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Surface slip was employed to control flow separation induced by small-scale Gaussian-
shaped surface deformations on a two-dimensional flat plate. Single-surface deformations,
including bumps and gaps, were modeled, which generated separated flow along the rear
side of the bump and within the gap concavity for a Reynolds number Re = 100 000
when the plate surface was subject to the no-slip condition. Surface slip was modeled
using a Navier-slip condition and quantified by a slip length λ. Bump deformations had a
greater impact on the flow dynamics than gap concavities, generating more intense regions
of reversed flow and requiring larger slip lengths to inhibit flow separation. In addition,
double-bump configurations were modeled, with the location of the two bumps playing
a critical role in the evolution of the flow. When the bumps were close together, the first
bump controlled the size of the separation bubble that developed downstream of the second
bump. Whereas when bumps ware far apart, a moderate slip length λ excited nonlinear
oscillatory flow. However, increasing the slip length suppressed this phenomenon and
ultimately eliminated all pockets of separated flow.
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I. INTRODUCTION

Laminar flow separation occurs in many engineering applications, such as aerodynamics and
turbomachinery. An adverse pressure gradient induces flow separation and usually results in a
performance loss. For example, geometrical alterations to a surface, such as a smooth bump
mounted on a flat plate, may trigger flow separation [1–3]. In this geometrical configuration, the
flow transitions from a favorable to an adverse pressure gradient along the rear side of the bump,
which can establish unstable behavior, including convective and absolute instabilities. Convective
instabilities emerge when a disturbance forms a wave packet in the spatiotemporal plane that
propagates away from the initial source, and absolute instability develops if the disturbance grows
in time at every spatial position and eventually spreads across the entire spatiotemporal domain.
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Further details on instabilities in spatially developing flows can be found in Huerre and Monkewitz
[4] and Chomaz [5].

Marquillie and Ehrenstein [1] numerically investigated the stability of separated flow behind a
two-dimensional bump on an otherwise flat plate and observed nonlinear oscillations, otherwise
known as low-frequency flapping. The loss of stability of this separated flow is associated with
a set of localized modes becoming simultaneously unstable [2]. Passaggia et al. [3] undertook
an experimental study and gave evidence of low-frequency flapping and transverse instability,
thus confirming the numerical observations. In fact, for a Reynolds number Re > 500 (based on
the displacement thickness), rapid oscillations developed similar to noise dynamics brought about
by the Kelvin-Helmholtz instability. While at Re ≈ 590, global, low-frequency oscillations of the
recirculation bubble emerge. Passaggia and Ehrenstein [6] studied a control method from the fully
developed nonlinear flapping state back to the steady state using a single actuator. The method is
based on the decomposition between the slow dynamics of the base flow modification, and the fast
dynamics (i.e., flapping) of the globally unstable two-dimensional separated boundary layer over
the bump.

Several control methods for separated flows have been tested [7,8]. These include, for example,
superhydrophobic surfaces or coatings that alter the surface texture [9–12]. Following recent
developments in nanotechnology and laser physics, it is now feasible to thermally modify sur-
face architecture and chemistry to attain superhydrophobicity [13]. Superhydrophobic surfaces (or
coatings) provide significant beneficial control effects, including drag reduction in marine vessels
[14,15]. Further reviews of superhydrophobic surfaces for drag reduction are given by Rothstein
[16] and Golovin et al. [17].

The multifunctional properties of superhydrophobic coatings, such as antifogging, oil-water
separation, anti-icing, self-cleaning, and antibacterial, make them applicable in many other fields
[13]. The most predominantly used materials to fabricate superhydrophobic surfaces are metal
oxides due to their adaptability with most fabrication techniques, low cost, and environmen-
tally friendly properties [13,18]. However, these surfaces lack mechanical robustness. This issue
is addressed by introducing hierarchical roughness structures to reduce damage to the surface
features [19].

The potential for superhydrophobic surfaces to be manufactured and used within different
contexts has made them a mechanism for flow control and drag reduction. In the numerical context,
superhydrophobic surfaces are often modeled using slip boundary conditions. The low-viscosity
fluid acts as a lubricating layer, which allows the flow to slip over the surface [11]. The slip velocity
offsets the shear strain rate and thus reduces the wall friction. Aside from the slippage effect, the
pressure coupling effect between a superhydrophobic surface and a turbulent boundary layer was
investigated by Seo et al. [20]. The surface texture provides an additional mechanism for flow
control, such as riblets and grooves [21,22], especially when oriented in the streamwise direction
[23,24]. These are also referred to as drag-altering textured surfaces [25], which have been proven
to reduce skin-friction drag [26] and influence laminar-turbulent transition processes [27].

In this paper, flow separation is generated by a geometrical alteration of the two-dimensional
flat plate that takes the form of either a small-scale Gaussian-shaped bump or gap, similar to
that investigated by Marquillie and Ehrenstein [1], Ehrenstein and Gallaire [2], Passaggia et al.
[3], Mollicone et al. [28], and Ceccacci et al. [29]. The Reynolds number of the flow [defined
below in Eq. (2)] and the dimensions of the surface deformations are chosen to be sufficiently
large to establish pockets of separated flow. Similar flow features to those described by the above
authors are recovered in the instance the surface is subject to no-slip boundary conditions: the
flow transitions from a favorable to an adverse pressure gradient, leading to flow separation along
the rear side of the bump or within the gap concavity. In addition to single-bump arrangements,
double-bump configurations are modeled that establish multiple regions of separated flow. A slip
boundary condition is applied to the plate to convey a quality of roughness to the deformed surface,
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the aim being to ascertain the effect of slip on the development of flow separation. Ceccacci et al.
[29] recently undertook a similar numerical study but for bump deformations in a two-dimensional
channel. Applying a slip condition to the surface deformity was found to inhibit flow separation
along the rear side of the bump. Motivated by the observations of Ceccacci and coworkers, we
wish to determine if a slip surface brings about comparable favorable control benefits to other
geometries, in particular, the boundary layer that develops over a deformed two-dimensional flat
plate. And if so, what level of slip is necessary to suppress pockets of separated flow, and how do
the requirements differ for bump and gap deformations? Moreover, what is the effect on the flow
dynamics for multiple deformation configurations?

Niavarani and Priezjev [30] defined the effective slip length with respect to the level of the mean
height of the surface roughness. This choice was motivated by the study of molecular dynamics,
which demonstrates that the effective slip length in a flow of simple fluids [31] agrees with
hydrodynamic predictions when the corrugation wavelength exceeds approximately 30 molecular
diameters [30]. The type of roughness varies and includes, for instance, uniform sand grains [32]
and sandpaper [33]. In general, for each new roughness geometry, it is necessary to determine
the effective roughness height and the virtual origin of the boundary layer. Ibrahim et al. [25]
have undertaken steps towards a virtual-origin unifying framework for drag-altering surfaces. The
framework holds for the case where imposed virtual origins remain relatively small compared
to the characteristic length scales of the near-wall turbulence. Thus far, due to different design
configurations and flow conditions, universal criteria for surface roughness that convey beneficial
conclusions on flow control are inconsistent [34,35]. For this reason, research efforts are ongoing to
uncover surface parameters (including the slip length) that lead to frictional drag reduction and flow
control benefits.

In the following investigation, surface slip is modeled using a spatially homogeneous Navier
(Robin) slip boundary condition [36]

u‖ = g(x, λ)
∂u‖
∂n

and u⊥ = 0,

where u‖ and u⊥ represent the respective tangential and wall-normal velocities over the surface
[37,38]. The function g(x, λ) models slip across the length of the flat plate and surface deformations,
while n denotes the normal to the wall. The tangential velocity on the boundary u‖ is the slip
velocity and is linked to the mean wall shear by the slip length λ. This boundary condition was
used to predict the performance of superhydrophobic surfaces in several earlier studies [37,39]. In
laminar flows (where drag reduction is described by the streamwise slip length), a streamwise slip
condition increases the mean velocity and establishes a drag reduction [40]. A Robin-type Navier
slip condition, as applied in this study, can be used to model flows over surfaces with a modification
in the flat reference surface, such as those induced by roughness, riblets, or other drag reduction
devices, for which a slip length can be retrieved [41]. Pralits et al. [42] used a Navier slip condition
to represent, in a homogenized sense, the alternation of no-slip and no-shear elongated regions due
to microridges covering walls. The assumption is that the gas within the cavities does not impose
any shear stress on the liquid above. For surfaces featuring roughness or riblets, the slip length
can be related to the protrusion height [43–45]. The protrusion height is defined as the distance
between the rib tip and the average origin of the velocity profile near the surface. Luchini et al.
[45] expanded on this concept and identified two distinct heights, the longitudinal and transverse
protrusion heights, which are associated with the flow along the length and across the surface.
Their investigation emphasized that the meaningful quantity lies in the difference between these two
heights.

