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Description of laminar-turbulent transition of an airfoil boundary
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The study presented here addresses the challenging problem of laminar-turbulent flow
transition in boundary layers. Directed percolation theory has emerged as a promising ap-
proach to understand and describe this transition in different scenarios. This study utilizes
differential image thermography (DIT) to investigate the boundary layer transition on the
suction side of a heated airfoil, presenting experimental findings. First, the DIT results
underline the ability of capturing the near surface transition for the airfoil boundary layer
with a high temporal and spatial resolution. Second, the evaluation reveals the effectiveness
of directed percolation theory in describing the onset of the transition, showing agreement
with all three universal exponents of (1+1)-dimensional directed percolation theory. Third,
the study shows the applicability of this theory to a wide range of flow situations beyond the
parameter space covered in previous examinations. These findings underscore the possible
application of directed percolation models in fluid mechanics and suggest that the theory
could serve as a high precision tool for describing the transition to turbulence.
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I. INTRODUCTION

Laminar-turbulent transition is a complex phenomenon that has been one of the most challenging
problems in turbulence research since its first observation in Reynolds’ famous pipe flow experiment
in 1883 [1]. Despite considerable efforts in the field, the standard stability theory has failed to
explain the occurrence and nature of transition even for basic cases. Reviews on the ongoing research
on wall-bound transition have been presented by Manneville [2] and Barkley [3].

To simplify the complexity of the problem, Pomeau proposed an approach to describe the
nonlinear transition phenomena of a flow as interacting oscillators more than three decades ago
[4]. Pomeau’s approach is based on subcritical bifurcation of the flow in the region of the critical
Reynolds number, where the flow switches between a stable and a metastable state. This perspective
on the transition has started discussions on whether the laminar-turbulent transition fits into one of
the universality classes of the statistical model of directed percolation.

Pomeau’s idea is appealing since the laminar-turbulent transition can be described as a spatiotem-
poral intermittency [5,6]. However, it took several decades before percolation theory was taken up
again in fluid dynamics, although the model has been successfully applied to other fields such as
epidemics and forest fires [7]. Pomeau attributed this delay to the lack of accuracy of experimental
and numerical studies in fluid dynamics available at that time, making it impossible to verify the
theory [8]. Therefore, high-resolution spatiotemporal methods are required for laminar-turbulent
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transition experiments, while numerical flow simulations must be high resolving and sufficiently
long for conclusive statistical evaluations.

In recent years, the availability of better numerical and experimental resources has led to an
increase in the number of studies focusing on directed percolation theory in fluid dynamics.1 These
studies have investigated the influence of the order parameter on the propagation of turbulent cells
[10,11], the formation and development of clusters of turbulent cells [12], and the determination
of turbulent cells from simulations [13]. In addition, low-order models for describing the transition
have been developed [14], sophisticated simulations have been performed [15,16], and the applica-
bility of percolation theory has been demonstrated in a broad range of experiments [17–21]. More
recent studies have focused on perturbing coherent structures and their influence on percolation
results [22]. This accelerating interest in the field is also reflected in various conference contributions
[23,24] and publications [25] in recent years. The progress is summarized in the review of Hof [26].

The majority of studies in this field focus on canonical wall-bounded flows with basic geometries,
such as Couette or pipe flows, where changes to the Reynolds number of the entire system are
achieved by altering velocities or aspect ratios. Another application of the theory has been found
for the transition of an airfoil boundary layer flow into the onset of a laminar separation bubble
using stereoscopic Particle Image Velocimetry (PIV) [21]. Unlike other studies, the flow evolves
in an instationary way along the surface of the airfoil. Thus a changing Reynolds number based
on the traveled distance was used to characterize the system, which is often done for developing
boundary layer flows. The data showed good agreement with the (1+1)-dimensional [(1+1)D]
directed percolation class, where one dimension describes the spatial component and the other the
temporal evolution. The study presented results for one specific angle of attack and inflow velocity.
Additionally, since the laminar separation bubble case is a unique instance, it would be interesting
to find out whether the more frequent natural laminar-turbulent transition of the airfoil boundary
layer can also be described by a percolation universality class. The applicability of the method in
the context of experimentally variable parameters and its potential deviations from the universality
of directed percolation, which should not occur, are still open questions.

