
for all the nonaxisymmetric |m| � 1 modes, Emag,|m|�1 ≡ ∑

|m|�1 Emag(m), and their sum Emag ≡
Emag(0) + Emag,|m|�1, i.e., the total magnetic energy of perturbations at Lu = 5, Rm = 20 (point A
in Fig. 3) and different Re = {3, 4, 6}×104. Note that because of numerical constraints, these values
of Re adopted in the nonlinear analysis here (as in Paper II) are smaller than Re ∼ 106 used in the
above linear analysis and in the experiments, but are at least an order of magnitude higher than those
typically used in previous simulations of the nonlinear (non)axisymmetric SMRI in a magnetized
Taylor-Couette flow [7,10,28–31]. In this regard, although the points A, B and C in Fig. 3 have
been obtained for different Reynolds, or magnetic Prandtl numbers than those in the simulations,
these points would not move in the (Lu, Rm) plane (i.e., the corresponding growth rates would not
change) with Re, or Pm since, as mentioned above, the linear dynamics of SMRI is in fact insensitive
to these two numbers for Re � 1, or Pm 	 1 (here Re � 104 and Pm � 3.5×10−3). Therefore, we
can use A, B and C points as the reference points in the nonlinear analysis.

It is seen in Fig. 3 that point A is way outside the linearly unstable regime of the |m| = 1 mode
in the presence of the original TC profile but still falls in the linearly unstable regime of m = 0
SMRI mode. At Re = 3×104, the magnetic energy of nonaxisymmetric modes, Emag,|m|�1, decays
over time while that of the axisymmetric mode, Emag(0), grows and saturates [Fig. 5(a)]. For higher
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FIG. 6. Same as in Fig. 5 but for Lu = 6.78, Rm = 35 (point C in Fig. 3) and (a) Re = 104, (b) 2×104,
and (c) 4×104. Note that the point C is inside the marginal stability curve of |m| = 1 mode obtained from the
original TC profile (1) and therefore this mode grows for all Re in the initial linear regime. As in Fig. 5, much
steeper amplification of the nonaxisymmetric mode energy occurs at higher Re during the saturation of the
axisymmetric mode as seen in panels (b), (c), which in the latter case does not decay and saturates at a constant
value. The time moments denoted by E, F, G, and H in panel (c) will be used as the reference moments in
Sec. IV B.

Re = 4×104, Emag,|m|�1 initially decays during the exponential growth phase of the axisymmetric
mode, but then it transiently increases very rapidly, reaching a peak, during the saturation of the lat-
ter mode [Fig. 5(b)]. However, after the axisymmetric mode has saturated, this peak is not sustained
and the energy Emag,|m|�1 decays afterwards to a very small noise level. The nonaxisymmetric mode
energy reaches a similar peak for even higher Re = 6×104, at which it eventually saturates at orders
of magnitude higher levels, though still a few orders lower than the energy of the axisymmetric
mode [Fig. 5(c)]. This implies that depending on Re, the nonaxisymmetric modes, which would be
stable for the original TC profile (1), can nevertheless undergo rapid growth during the saturation
process of the axisymmetric mode. A similar trend is seen at Lu = 6, Rm = 30 (point B in Fig. 3),
where the nonaxisymmetric |m| = 1 mode is marginally stable initially and becomes unstable in the
course of saturation of the axisymmetric mode, as described in Appendix A 4. In all these cases, the
axisymmetric mode is a dominant contributor to the total magnetic energy of perturbations.

The evolution of the magnetic energy of axisymmetric and all the nonaxisymmetric modes for
Lu = 6.78, Rm = 35 (point C in Fig. 3), and Re = {1, 2, 4}×104 is shown in Fig. 6. Since the
point C falls well within the linearly unstable regime of the nonaxisymmetric |m| = 1 mode, we see
an initial exponential growth phase of this mode. For these parameters, the growth rate obtained
from the nonlinear code is about 0.012 which is close to that from the linear code 0.015 for
all Re discussed in Fig. 6. Hence, it can be inferred that the unstable |m| = 1 mode exhibiting
growth at early times in the simulations is in fact the SMRI mode. For Re = 104 and 2×104, the
nonaxisymmetric modes do not, however, saturate after the exponential growth, but instead start to
decrease during the saturation process of the axisymmetric SMRI mode [Figs. 6(a) and 6(b)]; at
Re = 2×104 this decrease is followed by some transient amplification, which reaching a maximum,
falls again. By contrast, at larger Re = 4×104, the magnetic energy of the nonaxisymmetric modes,
after an initial exponential growth phase, increases much more steeply during the saturation of the
axisymmetric mode and eventually saturates itself to a certain value few orders smaller than that of
the axisymmetric mode [Fig. 6(c)]. Thus, Figs. 5 and 6 indicate that at high enough Re, irrespective
of their initial linear stability or instability, nonaxisymmetric modes exhibit rapid amplification in
the nonlinear regime, when the dominant axisymmetric mode saturates.

In Fig. 7, we plot the evolution of Emag for different m ∈ [0, 14] and the same parameters as in
Fig. 6. It is evident that in the initial linear regime the exponential growth of the total magnetic
energy of nonaxisymmetric modes depicted in Fig. 6 is essentially dominated by the |m| = 1 mode
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FIG. 7. Evolution of the azimuthal spectral magnetic energy density Emag(m) for different m ∈ [0, 14] at
the same Lu = 6.78, Rm = 35 and Re as in Fig. 6. In the initial linear regime, only |m| = 1 mode grows
exponentially, because the point C lies in the unstable regime of this mode, while other nonaxisymmetric
|m| > 1 modes are linearly stable for all considered Re. For the smallest Re = 104 (a), all the nonaxisymmetric
|m| � 1 modes eventually decay in the saturated state. These modes undergo rapid growth at higher Re during
the saturation of the axisymmetric mode. For all m this growth is only transient at Re = 2×104 (b) and decays
to a noise level, whereas it saturates at Re = 4×104 (c) at about the same level though orders of magnitude
smaller than that of the axisymmetric one.