This paper is organized as follows. In Sec. II, the mathematical formulation of the problem is
outlined; in Sec. III, the computational details regarding the direct numerical simulations (DNS)
performed are described; in Sec. IV, the results obtained for single, isolated surface deformations
are presented; in Sec. V, the results obtained for double-bump configurations are shown; finally, in
Sec. VI, concluding remarks are made.
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II. MODEL

A. Navier-Stokes equations and Blasius flow

Consider a two-dimensional, incompressible fluid with kinematic viscosity ν∗ and density ρ∗
flowing over a semi-infinite flat plate. The direction normal to the plate is denoted y∗, while x∗
measures the streamwise distance along the plate. (Here an asterisk denotes dimensional quantities.)
On nondimensionalizing Cartesian coordinates (x∗, y∗) by the reference length scale L∗, velocities
u∗ = (u∗, v∗) by the free-stream velocity U ∗

∞, and pressure p∗ by ρ∗U ∗2
∞ , the nondimensional

incompressible Navier-Stokes equations in Cartesian coordinates are given as
∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
∇2u, (1a)

∇ · u = 0, (1b)

where the Reynolds number

Re = U ∗
∞L∗

ν∗ . (2)

In the subsequent investigation Re = 100 000, which is sufficiently large to establish pockets of
separated flow near the surface deformations modeled along the length of the flat plate.

In the absence of surface deformations, the flow over the flat plate is described by the Blasius
boundary layer. Assuming a zero-pressure gradient along the x direction (that is, ∂ p/∂x = 0) and
large Reynolds number Re, the velocity u is obtained by solving the Blasius equation

f ′′′ + 1
2 f f ′′ = 0, (3)

where f = f (z) is the Blasius similarity solution for the similarity variable z = y∗/δ∗, and boundary
layer thickness δ∗ = √

ν∗x∗/U ∗∞ [46]. Equation (3) is solved subject to the boundary conditions

f (0) = f ′(0) = 0 and f ′(z → ∞) = 1, (4a,b)

where a prime denotes differentiation with respect to z. The dimensional streamwise u∗ and wall-
normal v∗ velocity profiles are given by

u∗ = U ∗
∞ f ′ and v∗ = 1

2

√
ν∗U ∗

∞
x∗ (z f ′ − f ), (5a,b)

respectively.

B. Surface deformations

Along the flat plate, two-dimensional Gaussian-shaped surface deformations are modeled using
the coordinate transformation

(x, y) = (x̄, g(x̄, ȳ)), (6a)

where the function g(x̄, ȳ) maps the computational coordinates (x̄, ȳ) onto the Cartesian coordinates
(x, y) [47]. The mapping function

g(x̄, ȳ) = ȳ ± he−(x̄−xc )2/(2σ 2 ) tanh(0.1 − ȳ)

tanh(0.1)
(6b)

establishes a Gaussian-shaped bump (or gap), centered about xc (≡x∗
c /L∗), of height (or depth) h

(≡h∗/L∗), and width σ (≡σ ∗/L∗). A bump forms for h > 0, while h < 0 corresponds to a surface
indentation. The aspect ratio of the deformation is defined as η = h/σ . Similar to the description of
the height h, η > 0 establishes bumps and η < 0 gaps. The ȳ-dependent hyperbolic tangent function
is included in the mapping function (6b) to ensure a suitable transformation of the mesh in the (x, y)
plane.
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FIG. 1. Diagram of the flow over a flat plate with slip applied to a Gaussian-shaped bump.

The local Reynolds number about the center xc (≡x∗
c /L∗) of the surface deformation is given as

Reδ∗
c
= U ∗

∞δ∗
c

ν∗ ≡
√

xcRe (7)

for the boundary-layer thickness

δ∗
c =

√
ν∗x∗

c

U ∗∞
. (8)

Unless otherwise specified, slip effects are investigated for surface deformations centered about the
streamwise location xc = 9, corresponding to Reδ∗

c
= 948.68.

C. Surface slip

For an impermeable, no-slip surface and suitable geometrical and flow conditions (i.e., dimen-
sions of the surface deformation and Reynolds number Re), the flow separates near the surface
deformation. Our model considers the application of a slip condition to the surface deformation as
a method of controlling flow separation.

Surface slip is implemented by imposing a linear Robin-type slip condition coupled with the no
penetration condition

u‖ − λ(x)
∂u‖
∂n

= 0 and u⊥ = 0, (9a,b)

where n denotes the direction normal to the wall, and u‖ and u⊥ represent the tangential and wall-
normal velocities, respectively. The function

	(x) = λ

1 + e−2k(x−xs )
(10)

prescribes the level of slip along the length of the plate for an effective slip length λ (≡λ∗/L∗).
Surface slip is modeled in this way to avoid abrupt changes in the boundary conditions and ensure
the wall transitions smoothly from no-slip

u‖ = u⊥ = 0 (11a,b)

to slip (9) about the streamwise location xs (≡x∗
s /L∗). The parameter k specifies the sharpness of the

step function (i.e., large k establishes a sharp transition at xs) and is set as k = 100 for the subsequent
study. A schematic diagram of the model is illustrated in Fig. 1.

III. NUMERICAL METHOD

A. Computational strategy and numerical configuration

The flow over the deformed flat plate was obtained by DNS of the two-dimensional Navier-
Stokes (NS) equation (1), using the spectral-hp element method Nektar + + [48]. Here, h signifies
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TABLE I. Parameters characterizing the shape of the Gaussian-shaped surface deformations: h the height
(or depth), σ the width, and η = h/σ the aspect ratio of the bumps and gaps. Rows highlighted in gray
correspond to those parameters reported in this study, i.e., η1 = 0.16 and η2 = 0.24.

h σ η

0.005 0.1250 0.04
0.005 0.0625 0.08
0.010 0.1250 0.08
0.010 0.0938 0.11
0.010 0.0625 0.16
0.015 0.1250 0.12
0.015 0.0938 0.16
0.015 0.0625 0.24
0.020 0.0625 0.32

the geometric flexibility of the h-type finite-element technique. On the other hand, p denotes the
resolution properties of the spectral method, utilizing high-degree piecewise polynomials up to the
pth order as basis functions. Thus, the spectral-hp element method combines the precision and
fast convergence benefits of the spectral element method with the capability of the classical h-type
finite-element method to effectively capture complex geometries and flow behavior.

In addition to the slip condition (9), initial and inlet boundary conditions were given by the
solution of the Blasius equation (3). The in-flow boundary condition was prescribed at the stream-
wise location x0 = 5 (that is, x0 = x∗

0/L∗ = 5). In addition, the free-stream velocity U ∗
∞ = 1 was

specified at the upper boundary of the computational domain using a Neumann boundary condition
coupled with a zero-pressure condition:

∇u · n = 0 and p = 0. (12a,b)

Here, n represents the unit vector normal to the plate surface. A convectivelike outflow condition
was imposed at the outlet for all DNS presented herein [49]. Thus, ensuring the flow convects out of
the computational domain, i.e., there were no artificial waves reflecting from the outflow boundary
condition. (For details regarding the outflow boundary conditions, see [50].)

The parameters that characterize the surface deformations are specified in Table I. Three σ

values were selected to establish Gaussian-shaped imperfections with different widths: σ1 = 0.0625
(narrow), σ2 = 3σ1/2 = 0.0938 (medium), and σ3 = 2σ1 = 0.125 (wide). The main surface defor-
mations modeled in this study, highlighted in gray in Table I, correspond to aspect ratios η1 = 0.16
and η2 = 0.24. These two cases, which have the same width σ = σ1, but different heights (or depths)
h, were chosen to be representative of the effect of slip on the flow separation dynamics. Aspect
ratios η1 and η2 represent small and large surface deformations, respectively, and were chosen
along with the Reynolds number Re = 100 000 to establish pockets of separated flow of varying
dimensions, in the instance no slip was applied to the plate surface. It is worth noting that these
bump (gap) specifications are smaller than those modeled in earlier investigations [1–3,6].

