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Lift-up and streak waviness drive the self-sustained process
in wall-bounded transition to turbulence
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Flow field measurements from a Couette-Poiseuille experiment are used to examine
quantitatively certain steps of the self-sustained process (SSP) of wall-bounded transition
to turbulence. Although the different parts of the SSP have been discussed at large in the
literature, direct measurements from experiment are scarce and the present results show,
using a local analysis of the turbulent patterns, that (1) the amplitude of streamwise rolls is
related to streak waviness, bringing a quantitative picture to one of the main physical mech-
anisms of Waleffe’s model of SSP, and (2), at low waviness, direct measurements of the
correlation between the streak and roll amplitudes, respectively probed by the streamwise
and wall-normal velocity perturbations, quantify the lift-up effect. This analysis method
of the SSP does not rely on the specificity of Couette-Poiseuille flows and can be used to
investigate this mechanism in other flows.

DOI: 10.1103/PhysRevFluids.9.033901

I. INTRODUCTION

Turbulent structures in the form of streamwise elongated structures (streaks) and streamwise
vortices (rolls) are recognized as important features in transition to turbulence in plane shear flows.
These structures have a long history of being observed in boundary layer flow experiments [1–3].
The dynamics of streaks and rolls in plane shear flows are essential for understanding the process of
transition to turbulence and the maintenance of turbulence at high Reynolds number. Turbulence in
confined plane shear flows can become self-sustained above a critical Reynolds number Reg through
a regeneration cycle so-called self-sustaining process (SSP) [4,5], which describes the interplay
between the elongated streaks and rolls forming a closed cycle.

The elongated streaks are generated by the advection by the rolls in a velocity field with gradients
as in the presence of a wall-bounded or confined velocity flow, via the lift-up effect [6]. The
streaks then experience wavelike instabilities, become unstable, and break down, which results in
the reinjection of energy into the rolls by nonlinear interactions [5]. The basic mechanisms of this
process are well described by minimal models that couple the evolution of modes for streaks, rolls,
wall-normal vorticity, and mean flow deformation [5,7–9], and by alternative models in terms of
vortex-wave interactions [10]. The nonlinear dynamics and the phase space of the SSP have been
studied in plane Couette flow [11].

The interaction between streaks and rolls has been investigated lately by stochastic structural
stability theory to show the forcing from the streaks to the rolls via Reynolds stresses [12]. Reduced
models named restricted nonlinear (RNL) systems and generalization of RNL have been proposed
to simulate the SSP and determine the modes necessary to sustain turbulence [13,14]. The SSP
process has also been revealed in Taylor-Couette flow simulations by quantifying the energy from
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different turbulent structure components. The physical mechanism involving wavy structures has
thus been identified [15–18]. In a turbulent channel flow simulation, resolvent analysis has been used
to determine the main forcing mode (a pair of streamwise rolls) that accommodates and causes the
most kinetic energy in the buffer and logarithmic layers [19]. The nonlinear interactions between the
rolls and the oblique streaks were found responsible for the self-sustaining turbulence in a minimal
channel [19–21]. The stability and breakdown of large-scale streaks have been studied numerically
and experimentally in boundary-layer and channel flows [22–27]. Mans [24] reported experimental
measurements of a sinuous and a varicose instability of the streaks that can cause roll-up structures
after reaching a critical amplitude in free-stream turbulence boundary layer. Using vortex generators
in a boundary layer, Duriez et al. [28] measured an energy transfer from the streaks to the rolls via
streaks instabilities at moderate Reynolds number, which is an experimental evidence of the SSP
process.