In general, an accurate determination and description of boundary layer transition and its location
holds great importance in fluid mechanics applications for the development of more accurate
models. The use of a simple statistical model like directed percolation can provide a more precise
description, thereby improving the prediction of loads on rotor blades and enhancing the reliability
of CFD simulations of airfoil behavior. Underestimated loads often arise from missing the increased
energy input of turbulent boundary layer into the near-surface flow, resulting in a longer-attached
flow and delayed and stronger flow separation. Similarly, transition can lead to a sudden increase
in loads when an already detached flow suddenly reattaches. These rapidly changing forces are
undesirable in most applications and must be understood and included into prediction models.
Therefore, directed percolation theory has the potential to become a valuable tool in predicting,
locating, understanding, and modeling the transition phenomenon in the future.

To determine whether directed percolation theory can accurately describe the laminar-turbulent
transition of a boundary layer, it is essential to ensure a high level of temporal and spatial resolution
during experiments. However, this presents a significant challenge when dealing with airfoils, as
their curved surfaces and three-dimensional boundary layers complicate the measurement process.
Planar PIV measurements utilizing light sheets can only provide limited insights, as the distance
between the curved surface and measurement volume varies, leading to inconsistent measurements
of different boundary layer heights and states. This issue has been identified as a potential cause of
deviations in previous studies [21] and must be overcome in order to achieve precise analysis.

Differential image thermography (DIT) has proven itself to be an effective tool to investigate
complex boundary layer flows. Numerous studies have demonstrated the potential of DIT in

1For an explanation of the terminology used here, please refer to the later section IV or for more general
information to [7,9].
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FIG. 1. Experimental setup consisting of a Göttingen type wind tunnel, thermography camera shown in
red, and a DU95-W-180 airfoil mounted on a rotary table. Above the test section, the airfoil with the FOV of
the thermography camera is represented by an example differential image thermogram.

accurately distinguishing between laminar and turbulent flows in unsteady boundary layers [27–30].
This method has been successfully employed to investigate the boundary layer flow over pitching
airfoils [31], as well as the phenomenon of dynamic stall [32]. Furthermore, DIT has been applied
to examine boundary layer transition of rotating rotor blades, at both small [33] and large scales
[34,35]. With its diverse applications and the growing capabilities for temporal and temperature
resolution, the DIT has demonstrated its versatility and capacity to offer in-depth insights into
complex flow situations, all while maintaining an easy operation. As a result, this technique has
become increasingly promising for both qualitative and quantitative analyses, such as directed
percolation.

The objective of this study is to measure the laminar-turbulent transition of an airfoil boundary
layer at different inflow velocities and angles of attack to cover a broad parameter space. To
overcome the challenge of the curved surface and obtain detailed insight into the boundary layer
flow, the study utilizes DIT. By measuring surface temperature differences, the location of the
transition can be determined. The study demonstrates that DIT offers adequate spatiotemporal
resolution for conducting statistical evaluations and, ultimately, enables the comparison between
the (1+1)D directed percolation model and boundary layer evolution. The results demonstrate a
very good agreement between theory and transition for a broad range of parameters, leading to a
more precise localization of the transition point compared to state of the art approaches.

The paper starts by the description of the experimental setup in Sec. II, which comprises the wind
tunnel and the thermography system. The DIT results are then presented in Sec. III, followed by the
application of the directed percolation theory to the obtained data in Sec. IV. Section V summarizes
the paper.

II. EXPERIMENTAL SETUP

An experimental setup utilizing a Göttingen-type return wind tunnel located at the University of
Oldenburg is used, as illustrated in Fig. 1. The wind tunnel is equipped with a PID velocity control
system to maintain the desired flow conditions. The test section of the wind tunnel is enclosed and
made of acrylic glass for optical access. The test section has dimensions of 0.25 m × 0.25 m ×
2.00 m (height × width × length). To enable measurements in the infrared wavelength range using
the differential infrared thermography (DIT) technique, a calcium fluoride window with infrared
transmission greater than 90% is embedded in the ceiling of the test section. Its position can be
adjusted to optimize the camera’s angle of view on the object being studied.