The computational domain 
 was decomposed as 
x̄×
ȳ = [5, xmax]×[0, 0.5]. The upper
boundary of the computational domain was approximately 50 boundary-layer thicknesses δ∗

c above
the flat plate. In addition, the streamwise location of the outlet xmax was carefully chosen for each
simulation to ensure results were independent of the grid and domain size. Here, xmax ∈ [10, 13]
were modeled. For instance, for the small deformations of aspect ratio η1, 
x̄ = [5, 10], i.e.,
xmax = 10. The spatial discretization in the computational (x̄, ȳ) plane comprises a mesh with 4312
quadrilateral elements, as illustrated in Fig. 2. The mesh incorporates Nȳ = 15 nodes nonuniformly
distributed along the ȳ direction, 10 of which are in the lower half of the computational domain
(i.e., ȳ = [0, 0.25]), such that �ȳ ≈ 0.005 near the flat plate. Along the x̄ direction, Nx̄ = 309 nodes
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0

0.5

9.2598.75
0

0.05

FIG. 2. Mesh used for the single-surface deformations with aspect ratio η1 = 0.16. The entire computa-
tional domain 
 = [5, 10]×[0, 0.5], and region near the surface deformation centered at xc = 9. Diagram not
drawn to scale.

were nonuniformly distributed to ensure sufficient grid resolution near the surface deformations. In
this region, the grid maintains 24 nodes per 0.25 x̄ units of length, i.e., �x̄ ≈ 0.01. For longer
computational domains 
x̄, the node density Nx̄ was preserved along the x̄ direction to ensure
computationally accurate solutions. The same node distribution was applied along the x̄ direction
for the large deformations characterized by the aspect ratio η2, while the number of ȳ nodes was
increased to Nȳ = 22 with �ȳ ≈ 0.001 near the flat plate. All meshes were generated using GMSH

[51]. Finally, the numerical solution was approximated using eighth-order Lagrange polynomials,
and the time integration was performed using a third-order implicit-explicit scheme for a time step
�t = 2×10−5.

The results presented below in Secs. IV and V are shown at time t = 20, which in most cases
was large enough for the flow to have reached a steady state. Like [29], discretization parameters
were chosen based on a convergence study, which included a variation of the order of the Lagrange
polynomials, mesh size Nx̄ and Nȳ, domain length 
x̄, and time step �t . Percentage errors in
the minimum streamwise u velocity, min(u), were less than 1% and grid independency to within
graphical accuracy. Further details are given in Appendixes A and B.

Figure 3 depicts the streamwise u velocity, with the no-slip boundary condition applied along
the plate surface. The solution is shown at time t = 20, which was sufficient for the flow to attain
a steady state. The boundary layer develops from left to right and encounters a small-scale bump

3111975
0

0.25

0.5

108.5 9 9.25 9.5

y = 0.0025

0

0.05

u

0

1

x

y

FIG. 3. Illustration of the streamwise u velocity, at time t = 20, over a flat plate with a bump centered
at xc = 9 (i.e., Reδ∗

c
= 948.68), with aspect ratio η2 = 0.24. The no-slip boundary condition is applied across

the length of the plate, including the bump deformation. The secondary plot highlights the region of flow
separation, in purple, where u < 0. The three black circle markers signify those (x, y) locations used to trace
the temporal evolution of the flow in Fig. 4.
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FIG. 4. (a) Contour plots of the streamwise u velocity in the region of the separated flow downstream of
the single-bump configuration in Fig. 3 with aspect ratio η2 and a no-slip wall, at times t = 2, 3, 4, 6, 8, and
10. Dashed black lines indicate u = 0. (b) Temporal evolution of the streamwise u velocity at the three (x, y)
locations identified in Fig. 3 by black circle markers.

at xc = 9 with aspect ratio η2 = 0.24. The dimensional height of the bump h∗ = 0.003 ≈ 1.5δ∗
c ≈

0.3δ∗
99 at xc = 9, where δ∗

99 represents the wall-normal height that the streamwise u velocity has
achieved 99% of the free-stream velocity U ∗

∞. The flow separates along the rear side of the bump,
and following the reattachment of the flow, the boundary layer grows and convects out of the
computational domain. Contour levels are plotted for u ∈ [0, 1]. Thus, dark red contours represent
u = 1, and the region of reversed flow, corresponding to u < 0, is represented by dark blue contours,
which is further highlighted in a secondary plot by a purple contour.

The evolution of the flow in Fig. 3 from a transient to a steady state, and specifically the
separation bubble that forms downstream of the bump, is demonstrated in Fig. 4. Contours of
the streamwise u velocity are plotted in Fig. 4(a) for u ∈ [−0.05, 0], depicting the separated flow
along the rear side of the bump. Solutions are plotted at six points in time, from t = 2 through to
t = 10. At time t = 2, a distinct, elongated pocket of separated flow develops, with a secondary
region of recirculating flow emerging about the streamwise position x = 9.5. As time progresses,
the secondary pocket of separated flow dissipates, leaving in its wake a long separation bubble that
is relatively unchanged for t � 4. Thus, the flow quickly achieves a steady state. This observation
is further confirmed in Fig. 4(b), which illustrates the temporal evolution of the u velocity at the
three (x, y) locations marked by black circles in Fig. 3. Following a brief transient phase, on the
interval 0 < t < 4, the streamwise u velocity approaches a fixed constant at each location, which
is indicative of the flow attaining a steady state. The u velocity is marginally negative at the two
locations within the pocket of separated flow (solid blue and dashed red lines), with a positive
value obtained further downstream (chain yellow). In contrast to earlier investigations [1–3,6], the
surface bump of aspect ratio η2 does not induce self-sustained oscillatory behavior downstream of
the separation bubble, and similarly, for the small bump of aspect ratio η1. The vortex shedding
depicted at time t = 2 in Fig. 4(a) rapidly diminishes, with the flow attaining a steady state. Thus,
the dimensions (i.e., height and width) of the two single-bump configurations considered in this
study are inadequate for generating the oscillatory phenomena observed in the aforementioned
investigations. In Appendix C, a slightly larger bump is modeled that establishes more pronounced
vortex shedding and oscillatory behavior at early times t . However, similar to the behavior illustrated
in Fig. 4(a), this dissipates as time increases.
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FIG. 5. Plots of a bump deformation with aspect ratio η1 (solid blue lines), centered at (a) xc = 9, (b) xc = 8,
and (c) xc = 7. The slip function 	(x) given by Eq. (10) is plotted with xs calculated using Eq. (13), such that
m = 1.5 (dashed red), m = 1 (chain yellow), and m = 0.5 (dotted purple). The slip length λ = 2.5×10−3.

B. Location of xs with respect to the deformation location xc

The slip function 	(x), given by Eq. (10), is governed by the streamwise location xs near which
the wall condition transitions from no slip to slip. The value of xs is informed by testing its influence
on the flow dynamics about the location of the surface deformation xc. Solid blue lines in Fig. 5
depict three bump deformations with aspect ratio η1, centered at xc = 9 (i.e., Reδ∗

c
= 948.68), xc = 8

(i.e., Reδ∗
c

= 894.43), and xc = 7 (i.e., Reδ∗
c
= 836.66), respectively. In each instance, three values

of xs are modeled, with

xs = xc − m, where m = 0.5, 1, and 1.5. (13)

The slip function 	(x), with slip length λ = 2.5×10−3, is plotted in each subplot of Fig. 5 for
xs = xc − 1.5 (dashed red), xs = xc − 1 (chain yellow), and xs = xc − 0.5 (dotted purple).

The minimum of the streamwise u velocity, min(u), found within the separation bubble along
the rear side of the bump, is reported in Table II for those specifications given in Fig. 5 and slip
lengths λ = 0, λ = 1.25×10−3, and λ = 2.5×10−3. [For the no-slip case λ = 0, the slip function
	(x) is not required, and xs is not specified.] The effect of the location xs is negligible. Therefore,
for the remainder of this study, xs is specified as the furthest point from the deformation center,
i.e., m = 1.5 in Eq. (13). In particular, and unless otherwise specified, the default settings for the
subsequent investigation are xc = 9 and xs = 7.5.

TABLE II. Minimum value of the streamwise u velocity, min(u), for surface deformations with aspect
ratio η1 = 0.16, and slip lengths λ = 0, λ = 1.25×10−3, and λ = 2.5×10−3, and variable xs. Note that xs shifts
proportionally to xc, as given in Eq. (13). (Here +η1 denotes a bump configuration and −η1 a gap deformation.)

min(u) at xc = 9 min(u) at xc = 8 min(u) at xc = 7

λ xs +η1 −η1 xs +η1 −η1 xs +η1 −η1

0 −0.0122 −0.0090 −0.013 −0.0097 −0.0149 −0.0106
1.25×10−3 7.5 −0.0092 −0.0067 6.5 −0.0104 −0.0072 5.5 −0.0117 −0.0077
2.5×10−3 7.5 0 0 6.5 −0.0011 0 5.5 −0.0017 −0.0001
1.25×10−3 8 −0.0091 −0.0066 7 −0.0103 −0.0071 6 −0.0117 −0.0077
2.5×10−3 8 0 0 7 −0.0009 0 6 −0.0017 0
1.25×10−3 8.5 −0.0088 −0.0067 7.5 −0.0099 −0.0072 6.5 −0.0113 −0.0078
2.5×10−3 8.5 0 −0.0004 7.5 0 −0.0004 6.5 −0.0010 −0.0005
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FIG. 6. Absolute value of the minimum of the streamwise u velocity, ‖ min(u)‖, found within the re-
gion of separation, as a function of s = h/(xα

c σβ ), where α = 0.14. (a) Bumps with β = 0.5 and (b) gaps
with β = 0.33. No-slip surfaces are represented by blue diamonds, while slip surfaces with slip lengths
λ ∈ [1.25×10−3, 7.5×10−3] are marked by red circles. Labels B1, B2, G1, and G2 denote those no-slip cases
discussed in Sec. IV.