Now, concerning wavy streaks and their interactions, experimental measurements are particularly
lacking, especially regarding the role of streak waviness in their regeneration cycle. Numerically,
recent interest has risen on the study of local waviness [29]. In this paper, we investigate quan-
titatively the link between this waviness and the other velocity components in a well-controlled
wall-bounded plane shear flow experiment. We develop a method involving thresholding and
Fourier filtering to quantify the “average” on a streak of the waviness, the streamwise velocity, and
wall-normal velocity, and we correlate these variables. The investigated wall-bounded shear flow
is a Couette-Poiseuille flow (CPF) channel (see Fig. 1) and the three components of the velocity
fields and measured using stereo particle image velocimetry (PIV) measurements. To allow both
straight and wavy streaks, we examine Reynolds numbers around the value Reg ≈ 680 above which
turbulence has been shown to be self-sustained in CPF [30,31], and also at higher values to be in a
fully turbulent regime. Using a local streak analysis approach based on the stereo-PIV velocity field
measurements, we investigate the local relation between the waviness of the streaks and the rolls
velocity components, bringing a quantitative assessment of different parts of the SSP.

The article is organized as follows. We describe the experimental setup and protocol in Sec. II.
The stereo-PIV velocity field analysis and the local streak processing method are described in
Sec. III. We investigate the local relation between the waviness of the streaks and the rolls velocity
components in Sec. IV. The discussion and conclusions are contained in Sec. V.

II. EXPERIMENTAL SETUP AND PROTOCOL

A. Couette-Poiseuille channel

We use the Couette-Poiseuille experiment shown in Fig. 1(a) that has already been described
in previous publications [30,31]. It consists of a water channel made of two parallel vertical glass
plates with a constant 14 mm gap, connected to two reservoirs at its ends. The glass plates are closed
at the top and bottom by two horizontal transparent plates, forming a closed channel. The tops of the
reservoirs are not closed. The setup is filled with water at room temperature 18 ◦C ± 1.5 ◦C, which
is controlled by air conditioning. Contrary to the work described in [31], no grid is placed at the
entrance of the channel to induce perturbations.

The flow is driven by a transparent Mylar® sheet of thickness 175 µm. The sheet is closed to
form a belt by using double sided tape. The belt is guided by vertical cylinders so that it remains
parallel to the glass plates and close to one of the two plates. A motorized 140 mm wide cylinder in
reservoir 1 drives the belt motion. The speed of the motor (Yaskawa Electrics 100 W servo-motor,
gear reduction 1 : 26) is set by a controller via a National Instruments card, which is integrated in
a Labview® program. The belt velocity Ubelt is constant during an experiment, giving a permanent
regime for the CPF that is established in the region between the moving belt and the fixed wall. The
width of the CPF channel is defined in the usual way as 2h, with h = 5.5 mm being the half channel
width. In the laminar regime, a parabolic Couette-Poiseuille profile is obtained. The length of the
channel in the streamwise direction, i.e., the x direction, is Lx = 2000 mm, so that Lx/h = 364.
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FIG. 1. (a) Schematic diagram of the experimental Couette-Poiseuille setup and stereo-PIV configuration.
(b) Position of the cylindrical vortex generators on the vertical xz plane. (c) Side view of the vortex generator
in the xy plane. The velocity profile displayed is the laminar Couette-Poiseuille.

The height of the channel in the spanwise direction, i.e., the z direction, is Lz = 540 mm, so that
Lz/h = 98. This aspect ratio is sufficient to investigate the spatiotemporal dynamics of turbulent
structures.

The Reynolds number of the Couette-Poiseuille flow is defined as Re = Ubelth/ν, where ν is the
kinematic viscosity of the water (evaluated at the measured water temperature). In the following,
the variables will be made dimensionless using h and Ubelt .

B. Cylindrical vortex generators

In order to study the waviness of streaks at Reynolds numbers below the self-sustained threshold
(Reg ≈ 680 [31]), two cylindrical vortex generators mounted on the fixed wall inside the channel are
used [see Figs. 1(b) and 1(c)]. This is inspired by previous works in boundary layers that obtained
experimental evidence of the self-sustaining process [28] and secondary flow instabilities [32,33]. In
a boundary layer, each wall-mounted vortex generator induces a pair of longitudinal counter-rotating
vortices that modulate the streamwise velocity profile close to the wall by the lift-up effect (see
[34] for a review). In the channel of the present experiments, the flow induced by the cylinders
is probably more complex close to the cylinders, due to the second wall and the nonmonotonous
Couette-Poiseuille base flow profile. However, a couple of cylinders were still found to be an
efficient method to induce streaks.
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The cylinders are aligned in the z direction with a spacing of D = 4h, which is close to the
optimal distance between streaks [35] [see Fig. 1(b)]. The height and the diameter of the cylinder are
4 mm and 6 mm, respectively. The chosen height is sufficient to generate quasistreamwise streaks
at low Re (e.g., Re < 500) outside the very near region to the bluff bodies (x < 5h). Cylinders
with a height of 2 mm were not able to induce streaks at low Re. The cylinders used are actually
neodymium disk magnets (from Supermagnete®) so that they can easily be held and manipulated
on the fixed wall.