A DU95-W-180 airfoil with a chord length of 180 mm and made of aluminum for high heat
capacity is selected for the experiments. The airfoil is heated from the inside using a hot air flow to
achieve a temperature difference of about 5 K to the equilibrium state, which provides a sufficiently
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large contrast during the measurement without fundamentally changing the aerodynamics on the
boundary layer of the profile. A black PVC foil with 80 µm thickness is applied to the airfoil’s
surface to avoid reflections of the aluminum surface.

A turntable is embedded in the sidewall of the test section 1 m downstream of the nozzle. This
allows the mechanical change of the angle of attack (α) of the airfoil. The surface temperature is
measured by a thermography camera of type ImageIR 8380 hpS by Infratec. The settings of the
camera enable an accuracy of 20 mK with a temporal resolution of up to 355 fps using the entire
sensor chip with a size of 640 px × 512 px. Each data set captured consists of 1775 images or
a total duration of 5 s. The field of view (FOV) has a dimension of 107.9 mm × 49.8 mm with
a spatial resolution of 0.172 mm/px (e.g., α=0◦). The captured FOV is illustrated on the airfoil
surface in Fig. 1. To calculate differential image thermograms, an image of the heated airfoil is taken
for each measurement series before the wind tunnel is switched on. This thermogram serves as a
reference image for the subsequent determination of the temperature loss induced by the developing
boundary layer flow. In general, the airfoil experiences cooling as a consequence of the airflow,
leading to the development of a discernible temperature over the measurement time. In order to
mitigate the potential influence of this on the research outcomes, the measured data are subjected
to a correction procedure involving the removal of the linear trend associated with the temporal
temperature evolution. This corrective methodology ensures that the obtained results are unaffected
by the presence of an overall heating or cooling of the system, thereby enhancing the accuracy and
reliability of the findings.

The study investigates a range of boundary layer states by varying the velocity from u∞ = 10 m/s
to u∞ = 20 m/s and setting α of the airfoil to [0, 5, 10]◦ successively. This allows for the observa-
tion of not only transition but also the onset of static stall during the investigation.

III. THERMOGRAPHY MEASUREMENTS

Boundary layer flows are analyzed using DIT by exploiting the different heat transfer properties
between the object surface and the fluid flow, which are characterized by the Stanton number

St := h

u∞ ρfluid cP
, (1)

where h is the convection heat transfer coefficient, u∞ is the flow velocity, ρfluid is the fluid density,
and cP is the fluid specific heat.

In laminar flows, h and thus St are smaller compared to turbulent flows, due to the slower
dissipation of heat [31]. This leads to increased cooling rates of surfaces for turbulent boundary
layers. Instead of measuring h or St, the inverse proportional and easy accessible temperature T can
be measured. By this the evolving temperature development can be used to directly infer the flow
state of the boundary layer.

To determine the transition point R̃ec from DIT measurements, the temperature evolution along
the suction side of the airfoil is examined. Figure 2 shows a color-coded representation of the time-
averaged differential temperatures �T . The differential images are calculated by subtracting the
beforehand measured equilibrium state from each thermogram. Each column represents a different
angle of attack (α) and each row represents different used wind speeds (u∞). The red line shows the
temperature gradient averaged along the spanwise y direction of the airfoil. Based on the measured
data, it is observed that the DITs can be classified into two distinct groups. The first group shows a
temperature drop and a local minimum along the chord [as depicted in Figs. 2(a), 2(b), 2(c), 2(e), and
2(f)], while the second group either displays a slow temperature decrease [as shown in Fig. 2(d)] or
a monotonic increase [as illustrated in Figs. 2(g), 2(h) and 2(i)]. The temperature gradients observed
in the first group are characteristic of laminar-to-turbulent boundary layer transitions [27]. During
the initial laminar flow regime, the associated low Stanton number St results in less cooling of
the surface. However, as the flow transitions to turbulence, St increases. Due to the increased heat
transfer coefficient h, the surface temperature decreases faster. Using this information, the measured
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FIG. 2. Time averaged differential image thermograms for different angle of attack α = [0, 5, 10]◦ and
velocities u∞ = [10, 15, 17.5, 20] m/s corresponding to Reynolds numbers of Rechord ≈ [114000, 171000,