IV. EFFECT OF SLIP ON SINGLE-SURFACE DEFORMATIONS

A. Flow separation established by surface deformations

DNS of bump and gap deformations, characterized by aspect ratios given in Table I, are modeled
to ascertain the intensity of the separation bubble that emerges along the rear side of the bump and
within the gap concavity. In addition, the streamwise center of the bump and gap deformations is
varied, with xc ∈ [7, 9]. Once solutions attain a steady state (realized by time t = 20), the minimum
value of the streamwise u velocity, min(u), is computed. Figure 6 depicts the size of ‖ min(u)‖
found within the separation bubble as a function of

s = h

xα
c σβ

, (14)

where α = 0.14 for both bump and gap configurations, while β = 0.5 for bumps and β = 0.33 for
gaps. Equation (14) was extracted empirically, following a similar procedure to that adopted by Wie
and Malik [52] and Thomas et al. [53] to correlate features characterizing the surface deformations
(i.e., height h, width σ , and center xc) with the magnitude of the separation bubble. Blue diamond
and red circle markers represent those solutions matched to no-slip conditions on the wall and
slippery walls with slip lengths λ ∈ [1.25×10−3, 7.5×10−3], respectively. In the case of no slip, for
bumps that establish regions of separated flow [i.e., min(u) < 0,

‖min(u)‖ ≈ 1.7s + p, (15)

where p ≈ −0.04. On the other hand, for gaps

‖min(u)‖ ≈ 1.4s + q, (16)

where q ≈ −0.02. Empirical relationships (15) and (16) are depicted by dashed lines in Figs. 6(a)
and 6(b), passing through the data points obtained for the surface deformations subject to no-slip
conditions. Furthermore, for no-slip boundary conditions, bumps and gaps establish regions of
separated flow if

s � 0.02 and s � 0.012, (17a,b)

respectively. For slip surfaces with a relatively small slip length, λ = 1.25×10−3, the magnitude of
the minimum velocity, ‖ min(u)‖, exhibits similar trends to those displayed for the no-slip scenario.
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FIG. 7. Contour plots of the streamwise u velocity, at time t = 20, for surface deformations with aspect
ratio η1 for (a) bump and (c) gap deformations. Secondary plots (b) and (d) highlight the corresponding regions
of flow separation, i.e., u < 0. The slip length λ = 0, λ = 1.25×10−3, and λ = 2.5×10−3, and the minimum
value of the streamwise u velocity, min(u), is specified in each case.

The red circles immediately below the dashed lines increase at a rate comparable with that specified
in Eqs. (15) and (16), but with reduced y intercepts p and q. However, as the slip length λ increases
and the region of separated flow diminishes, causing ‖ min(u)‖ to approach zero, the relationship
between ‖ min(u)‖ and s becomes increasingly uncertain.

The effect of a slippery surface on the flow over a single isolated surface deformation is described
below for those cases labeled B1, B2, G1, and G2 in Fig. 6, corresponding to aspect ratios η1 = 0.16
(B1 and G1, small deformations) and η2 = 0.24 (B2 and G2, large deformations), respectively.

B. Aspect ratio η1, i.e., small surface deformations

Results are first presented for small surface deformations with aspect ratio η1, labeled B1 and
G1, in Fig. 6. In this case, the x̄ range of the computational domain is given as 
x̄ = [5, 10], i.e.,
xmax = 10.

Figures 7(a) and 7(c) display contour plots of the streamwise u velocity that develops over the
small bump and gap deformations, in the instance the slip length λ = 0, λ = 1.25×10−3, and λ =
2.5×10−3. Like Fig. 3, the color scheme sets the minimum and maximum of the streamwise u
velocity to zero (dark blue) and unity (dark red), respectively. Therefore, reversed flow, where u < 0,
is matched to dark blue contours. Secondary plots on the right-hand side of Fig. 7 [see Figs. 7(b)
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FIG. 8. Distributions of the (a), (b) skin-friction coefficient c f and (c), (d) pressure coefficient cp for surface
deformations with aspect ratio η1. (a), (c) Bump and (b), (d) gap deformations, for slip lengths λ = 0 (solid
blue lines), λ = 1.25×10−3 (dashed red), and λ = 2.5×10−3 (chain yellow). Arrows in (a) and (b) indicate the
location of the bump and gap, respectively.

and 7(d)] magnify the regions of separated flow along the rear side of the bump and within the gap
concavity, focusing on u < 0. As the slip length λ increases, the dimensions of the separation bubble
along the rear side of the bump shrink. Similarly, the separation pocket within the gap concavity
becomes thinner as λ increases. Ultimately, flow separation is inhibited in both cases for the slip
length λ = 2.5×10−3.

Skin-friction and pressure distributions on the flat plate are given by the nondimensional coeffi-
cients [54]

c f (x) = 2τ ∗
w(x)

ρ∗U ∗2∞
and cp(x) = 2p∗(x)

ρ∗U ∗2∞
, (18a,b)

where τ ∗
w = τ ∗

w(x) denotes the shear stress at the wall, given by

τ ∗
w = μ∗ ∂u∗

∂y∗

∣∣∣∣
w

, (19)

where μ∗ is the dynamic viscosity of the fluid and w references the wall. Figure 8 illustrates the
skin-friction coefficient c f and pressure coefficient cp distributions for those surface deformations
and slip lengths λ, modeled in Fig. 7. About x ≈ 7.5, c f and cp exhibit waviness due to the transition
from no-slip to slip boundary conditions. For the bump deformation [see Fig. 8(a)], c f increases
along the front side before decreasing sharply along the rear side. In contrast, c f decreases along
the left side of the gap and increases along the right side [see Fig. 8(b)]. Both deformations display
negative-valued c f when λ = 0, with separation pockets forming in the gap concavity and along the
rear side of the bump at xse ≈ 9.07 and reattaching at xre ≈ 9.3. Surface slip increases c f for both
configurations; λ = 2.5×10−3 establishes c f > 0 for all streamwise x positions, ensuring the flow
remains attached. The pressure distribution cp displays similar variations near the bump and gap
[see Figs. 8(c) and 8(d)]. However, slip has little influence on the size and behavior of cp.
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FIG. 9. Contour plots of the streamwise u velocity, at time t = 20, for bump deformations centered at
xc = 9 with aspect ratio η2 and slip lengths (a) λ = 0, (b) λ = 2.5×10−3, (c) λ = 3.75×10−3, (d) λ = 5×10−3,
and (e) λ = 7.5×10−3. Secondary plots on the right highlight the region of flow separation, where u < 0. The
minimum of the streamwise u velocity, min(u), is specified for each slip length, λ.

In the case of no slip, curvature on the front side of the bump (or the left side of the gap) induces
a deceleration of the fluid and a pressure increase. The pressure change creates an unfavorable pres-
sure gradient, thickens the boundary layer, and slows the flow until separation occurs. Downstream
of the separation point, a wake characterized by recirculating flow and low-pressure forms. The
location of flow reattachment depends on the shape of the bump and gap deformation. The slip
condition enhances the mean flow near the plate surface, increasing the momentum flux, which
overcomes the adverse pressure gradient for sufficiently large slip lengths. Thus, a slippery surface
allows the flow to reattach sooner and eliminates flow separation.

C. Aspect ratio η2, i.e, large surface deformations

An equivalent analysis is presented for the large surface deformations with aspect ratio η2,
labeled B2 and G2, in Fig. 6. In this case, the x̄ range of the computational domain 
x̄ = [5, 11],
i.e., xmax = 11. Due to the larger dimensions of the separation bubble found along the rear side of
the bump, xmax was increased to 11 to avoid the location of flow reattachment being too close to the
outflow boundary. Thus, ensuring the flow at the outlet boundary remains unidirectional.