C. Stereo-PIV measurements

Stereo particle image velocimetry (PIV) is used to measure the three velocity components in a
2D streamwise-spanwise xz plane parallel to the walls of the channel, at a distance of 0.33h from
the moving wall, where the laminar base flow vanishes—see Figs. 1(a) and 1(c). An integrated
stereo-PIV system from LaVision® is used, with a Darwin-Duo® 20 mJ Nd-YLF double pulse
green laser (527 nm) to generate the laser sheet. The laser sheet is aligned with the channel using
a rotation and tilting stage (Standa 6PT110) and the position of the sheet in the channel is selected
using a Thorlabs® microtranslation stage. The flow is seeded with 20 µm polyamid beads of density
1.03 g cm−3, with a volumic concentration equal to 1.7×10−5 g cm−3.

The images are acquired by two double-frame cameras Imager MX5M® from LaVision
(2664×2056 pixels), each one equipped with a Nikon® 17–35 mm objective lens set at an aperture
f/2.8. The cameras were mounted at a distance of about 770 mm from the measurement plane.
The angle between the cameras was approximatively of 90◦. A water tank of angle 45◦ is placed
between the camera and the channel to reduce optical distortions. A Scheimpflug adapter is used
to tilt the camera so that the whole object plane is in focus. The camera, the Scheimpflug adapter,
and the objective are mounted on a rotating plate to enable the setting of the angle between the
image plane and the camera. The calibration is achieved by taking two images of a calibration plate,
one from each camera. We used a LaVision two-level double-sided calibration plate (type 058-5)
with dimensions 58 mm×58 mm, distance between dots 5 mm, dot diameter 1.2 mm, and level
separation 1 mm. The self-calibration process from LaVision software is applied on the PIV particle
images to decrease the disparity between the calibration target plane and the laser sheet plane.

The image rate of the acquisition was set at f ∗ = 8 Hz, which enables capturing the dynamic
evolution of the streaks. The measured field is in the center of the channel. Its size is 29h×19h,
which gives a good compromise of a small enough PIV interrogation window size of 2 mm (0.36h)
to resolve the spatial structures and a large enough global view of these structures. The time interval
between the two laser pulses was �t∗ = 4.0 ms, which gives a particle displacement between two
frames of a few pixels. The velocity fields are computed using DaVis 10 software (LaVision) with
a two-pass algorithm. As the velocity field is dominated by the streamwise velocity component, the
displacement of the particles in this direction was more than one order of magnitude larger than
in the spanwise direction. For this reason, an elliptical interrogation window with a 4:1 ratio was
used, with an area of 1024 pixels. The overlap between two successive windows was set to 50%.
The 2D velocity field measured from each camera is calculated by cross correlation and then used
for the reconstruction of the three velocity components in the plane based on the calibration of the
two cameras.

III. VELOCITY FIELD AND LOCAL STREAK ANALYSIS

A. Small-scale flow

For studying the streak dynamics in the CPF turbulent patterns, we decompose the measured
velocity field U as the sum of a large-scale flow ULSF and small-scale flow u = (ux, uy, uz ), i.e.,

U = ULSF + u. (1)
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FIG. 2. Stereo-PIV velocity fields on the xz plane at y = 0.33h: (a) streamwise velocity ux , (b) spanwise
velocity uz, and (c) wall-normal velocity uy. The velocities are nondimensionalized by the belt velocity Ubelt .
Horizontal black and green dashed lines in (a) and (b) and vertical black and green dashed line in (c): axes
along which the corresponding velocity profiles are displayed in (d), (e), and (f). These lines are located close
to a wavy streak.