199000, 228000]. The colors represent the temperature from cold (blue) to warm (red). The right y axis of
each plot corresponds to the color bar range. Additionally, the spatial averaged temperature curves are plotted
in red. The black symbols represent the inflection point � and the point of maximum curvature ×.

temperature profiles can be utilized to locate the point of transition. Such locations on the airfoil are
given in terms of chord length based Reynolds number

Rex := u∞x

ν
, (2)

where x denotes the position along the chord, u∞ is the free stream velocity, and ν represents the
kinematic viscosity of used fluid.

In accordance with contemporary best practices to find the transition point [27,31], inflection
points for each temperature profile are determined initially by calculating the minimum of the first
derivative, represented as min( d�T

dx ). The positions of these inflection points are indicated using
diamond symbols in Fig. 2. Given that the temperature transition in this context is not characterized
as an abrupt step but rather as a gradual decay, points of maximum curvature are also derived from
the second derivative, specifically min( d2�T

dx2 ) and max( d2�T
dx2 ), based on the displayed temperature

profiles. These points serve to estimate the region where the transition occurs and are denoted by
crosses in Fig. 2. The values of the transition points (R̃ec) obtained from DIT images are summarized
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TABLE I. Transition point R̃ec extracted from DIT measurements referring to Fig. 2 and transition points
Rec extracted from (1+1)D directed percolation model fit shown in Fig. 5.

R̃ec �R̃ec �R̃ec/R̃ec Rec �Rec �Rec/Rec

(a) 66909 3770 5.6% 66809 43 0.06%
(b) 95216 4903 5.1% 94976 175 0.18%
(c) 123845 6569 5.3% 123720 125 0.10%
(d) <44049 43716 92 0.21%
(e) 83043 4658 5.6% 83020 92 0.11%
(f) 95057 5449 5.7% 94999 200 0.20%
(g) <42151 42009 17 0.04%
(h) <62946 62681 63 0.10%
(i) <71747 71489 96 0.13%

in Table I, with the errors �R̃ec derived as the minima between the inflection points and the points
of maximal curvature.

Next, the two previously defined groups are compared in further detail. In contrast to the
findings of α = 0◦, the measurements show at α = 5◦ and at x/c ≈ 0.7 a very pronounced rise
in temperature [refer to Figs. 2(e) and 2(f)]. This finding implies the existence of an additional
flow phenomenon, apart from the laminar-to-turbulent transition. The temperature increase can be
ascribed to a decrease in St resulting in reduced heat transfer. One plausible explanation for this
phenomenon is the formation of a stall cell at the trailing edge of the airfoil, which leads to a
diminished surface velocity. This explanation aligns with previous studies on airfoil characteristics
available in the literature [36].

In the case of the second group of measurements, including measurement of Fig. 2(d), no
decrease in temperature is observed. The temperature profiles indicate that the transition from
laminar to turbulent flow had already occurred upstream of the field of view (FOV) investigated
by the DIT. Consequently, the precise location of the transition point cannot be determined using
the available DIT data and the curvature method. Nevertheless the temperature measurements
for α = 10◦ reveal a uniform increase in the temperature gradient. This observation suggests the
presence of a stall phenomenon at this angle, which aligns with results from previous investigations
[36].

IV. MEASURED LAMINAR-TURBULENT TRANSITION IN TERMS
OF PERCOLATION THEORY

This study is based on the question of whether the laminar-to-turbulent transition can be de-
scribed by a universality class of directed percolation. We summarize next the central features of
the percolation theory [5–7,9] and link these to the specific features of the transition on an airfoil
boundary layer. The focus is on the universality class of the (1+1)D percolation, as in previous
studies [21] this class was proposed as the appropriate one.