Figure 9 displays contour plots of the streamwise u velocity that develops over the large bump
centered about xc = 9, with slip lengths λ ∈ [0, 7.5×10−3]. Secondary plots on the right-hand side
highlight the separation bubble, where u < 0. Similar to those results presented in Figs. 7(a) and
7(b), a separation bubble forms along the rear side of the bump, but with greater dimensions than
those established for the small deformation of aspect ratio η1, with a larger slip length λ, required
to inhibit flow separation.

For a flow that separates and reattaches about the respective streamwise locations xse and xre, the
length of the separation bubble is defined as

Lb = xre − xse. (20)

For λ = 0, the flow separates at xse ≈ 9.03 and reattaches at xre ≈ 9.7, establishing a pocket of
separated flow of streamwise length Lb ≈ 0.67. Here, Lb is more than double the length of the
separation bubble that forms behind the small bump of aspect ratio η1, where Lb ≈ 0.3 [recall
Figs. 7(a) and 7(b)]. Surface slip again reduces the dimensions of the separation bubble; the
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FIG. 10. Same as Fig. 9 but for the gap deformation of aspect ratio η2 and slip lengths (a) λ = 0, (b) λ =
2.5×10−3, (c) λ = 3.75×10−3, and (d) λ = 5×10−3.

thickness shrinks and the flow reattaches sooner. As slip increases, xse shifts downstream, along
the rear side of the bump, while xre moves upstream. Eventually, for the slip length λ = 7.5×10−3,
xse and xre coalesce, and the flow no longer separates.

Figure 10 depicts the same behavior as Fig. 9, but for the large gap deformation with aspect
ratio η2 and slip lengths λ ∈ [0, 5×10−3]. For λ = 5×10−3, the minimum streamwise u velocity,
min(u) = 0. Thus, a smaller slip length λ inhibits separation within the gap concavity than is needed
for the bump configuration.

Profiles of the streamwise u velocity are plotted in Fig. 11 versus the wall-normal y direction at
x = 9.5 for the bump deformation and at x = 9 for the gap concavity. These streamwise locations
coincide with the respective regions of flow separation. The u velocity in Fig. 11(a) is negative
near the wall for all slip lengths λ � 5×10−3, indicating reversed flow. (However, u = 0 at y = 0
when λ = 0 due to the no-slip boundary condition.) The u velocity near the wall increases as the
slip length λ increases. Eventually, for λ = 7.5×10−3, u > 0 for all wall-normal y locations, i.e.,
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FIG. 11. Velocity profiles at (a) x = 9.5 for the bump and (b) x = 9 for the gap deformations. The aspect
ratio is η2 and slip lengths λ = 0 (solid blue lines), λ = 2.5×10−3 (dashed red), λ = 3.75×10−3 (chain yellow),
λ = 5×10−3 (dotted purple), and λ = 7.5×10−3 (solid green).
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TABLE III. Streamwise locations for separation xse and reattachment xre for the small (B1) and large (B2)
bump configurations centered at x = 9, and thickness T of the reversed flow region that forms within the small
(G1) and large (G2) gap deformations located at x = 9.

B1 (η1) B2 (η2)

λ xse xre G1 T xse xre G2 T

0 9.065 9.315 0.0065 9.040 9.710 0.0115
1.25×10−3 9.100 9.260 0.0040
2.5×10−3 No separation No separation 9.075 9.700 0.0075
3.75×10−3 9.125 9.660 0.0025
5×10−3 9.235 9.525 No separation
7.5×10−3 No separation

no separation occurs. Similarly, in Fig. 11(b), u < 0 near the plate surface for all λ � 3.75×10−3,
and u > 0 is realized for λ = 5×10−3. Moreover, for the bump configuration, the flow recovers the
free-stream velocity u = 1 near y ≈ 0.06, whereas for the gap deformation, u = 1 about y ≈ 0.04.

An estimate for the wall-normal y interval T that the flow reverses direction is computed using
the plots of the u velocity in Fig. 11. The thickness

T = y1 − y0, such that

{
u < 0, y0 < y < y1

u > 0, otherwise (21)

giving T ≈ 7×10−3 and T ≈ 5×10−3 for the respective bump and gap deformations, in the instance
λ = 0, i.e., no slip. Results demonstrate that as the slip length λ increases, T decreases. The region
of reversed flow along the rear side of the bump (or within the gap) becomes thinner. In particular,
the thickness T is reduced by half for λ = 3.75×10−3 and λ = 2.5×10−3 for the respective bump
and gap configurations.

Table III presents the separation and reattachment locations xse and xre for the small and large
bumps, along with the thickness T of the reversed flow region that forms within the small and
large gaps. The length of the separation bubble Lb that forms downstream of the two bumps located
at x = 9 of aspect ratio η1 (blue circle markers) and η2 (red squares) are plotted in Fig. 12(a) as
functions of the slip length λ. Figure 12(b) presents an equivalent plot of the thickness T of the
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FIG. 12. (a) Streamwise length of the separation bubble Lb that forms downstream of the bump located
at x = 9 for the single-bump configurations η1 (blue circle markers) and η2 (red squares), and the double-
bump configuration “case 1” (yellow stars). (b) Thickness T of the reversed flow region that forms in the gap
concavities located at x = 9 for η1 (blue circles) and η2 (red squares).
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reversed flow region that forms in the two gap concavities at x = 9 for η1 (blue circles) and η2 (red
squares). The two illustrations demonstrate the significant control of flow separation as λ increases.

As expected, larger slip lengths λ are necessary to counteract flow separation established by
bump and gap deformations with aspect ratio η2, compared to the smaller deformations with aspect
ratio η1. For the bump configuration, slip lengths λ = 2.5×10−3 and λ = 7.5×10−3 prevent flow
separation for small and large bumps, respectively. In contrast, for the gap deformations, slip lengths
λ = 2.5×10−3 and λ = 5×10−3 are enough to suppress flow separation for small and large gaps.
Notably, for deformations of the same aspect ratio, gaps produce a weaker recirculation region
than bumps and, thus, require a smaller slip length to inhibit flow separation. Hence, the flow
dynamics for a single-bump setup align with the numerical results found in [55]. In that study, a
superhydrophobic surface was shown to counteract flow separation in turbulent channel flow and
reduce form drag.

V. EFFECT OF SLIP ON DOUBLE-BUMP CONFIGURATIONS

In the previous section, we demonstrated that bumps create larger-sized pockets of separated flow
than gaps. Nevertheless, a sufficiently large slip length λ can control flow separation induced by a
single-bump deformation. Building upon the work of single-bump deformations, Marquillie and
Ehrenstein [1] considered the flow over a double-bump geometry with no-slip boundary conditions
applied to the flat plate. They modeled a second bump downstream of the first to act as a stabilizing
mechanism. For bumps far enough apart, the separation bubble that formed between the two bumps
was characterized by oscillatory behavior and low-frequency flapping. However, decreasing the gap
between the two bump deformations eliminated this phenomenon. In addition, the regions of flow
separation were reduced.

Here, we extend our analysis from a single-bump to a double-bump configuration with slip
applied to the plate surface to control flow separation. Two distinct double-bump configurations
are modeled, with each bump having an aspect ratio η2, i.e., large bumps. In the first configuration,
“case 1,” the two bumps are located at xc = 8.5 and 9, and in the second setting, “case 2,” bumps
are located further apart, with the first bump shifted upstream to xc = 8.

A. Case 1

In the first double-bump configuration, bumps are located close to each other at the streamwise
positions xc = 8.5 and 9. The x̄ range of the computational domain 
x̄ = [5, 11], i.e., xmax = 11.

Figure 13 displays contour plots of the streamwise u velocity for slip lengths λ ∈ [0, 6×10−3],
revealing two pockets of separated flow. One separation pocket forms in the gap between the two
bumps and a second along the rear side of the second bump, consistent with the behavior of Mar-
quillie and Ehrenstein [1]. Similar to the separation bubble within the gap concavities depicted in
Figs. 7(c) and 7(d) and 10, the intensity of the separated flow between the two bumps peaks near the
front side of the second bump. In the no-slip case [see Fig. 13(a)], the separation bubble downstream
of the second bump is shorter compared to the single-bump configuration [see Fig. 9(a)]. In fact,
for the double-bump arrangement, the flow separates at xse ≈ 9.05 and reattaches at xre ≈ 9.45,
whereas xre ≈ 9.70 for the single-bump model. Hence, the length of this separation bubble for the
double- and single-bump configurations is Lb ≈ 0.40 and Lb ≈ 0.65, respectively. Thus, the first
bump controls the size of the separation bubble downstream of the second bump, similar to [1].
Moreover, the separation bubble along the rear side of the second bump is inhibited for a slip length
λ = 4×10−3 for the double-bump configuration [see Fig. 13(d)], compared with λ = 7.5×10−3 for
the single-bump configuration [see Fig. 9(e)]. [This particular observation is illustrated in Fig. 12(a),
with yellow stars representing the solutions for the double-bump arrangement.] In addition, the
recirculation region between the two bumps is suppressed by a slip length λ = 6×10−3 [see
Fig. 13(f)]. Thus, the double-bump arrangement requires a reduced level of slip to eliminate all
pockets of separated flow.
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FIG. 13. Contour plots of the streamwise u velocity, at time t = 20, for the double-bump configuration
“case 1” and slip lengths (a) λ = 0, (b) λ = 2.5×10−3, (c) λ = 3.75×10−3, (d) λ = 4×10−3, (e) λ = 5×10−3,
and (f) λ = 6×10−3. Secondary plots on the right highlight the region of flow separation, where u < 0.