Large-scale flows originate from the inhomogeneity observed at the interfaces of laminar-turbulent
regions [36–40] and their characteristic length scales can be much larger than the typical distance
between streaks (see, e.g., Ref. [40]). In experiments, they have also been associated with the
geometrical imperfections on the channel walls that induce 3D flows. In the present CPF setup, they
have been investigated extensively in a previous work [39]. The focus here will be on the local prop-
erties of the small-scale turbulent structures described by u in Eq. (1). In practice, we apply a high-
pass circular fourth-order Butterworth spatial filter to separate the flow scales in the 2D x − z plane,
with a cutoff wavelength kc = 0.86/h, i.e., λc = 7.3h (see [31,39] for details on the choice of kc).

An example of the streamwise ux, spanwise uz, and wall normal uy components of the small-scale
velocity field measured at Re = 550 is shown in Fig. 2. As is always observed in this type of
striped three-dimensional unstable flows, the streamwise ux component is greater than the transverse
components uy and uz. We recall that this patterned structure is observed here even for Reynolds
numbers corresponding to laminar and stable situations because of the vortex generators, which
induce the streamwise streaks and rolls. The relationship between the magnitude of the longitudinal
fluctuation ux and that of the wall-normal uy fluctuation is the basis of the description of the lift-up
mechanism, which characterizes the specificity of the transition to turbulence in wall-bounded shear
flows, where the streamwise vortices or rolls induce streaks. This relationship will be discussed
further below, but a first observation of Figs. 2(a), 2(b) and 2(c) shows that when the streaks visible
in the ux field are relatively straight—see, e.g., the two high speed streaks around z = −5 visible as
red stripes in Fig. 2(a)—there is almost no discernible signal on the uz and uy fields that quantify the
rolls intensity. The main observation of roll activity evidenced by the largest amplitudes recorded
on the uz and uy fields occurs at the location where the corresponding streak in the ux field has
a meandering shape, i.e., where the streak is wavy—see the zone indicated by dashed lines in
Figs. 2(a), 2(b) and 2(c). The large amplitude of uz is modulated along the x direction, which
enforces the deformation of the streaks. However, the corresponding uy is alternated along the z
direction, which shows the injection of flow into the streak. This first qualitative observation is in
agreement with the mechanism of roll regeneration, in which wavy streaks induce rolls [5]. In the
following of the article, we describe quantitative results about this process.
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A first quantification can be made looking at the spatial length scales related to the streaks and
rolls: a horizontal profile of the streamwise velocity ux is shown in Fig. 2(d), corresponding to
the black and green dashed line parallel to the mean streaks in Fig. 2(a). The variation results
from the streak undulation or waviness. The distance between two maximal fluctuations is the
wavy wavelength λx,wavy. A similar profile of the spanwise velocity uz is displayed in Fig. 2(e)
in the middle of the undulation. This spanwise velocity is modulated along the wavy streak and
changes sign approximatively at the middle of the streak. The distance between these two maximal
fluctuations is half of the wavy wavelength λx,wavy. A vertical profile of the wall-normal velocity uy

is shown in Fig. 2(f), corresponding to the line at the x position with zero uz velocity in Fig. 2(c).
This spanwise velocity modulation is perpendicular to the wavy streak and changes sign following
the distance λz/2 between streaks.

B. Definition of streaks waviness

In the example of Fig. 2, the spanwise and wall-normal velocities are maximum close to the
undulating part of the streak. To investigate this link systematically, we introduce the “wavy wall-
normal vorticity” as a quantitative measurement of waviness. In Eq. (1), a circular Fourier filtering
is applied to separate the large scale flows ULSF and the small scale flow u. We apply another
Fourier filter in the x direction with a cutoff wavelength λx,wavy � 14.5 (or kx,wavy � 2π/14.5) on
the small-scale streamwise velocity ux (the results of Sec. IV depend only very slightly on the value
of the threshold; data not shown). We thus write this small-scale streamwise velocity ux as the sum
of a straight elongated component ux,stra and a wavy component ux,wavy:

ux = ux,stra + ux,wavy. (2)