In percolation theory, the system is represented by cells, which can exist in one of two states:
“on” or “off.” In the context of transient boundary layers, these states correspond to turbulent (on)
or laminar (off) conditions, respectively. A transition is described within the percolation theory by an
order parameter p, which fixes the probability of occurrence of turbulent cells. For a critical value
of p the transition takes places and is marked by the emerging connectivity of the new turbulent
state (on state). For our case of laminar turbulent transition on an airfoil it is intuitively obvious to
use the chord length based Reynolds number Rex as p [refer to Eq. (2)]. Consequently we obtain
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the following relation:

ρ(Rex ) = ρ0

(
Rex − Rec

Rec

)β

(3)

between the turbulent fraction ρ2 and the order parameter Rex [19,21].
The critical Reynolds number, Rec, plays a crucial role in determining the transition location

between a nonpercolating and a percolating system. The parameter ρ0 serves as a normalization
factor, while the exponent β is one of three universal exponents that characterize the universality
class and depend on the dimensions of the system under consideration. Specifically, for (1+1)D
directed percolation, the exponent β is given as β(1+1)D = 0.276 [7].

The other two universal exponents, ν⊥ and ν‖, are related to the spatial distribution of cells
with the same state. The exponents characterize the divergent behavior of the correlation length,
ξ⊥,‖, in different directions of the system at the critical point Rec. The relationship describing these
correlation lengths is given by

ξ⊥ ∝ |Re − Rec|ν⊥ , ξ‖ ∝ |Re − Rec|ν‖ . (4)

The exponents ν for (1+1)D percolation theory have been worked out in previous research as
ν⊥,(1+1)D = 1.097 and ν‖,(1+1)D = 1.733 [7]. It is also possible to consider cluster sizes instead
of correlation length scales, using the hyperscaling relation [37]. The cluster sizes scale with the
exponent

μ⊥,‖ = 2 − β

ν⊥,‖
. (5)

For the presented exponents no analytical solutions are known. The values are mainly known from
numerical modeling.

The specific situation of the laminar-turbulent transition on an airfoil necessitates discussing in
some more detail the role of the order parameter. First, it is expected that Rec should align with the
previously calculated transition point, denoted as R̃ec in the previous chapter. Secondly, the order
parameter varies along the chord of the airfoil; thus the cluster statistics has to be taken for different
Rex positions. To get the transversal and longitudinal spatial features of the clusters we use the
spanwise y direction and the temporal evolution at each Rex position.

In order to determine the states of the boundary layer [laminar (off)/turbulent (on)] from the DIT
measurements, each thermogram is subjected to the binarization process using a threshold. In this
process, temperatures above the threshold correspond to the laminar state (low heat transfer), while
temperatures below correspond to the turbulent state (high heat transfer). The threshold value is
chosen to be equal to the temperature at the previously determined inflection point of the respective
measurement shown in Fig. 2 and Table I. In cases where an inflection point cannot be determined,
the temperature value at the left edge of the FOV is utilized as the threshold, since the system is
already transitioned. An example of a binarized thermogram is given in Fig. 3. In addition to the
threshold value used here, different threshold values between the points of maximum curvature
were systematically tested in the preceding analysis. This showed that the following results are
reproducible within these limits and are not dependent on the threshold value. As the presentation
of the stability analysis does not provide any further insights, this is not included.

The turbulent fraction ρ = ρ(Rex, y) can be calculated by taking the average of all binarized DIT
images; see Fig. 4. The increase of the turbulent fraction from 0 to 1 is close to a step function and
hardly changes in the y direction.

For further analysis, ρ(Rex, y) is averaged along the spanwise direction (y direction). The result
is shown in Fig. 5 for the corresponding measurements of Figs. 2(b), 2(e) and 2(h). The turbulent

2The symbol ρ is utilized in accordance with percolation theory conventions and should not be misconstrued
as representing air density.
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FIG. 3. Binarized differential image thermogram of measurement Fig. 2(b) using the defined threshold.
Inlay shows a zoom into the transition area marked by the red box.

FIG. 4. Turbulent fraction ρ calculated from the binarized DITs of measurement Fig. 2(b).