while all other |m| > 1 modes are stable and their energies decrease. For smaller Re = 104, the
|m| = 1 mode also starts to decay to a very small noise level, as the axisymmetric m = 0 mode
undergoes the saturation phase and modifies the mean azimuthal flow profile [Fig. 7(a)]. For larger
Re = 2×104, all nonaxisymmetric |m| � 1 modes exhibit transient growth nearly at the same time
when the axisymmetric mode saturates [Fig. 7(b)]. This transient growth lasts the longer and reaches
the higher peaks, the smaller m is and then decays again to a very small level. For even higher Re =
4×104 transition to a nonlinear (turbulent) state finally takes place—all |m| � 1 modes are excited,
growing now rapidly during the same time of the axisymmetric mode saturation, and settle down to
nearly similar amplitudes due to strong mutual nonlinear interaction at such high Re [Fig. 7(c)]. (A
similar behavior is observed also at point B of Fig. 3 and is discussed in Appendix A 4.) Note that
in all the cases considered above the saturation level of nonaxisymmetric modes is few orders of
magnitude smaller than that of the axisymmetric one. This indicates that the axisymmetric SMRI is
always a dominant mode in the TC flow for the considered ranges of the main parameters Lu and
Rm relevant to the DRESDYN-MRI experiment and as high Re (i.e., as small Pm) as we can afford
in our numerical simulations. To investigate the radial structure of the nonaxisymmetric modes with
higher |m| � 1 in the saturated state, using Eq. (6) we compute b2(r, m) = ∑

kz
(|b̄r (r, m, kz )|2 +

|b̄φ (r, m, kz )|2 + |b̄z(r, m, kz )|2), which in fact gives the z-integrated magnetic energy as a function
of radius r and m. Figure 8 shows b2(r, m) in the saturated state at high Re = 6×104 and 4×104,
respectively, for points B and C from Fig. 3. It is seen that in both cases, in the saturated state, the
nonaxisymmetric modes are generally concentrated near the inner cylinder, being more attached to
the wall the higher m is. This indicates an important role of boundaries in the dynamics of these
modes.

In Paper II, we demonstrated that the saturation of the axisymmetric SMRI mode occurs via mag-
netic reconnection and results in the modification of the mean azimuthal flow profile from a standard
TC profile. This modified flow profile involves steep velocity gradients at the cylinder walls, which
lead to the development of a specific boundary layer. At high Re, these boundary layers get thinner
and the radial gradient of azimuthal velocity—the local shear parameter q = −∂ ln �/∂ ln r therein
steeper [see Fig. 8(c) of Paper II]. As a result, the boundary layers become Rayleigh-unstable with
high-q values (much more than the Rayleigh-stability limit q = 2) and eventually break down into
turbulence, which develops first near the inner cylinder [see the distribution of q in Figs. 9(e),
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FIG. 8. Axially integrated magnetic energy b2(r, m) (see text) as a function of r in the saturated state
at different m ∈ [1, 19] for (a) Lu = 6, Rm = 30, Re = 6×104 and (b) Lu = 6.78, Rm = 35, Re = 4×104

(points B and C in Fig. 3, respectively). From panels (a, b) it is clear that the larger-m nonaxisymmetric modes
are more concentrated near the inner cylinder wall, indicating that they are mainly sustained by high shear q
values at this boundary.

9(j), and 9(o)]. Thus, different m modes, whose total energy evolution at various Re has been
analyzed above in Fig. 6 and then separately for each m in Fig. 7, emerge and grow primarily
near the inner cylinder wall. In other words, the boundary layers formed as a result of the saturation
of the axisymmetric SMRI mode are prone to magnetically modified hydrodynamic instability of
(small-scale) nonaxisymmetric modes, which render this layer turbulent. The nonaxisymmetric
modes are mainly localized in this layer and maintained via energy extraction from high shear
therein as well as mutual nonlinear interactions. This also implies that the saturation mechanisms
of axisymmetric and nonaxisymmetric modes are different: the axisymmetric mode saturates via
magnetic reconnnection, as analyzed in detail in Paper II, and more or less keeps its overall laminar
structure except for boundary layers (see also Fig. 9), whereas the nonaxisymmetric modes are
mostly confined near walls, saturating in boundary layer turbulence.

B. Structure of the nonlinear states

To better illustrate the evolution of nonaxisymmetric modes in the boundary layers described
in the above subsection, in Fig. 9 we show the radial and axial velocity, (ur, uz), and magnetic
field, (br, bz), structures for nonaxisymmetric |m| � 1 and for all m modes in the (r, z) plane for
Lu = 6.78, Rm = 35 and Re = 4×104 at different evolutionary moments marked with points F, G,
and H in Fig. 6(c) [49].

Figures 9(a)–9(d) show the structures composed of all nonaxisymmetric |m| � 1 modes at the
beginning of their rapid growth phase [moment F in Fig. 6(c)]. It can be clearly seen that, in
stark contrast to the eigenfunction structure (Fig. 4), at this time, the strong nonaxisymmetric
perturbations of velocity and magnetic field gradually emerge near the inner cylinder boundary.
A closer look at the local shear parameter q in Fig. 9(e) shows the disruption of the laminar
boundary layers due to localized nonaxisymmetric perturbations—turbulent spots, indicating that
these boundary layers are gradually becoming turbulent [see a zoomed segment in Fig. 9(e)].
Figures 9(f)–9(i) show the velocity and magnetic field structures for these nonaxisymmetric modes
at later times in the saturated state [moment G in Fig. 6(c)] when they are well developed near the
inner wall and are clearly visible. The boundary layers are consequently fully turbulent [Fig. 9(j)].
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FIG. 9. Radial and axial velocity, (ur, uz), and magnetic field, (br, bz), structures in the (r, z) plane for
Lu = 6.78, Rm = 35 and Re = 4×104 at different evolution times of the axisymmetric and nonaxisymmetric
modes corresponding to the time moments F, G, and H in Fig. 6(c). Panels (a)–(d) and (f)–(i) show only
nonaxisymmetric modes at moments F and G, respectively. (k)–(n) show all the modes in the saturated state at
moment H. Rightmost panels (e), (j), (o) show the distribution of the local shear parameter q = −∂ln �/∂ln r
in the (r, z) plane. Orange and green dashed lines are plotted at z = 4.16 and z = 2.52 and analysed in Figs. 11
and 12, respectively.
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corresponding to Figs. 5 and 6, respectively. Dashed green lines mark the onset moment of the nonaxisymmetric
nonmagnetic (non-MRI) modes.