An example of this decomposition is shown in Fig. 3. The small scale velocity ux is shown in
Fig. 3(a) and is equal to the sum of the straight part ux,stra and the wavy part ux,wavy, shown in
Figs. 3(b) and 3(c), respectively. With the chosen threshold value for λx,wavy, ux,stra actually appears
straight, while the fluctuations of ux,wavy register the meandering of the streak. The corresponding
premultiplied energy spectra used for this decomposition are shown in Figs. 3(d), 3(e) and 3(f).

With this decomposition, we can define the straight mode ux,stra as the zero mode of undisturbed
streaks. For Reynolds numbers below Reg, this mode exists because it is imposed by the vortex
generators and is therefore independent of the turbulence level.

Now, the straight streaks have a nonvanishing wall-normal vorticity ωy due to the modulation of
the velocity field in the spanwise z direction. To measure the vorticity associated to the waviness,
we define in the following Eq. (3) a wavy wall-normal vorticity denoted by ωy,wavy based on ux,wavy:

ωy,wavy = ∂ux,wavy

∂z
− ∂uz

∂x
. (3)

Since uz,stra � uz,wavy, we have uz ≈ uz,wavy. This wavy wall-normal vorticity ωy,wavy vanishes for
straight streaks but not for wavy streaks and is larger when the streak is more undulated.

C. Local streaks detection and averaging

As discussed in the Introduction, the role of waviness in the self-sustaining mechanism that
regenerates turbulent structures is well established, although few laboratory experiments have
investigated wavy streaks, like [23] in boundary layers. In order to highlight this process, we
quantify the “average” waviness and velocities at the streak level. The first step is to isolate the
strongest streaks from the velocity field by thresholding to find the high speed (positive ux) and low
speed (negative ux) regions, separately. An example of the streaks identified with such thresholding
is shown in Fig. 4, where positive and negative streaks are identified, respectively, by solid and
dashed contours over the uz, uy, and ωy,wavy fields. The chosen threshold on |ux| appears suitable to
delimit streaks that enclose most of the perturbation on the other velocity components. A single
dimensionless threshold |ux| > 0.11 is used for all Reynolds numbers tested. The second step
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(c)

(d) (e) (f)

(a) (b)

FIG. 3. Decomposition, at Re = 550, of the small-scale streamwise velocity into straight and wavy
components ux = ux,stra + ux,wavy, and the corresponding premultiplied energy spectra. (a) Small-scale flow
ux; (b) straight streaks ux,stra; (c) wavy streaks ux,wavy; (d) premultiplied energy spectrum kEux of ux; (e)
premultiplied energy spectrum kEux,stra of ux,stra; (f) premultiplied energy spectrum kEux,wavy of ux,wavy. The
spectrum (d) is the sum of the filtered spectra (e) and (f).

consists in defining a “streak average,” denoted by 〈|.|〉, as the average of the absolute value of
the variable within the inner region of a streak. For example, 〈|ωy,wavy|〉 for a given streak is the
average of |ωy,wavy| inside this streak. This value is slightly lower than the streak maximum. Since
the flow is perturbed by the presence of the vortex generators in the very neighborhood of their
position at x = 0, we only analyze the velocity field at positions with x > 5h, where we can observe
the natural streaks in the CPF.