Distributions of the skin-friction coefficient c f and pressure coefficient cp are illustrated in
Fig. 14. In the case of no slip, the c f curve displays two distinct peaks at the streamwise lo-
cations x = 8.5 and 9, which align with the tips of the two bumps. At x = 9, the peak reaches
c f ≈ 2.2×10−3, which is notably lower than the c f ≈ 3.7×10−3 observed at x = 8.5. When com-
pared to the single-bump model in Fig. 8(a) where c f ≈ 2.7×10−3 at x = 9, it is evident that the
c f values at x = 8.5 and 9 are higher and lower, respectively. Furthermore, the two local minima
in c f are of similar size to that realized for the single-bump geometry. With an increase in the
slip length λ, the magnitude of c f about the two peaks diminishes, while it augments about the

(a) (b)

FIG. 14. Distributions of the (a) skin-friction coefficient c f and (b) pressure coefficient cp for the
double-bump configuration case 1, for slip lengths λ = 0 (solid blue lines), λ = 2.5×10−3 (dashed red),
λ = 3.75×10−3 (chain yellow), λ = 4×10−3 (dotted purple), λ = 5×10−3 (solid green), and λ = 6×10−3

(dashed light blue). Arrows in (a) and (b) indicate the locations of the two bumps.
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FIG. 15. Same as Fig. 13 but for the double-bump configuration case 2, and slip lengths (a) λ = 0,
(b) λ = 1.25×10−3, (c) λ = 2.5×10−3, (d) λ = 5×10−3, and (e) λ = 7.5×10−3. Secondary plots on the right
highlight the region of flow separation, where u < 0.

two troughs. Specifically, for a slip length λ = 4×10−3, a positive c f is realized on the streamwise
interval 9 < x < 9.5. Meanwhile, when λ = 6×10−3, c f > 0 in the range 8.5 < x < 9, which is
consistent with the behavior shown in Fig. 13.

The pressure coefficient cp displays two local minima. The first corresponds to the bump at
x = 8.5 where cp ≈ −0.065 for the no-slip case, and the second minimum corresponds to the second
bump at x = 9, where cp ≈ −0.04. This is similar to the pressure coefficient cp ≈ −0.055 obtained
for the single-bump model in Fig. 8(b). In both instances, slip slightly reduces the intensity of the
pressure coefficient cp at the peaks of the bumps. For no-slip and moderate slip lengths (including
λ = 2.5×10−3 and λ = 3.75×10−3), cp decreases sharply near the outlet boundary. However, this
does not have a measurable upstream influence on the behavior near the bumps.

B. Case 2

In the second double-bump configuration, bumps are located further apart and centered at the
streamwise positions xc = 8 and 9. In this instance, the computational domain along the x̄ direction
is 
x̄ = [5, 12], i.e., xmax = 12. A larger computational domain is necessary as new dynamic
features emerge. In addition, the streamwise location xs, at which the wall condition transitions
from no slip to slip, is shifted upstream to xs = 7.

Contour plots of the streamwise u velocity are displayed in Fig. 15 of the flow that develops
over this double-bump configuration, with slip lengths λ ∈ [0, 7.5×10−3]. In the no-slip case, two
pockets of separated flow emerge, similar to the behavior observed in case 1 [see Fig. 13(a)]. First,
an extended pocket of flow separation forms in the gap between the two bumps. However, unlike
case 1, where the intensity of the separated flow peaks along the front side of the second bump, a
peak intensity is attained near the gap center at x = 8.5. In addition, a second region of separation
develops along the rear side of the second bump. The flow separates about the second bump at
xse ≈ 9.05 and reattaches at xre ≈ 9.5, forming a separation bubble of length Lb ≈ 0.45. Hence, the
separation bubble is again shorter than the Lb ≈ 0.65 observed for the single-bump arrangement [see
Fig. 9(a)]. Nonetheless, the length of the separation pocket exceeds that depicted in case 1, where
Lb ≈ 0.4. Thus, the proximity of the two bumps plays a significant role in reducing the dimensions
of the separation bubble. Specifically, the size of the separated flow along the rear side of the second
bump decreases as the bumps move closer together.
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FIG. 16. Contours of the perturbation u′ (i.e., u′ = u − ū), where ū denotes the mean flow, averaged over
10 < t < 20, for the slip lengths (a) λ = 0, (b) λ = 1.25×10−3, (c) λ = 2.5×10−3, (d) λ = 5×10−3, and
(e) λ = 7.5×10−3.

The flow dynamics begin to differ when slip is applied to the plate surface. Specifically, for
moderate slip lengths, λ = 1.25×10−3 and λ = 2.5×10−3 [see Figs. 15(b) and 15(c)], the separation
bubble in the gap between the two bumps is characterized by two regions of recirculating flow,
where the second, smaller pocket of separated flow detaches from the primary separation bubble, at
a streamwise location upstream of the second bump. Along the rear side of the second bump, the
flow exhibits nonlinear oscillations, resulting in unsteady pockets of separated flow that propagate
downstream before dissipating. (A more detailed discussion of this phenomenon is given below.)
However, a noticeable shift occurs when the slip length λ is increased to λ = 5×10−3. In this
instance, the flow does not separate behind the second bump [see Fig. 15(d)]. In addition, the
oscillatory behavior has disappeared, with flow separation confined to the interval between the two
bump deformations. Moreover, further increases in the slip length suppress this separation bubble,
with λ = 7.5×10−3 eliminating all pockets of separated flow, as shown in Fig. 15(e).

Contour plots of the perturbation u′ = u − ū are displayed in Fig. 16 at time t = 20 for the
same set of slip lengths λ. Here, ū represents the mean flow averaged over the time interval
10 < t < 20. For the no-slip case, shown in Fig. 16(a), a small amplitude perturbation emerges
that is approximately three orders of magnitude smaller than the u velocity. This perturbation
dissipates as it propagates downstream. In contrast, when there is a relatively small slip length
λ, the perturbation u′ exhibits a spatially periodic pattern. For instance, the solution in Fig. 16(b)
displays this phenomenon for λ = 1.25×10−3, which is similar in appearance to the observations
of Marquillie and Ehrenstein [1] (see Fig. 14 of their paper). As the slip length λ increases, the
perturbation u′ is characterized by nonlinear features, as is evident in Fig. 16(c) for λ = 2.5×10−3.
Nevertheless, these oscillatory periodic structures diminish for further increases in λ, with
λ = 7.5×10−3 effectively eliminating these features and all regions of flow separation [see
Fig. 16(e)]. Thus, the combination of distance between the two bumps and the slip length λ, given
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FIG. 17. Spatial evolution of the perturbation u′ (i.e., u′ = u − ū) versus x at y = 0.05, where ū denotes
the mean flow averaged over 10 < t < 20. The slip length (a) λ = 0, (b) λ = 1.25×10−3, (c) λ = 2.5×10−3,
(d) λ = 5×10−3, and (e) λ = 7.5×10−3. The corresponding power spectral densities (PSD) are plotted on the
right-hand side.

here for case 2, is sufficient to generate periodic structures matching the low-frequency flapping
observed by Marquillie and Ehrenstein [1] and others for no-slip surfaces.