Figures 9(k)–9(n) show the structure of velocity and magnetic fields for all m modes in the
saturated state [moment H in Fig. 6(c)]. Evidently, they are dominated by the axisymmetric m =
0 mode and therefore are similar to those analyzed in Paper II, exhibiting the typical radial jet
[red areas in Fig. 9(k)] and the corresponding thin recoonnection (current sheet) layer seen in the
magnetic field map where the radial fields with opposite directions meet resulting in high azimuthal
current density there [Fig. 9(m)]. These are the main players in the saturation dynamics of the
axisymmetric SMRI investigated in detail in Paper II.

From the above analysis, we conclude that these small-scale nonaxisymmetric modes, which
emerge and grow after the saturation of the dominant axisymmetric SMRI mode and survive in
the saturated state, are not SMRI modes. Instead, these are the nonaxisymmetric modes excited in
the Rayleigh-unstable (turbulent) boundary layers, which, as mentioned above, arise as a result of
the saturation process of the axisymmetric SMRI mode. The passive magnetic field perturbations
in these modes arise as a result of velocity perturbations advecting (dragging) the imposed axial
magnetic field. Figure 10 gives an additional confirmation of the nonmagnetic nature of these modes.
It shows the evolution of the ratio of the total kinetic to magnetic energies of the nonaxisymmetric
modes, Ekin,|m|�1/Emag,|m|�1, for the parameters used in Figs. 5 and 6, respectively. In the initial
exponential growth phase, the nonaxisymmetric modes are SMRI modes, so this ratio is almost
constant, as is typical of the normal mode, and the kinetic energy is smaller or comparable to the
magnetic energy. However, once the axisymmetric SMRI mode starts to saturate and modify the
mean azimuthal flow profile, the kinetic energy shoots up orders of magnitude higher over the
magnetic energy (indicated with green dashed lines), signaling the onset of nonmagnetic, or as we
refer to them non-MRI, nonaxisymmetric modes in the flow. During the subsequent evolution their
kinetic energy remains always larger than the magnetic energy by a factor which is higher at higher
Re. Since these modes are nonmagnetic in nature, they can, in principle, appear subcritically for
large enough Re in the presence of original TC flow at those Lu and Rm which are linearly stable
against nonaxisymmetric SMRI but unstable for axisymmetric SMRI (Fig. 5).

In Fig. 11, we plot the perturbed total (including all m) radial and axial velocity (ur, uz) and
magnetic field (br, bz) in the (r, φ) plane at z = 4.16 marked by orange dashed line in Fig. 9 for
the same parameters. The axial coordinate z = 4.16 is chosen such that the extent of velocity and
magnetic field at the site of radial jet and magnetic reconnection can be analysed qualitatively in
the meridional plane. The radial velocity ur is strongly concentrated along the inner cylinder. Since
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FIG. 11. Radial and axial velocity (ur, uz) and magnetic field (br, bz) structures in the (r, φ) plane in the
saturated state at z = 4.16 shown by orange dashed line in the bottom row of Fig. 9 for Lu = 6.78, Rm = 35,

and Re = 4×104.

it is positive at the inner boundary, the jet travels from the inner cylinder towards outer one with
an effective penetration radius r ≈ 1.3 and is negligible elsewhere. The radial magnetic field br

is concentrated predominantly near the inner cylinder and is nearly zero elsewhere. However, the
axial velocity uz is sheared (or spiralled) axially along inner cylinder with up-down motion very
close to inner cylinder while bulk of the flow is either stationary or moving slowly downward. The
perturbed axial magnetic field bz is mostly concentrated along the inner and outer cylinders and
directed oppositely, while in the bulk of the flow it is nearly zero.

Figure 12 shows the radial and axial velocity and magnetic field distribution in the (r, φ) plane
for the same parameters as in Fig. 11 but at z = 2.52 marked as green dashed line in Fig. 9, which
is chosen such that the effect of the radial velocity jet (or magnetic reconnection) is minimal and is
representative of the bulk flow between successive jets. In this case, the large-scale radial velocity,
corresponding to the motion of the bulk flow from outer to inner cylinder, dominates over that of
the small-scale nonaxisymmetric modes very close to the inner cylinder. A similar trend is seen for
the axial velocity. Perturbed radial and axial magnetic field are mostly concentrated near the inner
cylinder with very small perturbations of magnetic field in the bulk flow.

C. Scalings of the magnetic energy and torque with Re

The emergence of nonaxisymmetric non-MRI modes during the saturation process of the ax-
isymmetric SMRI mode naturally gives rise to the question whether the Re-scalings of saturated
state magnetic energy and torque reported in Paper II still hold in the general 3D case including
nonaxisymmetric modes. Of particular interest is the influence of nonaxisymmetric modes on
the empirical scaling relation between the saturated magnetic energy and normalized perturbation
torque, E−1

mag(G/Glam − 1) ∼ Re, where as defined above Emag = ∑
m Emag is the total (i.e., summed

over all m, kz and integrated in r) magnetic energy of perturbations (which is equivalent to the
volume-integrated magnetic energy used in Paper II) and G is the torque at the cylinders, which in
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the quasi-steady state is on average the same at the inner and outer cylinder walls and is given by
[36,48]

G = − r3
in, out

Re

∫ 2π

0

∫ Lz

0

d

dr

(
uφ

r

)∣∣∣∣
r=rin, out

dφdz. (7)

For the basic TC flow (1), the torque in the laminar state Glam = −(2πLz/Re)r3
ind�/dr|r=rin and

is used here to normalize the total viscous torque, G/Glam, to characterize the effective angular
momentum transport in the nonlinear state.