IV. RESULTS

A. Quantifying how streak waviness is related to roll amplitude

In order to gain statistical robustness on the qualitative observation given by Fig. 4, we proceed
to analyze the streak-averaged variables for all the experiments performed. We use in the following
analysis the high-speed streaks. A quantitative picture of the link between the strength of the rolls
and the waviness of the streaks is given in Fig. 5 by plotting the wall-normal streak-averaged velocity
〈|uy|〉 as a function of the wavy vorticity 〈|ωy,wavy|〉 for the positive streaks of one experiment at Re =
550. One experiment means the whole measurement sequence represented in the Supplemental
Video [41] corresponding to Fig. 4, where several streaks can be identified on each recorded frame.
Each data point in Fig. 5(a) corresponds to a local averaging on one streak at a given time. We
process only one frame every five, which is approximately every 1.1 advection times h/Ubelt , to
avoid obtaining several data points from what would be associated to the same streaks during the
temporal evolution. The main observation appears clearly: higher wall-normal velocity fluctuations
〈|uy|〉 are associated to higher waviness of the streaks 〈|ωy,wavy|〉. The same qualitative observation
is obtained when examining the spanwise velocity fluctuation 〈|uz|〉 as a proxy for the roll strength
(not shown here).
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FIG. 4. Small-scale flow snapshots at Re = 550; (a) ux field; (b) uz field; (c) uy field; (d) ωy,wavy. On
snapshots of uz, uy, ωy,wavy the contour of the selected streaks are shown in solid lines (ux = 0.1) and dashed
line (ux = −0.1). See the Supplemental Material [41] for a video corresponding to the time evolution of this
figure in a full experimental run.

We show the shape of streaks with different waviness in Fig. 5(b), where the numbers correspond
to the points labeled in Fig. 5(a). Streak 1, with a nearly flat elongated shape, is associated to the very
weak but nonzero amplitude of the roll variable 〈|uy|〉. Streak 2, with a slightly meandering shape,
corresponds to higher values of 〈|uy|〉. This tendency becomes more pronounced for streak 3, which
has a stronger undulation and corresponds to even higher amplitude rolls, compared to streak 2.

In Fig. 6, the streak-averaged wall-normal 〈|uy|〉 velocity amplitudes are plotted as a function of
the wavy wall-normal vorticity 〈|ωy,wavy|〉 for all the Reynolds numbers tested. The plots are thus
the equivalent to Fig. 5(a), but for each Reynolds number five independent experimental runs are
analyzed. This gives between 3000 and 5000 points for each Reynolds number, which allows us to
get very good statistics. The measurements were conducted on positive streaks due to their higher
instability, whereas negative streaks are found to be more unstable in wall turbulence [24]. This
difference can be explained by the base profile of the Couette-Poiseuille flow in turbulence, which
features a high shear region on the moving wall and an almost flat region on the opposite side caused
by backflow.

It can be seen in Fig. 6 that the number of data points with higher waviness grows with the
Reynolds number. A running average is superimposed on each plot. Recalling that the wall-normal
velocity 〈|uy|〉 quantifies the roll intensity, the increasing value of their running average as a function
of 〈|ωy,wavy|〉, quantitatively confirms their relationship to the streak waviness, as expected from
models describing the self-sustained process (SSP) to regenerate turbulence [5]. In fact, even for a
Reynolds number lower than the critical value Reg, the streaks generated by the vortex generators
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FIG. 5. (a) Streak-averaged wall-normal velocity 〈|uy|〉 as a function of the wavy vorticity 〈|ωy,wavy|〉 for
positive ux streaks at Re = 550. (b) Streaks ux from one frame with numbers corresponding to the data points
indicated in (a). The area outside the streaks is set to zero for clarity.

with a strong undulation show a vigorous activity. As observed in the histograms, the most probable
value of 〈|ωy,wavy|〉 increases dramatically when the Reynolds number changes from 600 to 700, i.e.,
around the self-sustained threshold Reg ≈ 680. This is a supplementary indication that waviness
plays a major role in the self-sustained mechanism.

B. Lift-up characterization and SSP process

In this section, we investigate the link between the roll amplitude variable 〈|uy|〉 and the
streamwise velocity 〈|ux|〉 that characterizes the streak intensity. We are thus looking into the basic
mechanism engendered by streaks in wall-bounded flows: the lift-up effect [34,42].