Figure 17 displays the perturbation u′ over the streamwise range 8.5 < x < 11.5, at the wall-
normal height y = 0.05, for each slip length λ, modeled in Figs. 15 and 16. In addition, on the
right-hand side of Fig. 17, the corresponding power spectral densities (PSD) of the perturbation are
plotted versus the wave number. For the no-slip case in Fig. 17(a), the perturbation u′ is of the order
10−3, whereas the PSD exhibits a peak amplitude at a wave number of approximately 20, which
aligns with the observed wavelength in the perturbation. For the slip length λ = 1.25×10−3, shown
in Fig. 17(b), harmonic behavior emerges, with a secondary smaller peak in the PSD observed at
a wave number of approximately 40. Moreover, the amplitude of the perturbation u′ has increased
by two orders of magnitude, with u′ ∼ O(10−1). A similar sized perturbation u′ is obtained for
λ = 2.5×10−3 [see Fig. 17(c)]. However, in this instance, the perturbation and the associated PSD
exhibit significant nonlinear features. The appearance of two peaks near the wave number 20 likely
arises from the limited x range used in the PSD analysis, and expanding the x domain may lead
to the collapse of these two wave numbers onto a singular wave number. For larger slip lengths
λ = 5×10−3 and λ = 7.5×10−3, the amplitude of the perturbation u′ diminishes by one and three
orders of magnitude, respectively, with u′ once again characterized by linear behavior. Furthermore,
the PSD plots indicate that the dominant wave number again corresponds to a value near 20.
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FIG. 18. Time evolution of the streamwise u velocity for the double-bump configuration case 2 and λ = 0,
at (a) (x, y) = (10.5, 0.0125) and (b) (x, y) = (9.25, 0.0125). (c) Same as (b) but over a reduced time range,
with a fitting function f (t ) (dotted red), given by Eq. (22).

Further features of the nonlinear oscillatory phenomenon that develops past the two-bump
configuration are captured by considering the time development of the flow. The time evolution of
the streamwise u velocity, for λ = 0, is plotted in Fig. 18 at (x, y) = (10.5, 0.0125), that is, located
downstream of both bump deformations, and (x, y) = (9.25, 0.0125), that is, inside the separation
bubble along the rear side of the second bump. In each instance, the u velocity displays decaying
oscillatory behavior. After a short transient time interval, oscillations in Fig. 18(a) dissipate, and the
solution converges towards a positive constant. Similarly, in Fig. 18(b), oscillations dissipate at large
t . However, a negative-valued u velocity is attained instead, as this location is inside a separation
bubble. The oscillatory behavior of the streamwise u velocity, in Fig. 18(b), is replotted over a
reduced time range in Fig. 18(c). In addition, the exponential decay characterizing the oscillatory
behavior of the u velocity is modeled by the function

f (t ) = u0 + A0e−t/τ sin(2π f0t + φ), (22)

where A0 is the amplitude of the oscillations, τ is the decay constant, f0 is the frequency, φ is the
phase shift, and u0 is an offset. Setting A0 = 0.0520, τ = 3.8945, f0 = 6.2263, φ = −3.4247, and
u0 = −0.0235 establishes the function f (t ) plotted in Fig. 18 (dotted red line) that coincides with
the streamwise u velocity.

Figure 19 displays the time evolution of the streamwise u velocity at (x, y) = (9.5, 0.0125) for
slip lengths λ = 1.25×10−3, λ = 2.5×10−3, and λ = 5×10−3, which are associated with nonlinear
oscillatory phenomena. Solutions clearly demonstrate the oscillatory behavior of the flow down-
stream of the second bump. The top three plots [see Figs. 19(a), 19(d), and 19(g)] depict the u
velocity over a longer time interval, while the middle three plots [see Figs. 19(b), 19(e), and 19(h)]
illustrate the same solution but over a reduced time interval. There is a marked difference in behavior
with that presented above in Fig. 18(c) for the no-slip case. Initially, the amplitude of the oscillating
u velocity increases, and for sufficiently large time t , nonlinear saturation is achieved, with the flow
characterized by periodic behavior; flow dynamics are again similar to that observed by Marquillie
and Ehrenstein [1] (see Fig. 12 of their paper).

The power spectral densities (PSD) corresponding to the above time histories are displayed in
Figs. 19(c), 19(f), and 19(i). There is clear evidence of a fundamental frequency at f ≈ 6 with its
harmonics in Fig. 19(c), for the case matched to λ = 1.25×10−3. This behavior is consistent with
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FIG. 19. Time evolution of the streamwise u velocity for the double-bump configuration case 2, at (x, y) =
(9.5, 0.0125), for slip lengths (a), (b) λ = 1.25×10−3, (d), (e) λ = 2.5×10−3, and (g), (h) λ = 5×10−3. (c),
(f), (i) Display the corresponding power spectral densities (PSD) as a function of the frequency, f .

the results obtained for the no-slip case, presented in Fig. 18(c), in which there were approximately
six oscillations per unit of time. The primary frequency is higher in Fig. 19(f), for λ = 2.5×10−3,
with f ≈ 8, whereas f ≈ 10 in Fig. 19(i) for λ = 5×10−3, but the signal amplitude has reduced
considerably. Thus, oscillatory behavior dissipates for an increasing slip length λ, and disappears
for λ = 7.5×10−3, which is greater than that required for case 1 and comparable with that needed
for the single-bump arrangement (see Fig. 9).

Several experimental and numerical studies, including [1–3,6,56], have reported the onset of
nonlinear oscillations in separated flows with no-slip walls and refer to this phenomenon as
low-frequency flapping. For the surface deformations modeled in this investigation, oscillatory
behavior does not develop for the single-bump deformations, nor does it appear for the double-bump
configuration when the no-slip condition is applied to the plate surface. However, a moderate slip
length λ, applied to the double-bump case 2, was found to excite flow features similar to those
observed in the earlier investigations. Passaggia et al. [3] suggest that the two-dimensional flapping
motion varies with the bump height, and the low frequency depends on the precise parameter values.
In addition, Dallmann et al. [57] conjecture that topological flow changes are responsible for the
appearance of unsteady flow or vortex shedding, a view supported by Theofilis et al. [58]. Secondary
regions of recirculating flow appear near the rear of the primary separation bubble, detach and
propagate downstream, with new separation bubbles forming and taking their place. We hypothesize
that a similar argument applies to our investigation: oscillatory motion is induced by a combination
of surface geometry and topological flow changes. For the case 2 double configuration with a no-slip
wall [see Fig. 15(a)], a single, elongated pocket of separated flow forms in the gap between the two
bumps, whose amplitude peaks near the gap center. Introducing surface slip reduces the intensity
and dimensions of this primary separation bubble. However, surface slip also establishes a second
recirculation zone along the rear of the separation bubble and immediately upstream of the second
bump. This smaller region of recirculating flow detaches from the primary separation bubble, is
swept downstream, and passes over the second bump, leading to the development of oscillatory
behavior, as illustrated in Figs. 15(b) and 15(c). In contrast, oscillatory motion is absent from the
case 1 double-bump scenario (see Fig. 13). Here, the bumps are located closer together, resulting in a
peak in the separation bubble intensity along the front side of the second bump, regardless of the slip
length λ. Consequently, secondary regions of recirculating flow fail to manifest. These observations
suggest that the distance between neighboring bumps and the location where the separated flow
peaks play a crucial role in determining whether self-sustained oscillatory behavior develops. Thus,
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similar to [1–3,6,56–58], oscillatory motion depends on the bump dimensions, the distance between
adjacent bumps, and topological flow changes.

VI. CONCLUDING REMARKS

A two-dimensional numerical study has been undertaken on the effect of slip boundary con-
ditions on the flow that develops over small-scale Gaussian-shaped surface deformations on an
otherwise flat plate. The Reynolds number of the flow for this study was Re = 100 000.

Single, isolated surface deformations were modeled, including bumps and gaps at fixed stream-
wise x positions. Results were presented for surface deformations of aspect ratio η1 (i.e., small
deformations) and aspect ratio η2 (i.e., large deformations), located at xc = 9. In the absence of slip
(i.e., λ = 0), pockets of separation form along the rear side of the bump and within the gap concavity.
Furthermore, bumps establish more intense regions of flow separation than gaps. A slip length
λ = 2.5×10−3 was sufficient to inhibit separation for the small surface deformations (of aspect
ratio η1), whereas for the large deformations (of aspect ratio η2), λ = 5×10−3 and λ = 7.5×10−3

were necessary to suppress separation for the bump and gap configurations, respectively.
Subsequently, two double-bump configurations were modeled with bumps of aspect ratio η2

(i.e., large bumps). These configurations were referenced as case 1 and case 2, respectively. In
each instance, one bump was located at xc = 9, while the other bump was at xc = 8.5 for case 1
and at xc = 8 for case 2. The location of the two bumps plays a fundamental role in the evolution
of the flow over the double-bump configuration. Two recirculation regions form, one between the
two bumps and a second along the rear side of the second bump. For the case 1 double-bump
configuration, the separation bubble that forms along the rear side of the second bump was shorter
than that which develops for the single-bump arrangement. Thus, the location of the first bump
provides a mechanism for flow control. Moreover, a smaller slip length λ was required for the
double-bump model than the single-bump configuration to suppress all regions of reversed flow. A
slip length λ = 4×10−3 inhibits the separation bubble along the rear side of the second bump, and
λ = 6×10−3 inhibits flow separation in the gap region between the two bumps.