To verify the scaling relations in the presence of nonaxisymmetric modes, in Fig. 13(a) we plot
Emag as a function of Re for Lu = 5, Rm = 20 (point A) and Lu = 6.78, Rm = 35 (point C) in the
saturated state. For Re � 2×104, the scaling of the magnetic energy follows Re−0.55 in the case A
and the scaling Re−0.6 in the case C, which are similar to those reported for purely axisymmetric
SMRI in Paper II. Interestingly, for higher Re � 2×104 in the case C [marked by the vertical red
dotted line in Fig. 13(a)], the scaling of Emag becomes less steep, Re−0.4, which is due to the stronger
nonaxisymmetric modes at such high Re and Lu [Figs. 6(c) and 13(c)], so that their nonlinear
back-reaction on the dominant axisymmetric mode somewhat modifies the scaling behavior of
the latter. However, the scaling for lower Lu and Rm in the case A remains the same across all
Reynolds numbers [blue line in Fig. 13(a)]. This is because the saturated energy of nonaxisymmetric
modes is several orders smaller than that for higher Lu and Rm [green curve in Fig. 13(a), see also
Appendix A 5].

Let us now look at the behavior of the total torque with Reynolds number. Figure 13(b) shows
the normalized torque due to perturbations or simply torque G/Glam − 1 (Paper II) for the same
parameters. At Re � 2×104 in the case A, the scaling of the torque follows Re0.45, while in the case
C it follows Re0.4 in agreement with the scaling in Paper II. At higher Re � 2×104 [marked by the
vertical red dotted line in Fig. 13(b)], like for Emag, only the scaling in the case C changes to steeper
Re0.56. Nevertheless, we emphasize that in both cases the scaling relation E−1

mag(G/Glam − 1) ∼ Re
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m Emag, and (b) torque G/Glam − 1 in

the saturated state as a function of Re at point A with Lu = 5, Rm = 20 (blue lines) and point C with Lu = 6.78,
Rm = 35 (green lines). Dashed lines are the power-law fits. Vertical red dotted line indicates the change in the
scaling behavior of these quantities. (c) Evolution of the magnetic energy of all the nonaxisymmetric |m| � 1
modes, Emag,|m|�1, for point C and different Re = {1, 2, 3, 4, 6, 8}×104.

holds. This underscores the robustness of this relation and is consistent with the conclusions drawn
from the detailed analysis of axisymmetric simulations in Paper II. In the present simulations, we
observed that having a high Re alone is not sufficient to modify the above-obtained scaling laws due
to the nonaxisymmetric instabilities in the flow, but Lu and Rm should also be high enough, as seen
in the scalings of Emag and G/Glam − 1 in Figs. 13(a) and 13(b).

We demonstrated in Paper II that the saturation of axisymmetric SMRI and corresponding
scalings of the magnetic energy and torque are determined by the interplay between the magnetic
reconnection and boundary layer dynamics, where the former is characterized by Lu, Rm and
the latter by Re. As we have seen above the scaling exponents derived in that study assuming
stable (nonturbulent) boundary layer well carry over in the 3D case at lower Re � 2×104, where
nonaxisymmetric modes decay. However, at higher Re � 2×104 small-scale nonaxisymmetric,
non-MRI modes develop in the inner boundary layer and render it turbulent, leading to different
Re-scaling properties than that in the laminar case. This in turn affects the scaling behavior of the
saturated SMRI state in the 3D case, causing a slight deviation of the scaling exponents at high Re
from those of the axisymmetric SMRI obtained in Paper II, as observed above. However, it is seen
from Fig. 13 that this effect due to the nonaxisymetric modes appears to depend not only on Re but
also on Lu and Rm, being more appreciable at higher values of these numbers.

It is now interesting to examine whether the nonaxisymmetric modes themselves obey any
specific scaling behavior. Figure 13(c) shows the evolution of the magnetic energy of all the nonax-
isymmetric |m| � 1 modes for point C with Lu = 6.78, Rm = 35 and Re = {1, 2, 3, 4, 6, 8}×104.
Although for larger Re an early onset, rapid growth and saturation of the nonaxisymmetric non-MRI
modes happens, the saturation levels for all these modes for different Re are actually quite close to
each other. However, on taking a closer look at the saturated state [inset in Fig. 13(c)], it is seen that
the magnetic energy does decrease as Re increases, indicating a certain systematic dependence on
Re. In this example, this dependence is approximately Re−0.45, which closely resembles the scaling
of the magnetic energy for the axisymmetric MRI mode, suggesting a possible influence of the latter
mode on the former.

In conclusion, the scaling laws shown in Fig. 13 for typical values of Lu and Rm in the
DRESDYN-MRI experiments (Table I) certainly strengthen our finding that the bulk of the flow is
dominated by the axisymmetric SMRI mode and validate the robustness of the scalings of the energy
and torque with respect to Re and the relationship E−1

mag(G/Glam − 1) ∼ Re. Higher Rm � 35, at
which deviation of the scaling laws has been observed at Re � 2×104, still represent upper limits
on Rm reached when operating the DRESDYN-TC device at full capacity and hence may not
be typically used in these experiments. These scaling laws are quite useful and important since
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they allow us to extrapolate the characteristic quantities (energies, torques) in the saturated state
to much higher Re (which are numerically demanding) and thus to optimize the parameters in the
DRESDYN-MRI experiments. In this way, we can minimize the effects of nonaxisymmetric modes
for an unambiguous detection of SMRI. For this purpose, high-resolution 3D simulations are needed
to: 1. quantify the amplitude of nonaxisymmetric modes for a broader area of the (Lu, Rm) plane
and thereby 2. validate the scaling behavior of the energy and torque at lower Rm � 35 but higher,
experimentally relevant Re � 106, which has been obtained so far at Re � 105 in this paper and in
Paper II. This is outside the scope of the present paper and will be addressed elsewhere.

V. CONCLUSION

In this sequel paper to our previous analyses of axisymmetric SMRI in a magnetized TC flow of
infinitely long cylinders for the DRESDYN-MRI experiments (Papers I and II), we investigated in
a similar TC flow setup the linear and nonlinear dynamics of nonaxisymmetric modes. First, using
linear stability analysis, we explored the parameter regime of onset of nonaxisymmetric SMRI and
other nonmagnetic instability modes. We showed that in the parameter regime achievable in the
experiment the dominant unstable nonaxisymmetric mode has an azimuthal wave number |m| = 1
with the growth rate, however, much smaller than that of the axisymmetric SMRI mode, while
higher |m| � 2 modes are stable. In the DRESDYN-MRI experiment, the achievable values of
Lundquist and magnetic Reynolds numbers, Lu � 10 and Rm � 40, are large enough for the onset
of both axisymmetric and nonaxisymmetric SMRI. Hence, this study is important for determining
the parameter regime over which these modes can be uniquely and unambiguously identified. We
showed that for a fixed ratio of the cylinders’ angular velocities, μ, the critical Luc and Rmc for
the m = 0 SMRI is several times smaller than those for the |m| = 1 SMRI mode. This difference
between the critical values of the onset of the nonaxiymmetric instability will allow a definitive and
unambiguous detection of SMRI in laboratory, which thus should be its axisymmetric mode first.