In order to examine the lift-up, we focus on streaks with low waviness. For these cases 〈|ωy,wavy|〉
is no longer a good variable, as shown in Fig. 6(f) that presents a magnified view of Fig. 6(b) for
〈|ωy,wavy|〉 < 0.04. In this restricted range of small 〈|ωy,wavy|〉, the mean value of 〈|uy|〉 is almost
constant and the dispersion of the points is large. The same points are plotted in red in Fig. 7
that shows the wall-normal velocity 〈|uy|〉 as a function of the streamwise velocity 〈|ux|〉. These
points are well described by a straight line 〈|uy|〉 ≈ 0.08〈|ux|〉 (dashed line in Fig. 7). In this case of
absence of meandering, the existence of straight streaks is a manifestation of the “laminar” lift-up
mechanism, since the presence of rolls built up by the vortex generators modulates the streamwise
velocity and produces high and low velocity streaks.

Another more precise approach to quantify this laminar lift-up is to use the decomposition of all
the streaks, including the very wavy ones, as the sum of straight and wavy components introduced
earlier (see Sec. III B). The value of 〈|uy,stra|〉 as a function of 〈|ux,stra|〉 is shown as black dots in
Fig. 7. These are more dispersed and reach lower values of 〈|uy|〉 and 〈|ux|〉 than the low-waviness
points (the red points in Fig. 7 that correspond to 〈|ωy,wavy|〉 < 0.04). However, a linear fit of these
black points is in practice almost identical to the fit of the red points shown as a dashed line in Fig. 7,
indicating a similar physical mechanism.

In Fig. 8 the relation between the rolls variable 〈|uy|〉 and streaks variable 〈|ux|〉 is displayed
for different Reynolds numbers: Re = 450, 550, 600, 700, and 1000. For all these Reynolds
numbers, the low-waviness points (red markers in Fig. 8) are located around the straight line
〈|uy|〉 = 0.08〈|ux|〉. These red points correspond to the lower bound of the cloud of points, which is
almost unchanged for the three more laminar cases (Re = 450, 550, and 600).

At higher Reynolds numbers the points are more scattered. At Re = 700, only a few red points
remain close to the straight line and, at Re = 1000, due to the fully sustained turbulent nature of
the flow at this Reynolds number, there are no more red points: the cloud of (gray) points is located
well above the straight line, outside the region of weak undulation. This is consistent with a fully
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FIG. 6. Streak-averaged wall-normal 〈|uy|〉 velocity as a function of the streak-averaged wavy vorticity
〈|ωy,wavy|〉 for (a) Re = 450, (b) Re = 550, (c) Re = 600, (d) Re = 700, and (e) Re = 1000. The histograms on
the top and right sides of each plot indicate the density of points at the corresponding position. (f) Zoom of the
low-waviness region indicated in (b) showing that for the points with 〈|ωy,wavy|〉 < 0.04 the increasing trend of
〈|uy|〉 as a function of 〈|ωy,wavy|〉 cannot be established. On each curve a running average over a window of 50
points is shown as a solid green line; the line is broken when the number of points is scarce and the running
average is no longer meaningful.

self-sustained dynamics at Re = 1000 and with the 〈|uy|〉 histogram on the figures, which shows that
the higher the Reynolds number, the higher the average value of the rolls amplitude 〈|uy|〉 (marked
by the blue triangles in Fig. 8). When all the streaks are wavy, 〈|uy|〉 is larger, in agreement with the
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FIG. 7. 〈|uy|〉 vs 〈|ux|〉 for all five experiments at Re = 550 (the color map indicates values of 〈|ωy,wavy|〉).
The red circles correspond to cases’ values of 〈|ωy,wavy|〉 < 0.04 (a linear fit of these values is shown in
dashed line). The black dots are the filtered fields 〈|uy,stra|〉 vs 〈|ux,stra|〉. A linear fit of the black points is
indistinguishable within the accuracy of the experimental measurements from the dashed line.

spatially organized process of near-wall structure regeneration for self-sustained turbulence (SSP)
formulated by Waleffe [5].

It is also interesting to note that if one were to attempt a linear fit of the black points that
represent uy,stra vs ux,stra, its slope would increase strongly for Re = 1000, with respect to the laminar
lift-up slope represented by the dashed line in Fig. 8. This is a signature that, when the flow is
fully turbulent, nonlinear effects dominate. This is because the lift-up phenomenon depends on the
gradient of the base velocity profile [6] and the base velocity profile is nonlinearly modified by the
mean flow distortion.