Contrasting behavior emerges for the case 2 double-bump configuration. At moderate slip
lengths, 1.25×10−3 � λ � 5×10−3, nonlinear oscillatory behavior was generated. This results in
pulsating, disconnected pockets of reversed flow that convect downstream and out of the computa-
tional domain. Indeed, results were similar to those presented numerically and experimentally by
[1–3] on self-sustained low-frequency flapping in a separated flow. Although, notably, unlike earlier
studies, the oscillatory phenomenon was not generated for any of the single-bump deformations
considered herein. Our results suggest that the geometry (i.e., the height, width, and aspect ratio) of
the surface deformations, their relative position, and topological flow changes [57,58] play key roles
in establishing oscillatory motion. The biggest oscillations were obtained for λ = 2.5×10−3, while
λ = 7.5×10−3 was sufficient to eliminate oscillatory behavior and suppress all regions of separated
flow.

In future studies, it would be interesting to model the effect of slip on different multibump
configurations (i.e., an array of bumps). In addition, an exciting natural extension of this work would
be to perform DNS in three dimensions. The flow development over three-dimensional small-scale
deformations, with different features (including height, width, location, etc.) may present new
characteristics depending on the geometrical configuration and Reynolds number. A series of studies
may be undertaken to determine the ideal parameters that convey the quality of a slip surface and
establish control of flow separation, laminar flow, turbulent flow, and transition. Preliminary results
on the three-dimensional boundary-layer flow over a single-bump deformation, with a no-slip con-
dition on the wall, show that the flow remains laminar for the Reynolds number Re = 50 000 (i.e.,
half of that considered in the above two-dimensional investigation). With increased computational
resources, DNS for Re = 100 000 may be realized. We hope to report the results on the effect of
slip surfaces on such a flow configuration in the near future.

The authors report no conflict of interest.
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FIG. 20. Contour plots of the streamwise u velocity in the region of separated flow downstream of the
single-bump configuration with aspect ratio, η1, 
x̄ = [5, 10], and a no-slip wall, for (a) Nȳ = 15 and variable
Nx̄ , and (b) Nx̄ = 309 and variable Nȳ.

APPENDIX A: GRID RESOLUTION

The accuracy of the solutions presented in this study was confirmed by undertaking a grid
resolution analysis, whereby the number of nodes, Nx̄ and Nȳ, along the computational x̄ and ȳ
directions were varied. Again, utilizing the Nektar + + spectral-hp element method with eighth-
order Lagrange polynomials as basis functions, flow past the single-bump of aspect ratio η1 was
numerically simulated for several values of Nx̄ and Nȳ in the instance the flat plate was subject
to the no-slip condition. Figure 20 displays contours of the streamwise u velocity, specifically the
separation bubble that forms downstream of the bump deformation. In Fig. 20(a), 
x̄ = [5, 10] and
Nȳ = 15, with dashed blue lines representing the solution presented in Figs. 7(a) and 7(b), where
Nx̄ = 309. The solutions established for a reduced number of x̄ nodes, Nx̄ = 301 and 293, are given
by chain red and dotted yellow lines, respectively. Remarkably, the two sets of contours overlap
and exhibit identical minimum values, min(u) (see Table IV). Equivalent solutions are plotted in
Fig. 20(b), but for the mesh specifications implemented for the large bump of aspect ratio η2.
Namely, the number of ȳ = nodes Nȳ = 22 (solid blue). In addition, two further cases are displayed,
matched to fewer ȳ nodes: Nȳ = 20 (chain red) and Nȳ = 18 (dotted yellow). Solutions are again
identical and in excellent agreement with the results plotted in Fig. 20(a). Hence, when combined
with the eighth-order Lagrange polynomial spectral method, the grid specifications implemented in
the above study were more than sufficient for accurately capturing the flow dynamics and pockets
of separated flow near the surface deformations.

TABLE IV. Minimum of the streamwise u velocity, min(u), found within the region of separation for the
single bump of aspect ratio η1, 
x̄ = [5, 10], and grid resolutions modeled in Fig. 20.

Nx̄ Nȳ min(u)

293 15 −0.012207
301 15 −0.012207
309 15 −0.012207
309 18 −0.012274
309 20 −0.012302
309 22 −0.012303
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FIG. 21. Streamwise u-velocity profiles at fixed x locations for single-bump configurations located at xc =
9 of aspect ratio (a)–(c) η1 and (d)–(f) η2. The streamwise location of the outlet in (a)–(c) is xmax = 10 (solid
blue lines), xmax = 11 (dashed red), and xmax = 12 (chain yellow), and in (d)–(f) is xmax = 11 (solid blue),
xmax = 12 (dashed red), and xmax = 13 (chain yellow).

APPENDIX B: STREAMWISE LENGTH OF THE COMPUTATIONAL DOMAIN

In the above study, the streamwise length of the computational domain 
x̄ = [5, xmax] was
chosen to be sufficiently large to avoid interference from the streamwise outlet xmax, with the flow
dynamics that emerged near the surface deformations, and particularly the development of separated
flow. In Sec. IV, results were presented for two isolated single-bump deformations of aspect ratio
η1 (small bump) and η2 (large bump), located at xc = 9, with 
x̄ = [5, 10] and 
x̄ = [5, 11],
respectively. For each bump deformation, two longer computational domains were modelled to
validate the fluid flow behavior downstream of the bump deformity. Figures 21(a)–21(c) compare the
velocity profiles obtained for three different computational domains at three successive streamwise
x locations for the small bump. Similarly, Figs. 21(d)–21(f) depict comparable results for the large
bump. In each case, there are no discernible differences between the three sets of results.

Figure 22 displays the corresponding distributions of the skin-friction coefficient c f for the two
single-bump deformations and the three computational domain lengths 
x̄. In both cases, a minor
variation in c f emerges near the streamwise outlet xmax of the smaller domains (solid blue lines)
compared to the longer domains. However, within the streamwise interval encompassing the bump
deformation and flow separation (i.e., c f < 0), the skin-friction coefficient c f is identical. Thus,
the shortest computational domains, 
x̄ = [5, 10] for the small bump and 
x̄ = [5, 11] for the
large bump, were sufficient to undertake an accurate computational study of the flow development
near the single-bump deformations. Similar conclusions were drawn for the gap and double-bump
configurations modeled in this study.

APPENDIX C: FLOW OVER A LARGER BUMP

In earlier numerical and experimental investigations concerning flow separation along the rear
side of a single bump [1–3,6], the bump geometry (i.e., height and width) and flow conditions were
sufficient to induce self-sustained nonlinear oscillatory behavior and vortex shedding downstream
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FIG. 22. Distribution of the skin-friction coefficient c f for the single-bump configurations (a) η1 and (b) η2

with no-slip walls λ = 0 and computational domains of length 
x̄ = [5, xmax] and variable streamwise outlet
locations xmax.

of the separation bubble, described as low-frequency flapping, much like that observed for the
double-bump configuration case 2. However, for those single-bump configurations modeled in the
above study, with aspect ratios η1 and η2, following a brief transient phase, a steady state was
realized, with a singular, elongated separation bubble forming along the rear side of the bump. To
test whether the nonlinear oscillatory phenomenon is related to the bump height (and aspect ratio),
a third, taller, bump is modeled with height h = 0.02, width σ = 0.0625 (same as bumps η1 and
η2), and aspect ratio η = 0.32 (see the last line in Table I). (Note that this third bump is marginally

u
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FIG. 23. Contour plots of the streamwise u velocity in the region of separated flow downstream of the
single-bump configuration with aspect ratio η = 0.32, and a no-slip wall, at times t = 2, 3, 4, 6, 8, and 10.
Dashed black lines indicate u = 0.
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smaller than those modeled in [1–3,6].) As before, the streamwise length of the computational
domain 
x̄ = [5, xmax] was chosen to be sufficiently large to avoid interference with the outlet
boundary, with xmax = 13. Figure 23 exhibits the evolution of the streamwise u velocity about the
separation bubble found downstream of the bump when the wall is subject to the no-slip condition.
At time t = 2, the flow separates along the rear side of the bump with multiple smaller pockets of
separated flow shedding from the primary separation bubble. These regions of recirculating flow
are swept downstream with a distinct spatial periodicity. However, this behavior does not persist
for long, and vortex shedding diminishes. Eventually, a steady state is realized with a single pocket
of separated flow established of length L ≈ 1. Thus, the third, taller, bump is again inadequate for
generating the self-sustained oscillatory phenomenon. Nevertheless, more pronounced oscillations
are observed at early time t compared to the bump with aspect ratio η2, depicted in Fig. 4(a).
This suggests that further increases in the bump height h may enhance oscillatory behavior and
potentially lead to self-sustained low-frequency flapping akin to [1–3,6].
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