After linear analysis, we conducted nonlinear analysis of nonaxisymmetric modes with azimuthal
wave numbers |m| ∈ [0, 20] and found that at small Re � 4×104 the nonaxisymmetric SMRI modes
do not saturate and decay. However, at large enough Re � 4×104 nonaxisymmetric nonmagnetic,
or so-called non-MRI modes of hydrodynamic origin are excited in the TC flow preferably near the
inner cylinder wall and create the turbulent boundary there. The turbulence in this boundary layer
arises due to the deviation of the mean azimuthal flow profile from classical TC profile as a result
of the saturation of the axisymmetric SMRI mode. At large enough Re, this modified flow profile
introduces steep velocity gradients at the boundaries, which becoming Rayleigh-unstable, give rise
to rapid growth and saturation of the nonaxisymmetric non-MRI modes preferably concentrated in
the inner boundary layer. However, the unstable nonaxisymmetric SMRI modes growing initially in
the original classical TC flow, decay once the flow profile is modified by the saturated axisymmetric
SMRI mode. This indicates that the axisymmetric SMRI mode is essentially responsible for the
growth of small-scale nonaxisymmetric non-MRI modes within the inner boundary layer of the
given magnetized TC flow. The saturation of these modes occur at the levels few orders lower than
that of the large-scale axisymmetic MRI mode, which still remains a prevalent mode in the flow.

Finally, we also explored the scaling behavior of the total magnetic energy and torque with
respect to Re at several Lu and Rm in the present 3D study and compared with that of saturated
axisymmetric SMRI. We showed that the main conclusion of Paper II regarding the scaling of these
two quantities holds true in the fully 3D case too, because of the dominant role of the axisymetric
SMRI mode. A slight deviation from these scalings has been observed at higher Rm � 35, due to
larger amplitude of nonaxisymmetric non-MRI modes, but such Rm are still somewhat higher than
usual values reached in the DRESDYN-MRI experiments. These scalings are quite important since
they allow us to extrapolate the key characteristic quantities of the saturated state (energy, torque)
to numerically demanding but experimentally relevant higher Re � 106 than those considered
here to find the saturated values of magnetic fields and velocity perturbations expected in the
upcoming DRESDYN-MRI experiment. However, it is necessary to further investigate the nonlinear
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FIG. 14. Growth rate, Re(γ ), versus the axial mode number nz = kzLz/2π for the |m| = 1 mode of SMRI
at Lu = 6.78, Rm = 35, μ = 0.35, and different Pm = 10−5, 10−4, 4×10−4.

(turbulent) regimes of SMRI in a magnetized TC flow at such large Re using 3D higher resolution
simulations to rigorously validate these scalings and better understand the properties of the boundary
layer turbulence near the cylinder walls found in the present study.
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APPENDIX

1. Independence of the linear SMRI from Pm

To demonstrate that the linear dynamics of SMRI is essentially insensitive to Pm when Pm 	 1,
in Fig. 14 we show the linear growth rate of the |m| = 1 mode as a function of the axial mode number
nz = kzLz/2π at μ = 0.35, Lu = 6.78, Rm = 35 (point C in Fig. 3) and different Pm = 10−5, 10−4,
and 4×10−4. It is evident that the dispersion curves almost coincide despite an order of magnitude
increase in Pm. Since in the nonlinear analysis the axial wave number kz is discrete and hence the
mode number nz is integer, the only unstable modes in the flow domain for these Lu and Rm are
nz = 3 (kz = 1.88) and 4 (kz = 2.51), as seen in Fig. 14, with the former having the largest growth
rate.

2. (r, z) structure of the nonaxisymmetric modes in the linear regime

Figure 15 shows the radial and axial velocity, (ur, uz), and magnetic field, (br, bz), structures
for all nonaxisymmetric modes in the (r, z) plane for Lu = 6.78, Rm = 35 (point C) as in Fig. 4
and Re = 4×104 during the early exponential growth phase [moment E in Fig. 6(c)]. It is seen
from Fig. 7 that in this case only nonaxisymmetric |m| = 1 mode is unstable and dominates the
velocity and magnetic field structures. Hence, the (r, z) maps shown here from the simulations look
similar to those obtained for this mode using the linear stability analysis (Fig. 4), having the same
wavelength, or the number of axial modes nz = 3, which corresponds to the largest growth rate in
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FIG. 15. Radial and axial velocity (ur, uz) and magnetic (br, bz) field structures of the nonaxisymmetric
modes in the (r, z) plane during the early exponential growth stage [moment E in Fig. 6(c)] obtained from
the nonlinear simulations, which are dominated by the |m| = 1 SMRI mode. The parameters are: μ = 0.35,
Lu = 6.78, Rm = 35 (point C in Fig. 3), and Re = 4×104.

the domain (Fig. 14). Note that the orientation of the (r, z) structures is reversed compared to that
in Fig. 4. Since m = 1 and m = −1 modes have generally equal weights, incidentally the nonlinear
simulation shows somewhat more preference for the m = −1 mode, which could be due to initial
conditions.