V. CONCLUSIONS

We have investigated experimentally the dynamics of turbulent structures, streaks, and rolls, in
a Couette-Poiseuille channel. The interaction between streaks and rolls has been shown to be a
useful tool to interpret the lift-up and the self-sustaining process of wall-bounded turbulence around
a threshold Reynolds number. This work provides an experimental evidence of certain steps in the
SSP models and proposes a way to quantify the relation between waviness and amplitude of the
streaks. In the present article, we focus on experiments in the Couette-Poiseuille geometry, but this
method can be used in the other flows involving SSP.

One of the main results of the present article is the experimental quantification of how the
roll intensity increases with streak waviness. Waviness is a key variable in the roll regeneration
equation of SSP reduced models—see the third equation of the system (20) in [5]. To quantify the
waviness, we have defined a wavy wall-normal vorticity by high-pass filtering ux, i.e., by removing
the straight component of the streaks. By considering the average values of the waviness and of the
velocity component on a single streak at a given time, we have determined a relationship that is
local in space and time. We have shown that for the investigated Reynolds numbers between 450
and 1000 the average intensity of the rolls increases when the wavy vorticity increases. We observed
in particular that the structures that do not contribute to the turbulence regeneration are those that
we have defined as straight streaks, confirming the claim in the numerical work of Jimenez [43] that
these streaks do not participate in wall turbulence.

Another key result is that, for low-waviness streaks, the average intensity of the rolls 〈|uy|〉 is
proportional to 〈|ux|〉, with 〈|uy|〉 ≈ 0.08〈|ux|〉. Remarkably, 〈|uy|〉 as a function 〈|ux|〉 of the straight
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Re

FIG. 8. 〈|uy|〉 vs 〈|ux|〉 for all Reynolds numbers: (a) Re = 450, (b) Re = 550, (c) Re = 600, (d) Re = 700,
and (e) Re = 1000. The histograms on the top and right sides of each plot indicate the density of points at
the corresponding position. The mean values are shown as a blue triangle on each plot. The points where
〈|ωy,wavy|〉 < 0.04 are marked in red and the black dots are the filtered fields 〈|uy,stra|〉 vs 〈|ux,stra|〉, as in Fig. 7.
The fit for the red points at Re = 450 is recalled as a dashed line in all plots, showing that it serves as a lower
bound and that in the turbulent regimes all points are above it. (f) Box plots representing the histogram of 〈|uy|〉
for each Reynolds number. On each box, the central red line indicates the median and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers and the outliers are the red markers.
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part of the streaks is shown to align with the same slope as the one obtained for the low-waviness
streaks. This behavior is observed even if the original streaks (i.e., before low-pass filtering) are
very wavy and can be interpreted as a result of a laminar lift-up. This is consistent with the second
equation of system (20) in the reduced model of Waleffe [5], of Eq. (22) of the model of Moehlis
[7], and Eqs. (9d) and (9k) of the model of Cavalieri [44], where a linear relationship between streak
intensity and rolls is described. However, a direct comparison with the coefficients of the reduced
models cannot be performed, since these equations are derived for different boundary conditions
and flow profiles in the wall-normal direction and also include other terms such as a mean flow
correction that are not available from our PIV measurements in a plane.

Some of the results of the present article are specific to the Couette-Poiseuille flow. For instance,
we have analyzed the positive streaks due to their higher instability, whereas negative streaks are
found to be more unstable in boundary layer turbulence. On the other hand, the link between rolls
intensity and waviness, or between rolls intensity and streak intensity for low-waviness streaks,
is expected to be also verified for other confined shear flows like Couette or Poiseuille flows,
and even in flows showing supercritical instabilities with streamwise structures as in centrifugal
instabilities. The physical mechanisms of the self-sustaining of turbulence are thought to be the
same in these geometries. Waviness has been shown to be a key parameter in wall turbulence,
where larger structures display a larger mean level of waviness [29]. A perspective of this work
is the investigation of the waviness and lift-up at Reynolds numbers higher than 1000, where the
streaks become shorter.
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