FIG. 5. Turbulent fraction ρ as a result of taking the average along the y direction from Fig. 4. Shown error
bars represent the standard deviation of the averaging. Red curves show a fit using Eq. (3). The red symbols on
each curve represent the points used for fitting.
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FIG. 6. Logarithmic representation of the normalized turbulent fraction ρ over ε = Rex−Rec
Rec

for all per-
formed measurements. The red solid line represents the theoretical slope of β. The representation of error bars
(in the range of ±[0.05; 0.1]) is omitted for the sake of clarity. Refer to Fig. 5 for further details.

fraction indicates a very defined transition from a laminar, nonpercolating system (ρ = 0) to a fully
turbulent, percolating system (ρ = 1). For the case 2(h) ρ does not start at zero since the transition
takes place upstream of the FOV.

In addition to the representation of the turbulent fraction, Fig. 5 also includes fits based on Eq. (3),
depicted as solid red lines. The red symbols on each curve mark the data points used in the fitting
procedure, where β remains fixed at its theoretical value. To further illustrate the agreement with
Eq. (3), Fig. 6 shows the normalized turbulent fraction over ε = Rex−Rec

Rec
for all nine measurements.

Notably, there is a clear clustering observed around the theoretical slope of β = 0.276.
The transition point Rec can be obtained from the fits as a fitting parameter. For all measurements,

the transition points are summarized in Table I. The given error �Rec is extracted as the confidence
interval of 95% from the fit. Comparing the calculated values of Rec we find a very good accordance
to the transition points R̃ec calculated directly from the DIT measurements.

As another quantity the distribution of cluster sizes is investigated with respect to the universal
exponents. Since the relations from Eq. (4) are only valid at the critical point, the cluster sizes need
to be extracted at determined Rec values. If Rec is outside the investigated FOV, as is the case for
the measurements of group two [Figs. 2(d), 2(g)–2(i)], the measurements are excluded from the
following analysis.

To determine the cluster sizes from the data, the binarized DITs are each combined into a 3D
matrix, [Rex, y, t], using the time as a third dimension. A cut is made through this matrix at Rex =
Rec. This results in laminar and turbulent spots in a (y, t) domain as shown in Fig. 7(c). Furthermore,
from this presentation the cluster sizes in y direction (spatial, Ls) and t direction (temporal, Lt ) can
be determined. The figure also shows the distribution of laminar and turbulent cells for the cases
Re < Rec [Fig. 7(a)] and Re > Rec [Fig. 7(b)].3

3We want to point out here that the structures differ from previous findings (e.g., Refs. [16,24,25]). This
results from the change of order parameter along the chord, instead of changing the order parameter for the
entire system.
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FIG. 7. (a) Field for Rex < Rec. (b) Rex > Rec and (c) Rex = Rec. Panel (c) also includes an exemplary
representation of the definition of cluster sizes in spatial (Ls) and temporal (Lt ) direction. This figure is based
on measurement Fig. 2(b).

The number Ns(Ls) of clusters of a given size Ls (in the spatial direction) is shown in a double
logarithmic presentation in Fig. 8. The theoretically expected slope of μ⊥ = 1.748 is given by a red
line and shows a good agreement, which is particularly evident when considering the mean value
of all cluster distributions, depicted as a black line. The presence of noise, particularly for large

FIG. 8. Cluster size distribution for spatial cluster sizes (⊥). The black line represents the mean of all
measurements. The red line indicates the theoretical slope for (1+1)D directed percolation.
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FIG. 9. Cluster size distribution for temporal cluster sizes (‖) for all measurements. The black line
represents the mean of all measurements. The red line indicates the theoretical slope for (1+1)D directed
percolation.

clusters, is attributed to the infrequent occurrence of such large structures, which causes a higher
statistical uncertainty.

The scaling of the temporal cluster size distributions in the parallel direction is depicted in Fig. 9.
These distributions are compared with the theoretically predicted scaling with μ‖ = 1.84, expected
for (1+1)D percolation. Similar to the spatial cluster size distributions of Fig. 8, the temporal cluster
size distributions show a strong alignment with the theoretically anticipated value, remarkably, even
for larger cluster sizes. This improvement can be attributed to the significantly greater extension
of the system in the temporal direction, as the spatial direction is limited by the FOV, whereas the
temporal direction is limited by the time of measurement.