3. Resolution test

To justify the resolution used in the main study, here we present resolution tests both in the
φ-azimuthal and z-axial directions. Figure 16 shows the azimuthal m spectra of the magnetic energy,
Emag, in the saturated state at three different azimuthal resolutions |m| � Nφ = {10, 20, 40} and
an axial resolution Nz = 480 (i.e., |kz| � 2πNz/Lz) used in Sec. IV for Lu = 6.78, Rm = 35, and
Re = {2, 4, 6, 8}×104. It is seen that the spectra at Nφ = 20 and 40 converge with a little deviation
at higher |m| � 10 for Re = 6×104 and 8×104. Thus, Nφ = 20 used in the main analysis appears to
be adequate, capturing a significant portion of the most energy-containing nonaxisymmetric modes
with |m| � 10.
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FIG. 16. Azimuthal spectra of the magnetic energy density, Emag, versus m for different resolutions Nφ =
{10, 20, 40} in the azimuthal and a fixed resolution Nz = 480 in the axial directions at Lu = 6.78, Rm = 35
(point C in Fig. 3), and different (a) Re = 2×104, (b) 4×104, (c) 6×104, and (d) 8×104. It is seen that the
most energy-containing nonaxisymmetric modes with |m| � 10 are well resolved from Nφ = 20, exhibiting
the convergence of the spectra at these high Re.
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FIG. 17. Axial spectra of the magnetic energy density for (a), (c) all m modes, Emag,|m|�0 and (b), (d) for
nonaxisymmetric |m| � 1 modes, Emag,|m|�1 versus kz at different resolutions Nz = {240, 480, 800} in the axial
and a fixed resolution Nφ = 20 in the azimuthal directions at the same Lu = 6.78 and Rm = 35 as in Fig. 16
and different (a), (b) Re = 4×104 and (c), (d) 8×104. It is seen that both axial spectra well converge with
resolution.

Figure 17 shows the axial kz spectra of the magnetic energy in the saturated state summed over all
m modes, Emag,|m|�0(kz ) = ∑

m Ēmag(m, kz ), as well as over only nonaxisymmetric |m| � 1 modes,
Emag,|m|�1(kz ) = ∑

|m|�1 Ēmag(m, kz ) at three different axial resolutions Nz = {240, 480, 800} and a
fixed azimuthal resolution Nφ = 20. Lu and Rm are the same as above and Re = {4, 8}×104. It is
seen that both axial spectra of all the modes (which are dominated by the axisymmetric one) and
only smaller-scale nonaxisymmetric modes exhibit a very good convergence with resolution at all
kz. Therefore, Nz = 480 used in Sec. IV is sufficient for resolving the small-scale turbulent structurs
of the flow near the cylinder walls along the z axis.

4. Magnetic energy evolution at point B of Fig. 3

Figure 18 shows the evolution of the magnetic energy of axisymmetric, Emag(0), and all
the nonaxisymmetric, Emag,|m|�1, modes for Lu = 6, Rm = 30 (point B in Fig. 3) and Re =
{2, 3, 4, 6}×104. Since point B is just outside but near the marginal stability curve of the |m| = 1
mode, this and higher-m nonaxisymmetric modes decay for all Re in the linear growth phase, where
the basic flow profile is still the original TC flow (1). Noticeable rapid growth of nonaxisymmetric
modes occur at large Re � 3×104 as seen in panels (b), (c) and (d), which is triggered by the change
in the TC flow profile as the axisymmetric SMRI mode saturates. This growth is only transient and
eventually decays for Re = 3×104, whereas for Re = 4×104 and 6×104 it saturates to a finite value,
which is still orders of magnitude smaller than that of the axisymmetric mode.

Figure 19 shows the evolution of the azimuthal spectral magnetic energy density Emag for
different m ∈ [0, 14], the same Lu = 6, Rm = 30 as above and Re = {3, 4, 6}×104. Note that in the
early phase, before the full saturation of the dominant axisymmetric mode, nonaxisymmetric modes
with smaller |m| < 10 decay for all Re while the modes with larger |m| � 10 first decrease and then
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FIG. 18. Same as in Fig. 5 but at Lu = 6 and Rm = 30 (point B in Fig. 3) at different (a) Re = 2×104,
(b) 3×104, (c) 4×104, and (d) 6×104.
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FIG. 19. Evolution of the azimuthal spectrum of the magnetic energy density, Emag(m), for different m ∈
[0, 14] and Lu = 6, Rm = 30, and (a) Re = 3×104, (b) 4×104, and (c) 6×104.

start to grow. The reason for this behavior could be that in the middle of the exponential growth of
the axisymmetric SMRI mode the boundary layers with high shear start to form and, although the
shear therein may not be yet strong enough, still appears sufficient to trigger the growth of these
high-m modes. Later, once the axisymmetric mode has reached a saturation point, a much steeper
increase in the magnetic energy of all |m| � 1 nonaxisymmetric modes is seen, which is, however,
not sustained for Re = 3×104, while it saturates for Re = 4×104 and 6×104 at orders of magnitude
higher levels.

5. Scaling relations at Rm = 40, Lu = 8.56

Figure 20 shows the scaling behavior for the saturated total magnetic energy Emag and torque
G/Glam − 1 as a function of Re for higher Lu = 8.56 and Rm = 40 that those used in the main
study. Similar to the observation in Figs. 13(a) and 13(b), the scalings of Emag and G/Glam − 1
change after Re � 2×104 due to the presence of stronger nonaxisymmetric non-MRI modes. Still,
the scaling relation E−1

mag(G/Glam − 1) ∼ Re is satisfied.
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FIG. 20. Same as Figs. 13(a) and 13(b) but for higher Lu = 8.56 and Rm = 40. Blue dotted line shows
the change in the scaling behavior for the saturated magnetic energy Emag and torque G/Glam − 1 due to the
presence of stronger nonaxisymmetric non-MRI modes at these relatively high Lu and Rm.

033904-22



NONAXISYMMETRIC MODES OF MAGNETOROTATIONAL …

[1] E. Velikhov, Stability of an ideally conducting liquid flowing between rotating cylinders in a magnetic
field, Zh. Eksp. Teor. Fiz. 36, 1398 (1959).

[2] S. A. Balbus and J. F. Hawley, A powerful local shear instability in weakly magnetized disks. I. Linear
analysis, Astrophys. J. 376, 214 (1991).

[3] D. R. Sisan, N. Mujica, W. A. Tillotson, Y.-M. Huang, W. Dorland, A. B. Hassam, T. M. Antonsen,
and D. P. Lathrop, Experimental observation and characterization of the magnetorotational instability,
Phys. Rev. Lett. 93, 114502 (2004).

[4] M. D. Nornberg, H. Ji, E. Schartman, A. Roach, and J. Goodman, Observation of magnetocoriolis waves
in a liquid metal Taylor-Couette experiment, Phys. Rev. Lett. 104, 074501 (2010).

[5] A. H. Roach, E. J. Spence, C. Gissinger, E. M. Edlund, P. Sloboda, J. Goodman, and H. Ji, Observation
of a free-Shercliff-layer instability in cylindrical geometry, Phys. Rev. Lett. 108, 154502 (2012).

[6] D. M. H. Hung, E. G. Blackman, K. J. Caspary, E. P. Gilson, and H. Ji, Experimental confirmation of
the standard magnetorotational instability mechanism with a spring-mass analogue, Commun. Phys. 2, 7
(2019).

[7] Y. Wang, E. P. Gilson, F. Ebrahimi, J. Goodman, and H. Ji, Observation of axisymmetric standard
magnetorotational instability in the laboratory, Phys. Rev. Lett. 129, 115001 (2022).

[8] G. Rüdiger, M. Gellert, R. Hollerbach, M. Schultz, and F. Stefani, Stability and instability of hydromag-
netic Taylor-Couette flows, Phys. Rep. 741, 1 (2018).

[9] H. Ji and J. Goodman, Taylor-Couette flow for astrophysical purposes, Philos. Trans. R. Soc. London, Ser.
A 381, 20220119 (2023).

[10] Y. Wang, E. P. Gilson, F. Ebrahimi, J. Goodman, K. J. Caspary, H. W. Winarto, and H. Ji, Identification of
a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability,
Nat. Commun. 13, 4679 (2022).

[11] G. Rüdiger and M. Schultz, The gap-size influence on the excitation of magnetorotational instability in
cylindric Taylor–Couette flows, J. Plasma Phys. 90, 905900105 (2024).

[12] R. Hollerbach and G. Rüdiger, New type of magnetorotational instability in cylindrical Taylor-Couette
flow, Phys. Rev. Lett. 95, 124501 (2005).

[13] R. Hollerbach, V. Teeluck, and G. Rüdiger, Nonaxisymmetric magnetorotational instabilities in cylindrical
Taylor-Couette flow, Phys. Rev. Lett. 104, 044502 (2010).

[14] F. Stefani, T. Gundrum, G. Gerbeth, G. Rüdiger, M. Schultz, J. Szklarski, and R. Hollerbach, Experimental
evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical
magnetic field, Phys. Rev. Lett. 97, 184502 (2006).

[15] F. Stefani, G. Gerbeth, T. Gundrum, R. Hollerbach, J. B. A. Priede, G. Rüdiger, and J. Szklarski, Helical
magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping, Phys. Rev.
E 80, 066303 (2009).

[16] M. Seilmayer, V. Galindo, G. Gerbeth, T. Gundrum, F. Stefani, M. Gellert, G. Rüdiger, M. Schultz, and R.
Hollerbach, Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid
metal exposed to an azimuthal magnetic field, Phys. Rev. Lett. 113, 024505 (2014).

[17] A. Mishra, G. Mamatsashvili, V. Galindo, and F. Stefani, Convective, absolute and global azimuthal
magnetorotational instabilities, J. Fluid Mech. 922, R4 (2021).

[18] F. Stefani, A. Gailitis, G. Gerbeth, A. Giesecke, T. Gundrum, G. Rüdiger, M. Seilmayer, and T. Vogt,
The DRESDYN project: Liquid metal experiments on dynamo action and magnetorotational instability,
Geophys. Astrophys. Fluid Dyn. 113, 51 (2019).

[19] A. Mishra, G. Mamatsashvili, and F. Stefani, From helical to standard magnetorotational instability:
Predictions for upcoming liquid sodium experiments, Phys. Rev. Fluids 7, 064802 (2022).

[20] M. Seilmayer, F. Stefani, T. Gundrum, T. Weier, G. Gerbeth, M. Gellert, and G. Rüdiger, Experimental
evidence for a transient Tayler instability in a cylindrical liquid-metal column, Phys. Rev. Lett. 108,
244501 (2012).

[21] G. Mamatsashvili, F. Stefani, R. Hollerbach, and G. Rüdiger, Two types of axisymmetric helical magne-
torotational instability in rotating flows with positive shear, Phys. Rev. Fluids 4, 103905 (2019).

[22] J. F. Hawley and S. A. Balbus, A powerful local shear instability in weakly magnetized disks. II. Nonlinear
evolution, Astrophys. J. 376, 223 (1991).

033904-23

https://doi.org/10.1086/170270
https://doi.org/10.1103/PhysRevLett.93.114502
https://doi.org/10.1103/PhysRevLett.104.074501
https://doi.org/10.1103/PhysRevLett.108.154502
https://doi.org/10.1038/s42005-018-0103-7
https://doi.org/10.1103/PhysRevLett.129.115001
https://doi.org/10.1016/j.physrep.2018.02.006
https://doi.org/10.1098/rsta.2022.0119
https://doi.org/10.1038/s41467-022-32278-0
https://doi.org/10.1017/S0022377823001356
https://doi.org/10.1103/PhysRevLett.95.124501
https://doi.org/10.1103/PhysRevLett.104.044502
https://doi.org/10.1103/PhysRevLett.97.184502
https://doi.org/10.1103/PhysRevE.80.066303
https://doi.org/10.1103/PhysRevLett.113.024505
https://doi.org/10.1017/jfm.2021.548
https://doi.org/10.1080/03091929.2018.1501481
https://doi.org/10.1103/PhysRevFluids.7.064802
https://doi.org/10.1103/PhysRevLett.108.244501
https://doi.org/10.1103/PhysRevFluids.4.103905
https://doi.org/10.1086/170271


MISHRA, MAMATSASHVILI, AND STEFANI

[23] S. A. Balbus and J. F. Hawley, Instability, turbulence, and enhanced transport in accretion disks,
Rev. Mod. Phys. 70, 1 (1998).

[24] S. A. Balbus, Enhanced angular momentum transport in accretion disks, Annu. Rev. Astron. Astrophys.
41, 555 (2003).

[25] E. Knobloch and K. Julien, Saturation of the magnetorotational instability, Phys. Fluids 17, 094106
(2005).

[26] W. Liu, J. Goodman, and H. Ji, Simulations of magnetorotational instability in a magnetized Couette flow,
Astrophys. J. 643, 306 (2006).