It is worth noting that this power law behavior of cluster sizes will exhibit sensitive changes as
the chosen Rex deviates from Rec. Thus assuming the validity of the (1+1)D percolation and their
exponents, the expected power law behaviors can also be used to determine Rec.

V. SUMMARY AND CONCLUSION

This study explores the laminar-turbulent transition in the near-surface flow of an airfoil across
a wide range of velocities (u∞) and angles of attack (α). The main focus is on the question of how
far the directed percolation is a suitable model to describe this transition. These investigations lead
to the following results.

(i) The experimental approach of differential image thermography (DIT) serves as the method
of choice for assessing the boundary layer’s state. DIT enables one to measure highly resolved in
space and time the dynamic heat transfer properties inherent to various flow conditions. DIT enables
measurements along curved surfaces. Overall it is this method which has lead to the quality of the
results.

(ii) All characteristic features of the presented experimental results are well in accordance with
(1+1)D directed percolation. This is shown on the one hand by the fact that all results are compatible
with (1+1)D directed percolation and, on the other hand, if we use our data to determine the critical
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exponents from fits, we get the following values:

Exponent Value from experiment
β 0.2732 ± 0.0032
μ⊥ −1.75 ± 0.13
μ‖ −1.853 ± 0.067
ν⊥ −1.09 ± 0.58
ν‖ −1.85 ± 0.87

Here it should be highlighted that there is no experimental study so far that has been able to show
the agreement of measured data with the exponent μ‖ over such a large range. From these results
higher dimensional directed percolation like (2+1)D can be ruled out.

(iii) For different angles of attack and flow speeds we did not find significant changes of the
characterizing exponents, which confirms the idea of directed percolation theory that there are
universality classes. One plausible explanation for the robustness of the (1+1)D directed percolation
may emerge from the presence of pressure gradients and the resulting flow acceleration along the
surface of the airfoil. This leads to stretching and subsequently flattening of the boundary layer flow.
Changing experimental conditions results in a deplacement of the transition but not in a change of
its nature.

(iv) The critical Reynolds numbers of the transition determined by two methods coincide well.
The methods are based on the curvature of the time-averaged differential temperatures (or DIT)
and on a critical order parameter of the percolation theory. The relationship between the turbulent
fraction and order parameter described by the universal exponent β is further used to calculate the
critical Reynolds number Rec. Rec corresponds to the transition point and can be determined much
more precisely by this evaluation compared to the DIT. The relative accuracy is improved by more
than one order of magnitude (see Table I). Furthermore, this theoretical relationship can be used to
determine transition points outside the FOV.

(v) Directed percolation is commonly described by the global order parameter changing the
system from an unconnected to a percolating state. For the airfoil experiments the order parameter
changes along the chord. In this sense the system may be considered as instationary, as fluid
elements follow a path in flow direction with changing order parameter Rex. In spite of this
instationarity for a fixed location, i.e., order parameter Rex, we find quasistationary features of the
directed percolation.

As a final remark, we want to point out that, although we have found quite remarkable accordance
of our data with predictions of the directed percolation theory, we did not show that there is an
underlying subcritical bifurcation for this laminar-turbulent transition. So far one can only conclude
that the directed percolation theory reflects many experimental features. Thus it seems to be a simple
promising model for the highly dynamic and nonlinear processes in the boundary layer close to the
laminar-turbulent transition. It could be easily integrated into CFD models to simulate the transition
more realistically. A significant advantage appears to be the robustness of the model, emphasized
by the fact that the exponents agree for a wide range of experimental conditions, having potentially
far-reaching benefits for industrial applications (e.g., wind turbine modeling). It is advisable to
conduct more detailed investigations in future studies, focusing on the angle of attack α and the
velocity u∞. From these, parameter spaces could be extracted that could serve as a lookup table for
even more detailed descriptions.
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