[27] M. Gellert, G. Rüdiger, and M. Schultz, The angular momentum transport by standard MRI in quasi-
Kepler cylindrical Taylor-Couette flows, Astron. Astrophys. 541, A124 (2012).

[28] C. Gissinger, J. Goodman, and H. Ji, The role of boundaries in the magnetorotational instability,
Phys. Fluids 24, 074109 (2012).

[29] X. Wei, H. Ji, J. Goodman, F. Ebrahimi, E. Gilson, F. Jenko, and K. Lackner, Numerical simulations of
the Princeton magnetorotational instability experiment with conducting axial boundaries, Phys. Rev. E
94, 063107 (2016).

[30] D. Choi, F. Ebrahimi, K. J. Caspary, E. P. Gilson, J. Goodman, and H. Ji, Nonaxisymmetric simulations of
the Princeton magnetorotational instability experiment with insulating and conducting axial boundaries,
Phys. Rev. E 100, 033116 (2019).

[31] H. W. Winarto, H. Ji, J. Goodman, F. Ebrahimi, E. P. Gilson, and Y. Wang, Parameter space mapping of
the Princeton magnetorotational instability experiment, Phys. Rev. E 102, 023113 (2020).

[32] O. M. Umurhan, K. Menou, and O. Regev, Weakly nonlinear analysis of the magnetorotational instability
in a model channel flow, Phys. Rev. Lett. 98, 034501 (2007).

[33] O. M. Umurhan, O. Regev, and K. Menou, Nonlinear saturation of the magnetorotational instability near
threshold in a thin-gap Taylor-Couette setup, Phys. Rev. E 76, 036310 (2007).

[34] S. E. Clark and J. S. Oishi, The weakly nonlinear magnetorotational instability in a local geometry,
Astrophys. J. 841, 1 (2017).

[35] S. E. Clark and J. S. Oishi, The weakly nonlinear magnetorotational instability in a global, cylindrical
Taylor-Couette flow, Astrophys. J. 841, 2 (2017).

[36] A. Mishra, G. Mamatsashvili, and F. Stefani, Nonlinear evolution of magnetorotational instability in a
magnetized Taylor-Couette flow: Scaling properties and relation to upcoming DRESDYN-MRI experi-
ment, Phys. Rev. Fluids 8, 083902 (2023).

[37] G. I. Ogilvie and J. E. Pringle, The non-axisymmetric instability of a cylindrical shear flow containing an
azimuthal magnetic field, Mon. Not. R. Astron. Soc. 279, 152 (1996).

[38] I. V. Khalzov, V. I. Ilgisonis, A. I. Smolyakov, and E. P. Velikhov, Magnetorotational instability in
electrically driven flow of liquid metal: Spectral analysis of global modes, Phys. Fluids 18, 124107 (2006).

[39] H. Goedbloed and R. Keppens, The super-Alfvénic rotational instability in accretion disks about black
holes, Astrophys. J. Suppl. Ser. 259, 65 (2022).

[40] F. Ebrahimi and M. Pharr, A nonlocal magneto-curvature instability in a differentially rotating disk,
Astrophys. J. 936, 145 (2022).

[41] G. Rüdiger, M. Schultz, and D. Shalybkov, Linear magnetohydrodynamic Taylor-Couette instability for
liquid sodium, Phys. Rev. E 67, 046312 (2003).

[42] D. A. Shalybkov, G. Rüdiger, and M. Schultz, Nonaxisymmetric patterns in the linear theory of MHD
Taylor-Couette instability, Astron. Astrophys. 395, 339 (2002).

[43] R. Hollerbach and A. Fournier, End-effects in rapidly rotating cylindrical Taylor-Couette flow, in MHD
Couette Flows: Experiments and Models, American Institute of Physics Conference Series, Vol. 733,
edited by R. Rosner, G. Rüdiger, and A. Bonanno (AIP, College Park, MD, 2004), pp. 114–121

[44] J. Szklarski, Reduction of boundary effects in the spiral MRI experiment PROMISE, Astron. Nachr. 328,
499 (2007).

[45] Because of symmetry, the results for the m < 0 modes are the same as those for the m > 0 modes, so with-
out loss of generality everywhere below we use the absolute value |m| when describing nonaxisymmetric
mode dynamics.

033904-24

https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1146/annurev.astro.41.081401.155207
https://doi.org/10.1063/1.2047592
https://doi.org/10.1086/501495
https://doi.org/10.1051/0004-6361/201117892
https://doi.org/10.1063/1.4737657
https://doi.org/10.1103/PhysRevE.94.063107
https://doi.org/10.1103/PhysRevE.100.033116
https://doi.org/10.1103/PhysRevE.102.023113
https://doi.org/10.1103/PhysRevLett.98.034501
https://doi.org/10.1103/PhysRevE.76.036310
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.1103/PhysRevFluids.8.083902
https://doi.org/10.1093/mnras/279.1.152
https://doi.org/10.1063/1.2408513
https://doi.org/10.3847/1538-4365/ac573c
https://doi.org/10.3847/1538-4357/ac892d
https://doi.org/10.1103/PhysRevE.67.046312
https://doi.org/10.1051/0004-6361:20021284
https://doi.org/10.1002/asna.200710774


NONAXISYMMETRIC MODES OF MAGNETOROTATIONAL …

[46] In the present case with resistivity, the meaning of the Alfvén resonance points is, however, less clear.
[47] A. Guseva, A. P. Willis, R. Hollerbach, and M. Avila, Transition to magnetorotational turbulence in Taylor-

Couette flow with imposed azimuthal magnetic field, New J. Phys. 17, 093018 (2015).
[48] G. Mamatsashvili, F. Stefani, A. Guseva, and M. Avila, Quasi-two-dimensional nonlinear evolution of

helical magnetorotational instability in a magnetized Taylor-Couette flow, New J. Phys. 20, 013012
(2018).

[49] Point E in Fig. 6(c) marks only the exponential growth phase of nonaxisymmetric modes in the linear
regime when their overall (r, z) structure is nearly similar to that obtained from the linear stability analysis
of the dominant |m| = 1 mode (Fig. 4), so we make this comparison in Appendix A 2.

033904-25

https://doi.org/10.1088/1367-2630/17/9/093018
https://doi.org/10.1088/1367-2630/aa9d65

